1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 79 SetFastMathFlags(CurFPFeatures); 80 SetFPModel(); 81 } 82 83 CodeGenFunction::~CodeGenFunction() { 84 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 85 86 if (getLangOpts().OpenMP && CurFn) 87 CGM.getOpenMPRuntime().functionFinished(*this); 88 89 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 90 // outlining etc) at some point. Doing it once the function codegen is done 91 // seems to be a reasonable spot. We do it here, as opposed to the deletion 92 // time of the CodeGenModule, because we have to ensure the IR has not yet 93 // been "emitted" to the outside, thus, modifications are still sensible. 94 if (CGM.getLangOpts().OpenMPIRBuilder) 95 CGM.getOpenMPRuntime().getOMPBuilder().finalize(); 96 } 97 98 // Map the LangOption for exception behavior into 99 // the corresponding enum in the IR. 100 llvm::fp::ExceptionBehavior 101 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 102 103 switch (Kind) { 104 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 105 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 106 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 107 } 108 llvm_unreachable("Unsupported FP Exception Behavior"); 109 } 110 111 void CodeGenFunction::SetFPModel() { 112 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 113 auto fpExceptionBehavior = ToConstrainedExceptMD( 114 getLangOpts().getFPExceptionMode()); 115 116 Builder.setDefaultConstrainedRounding(RM); 117 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 118 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 119 RM != llvm::RoundingMode::NearestTiesToEven); 120 } 121 122 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 123 llvm::FastMathFlags FMF; 124 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 125 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 126 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 127 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 128 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 129 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 130 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 131 Builder.setFastMathFlags(FMF); 132 } 133 134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 135 const Expr *E) 136 : CGF(CGF) { 137 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 138 } 139 140 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 141 FPOptions FPFeatures) 142 : CGF(CGF) { 143 ConstructorHelper(FPFeatures); 144 } 145 146 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 147 OldFPFeatures = CGF.CurFPFeatures; 148 CGF.CurFPFeatures = FPFeatures; 149 150 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 151 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 152 153 if (OldFPFeatures == FPFeatures) 154 return; 155 156 FMFGuard.emplace(CGF.Builder); 157 158 llvm::RoundingMode NewRoundingBehavior = 159 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 160 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 161 auto NewExceptionBehavior = 162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 163 FPFeatures.getFPExceptionMode())); 164 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 165 166 CGF.SetFastMathFlags(FPFeatures); 167 168 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 169 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 170 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 171 (NewExceptionBehavior == llvm::fp::ebIgnore && 172 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 173 "FPConstrained should be enabled on entire function"); 174 175 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 176 auto OldValue = 177 CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true"; 178 auto NewValue = OldValue & Value; 179 if (OldValue != NewValue) 180 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 181 }; 182 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 183 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 185 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 186 FPFeatures.getAllowReciprocal() && 187 FPFeatures.getAllowApproxFunc() && 188 FPFeatures.getNoSignedZero()); 189 } 190 191 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 192 CGF.CurFPFeatures = OldFPFeatures; 193 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 194 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 195 } 196 197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 198 LValueBaseInfo BaseInfo; 199 TBAAAccessInfo TBAAInfo; 200 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 201 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 202 TBAAInfo); 203 } 204 205 /// Given a value of type T* that may not be to a complete object, 206 /// construct an l-value with the natural pointee alignment of T. 207 LValue 208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 209 LValueBaseInfo BaseInfo; 210 TBAAAccessInfo TBAAInfo; 211 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 212 /* forPointeeType= */ true); 213 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 214 } 215 216 217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 218 return CGM.getTypes().ConvertTypeForMem(T); 219 } 220 221 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 222 return CGM.getTypes().ConvertType(T); 223 } 224 225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 226 type = type.getCanonicalType(); 227 while (true) { 228 switch (type->getTypeClass()) { 229 #define TYPE(name, parent) 230 #define ABSTRACT_TYPE(name, parent) 231 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 232 #define DEPENDENT_TYPE(name, parent) case Type::name: 233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 234 #include "clang/AST/TypeNodes.inc" 235 llvm_unreachable("non-canonical or dependent type in IR-generation"); 236 237 case Type::Auto: 238 case Type::DeducedTemplateSpecialization: 239 llvm_unreachable("undeduced type in IR-generation"); 240 241 // Various scalar types. 242 case Type::Builtin: 243 case Type::Pointer: 244 case Type::BlockPointer: 245 case Type::LValueReference: 246 case Type::RValueReference: 247 case Type::MemberPointer: 248 case Type::Vector: 249 case Type::ExtVector: 250 case Type::ConstantMatrix: 251 case Type::FunctionProto: 252 case Type::FunctionNoProto: 253 case Type::Enum: 254 case Type::ObjCObjectPointer: 255 case Type::Pipe: 256 case Type::ExtInt: 257 return TEK_Scalar; 258 259 // Complexes. 260 case Type::Complex: 261 return TEK_Complex; 262 263 // Arrays, records, and Objective-C objects. 264 case Type::ConstantArray: 265 case Type::IncompleteArray: 266 case Type::VariableArray: 267 case Type::Record: 268 case Type::ObjCObject: 269 case Type::ObjCInterface: 270 return TEK_Aggregate; 271 272 // We operate on atomic values according to their underlying type. 273 case Type::Atomic: 274 type = cast<AtomicType>(type)->getValueType(); 275 continue; 276 } 277 llvm_unreachable("unknown type kind!"); 278 } 279 } 280 281 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 282 // For cleanliness, we try to avoid emitting the return block for 283 // simple cases. 284 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 285 286 if (CurBB) { 287 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 288 289 // We have a valid insert point, reuse it if it is empty or there are no 290 // explicit jumps to the return block. 291 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 292 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 293 delete ReturnBlock.getBlock(); 294 ReturnBlock = JumpDest(); 295 } else 296 EmitBlock(ReturnBlock.getBlock()); 297 return llvm::DebugLoc(); 298 } 299 300 // Otherwise, if the return block is the target of a single direct 301 // branch then we can just put the code in that block instead. This 302 // cleans up functions which started with a unified return block. 303 if (ReturnBlock.getBlock()->hasOneUse()) { 304 llvm::BranchInst *BI = 305 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 306 if (BI && BI->isUnconditional() && 307 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 308 // Record/return the DebugLoc of the simple 'return' expression to be used 309 // later by the actual 'ret' instruction. 310 llvm::DebugLoc Loc = BI->getDebugLoc(); 311 Builder.SetInsertPoint(BI->getParent()); 312 BI->eraseFromParent(); 313 delete ReturnBlock.getBlock(); 314 ReturnBlock = JumpDest(); 315 return Loc; 316 } 317 } 318 319 // FIXME: We are at an unreachable point, there is no reason to emit the block 320 // unless it has uses. However, we still need a place to put the debug 321 // region.end for now. 322 323 EmitBlock(ReturnBlock.getBlock()); 324 return llvm::DebugLoc(); 325 } 326 327 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 328 if (!BB) return; 329 if (!BB->use_empty()) 330 return CGF.CurFn->getBasicBlockList().push_back(BB); 331 delete BB; 332 } 333 334 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 335 assert(BreakContinueStack.empty() && 336 "mismatched push/pop in break/continue stack!"); 337 338 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 339 && NumSimpleReturnExprs == NumReturnExprs 340 && ReturnBlock.getBlock()->use_empty(); 341 // Usually the return expression is evaluated before the cleanup 342 // code. If the function contains only a simple return statement, 343 // such as a constant, the location before the cleanup code becomes 344 // the last useful breakpoint in the function, because the simple 345 // return expression will be evaluated after the cleanup code. To be 346 // safe, set the debug location for cleanup code to the location of 347 // the return statement. Otherwise the cleanup code should be at the 348 // end of the function's lexical scope. 349 // 350 // If there are multiple branches to the return block, the branch 351 // instructions will get the location of the return statements and 352 // all will be fine. 353 if (CGDebugInfo *DI = getDebugInfo()) { 354 if (OnlySimpleReturnStmts) 355 DI->EmitLocation(Builder, LastStopPoint); 356 else 357 DI->EmitLocation(Builder, EndLoc); 358 } 359 360 // Pop any cleanups that might have been associated with the 361 // parameters. Do this in whatever block we're currently in; it's 362 // important to do this before we enter the return block or return 363 // edges will be *really* confused. 364 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 365 bool HasOnlyLifetimeMarkers = 366 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 367 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 368 if (HasCleanups) { 369 // Make sure the line table doesn't jump back into the body for 370 // the ret after it's been at EndLoc. 371 Optional<ApplyDebugLocation> AL; 372 if (CGDebugInfo *DI = getDebugInfo()) { 373 if (OnlySimpleReturnStmts) 374 DI->EmitLocation(Builder, EndLoc); 375 else 376 // We may not have a valid end location. Try to apply it anyway, and 377 // fall back to an artificial location if needed. 378 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 379 } 380 381 PopCleanupBlocks(PrologueCleanupDepth); 382 } 383 384 // Emit function epilog (to return). 385 llvm::DebugLoc Loc = EmitReturnBlock(); 386 387 if (ShouldInstrumentFunction()) { 388 if (CGM.getCodeGenOpts().InstrumentFunctions) 389 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 390 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 391 CurFn->addFnAttr("instrument-function-exit-inlined", 392 "__cyg_profile_func_exit"); 393 } 394 395 // Emit debug descriptor for function end. 396 if (CGDebugInfo *DI = getDebugInfo()) 397 DI->EmitFunctionEnd(Builder, CurFn); 398 399 // Reset the debug location to that of the simple 'return' expression, if any 400 // rather than that of the end of the function's scope '}'. 401 ApplyDebugLocation AL(*this, Loc); 402 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 403 EmitEndEHSpec(CurCodeDecl); 404 405 assert(EHStack.empty() && 406 "did not remove all scopes from cleanup stack!"); 407 408 // If someone did an indirect goto, emit the indirect goto block at the end of 409 // the function. 410 if (IndirectBranch) { 411 EmitBlock(IndirectBranch->getParent()); 412 Builder.ClearInsertionPoint(); 413 } 414 415 // If some of our locals escaped, insert a call to llvm.localescape in the 416 // entry block. 417 if (!EscapedLocals.empty()) { 418 // Invert the map from local to index into a simple vector. There should be 419 // no holes. 420 SmallVector<llvm::Value *, 4> EscapeArgs; 421 EscapeArgs.resize(EscapedLocals.size()); 422 for (auto &Pair : EscapedLocals) 423 EscapeArgs[Pair.second] = Pair.first; 424 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 425 &CGM.getModule(), llvm::Intrinsic::localescape); 426 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 427 } 428 429 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 430 llvm::Instruction *Ptr = AllocaInsertPt; 431 AllocaInsertPt = nullptr; 432 Ptr->eraseFromParent(); 433 434 // If someone took the address of a label but never did an indirect goto, we 435 // made a zero entry PHI node, which is illegal, zap it now. 436 if (IndirectBranch) { 437 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 438 if (PN->getNumIncomingValues() == 0) { 439 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 440 PN->eraseFromParent(); 441 } 442 } 443 444 EmitIfUsed(*this, EHResumeBlock); 445 EmitIfUsed(*this, TerminateLandingPad); 446 EmitIfUsed(*this, TerminateHandler); 447 EmitIfUsed(*this, UnreachableBlock); 448 449 for (const auto &FuncletAndParent : TerminateFunclets) 450 EmitIfUsed(*this, FuncletAndParent.second); 451 452 if (CGM.getCodeGenOpts().EmitDeclMetadata) 453 EmitDeclMetadata(); 454 455 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 456 I = DeferredReplacements.begin(), 457 E = DeferredReplacements.end(); 458 I != E; ++I) { 459 I->first->replaceAllUsesWith(I->second); 460 I->first->eraseFromParent(); 461 } 462 463 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 464 // PHIs if the current function is a coroutine. We don't do it for all 465 // functions as it may result in slight increase in numbers of instructions 466 // if compiled with no optimizations. We do it for coroutine as the lifetime 467 // of CleanupDestSlot alloca make correct coroutine frame building very 468 // difficult. 469 if (NormalCleanupDest.isValid() && isCoroutine()) { 470 llvm::DominatorTree DT(*CurFn); 471 llvm::PromoteMemToReg( 472 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 473 NormalCleanupDest = Address::invalid(); 474 } 475 476 // Scan function arguments for vector width. 477 for (llvm::Argument &A : CurFn->args()) 478 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 479 LargestVectorWidth = 480 std::max((uint64_t)LargestVectorWidth, 481 VT->getPrimitiveSizeInBits().getKnownMinSize()); 482 483 // Update vector width based on return type. 484 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 485 LargestVectorWidth = 486 std::max((uint64_t)LargestVectorWidth, 487 VT->getPrimitiveSizeInBits().getKnownMinSize()); 488 489 // Add the required-vector-width attribute. This contains the max width from: 490 // 1. min-vector-width attribute used in the source program. 491 // 2. Any builtins used that have a vector width specified. 492 // 3. Values passed in and out of inline assembly. 493 // 4. Width of vector arguments and return types for this function. 494 // 5. Width of vector aguments and return types for functions called by this 495 // function. 496 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 497 498 // If we generated an unreachable return block, delete it now. 499 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 500 Builder.ClearInsertionPoint(); 501 ReturnBlock.getBlock()->eraseFromParent(); 502 } 503 if (ReturnValue.isValid()) { 504 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 505 if (RetAlloca && RetAlloca->use_empty()) { 506 RetAlloca->eraseFromParent(); 507 ReturnValue = Address::invalid(); 508 } 509 } 510 } 511 512 /// ShouldInstrumentFunction - Return true if the current function should be 513 /// instrumented with __cyg_profile_func_* calls 514 bool CodeGenFunction::ShouldInstrumentFunction() { 515 if (!CGM.getCodeGenOpts().InstrumentFunctions && 516 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 517 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 518 return false; 519 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 520 return false; 521 return true; 522 } 523 524 /// ShouldXRayInstrument - Return true if the current function should be 525 /// instrumented with XRay nop sleds. 526 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 527 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 528 } 529 530 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 531 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 532 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 533 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 534 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 535 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 536 XRayInstrKind::Custom); 537 } 538 539 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 540 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 541 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 542 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 543 XRayInstrKind::Typed); 544 } 545 546 llvm::Constant * 547 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 548 llvm::Constant *Addr) { 549 // Addresses stored in prologue data can't require run-time fixups and must 550 // be PC-relative. Run-time fixups are undesirable because they necessitate 551 // writable text segments, which are unsafe. And absolute addresses are 552 // undesirable because they break PIE mode. 553 554 // Add a layer of indirection through a private global. Taking its address 555 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 556 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 557 /*isConstant=*/true, 558 llvm::GlobalValue::PrivateLinkage, Addr); 559 560 // Create a PC-relative address. 561 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 562 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 563 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 564 return (IntPtrTy == Int32Ty) 565 ? PCRelAsInt 566 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 567 } 568 569 llvm::Value * 570 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 571 llvm::Value *EncodedAddr) { 572 // Reconstruct the address of the global. 573 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 574 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 575 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 576 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 577 578 // Load the original pointer through the global. 579 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 580 "decoded_addr"); 581 } 582 583 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 584 llvm::Function *Fn) 585 { 586 if (!FD->hasAttr<OpenCLKernelAttr>()) 587 return; 588 589 llvm::LLVMContext &Context = getLLVMContext(); 590 591 CGM.GenOpenCLArgMetadata(Fn, FD, this); 592 593 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 594 QualType HintQTy = A->getTypeHint(); 595 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 596 bool IsSignedInteger = 597 HintQTy->isSignedIntegerType() || 598 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 599 llvm::Metadata *AttrMDArgs[] = { 600 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 601 CGM.getTypes().ConvertType(A->getTypeHint()))), 602 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 603 llvm::IntegerType::get(Context, 32), 604 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 605 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 606 } 607 608 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 609 llvm::Metadata *AttrMDArgs[] = { 610 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 611 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 612 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 613 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 625 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 626 llvm::Metadata *AttrMDArgs[] = { 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 628 Fn->setMetadata("intel_reqd_sub_group_size", 629 llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 } 632 633 /// Determine whether the function F ends with a return stmt. 634 static bool endsWithReturn(const Decl* F) { 635 const Stmt *Body = nullptr; 636 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 637 Body = FD->getBody(); 638 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 639 Body = OMD->getBody(); 640 641 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 642 auto LastStmt = CS->body_rbegin(); 643 if (LastStmt != CS->body_rend()) 644 return isa<ReturnStmt>(*LastStmt); 645 } 646 return false; 647 } 648 649 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 650 if (SanOpts.has(SanitizerKind::Thread)) { 651 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 652 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 653 } 654 } 655 656 /// Check if the return value of this function requires sanitization. 657 bool CodeGenFunction::requiresReturnValueCheck() const { 658 return requiresReturnValueNullabilityCheck() || 659 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 660 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 661 } 662 663 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 664 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 665 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 666 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 667 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 668 return false; 669 670 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 671 return false; 672 673 if (MD->getNumParams() == 2) { 674 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 675 if (!PT || !PT->isVoidPointerType() || 676 !PT->getPointeeType().isConstQualified()) 677 return false; 678 } 679 680 return true; 681 } 682 683 /// Return the UBSan prologue signature for \p FD if one is available. 684 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 685 const FunctionDecl *FD) { 686 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 687 if (!MD->isStatic()) 688 return nullptr; 689 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 690 } 691 692 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 693 llvm::Function *Fn, 694 const CGFunctionInfo &FnInfo, 695 const FunctionArgList &Args, 696 SourceLocation Loc, 697 SourceLocation StartLoc) { 698 assert(!CurFn && 699 "Do not use a CodeGenFunction object for more than one function"); 700 701 const Decl *D = GD.getDecl(); 702 703 DidCallStackSave = false; 704 CurCodeDecl = D; 705 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 706 if (FD->usesSEHTry()) 707 CurSEHParent = FD; 708 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 709 FnRetTy = RetTy; 710 CurFn = Fn; 711 CurFnInfo = &FnInfo; 712 assert(CurFn->isDeclaration() && "Function already has body?"); 713 714 // If this function has been blacklisted for any of the enabled sanitizers, 715 // disable the sanitizer for the function. 716 do { 717 #define SANITIZER(NAME, ID) \ 718 if (SanOpts.empty()) \ 719 break; \ 720 if (SanOpts.has(SanitizerKind::ID)) \ 721 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 722 SanOpts.set(SanitizerKind::ID, false); 723 724 #include "clang/Basic/Sanitizers.def" 725 #undef SANITIZER 726 } while (0); 727 728 if (D) { 729 // Apply the no_sanitize* attributes to SanOpts. 730 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 731 SanitizerMask mask = Attr->getMask(); 732 SanOpts.Mask &= ~mask; 733 if (mask & SanitizerKind::Address) 734 SanOpts.set(SanitizerKind::KernelAddress, false); 735 if (mask & SanitizerKind::KernelAddress) 736 SanOpts.set(SanitizerKind::Address, false); 737 if (mask & SanitizerKind::HWAddress) 738 SanOpts.set(SanitizerKind::KernelHWAddress, false); 739 if (mask & SanitizerKind::KernelHWAddress) 740 SanOpts.set(SanitizerKind::HWAddress, false); 741 } 742 } 743 744 // Apply sanitizer attributes to the function. 745 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 746 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 747 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 748 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 749 if (SanOpts.has(SanitizerKind::MemTag)) 750 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 751 if (SanOpts.has(SanitizerKind::Thread)) 752 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 753 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 755 if (SanOpts.has(SanitizerKind::SafeStack)) 756 Fn->addFnAttr(llvm::Attribute::SafeStack); 757 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 758 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 759 760 // Apply fuzzing attribute to the function. 761 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 762 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 763 764 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 765 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 766 if (SanOpts.has(SanitizerKind::Thread)) { 767 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 768 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 769 if (OMD->getMethodFamily() == OMF_dealloc || 770 OMD->getMethodFamily() == OMF_initialize || 771 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 772 markAsIgnoreThreadCheckingAtRuntime(Fn); 773 } 774 } 775 } 776 777 // Ignore unrelated casts in STL allocate() since the allocator must cast 778 // from void* to T* before object initialization completes. Don't match on the 779 // namespace because not all allocators are in std:: 780 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 781 if (matchesStlAllocatorFn(D, getContext())) 782 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 783 } 784 785 // Ignore null checks in coroutine functions since the coroutines passes 786 // are not aware of how to move the extra UBSan instructions across the split 787 // coroutine boundaries. 788 if (D && SanOpts.has(SanitizerKind::Null)) 789 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 790 if (FD->getBody() && 791 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 792 SanOpts.Mask &= ~SanitizerKind::Null; 793 794 // Apply xray attributes to the function (as a string, for now) 795 bool AlwaysXRayAttr = false; 796 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 797 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 798 XRayInstrKind::FunctionEntry) || 799 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 800 XRayInstrKind::FunctionExit)) { 801 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 802 Fn->addFnAttr("function-instrument", "xray-always"); 803 AlwaysXRayAttr = true; 804 } 805 if (XRayAttr->neverXRayInstrument()) 806 Fn->addFnAttr("function-instrument", "xray-never"); 807 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 808 if (ShouldXRayInstrumentFunction()) 809 Fn->addFnAttr("xray-log-args", 810 llvm::utostr(LogArgs->getArgumentCount())); 811 } 812 } else { 813 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 814 Fn->addFnAttr( 815 "xray-instruction-threshold", 816 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 817 } 818 819 if (ShouldXRayInstrumentFunction()) { 820 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 821 Fn->addFnAttr("xray-ignore-loops"); 822 823 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 824 XRayInstrKind::FunctionExit)) 825 Fn->addFnAttr("xray-skip-exit"); 826 827 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 828 XRayInstrKind::FunctionEntry)) 829 Fn->addFnAttr("xray-skip-entry"); 830 831 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 832 if (FuncGroups > 1) { 833 auto FuncName = llvm::makeArrayRef<uint8_t>( 834 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 835 auto Group = crc32(FuncName) % FuncGroups; 836 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 837 !AlwaysXRayAttr) 838 Fn->addFnAttr("function-instrument", "xray-never"); 839 } 840 } 841 842 unsigned Count, Offset; 843 if (const auto *Attr = 844 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 845 Count = Attr->getCount(); 846 Offset = Attr->getOffset(); 847 } else { 848 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 849 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 850 } 851 if (Count && Offset <= Count) { 852 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 853 if (Offset) 854 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 855 } 856 857 // Add no-jump-tables value. 858 Fn->addFnAttr("no-jump-tables", 859 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 860 861 // Add no-inline-line-tables value. 862 if (CGM.getCodeGenOpts().NoInlineLineTables) 863 Fn->addFnAttr("no-inline-line-tables"); 864 865 // Add profile-sample-accurate value. 866 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 867 Fn->addFnAttr("profile-sample-accurate"); 868 869 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 870 Fn->addFnAttr("use-sample-profile"); 871 872 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 873 Fn->addFnAttr("cfi-canonical-jump-table"); 874 875 if (getLangOpts().OpenCL) { 876 // Add metadata for a kernel function. 877 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 878 EmitOpenCLKernelMetadata(FD, Fn); 879 } 880 881 // If we are checking function types, emit a function type signature as 882 // prologue data. 883 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 884 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 885 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 886 // Remove any (C++17) exception specifications, to allow calling e.g. a 887 // noexcept function through a non-noexcept pointer. 888 auto ProtoTy = 889 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 890 EST_None); 891 llvm::Constant *FTRTTIConst = 892 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 893 llvm::Constant *FTRTTIConstEncoded = 894 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 895 llvm::Constant *PrologueStructElems[] = {PrologueSig, 896 FTRTTIConstEncoded}; 897 llvm::Constant *PrologueStructConst = 898 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 899 Fn->setPrologueData(PrologueStructConst); 900 } 901 } 902 } 903 904 // If we're checking nullability, we need to know whether we can check the 905 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 906 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 907 auto Nullability = FnRetTy->getNullability(getContext()); 908 if (Nullability && *Nullability == NullabilityKind::NonNull) { 909 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 910 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 911 RetValNullabilityPrecondition = 912 llvm::ConstantInt::getTrue(getLLVMContext()); 913 } 914 } 915 916 // If we're in C++ mode and the function name is "main", it is guaranteed 917 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 918 // used within a program"). 919 // 920 // OpenCL C 2.0 v2.2-11 s6.9.i: 921 // Recursion is not supported. 922 // 923 // SYCL v1.2.1 s3.10: 924 // kernels cannot include RTTI information, exception classes, 925 // recursive code, virtual functions or make use of C++ libraries that 926 // are not compiled for the device. 927 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 928 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 929 getLangOpts().SYCLIsDevice || 930 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 931 Fn->addFnAttr(llvm::Attribute::NoRecurse); 932 } 933 934 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 935 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 936 if (FD->hasAttr<StrictFPAttr>()) 937 Fn->addFnAttr(llvm::Attribute::StrictFP); 938 } 939 940 // If a custom alignment is used, force realigning to this alignment on 941 // any main function which certainly will need it. 942 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 943 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 944 CGM.getCodeGenOpts().StackAlignment) 945 Fn->addFnAttr("stackrealign"); 946 947 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 948 949 // Create a marker to make it easy to insert allocas into the entryblock 950 // later. Don't create this with the builder, because we don't want it 951 // folded. 952 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 953 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 954 955 ReturnBlock = getJumpDestInCurrentScope("return"); 956 957 Builder.SetInsertPoint(EntryBB); 958 959 // If we're checking the return value, allocate space for a pointer to a 960 // precise source location of the checked return statement. 961 if (requiresReturnValueCheck()) { 962 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 963 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 964 } 965 966 // Emit subprogram debug descriptor. 967 if (CGDebugInfo *DI = getDebugInfo()) { 968 // Reconstruct the type from the argument list so that implicit parameters, 969 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 970 // convention. 971 CallingConv CC = CallingConv::CC_C; 972 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 973 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 974 CC = SrcFnTy->getCallConv(); 975 SmallVector<QualType, 16> ArgTypes; 976 for (const VarDecl *VD : Args) 977 ArgTypes.push_back(VD->getType()); 978 QualType FnType = getContext().getFunctionType( 979 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 980 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 981 } 982 983 if (ShouldInstrumentFunction()) { 984 if (CGM.getCodeGenOpts().InstrumentFunctions) 985 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 986 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 987 CurFn->addFnAttr("instrument-function-entry-inlined", 988 "__cyg_profile_func_enter"); 989 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 990 CurFn->addFnAttr("instrument-function-entry-inlined", 991 "__cyg_profile_func_enter_bare"); 992 } 993 994 // Since emitting the mcount call here impacts optimizations such as function 995 // inlining, we just add an attribute to insert a mcount call in backend. 996 // The attribute "counting-function" is set to mcount function name which is 997 // architecture dependent. 998 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 999 // Calls to fentry/mcount should not be generated if function has 1000 // the no_instrument_function attribute. 1001 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1002 if (CGM.getCodeGenOpts().CallFEntry) 1003 Fn->addFnAttr("fentry-call", "true"); 1004 else { 1005 Fn->addFnAttr("instrument-function-entry-inlined", 1006 getTarget().getMCountName()); 1007 } 1008 if (CGM.getCodeGenOpts().MNopMCount) { 1009 if (!CGM.getCodeGenOpts().CallFEntry) 1010 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1011 << "-mnop-mcount" << "-mfentry"; 1012 Fn->addFnAttr("mnop-mcount"); 1013 } 1014 1015 if (CGM.getCodeGenOpts().RecordMCount) { 1016 if (!CGM.getCodeGenOpts().CallFEntry) 1017 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1018 << "-mrecord-mcount" << "-mfentry"; 1019 Fn->addFnAttr("mrecord-mcount"); 1020 } 1021 } 1022 } 1023 1024 if (CGM.getCodeGenOpts().PackedStack) { 1025 if (getContext().getTargetInfo().getTriple().getArch() != 1026 llvm::Triple::systemz) 1027 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1028 << "-mpacked-stack"; 1029 Fn->addFnAttr("packed-stack"); 1030 } 1031 1032 if (RetTy->isVoidType()) { 1033 // Void type; nothing to return. 1034 ReturnValue = Address::invalid(); 1035 1036 // Count the implicit return. 1037 if (!endsWithReturn(D)) 1038 ++NumReturnExprs; 1039 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1040 // Indirect return; emit returned value directly into sret slot. 1041 // This reduces code size, and affects correctness in C++. 1042 auto AI = CurFn->arg_begin(); 1043 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1044 ++AI; 1045 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1046 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1047 ReturnValuePointer = 1048 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1049 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1050 ReturnValue.getPointer(), Int8PtrTy), 1051 ReturnValuePointer); 1052 } 1053 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1054 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1055 // Load the sret pointer from the argument struct and return into that. 1056 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1057 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1058 --EI; 1059 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1060 ReturnValuePointer = Address(Addr, getPointerAlign()); 1061 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1062 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1063 } else { 1064 ReturnValue = CreateIRTemp(RetTy, "retval"); 1065 1066 // Tell the epilog emitter to autorelease the result. We do this 1067 // now so that various specialized functions can suppress it 1068 // during their IR-generation. 1069 if (getLangOpts().ObjCAutoRefCount && 1070 !CurFnInfo->isReturnsRetained() && 1071 RetTy->isObjCRetainableType()) 1072 AutoreleaseResult = true; 1073 } 1074 1075 EmitStartEHSpec(CurCodeDecl); 1076 1077 PrologueCleanupDepth = EHStack.stable_begin(); 1078 1079 // Emit OpenMP specific initialization of the device functions. 1080 if (getLangOpts().OpenMP && CurCodeDecl) 1081 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1082 1083 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1084 1085 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1086 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1087 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1088 if (MD->getParent()->isLambda() && 1089 MD->getOverloadedOperator() == OO_Call) { 1090 // We're in a lambda; figure out the captures. 1091 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1092 LambdaThisCaptureField); 1093 if (LambdaThisCaptureField) { 1094 // If the lambda captures the object referred to by '*this' - either by 1095 // value or by reference, make sure CXXThisValue points to the correct 1096 // object. 1097 1098 // Get the lvalue for the field (which is a copy of the enclosing object 1099 // or contains the address of the enclosing object). 1100 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1101 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1102 // If the enclosing object was captured by value, just use its address. 1103 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1104 } else { 1105 // Load the lvalue pointed to by the field, since '*this' was captured 1106 // by reference. 1107 CXXThisValue = 1108 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1109 } 1110 } 1111 for (auto *FD : MD->getParent()->fields()) { 1112 if (FD->hasCapturedVLAType()) { 1113 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1114 SourceLocation()).getScalarVal(); 1115 auto VAT = FD->getCapturedVLAType(); 1116 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1117 } 1118 } 1119 } else { 1120 // Not in a lambda; just use 'this' from the method. 1121 // FIXME: Should we generate a new load for each use of 'this'? The 1122 // fast register allocator would be happier... 1123 CXXThisValue = CXXABIThisValue; 1124 } 1125 1126 // Check the 'this' pointer once per function, if it's available. 1127 if (CXXABIThisValue) { 1128 SanitizerSet SkippedChecks; 1129 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1130 QualType ThisTy = MD->getThisType(); 1131 1132 // If this is the call operator of a lambda with no capture-default, it 1133 // may have a static invoker function, which may call this operator with 1134 // a null 'this' pointer. 1135 if (isLambdaCallOperator(MD) && 1136 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1137 SkippedChecks.set(SanitizerKind::Null, true); 1138 1139 EmitTypeCheck( 1140 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1141 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1142 } 1143 } 1144 1145 // If any of the arguments have a variably modified type, make sure to 1146 // emit the type size. 1147 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1148 i != e; ++i) { 1149 const VarDecl *VD = *i; 1150 1151 // Dig out the type as written from ParmVarDecls; it's unclear whether 1152 // the standard (C99 6.9.1p10) requires this, but we're following the 1153 // precedent set by gcc. 1154 QualType Ty; 1155 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1156 Ty = PVD->getOriginalType(); 1157 else 1158 Ty = VD->getType(); 1159 1160 if (Ty->isVariablyModifiedType()) 1161 EmitVariablyModifiedType(Ty); 1162 } 1163 // Emit a location at the end of the prologue. 1164 if (CGDebugInfo *DI = getDebugInfo()) 1165 DI->EmitLocation(Builder, StartLoc); 1166 1167 // TODO: Do we need to handle this in two places like we do with 1168 // target-features/target-cpu? 1169 if (CurFuncDecl) 1170 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1171 LargestVectorWidth = VecWidth->getVectorWidth(); 1172 } 1173 1174 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1175 incrementProfileCounter(Body); 1176 if (CPlusPlusWithProgress()) 1177 FnIsMustProgress = true; 1178 1179 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1180 EmitCompoundStmtWithoutScope(*S); 1181 else 1182 EmitStmt(Body); 1183 1184 // This is checked after emitting the function body so we know if there 1185 // are any permitted infinite loops. 1186 if (FnIsMustProgress) 1187 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1188 } 1189 1190 /// When instrumenting to collect profile data, the counts for some blocks 1191 /// such as switch cases need to not include the fall-through counts, so 1192 /// emit a branch around the instrumentation code. When not instrumenting, 1193 /// this just calls EmitBlock(). 1194 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1195 const Stmt *S) { 1196 llvm::BasicBlock *SkipCountBB = nullptr; 1197 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1198 // When instrumenting for profiling, the fallthrough to certain 1199 // statements needs to skip over the instrumentation code so that we 1200 // get an accurate count. 1201 SkipCountBB = createBasicBlock("skipcount"); 1202 EmitBranch(SkipCountBB); 1203 } 1204 EmitBlock(BB); 1205 uint64_t CurrentCount = getCurrentProfileCount(); 1206 incrementProfileCounter(S); 1207 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1208 if (SkipCountBB) 1209 EmitBlock(SkipCountBB); 1210 } 1211 1212 /// Tries to mark the given function nounwind based on the 1213 /// non-existence of any throwing calls within it. We believe this is 1214 /// lightweight enough to do at -O0. 1215 static void TryMarkNoThrow(llvm::Function *F) { 1216 // LLVM treats 'nounwind' on a function as part of the type, so we 1217 // can't do this on functions that can be overwritten. 1218 if (F->isInterposable()) return; 1219 1220 for (llvm::BasicBlock &BB : *F) 1221 for (llvm::Instruction &I : BB) 1222 if (I.mayThrow()) 1223 return; 1224 1225 F->setDoesNotThrow(); 1226 } 1227 1228 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1229 FunctionArgList &Args) { 1230 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1231 QualType ResTy = FD->getReturnType(); 1232 1233 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1234 if (MD && MD->isInstance()) { 1235 if (CGM.getCXXABI().HasThisReturn(GD)) 1236 ResTy = MD->getThisType(); 1237 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1238 ResTy = CGM.getContext().VoidPtrTy; 1239 CGM.getCXXABI().buildThisParam(*this, Args); 1240 } 1241 1242 // The base version of an inheriting constructor whose constructed base is a 1243 // virtual base is not passed any arguments (because it doesn't actually call 1244 // the inherited constructor). 1245 bool PassedParams = true; 1246 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1247 if (auto Inherited = CD->getInheritedConstructor()) 1248 PassedParams = 1249 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1250 1251 if (PassedParams) { 1252 for (auto *Param : FD->parameters()) { 1253 Args.push_back(Param); 1254 if (!Param->hasAttr<PassObjectSizeAttr>()) 1255 continue; 1256 1257 auto *Implicit = ImplicitParamDecl::Create( 1258 getContext(), Param->getDeclContext(), Param->getLocation(), 1259 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1260 SizeArguments[Param] = Implicit; 1261 Args.push_back(Implicit); 1262 } 1263 } 1264 1265 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1266 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1267 1268 return ResTy; 1269 } 1270 1271 static bool 1272 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1273 const ASTContext &Context) { 1274 QualType T = FD->getReturnType(); 1275 // Avoid the optimization for functions that return a record type with a 1276 // trivial destructor or another trivially copyable type. 1277 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1278 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1279 return !ClassDecl->hasTrivialDestructor(); 1280 } 1281 return !T.isTriviallyCopyableType(Context); 1282 } 1283 1284 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1285 const CGFunctionInfo &FnInfo) { 1286 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1287 CurGD = GD; 1288 1289 FunctionArgList Args; 1290 QualType ResTy = BuildFunctionArgList(GD, Args); 1291 1292 // Check if we should generate debug info for this function. 1293 if (FD->hasAttr<NoDebugAttr>()) 1294 DebugInfo = nullptr; // disable debug info indefinitely for this function 1295 1296 // The function might not have a body if we're generating thunks for a 1297 // function declaration. 1298 SourceRange BodyRange; 1299 if (Stmt *Body = FD->getBody()) 1300 BodyRange = Body->getSourceRange(); 1301 else 1302 BodyRange = FD->getLocation(); 1303 CurEHLocation = BodyRange.getEnd(); 1304 1305 // Use the location of the start of the function to determine where 1306 // the function definition is located. By default use the location 1307 // of the declaration as the location for the subprogram. A function 1308 // may lack a declaration in the source code if it is created by code 1309 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1310 SourceLocation Loc = FD->getLocation(); 1311 1312 // If this is a function specialization then use the pattern body 1313 // as the location for the function. 1314 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1315 if (SpecDecl->hasBody(SpecDecl)) 1316 Loc = SpecDecl->getLocation(); 1317 1318 Stmt *Body = FD->getBody(); 1319 1320 // Initialize helper which will detect jumps which can cause invalid lifetime 1321 // markers. 1322 if (Body && ShouldEmitLifetimeMarkers) 1323 Bypasses.Init(Body); 1324 1325 // Emit the standard function prologue. 1326 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1327 1328 // Generate the body of the function. 1329 PGO.assignRegionCounters(GD, CurFn); 1330 if (isa<CXXDestructorDecl>(FD)) 1331 EmitDestructorBody(Args); 1332 else if (isa<CXXConstructorDecl>(FD)) 1333 EmitConstructorBody(Args); 1334 else if (getLangOpts().CUDA && 1335 !getLangOpts().CUDAIsDevice && 1336 FD->hasAttr<CUDAGlobalAttr>()) 1337 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1338 else if (isa<CXXMethodDecl>(FD) && 1339 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1340 // The lambda static invoker function is special, because it forwards or 1341 // clones the body of the function call operator (but is actually static). 1342 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1343 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1344 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1345 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1346 // Implicit copy-assignment gets the same special treatment as implicit 1347 // copy-constructors. 1348 emitImplicitAssignmentOperatorBody(Args); 1349 } else if (Body) { 1350 EmitFunctionBody(Body); 1351 } else 1352 llvm_unreachable("no definition for emitted function"); 1353 1354 // C++11 [stmt.return]p2: 1355 // Flowing off the end of a function [...] results in undefined behavior in 1356 // a value-returning function. 1357 // C11 6.9.1p12: 1358 // If the '}' that terminates a function is reached, and the value of the 1359 // function call is used by the caller, the behavior is undefined. 1360 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1361 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1362 bool ShouldEmitUnreachable = 1363 CGM.getCodeGenOpts().StrictReturn || 1364 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1365 if (SanOpts.has(SanitizerKind::Return)) { 1366 SanitizerScope SanScope(this); 1367 llvm::Value *IsFalse = Builder.getFalse(); 1368 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1369 SanitizerHandler::MissingReturn, 1370 EmitCheckSourceLocation(FD->getLocation()), None); 1371 } else if (ShouldEmitUnreachable) { 1372 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1373 EmitTrapCall(llvm::Intrinsic::trap); 1374 } 1375 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1376 Builder.CreateUnreachable(); 1377 Builder.ClearInsertionPoint(); 1378 } 1379 } 1380 1381 // Emit the standard function epilogue. 1382 FinishFunction(BodyRange.getEnd()); 1383 1384 // If we haven't marked the function nothrow through other means, do 1385 // a quick pass now to see if we can. 1386 if (!CurFn->doesNotThrow()) 1387 TryMarkNoThrow(CurFn); 1388 } 1389 1390 /// ContainsLabel - Return true if the statement contains a label in it. If 1391 /// this statement is not executed normally, it not containing a label means 1392 /// that we can just remove the code. 1393 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1394 // Null statement, not a label! 1395 if (!S) return false; 1396 1397 // If this is a label, we have to emit the code, consider something like: 1398 // if (0) { ... foo: bar(); } goto foo; 1399 // 1400 // TODO: If anyone cared, we could track __label__'s, since we know that you 1401 // can't jump to one from outside their declared region. 1402 if (isa<LabelStmt>(S)) 1403 return true; 1404 1405 // If this is a case/default statement, and we haven't seen a switch, we have 1406 // to emit the code. 1407 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1408 return true; 1409 1410 // If this is a switch statement, we want to ignore cases below it. 1411 if (isa<SwitchStmt>(S)) 1412 IgnoreCaseStmts = true; 1413 1414 // Scan subexpressions for verboten labels. 1415 for (const Stmt *SubStmt : S->children()) 1416 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1417 return true; 1418 1419 return false; 1420 } 1421 1422 /// containsBreak - Return true if the statement contains a break out of it. 1423 /// If the statement (recursively) contains a switch or loop with a break 1424 /// inside of it, this is fine. 1425 bool CodeGenFunction::containsBreak(const Stmt *S) { 1426 // Null statement, not a label! 1427 if (!S) return false; 1428 1429 // If this is a switch or loop that defines its own break scope, then we can 1430 // include it and anything inside of it. 1431 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1432 isa<ForStmt>(S)) 1433 return false; 1434 1435 if (isa<BreakStmt>(S)) 1436 return true; 1437 1438 // Scan subexpressions for verboten breaks. 1439 for (const Stmt *SubStmt : S->children()) 1440 if (containsBreak(SubStmt)) 1441 return true; 1442 1443 return false; 1444 } 1445 1446 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1447 if (!S) return false; 1448 1449 // Some statement kinds add a scope and thus never add a decl to the current 1450 // scope. Note, this list is longer than the list of statements that might 1451 // have an unscoped decl nested within them, but this way is conservatively 1452 // correct even if more statement kinds are added. 1453 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1454 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1455 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1456 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1457 return false; 1458 1459 if (isa<DeclStmt>(S)) 1460 return true; 1461 1462 for (const Stmt *SubStmt : S->children()) 1463 if (mightAddDeclToScope(SubStmt)) 1464 return true; 1465 1466 return false; 1467 } 1468 1469 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1470 /// to a constant, or if it does but contains a label, return false. If it 1471 /// constant folds return true and set the boolean result in Result. 1472 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1473 bool &ResultBool, 1474 bool AllowLabels) { 1475 llvm::APSInt ResultInt; 1476 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1477 return false; 1478 1479 ResultBool = ResultInt.getBoolValue(); 1480 return true; 1481 } 1482 1483 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1484 /// to a constant, or if it does but contains a label, return false. If it 1485 /// constant folds return true and set the folded value. 1486 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1487 llvm::APSInt &ResultInt, 1488 bool AllowLabels) { 1489 // FIXME: Rename and handle conversion of other evaluatable things 1490 // to bool. 1491 Expr::EvalResult Result; 1492 if (!Cond->EvaluateAsInt(Result, getContext())) 1493 return false; // Not foldable, not integer or not fully evaluatable. 1494 1495 llvm::APSInt Int = Result.Val.getInt(); 1496 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1497 return false; // Contains a label. 1498 1499 ResultInt = Int; 1500 return true; 1501 } 1502 1503 /// Determine whether the given condition is an instrumentable condition 1504 /// (i.e. no "&&" or "||"). 1505 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1506 // Bypass simplistic logical-NOT operator before determining whether the 1507 // condition contains any other logical operator. 1508 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1509 if (UnOp->getOpcode() == UO_LNot) 1510 C = UnOp->getSubExpr(); 1511 1512 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1513 return (!BOp || !BOp->isLogicalOp()); 1514 } 1515 1516 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1517 /// increments a profile counter based on the semantics of the given logical 1518 /// operator opcode. This is used to instrument branch condition coverage for 1519 /// logical operators. 1520 void CodeGenFunction::EmitBranchToCounterBlock( 1521 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1522 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1523 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1524 // If not instrumenting, just emit a branch. 1525 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1526 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1527 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1528 1529 llvm::BasicBlock *ThenBlock = NULL; 1530 llvm::BasicBlock *ElseBlock = NULL; 1531 llvm::BasicBlock *NextBlock = NULL; 1532 1533 // Create the block we'll use to increment the appropriate counter. 1534 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1535 1536 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1537 // means we need to evaluate the condition and increment the counter on TRUE: 1538 // 1539 // if (Cond) 1540 // goto CounterIncrBlock; 1541 // else 1542 // goto FalseBlock; 1543 // 1544 // CounterIncrBlock: 1545 // Counter++; 1546 // goto TrueBlock; 1547 1548 if (LOp == BO_LAnd) { 1549 ThenBlock = CounterIncrBlock; 1550 ElseBlock = FalseBlock; 1551 NextBlock = TrueBlock; 1552 } 1553 1554 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1555 // we need to evaluate the condition and increment the counter on FALSE: 1556 // 1557 // if (Cond) 1558 // goto TrueBlock; 1559 // else 1560 // goto CounterIncrBlock; 1561 // 1562 // CounterIncrBlock: 1563 // Counter++; 1564 // goto FalseBlock; 1565 1566 else if (LOp == BO_LOr) { 1567 ThenBlock = TrueBlock; 1568 ElseBlock = CounterIncrBlock; 1569 NextBlock = FalseBlock; 1570 } else { 1571 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1572 } 1573 1574 // Emit Branch based on condition. 1575 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1576 1577 // Emit the block containing the counter increment(s). 1578 EmitBlock(CounterIncrBlock); 1579 1580 // Increment corresponding counter; if index not provided, use Cond as index. 1581 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1582 1583 // Go to the next block. 1584 EmitBranch(NextBlock); 1585 } 1586 1587 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1588 /// statement) to the specified blocks. Based on the condition, this might try 1589 /// to simplify the codegen of the conditional based on the branch. 1590 /// \param LH The value of the likelihood attribute on the True branch. 1591 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1592 llvm::BasicBlock *TrueBlock, 1593 llvm::BasicBlock *FalseBlock, 1594 uint64_t TrueCount, 1595 Stmt::Likelihood LH) { 1596 Cond = Cond->IgnoreParens(); 1597 1598 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1599 1600 // Handle X && Y in a condition. 1601 if (CondBOp->getOpcode() == BO_LAnd) { 1602 // If we have "1 && X", simplify the code. "0 && X" would have constant 1603 // folded if the case was simple enough. 1604 bool ConstantBool = false; 1605 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1606 ConstantBool) { 1607 // br(1 && X) -> br(X). 1608 incrementProfileCounter(CondBOp); 1609 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1610 FalseBlock, TrueCount, LH); 1611 } 1612 1613 // If we have "X && 1", simplify the code to use an uncond branch. 1614 // "X && 0" would have been constant folded to 0. 1615 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1616 ConstantBool) { 1617 // br(X && 1) -> br(X). 1618 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1619 FalseBlock, TrueCount, LH, CondBOp); 1620 } 1621 1622 // Emit the LHS as a conditional. If the LHS conditional is false, we 1623 // want to jump to the FalseBlock. 1624 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1625 // The counter tells us how often we evaluate RHS, and all of TrueCount 1626 // can be propagated to that branch. 1627 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1628 1629 ConditionalEvaluation eval(*this); 1630 { 1631 ApplyDebugLocation DL(*this, Cond); 1632 // Propagate the likelihood attribute like __builtin_expect 1633 // __builtin_expect(X && Y, 1) -> X and Y are likely 1634 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1635 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1636 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1637 EmitBlock(LHSTrue); 1638 } 1639 1640 incrementProfileCounter(CondBOp); 1641 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1642 1643 // Any temporaries created here are conditional. 1644 eval.begin(*this); 1645 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1646 FalseBlock, TrueCount, LH); 1647 eval.end(*this); 1648 1649 return; 1650 } 1651 1652 if (CondBOp->getOpcode() == BO_LOr) { 1653 // If we have "0 || X", simplify the code. "1 || X" would have constant 1654 // folded if the case was simple enough. 1655 bool ConstantBool = false; 1656 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1657 !ConstantBool) { 1658 // br(0 || X) -> br(X). 1659 incrementProfileCounter(CondBOp); 1660 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1661 FalseBlock, TrueCount, LH); 1662 } 1663 1664 // If we have "X || 0", simplify the code to use an uncond branch. 1665 // "X || 1" would have been constant folded to 1. 1666 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1667 !ConstantBool) { 1668 // br(X || 0) -> br(X). 1669 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1670 FalseBlock, TrueCount, LH, CondBOp); 1671 } 1672 1673 // Emit the LHS as a conditional. If the LHS conditional is true, we 1674 // want to jump to the TrueBlock. 1675 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1676 // We have the count for entry to the RHS and for the whole expression 1677 // being true, so we can divy up True count between the short circuit and 1678 // the RHS. 1679 uint64_t LHSCount = 1680 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1681 uint64_t RHSCount = TrueCount - LHSCount; 1682 1683 ConditionalEvaluation eval(*this); 1684 { 1685 // Propagate the likelihood attribute like __builtin_expect 1686 // __builtin_expect(X || Y, 1) -> only Y is likely 1687 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1688 ApplyDebugLocation DL(*this, Cond); 1689 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1690 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1691 EmitBlock(LHSFalse); 1692 } 1693 1694 incrementProfileCounter(CondBOp); 1695 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1696 1697 // Any temporaries created here are conditional. 1698 eval.begin(*this); 1699 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1700 RHSCount, LH); 1701 1702 eval.end(*this); 1703 1704 return; 1705 } 1706 } 1707 1708 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1709 // br(!x, t, f) -> br(x, f, t) 1710 if (CondUOp->getOpcode() == UO_LNot) { 1711 // Negate the count. 1712 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1713 // The values of the enum are chosen to make this negation possible. 1714 LH = static_cast<Stmt::Likelihood>(-LH); 1715 // Negate the condition and swap the destination blocks. 1716 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1717 FalseCount, LH); 1718 } 1719 } 1720 1721 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1722 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1723 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1724 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1725 1726 // The ConditionalOperator itself has no likelihood information for its 1727 // true and false branches. This matches the behavior of __builtin_expect. 1728 ConditionalEvaluation cond(*this); 1729 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1730 getProfileCount(CondOp), Stmt::LH_None); 1731 1732 // When computing PGO branch weights, we only know the overall count for 1733 // the true block. This code is essentially doing tail duplication of the 1734 // naive code-gen, introducing new edges for which counts are not 1735 // available. Divide the counts proportionally between the LHS and RHS of 1736 // the conditional operator. 1737 uint64_t LHSScaledTrueCount = 0; 1738 if (TrueCount) { 1739 double LHSRatio = 1740 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1741 LHSScaledTrueCount = TrueCount * LHSRatio; 1742 } 1743 1744 cond.begin(*this); 1745 EmitBlock(LHSBlock); 1746 incrementProfileCounter(CondOp); 1747 { 1748 ApplyDebugLocation DL(*this, Cond); 1749 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1750 LHSScaledTrueCount, LH); 1751 } 1752 cond.end(*this); 1753 1754 cond.begin(*this); 1755 EmitBlock(RHSBlock); 1756 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1757 TrueCount - LHSScaledTrueCount, LH); 1758 cond.end(*this); 1759 1760 return; 1761 } 1762 1763 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1764 // Conditional operator handling can give us a throw expression as a 1765 // condition for a case like: 1766 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1767 // Fold this to: 1768 // br(c, throw x, br(y, t, f)) 1769 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1770 return; 1771 } 1772 1773 // If the branch has a condition wrapped by __builtin_unpredictable, 1774 // create metadata that specifies that the branch is unpredictable. 1775 // Don't bother if not optimizing because that metadata would not be used. 1776 llvm::MDNode *Unpredictable = nullptr; 1777 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1778 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1779 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1780 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1781 llvm::MDBuilder MDHelper(getLLVMContext()); 1782 Unpredictable = MDHelper.createUnpredictable(); 1783 } 1784 } 1785 1786 llvm::MDNode *Weights = createBranchWeights(LH); 1787 if (!Weights) { 1788 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1789 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1790 } 1791 1792 // Emit the code with the fully general case. 1793 llvm::Value *CondV; 1794 { 1795 ApplyDebugLocation DL(*this, Cond); 1796 CondV = EvaluateExprAsBool(Cond); 1797 } 1798 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1799 } 1800 1801 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1802 /// specified stmt yet. 1803 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1804 CGM.ErrorUnsupported(S, Type); 1805 } 1806 1807 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1808 /// variable-length array whose elements have a non-zero bit-pattern. 1809 /// 1810 /// \param baseType the inner-most element type of the array 1811 /// \param src - a char* pointing to the bit-pattern for a single 1812 /// base element of the array 1813 /// \param sizeInChars - the total size of the VLA, in chars 1814 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1815 Address dest, Address src, 1816 llvm::Value *sizeInChars) { 1817 CGBuilderTy &Builder = CGF.Builder; 1818 1819 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1820 llvm::Value *baseSizeInChars 1821 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1822 1823 Address begin = 1824 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1825 llvm::Value *end = 1826 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1827 1828 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1829 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1830 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1831 1832 // Make a loop over the VLA. C99 guarantees that the VLA element 1833 // count must be nonzero. 1834 CGF.EmitBlock(loopBB); 1835 1836 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1837 cur->addIncoming(begin.getPointer(), originBB); 1838 1839 CharUnits curAlign = 1840 dest.getAlignment().alignmentOfArrayElement(baseSize); 1841 1842 // memcpy the individual element bit-pattern. 1843 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1844 /*volatile*/ false); 1845 1846 // Go to the next element. 1847 llvm::Value *next = 1848 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1849 1850 // Leave if that's the end of the VLA. 1851 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1852 Builder.CreateCondBr(done, contBB, loopBB); 1853 cur->addIncoming(next, loopBB); 1854 1855 CGF.EmitBlock(contBB); 1856 } 1857 1858 void 1859 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1860 // Ignore empty classes in C++. 1861 if (getLangOpts().CPlusPlus) { 1862 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1863 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1864 return; 1865 } 1866 } 1867 1868 // Cast the dest ptr to the appropriate i8 pointer type. 1869 if (DestPtr.getElementType() != Int8Ty) 1870 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1871 1872 // Get size and alignment info for this aggregate. 1873 CharUnits size = getContext().getTypeSizeInChars(Ty); 1874 1875 llvm::Value *SizeVal; 1876 const VariableArrayType *vla; 1877 1878 // Don't bother emitting a zero-byte memset. 1879 if (size.isZero()) { 1880 // But note that getTypeInfo returns 0 for a VLA. 1881 if (const VariableArrayType *vlaType = 1882 dyn_cast_or_null<VariableArrayType>( 1883 getContext().getAsArrayType(Ty))) { 1884 auto VlaSize = getVLASize(vlaType); 1885 SizeVal = VlaSize.NumElts; 1886 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1887 if (!eltSize.isOne()) 1888 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1889 vla = vlaType; 1890 } else { 1891 return; 1892 } 1893 } else { 1894 SizeVal = CGM.getSize(size); 1895 vla = nullptr; 1896 } 1897 1898 // If the type contains a pointer to data member we can't memset it to zero. 1899 // Instead, create a null constant and copy it to the destination. 1900 // TODO: there are other patterns besides zero that we can usefully memset, 1901 // like -1, which happens to be the pattern used by member-pointers. 1902 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1903 // For a VLA, emit a single element, then splat that over the VLA. 1904 if (vla) Ty = getContext().getBaseElementType(vla); 1905 1906 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1907 1908 llvm::GlobalVariable *NullVariable = 1909 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1910 /*isConstant=*/true, 1911 llvm::GlobalVariable::PrivateLinkage, 1912 NullConstant, Twine()); 1913 CharUnits NullAlign = DestPtr.getAlignment(); 1914 NullVariable->setAlignment(NullAlign.getAsAlign()); 1915 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1916 NullAlign); 1917 1918 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1919 1920 // Get and call the appropriate llvm.memcpy overload. 1921 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1922 return; 1923 } 1924 1925 // Otherwise, just memset the whole thing to zero. This is legal 1926 // because in LLVM, all default initializers (other than the ones we just 1927 // handled above) are guaranteed to have a bit pattern of all zeros. 1928 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1929 } 1930 1931 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1932 // Make sure that there is a block for the indirect goto. 1933 if (!IndirectBranch) 1934 GetIndirectGotoBlock(); 1935 1936 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1937 1938 // Make sure the indirect branch includes all of the address-taken blocks. 1939 IndirectBranch->addDestination(BB); 1940 return llvm::BlockAddress::get(CurFn, BB); 1941 } 1942 1943 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1944 // If we already made the indirect branch for indirect goto, return its block. 1945 if (IndirectBranch) return IndirectBranch->getParent(); 1946 1947 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1948 1949 // Create the PHI node that indirect gotos will add entries to. 1950 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1951 "indirect.goto.dest"); 1952 1953 // Create the indirect branch instruction. 1954 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1955 return IndirectBranch->getParent(); 1956 } 1957 1958 /// Computes the length of an array in elements, as well as the base 1959 /// element type and a properly-typed first element pointer. 1960 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1961 QualType &baseType, 1962 Address &addr) { 1963 const ArrayType *arrayType = origArrayType; 1964 1965 // If it's a VLA, we have to load the stored size. Note that 1966 // this is the size of the VLA in bytes, not its size in elements. 1967 llvm::Value *numVLAElements = nullptr; 1968 if (isa<VariableArrayType>(arrayType)) { 1969 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1970 1971 // Walk into all VLAs. This doesn't require changes to addr, 1972 // which has type T* where T is the first non-VLA element type. 1973 do { 1974 QualType elementType = arrayType->getElementType(); 1975 arrayType = getContext().getAsArrayType(elementType); 1976 1977 // If we only have VLA components, 'addr' requires no adjustment. 1978 if (!arrayType) { 1979 baseType = elementType; 1980 return numVLAElements; 1981 } 1982 } while (isa<VariableArrayType>(arrayType)); 1983 1984 // We get out here only if we find a constant array type 1985 // inside the VLA. 1986 } 1987 1988 // We have some number of constant-length arrays, so addr should 1989 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1990 // down to the first element of addr. 1991 SmallVector<llvm::Value*, 8> gepIndices; 1992 1993 // GEP down to the array type. 1994 llvm::ConstantInt *zero = Builder.getInt32(0); 1995 gepIndices.push_back(zero); 1996 1997 uint64_t countFromCLAs = 1; 1998 QualType eltType; 1999 2000 llvm::ArrayType *llvmArrayType = 2001 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2002 while (llvmArrayType) { 2003 assert(isa<ConstantArrayType>(arrayType)); 2004 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2005 == llvmArrayType->getNumElements()); 2006 2007 gepIndices.push_back(zero); 2008 countFromCLAs *= llvmArrayType->getNumElements(); 2009 eltType = arrayType->getElementType(); 2010 2011 llvmArrayType = 2012 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2013 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2014 assert((!llvmArrayType || arrayType) && 2015 "LLVM and Clang types are out-of-synch"); 2016 } 2017 2018 if (arrayType) { 2019 // From this point onwards, the Clang array type has been emitted 2020 // as some other type (probably a packed struct). Compute the array 2021 // size, and just emit the 'begin' expression as a bitcast. 2022 while (arrayType) { 2023 countFromCLAs *= 2024 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2025 eltType = arrayType->getElementType(); 2026 arrayType = getContext().getAsArrayType(eltType); 2027 } 2028 2029 llvm::Type *baseType = ConvertType(eltType); 2030 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2031 } else { 2032 // Create the actual GEP. 2033 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 2034 gepIndices, "array.begin"), 2035 addr.getAlignment()); 2036 } 2037 2038 baseType = eltType; 2039 2040 llvm::Value *numElements 2041 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2042 2043 // If we had any VLA dimensions, factor them in. 2044 if (numVLAElements) 2045 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2046 2047 return numElements; 2048 } 2049 2050 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2051 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2052 assert(vla && "type was not a variable array type!"); 2053 return getVLASize(vla); 2054 } 2055 2056 CodeGenFunction::VlaSizePair 2057 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2058 // The number of elements so far; always size_t. 2059 llvm::Value *numElements = nullptr; 2060 2061 QualType elementType; 2062 do { 2063 elementType = type->getElementType(); 2064 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2065 assert(vlaSize && "no size for VLA!"); 2066 assert(vlaSize->getType() == SizeTy); 2067 2068 if (!numElements) { 2069 numElements = vlaSize; 2070 } else { 2071 // It's undefined behavior if this wraps around, so mark it that way. 2072 // FIXME: Teach -fsanitize=undefined to trap this. 2073 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2074 } 2075 } while ((type = getContext().getAsVariableArrayType(elementType))); 2076 2077 return { numElements, elementType }; 2078 } 2079 2080 CodeGenFunction::VlaSizePair 2081 CodeGenFunction::getVLAElements1D(QualType type) { 2082 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2083 assert(vla && "type was not a variable array type!"); 2084 return getVLAElements1D(vla); 2085 } 2086 2087 CodeGenFunction::VlaSizePair 2088 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2089 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2090 assert(VlaSize && "no size for VLA!"); 2091 assert(VlaSize->getType() == SizeTy); 2092 return { VlaSize, Vla->getElementType() }; 2093 } 2094 2095 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2096 assert(type->isVariablyModifiedType() && 2097 "Must pass variably modified type to EmitVLASizes!"); 2098 2099 EnsureInsertPoint(); 2100 2101 // We're going to walk down into the type and look for VLA 2102 // expressions. 2103 do { 2104 assert(type->isVariablyModifiedType()); 2105 2106 const Type *ty = type.getTypePtr(); 2107 switch (ty->getTypeClass()) { 2108 2109 #define TYPE(Class, Base) 2110 #define ABSTRACT_TYPE(Class, Base) 2111 #define NON_CANONICAL_TYPE(Class, Base) 2112 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2113 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2114 #include "clang/AST/TypeNodes.inc" 2115 llvm_unreachable("unexpected dependent type!"); 2116 2117 // These types are never variably-modified. 2118 case Type::Builtin: 2119 case Type::Complex: 2120 case Type::Vector: 2121 case Type::ExtVector: 2122 case Type::ConstantMatrix: 2123 case Type::Record: 2124 case Type::Enum: 2125 case Type::Elaborated: 2126 case Type::TemplateSpecialization: 2127 case Type::ObjCTypeParam: 2128 case Type::ObjCObject: 2129 case Type::ObjCInterface: 2130 case Type::ObjCObjectPointer: 2131 case Type::ExtInt: 2132 llvm_unreachable("type class is never variably-modified!"); 2133 2134 case Type::Adjusted: 2135 type = cast<AdjustedType>(ty)->getAdjustedType(); 2136 break; 2137 2138 case Type::Decayed: 2139 type = cast<DecayedType>(ty)->getPointeeType(); 2140 break; 2141 2142 case Type::Pointer: 2143 type = cast<PointerType>(ty)->getPointeeType(); 2144 break; 2145 2146 case Type::BlockPointer: 2147 type = cast<BlockPointerType>(ty)->getPointeeType(); 2148 break; 2149 2150 case Type::LValueReference: 2151 case Type::RValueReference: 2152 type = cast<ReferenceType>(ty)->getPointeeType(); 2153 break; 2154 2155 case Type::MemberPointer: 2156 type = cast<MemberPointerType>(ty)->getPointeeType(); 2157 break; 2158 2159 case Type::ConstantArray: 2160 case Type::IncompleteArray: 2161 // Losing element qualification here is fine. 2162 type = cast<ArrayType>(ty)->getElementType(); 2163 break; 2164 2165 case Type::VariableArray: { 2166 // Losing element qualification here is fine. 2167 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2168 2169 // Unknown size indication requires no size computation. 2170 // Otherwise, evaluate and record it. 2171 if (const Expr *size = vat->getSizeExpr()) { 2172 // It's possible that we might have emitted this already, 2173 // e.g. with a typedef and a pointer to it. 2174 llvm::Value *&entry = VLASizeMap[size]; 2175 if (!entry) { 2176 llvm::Value *Size = EmitScalarExpr(size); 2177 2178 // C11 6.7.6.2p5: 2179 // If the size is an expression that is not an integer constant 2180 // expression [...] each time it is evaluated it shall have a value 2181 // greater than zero. 2182 if (SanOpts.has(SanitizerKind::VLABound) && 2183 size->getType()->isSignedIntegerType()) { 2184 SanitizerScope SanScope(this); 2185 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2186 llvm::Constant *StaticArgs[] = { 2187 EmitCheckSourceLocation(size->getBeginLoc()), 2188 EmitCheckTypeDescriptor(size->getType())}; 2189 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2190 SanitizerKind::VLABound), 2191 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2192 } 2193 2194 // Always zexting here would be wrong if it weren't 2195 // undefined behavior to have a negative bound. 2196 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2197 } 2198 } 2199 type = vat->getElementType(); 2200 break; 2201 } 2202 2203 case Type::FunctionProto: 2204 case Type::FunctionNoProto: 2205 type = cast<FunctionType>(ty)->getReturnType(); 2206 break; 2207 2208 case Type::Paren: 2209 case Type::TypeOf: 2210 case Type::UnaryTransform: 2211 case Type::Attributed: 2212 case Type::SubstTemplateTypeParm: 2213 case Type::MacroQualified: 2214 // Keep walking after single level desugaring. 2215 type = type.getSingleStepDesugaredType(getContext()); 2216 break; 2217 2218 case Type::Typedef: 2219 case Type::Decltype: 2220 case Type::Auto: 2221 case Type::DeducedTemplateSpecialization: 2222 // Stop walking: nothing to do. 2223 return; 2224 2225 case Type::TypeOfExpr: 2226 // Stop walking: emit typeof expression. 2227 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2228 return; 2229 2230 case Type::Atomic: 2231 type = cast<AtomicType>(ty)->getValueType(); 2232 break; 2233 2234 case Type::Pipe: 2235 type = cast<PipeType>(ty)->getElementType(); 2236 break; 2237 } 2238 } while (type->isVariablyModifiedType()); 2239 } 2240 2241 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2242 if (getContext().getBuiltinVaListType()->isArrayType()) 2243 return EmitPointerWithAlignment(E); 2244 return EmitLValue(E).getAddress(*this); 2245 } 2246 2247 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2248 return EmitLValue(E).getAddress(*this); 2249 } 2250 2251 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2252 const APValue &Init) { 2253 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2254 if (CGDebugInfo *Dbg = getDebugInfo()) 2255 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2256 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2257 } 2258 2259 CodeGenFunction::PeepholeProtection 2260 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2261 // At the moment, the only aggressive peephole we do in IR gen 2262 // is trunc(zext) folding, but if we add more, we can easily 2263 // extend this protection. 2264 2265 if (!rvalue.isScalar()) return PeepholeProtection(); 2266 llvm::Value *value = rvalue.getScalarVal(); 2267 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2268 2269 // Just make an extra bitcast. 2270 assert(HaveInsertPoint()); 2271 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2272 Builder.GetInsertBlock()); 2273 2274 PeepholeProtection protection; 2275 protection.Inst = inst; 2276 return protection; 2277 } 2278 2279 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2280 if (!protection.Inst) return; 2281 2282 // In theory, we could try to duplicate the peepholes now, but whatever. 2283 protection.Inst->eraseFromParent(); 2284 } 2285 2286 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2287 QualType Ty, SourceLocation Loc, 2288 SourceLocation AssumptionLoc, 2289 llvm::Value *Alignment, 2290 llvm::Value *OffsetValue) { 2291 if (Alignment->getType() != IntPtrTy) 2292 Alignment = 2293 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2294 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2295 OffsetValue = 2296 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2297 llvm::Value *TheCheck = nullptr; 2298 if (SanOpts.has(SanitizerKind::Alignment)) { 2299 llvm::Value *PtrIntValue = 2300 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2301 2302 if (OffsetValue) { 2303 bool IsOffsetZero = false; 2304 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2305 IsOffsetZero = CI->isZero(); 2306 2307 if (!IsOffsetZero) 2308 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2309 } 2310 2311 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2312 llvm::Value *Mask = 2313 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2314 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2315 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2316 } 2317 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2318 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2319 2320 if (!SanOpts.has(SanitizerKind::Alignment)) 2321 return; 2322 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2323 OffsetValue, TheCheck, Assumption); 2324 } 2325 2326 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2327 const Expr *E, 2328 SourceLocation AssumptionLoc, 2329 llvm::Value *Alignment, 2330 llvm::Value *OffsetValue) { 2331 if (auto *CE = dyn_cast<CastExpr>(E)) 2332 E = CE->getSubExprAsWritten(); 2333 QualType Ty = E->getType(); 2334 SourceLocation Loc = E->getExprLoc(); 2335 2336 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2337 OffsetValue); 2338 } 2339 2340 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2341 llvm::Value *AnnotatedVal, 2342 StringRef AnnotationStr, 2343 SourceLocation Location, 2344 const AnnotateAttr *Attr) { 2345 SmallVector<llvm::Value *, 5> Args = { 2346 AnnotatedVal, 2347 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2348 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2349 CGM.EmitAnnotationLineNo(Location), 2350 }; 2351 if (Attr) 2352 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2353 return Builder.CreateCall(AnnotationFn, Args); 2354 } 2355 2356 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2357 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2358 // FIXME We create a new bitcast for every annotation because that's what 2359 // llvm-gcc was doing. 2360 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2361 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2362 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2363 I->getAnnotation(), D->getLocation(), I); 2364 } 2365 2366 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2367 Address Addr) { 2368 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2369 llvm::Value *V = Addr.getPointer(); 2370 llvm::Type *VTy = V->getType(); 2371 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2372 CGM.Int8PtrTy); 2373 2374 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2375 // FIXME Always emit the cast inst so we can differentiate between 2376 // annotation on the first field of a struct and annotation on the struct 2377 // itself. 2378 if (VTy != CGM.Int8PtrTy) 2379 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2380 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2381 V = Builder.CreateBitCast(V, VTy); 2382 } 2383 2384 return Address(V, Addr.getAlignment()); 2385 } 2386 2387 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2388 2389 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2390 : CGF(CGF) { 2391 assert(!CGF->IsSanitizerScope); 2392 CGF->IsSanitizerScope = true; 2393 } 2394 2395 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2396 CGF->IsSanitizerScope = false; 2397 } 2398 2399 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2400 const llvm::Twine &Name, 2401 llvm::BasicBlock *BB, 2402 llvm::BasicBlock::iterator InsertPt) const { 2403 LoopStack.InsertHelper(I); 2404 if (IsSanitizerScope) 2405 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2406 } 2407 2408 void CGBuilderInserter::InsertHelper( 2409 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2410 llvm::BasicBlock::iterator InsertPt) const { 2411 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2412 if (CGF) 2413 CGF->InsertHelper(I, Name, BB, InsertPt); 2414 } 2415 2416 // Emits an error if we don't have a valid set of target features for the 2417 // called function. 2418 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2419 const FunctionDecl *TargetDecl) { 2420 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2421 } 2422 2423 // Emits an error if we don't have a valid set of target features for the 2424 // called function. 2425 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2426 const FunctionDecl *TargetDecl) { 2427 // Early exit if this is an indirect call. 2428 if (!TargetDecl) 2429 return; 2430 2431 // Get the current enclosing function if it exists. If it doesn't 2432 // we can't check the target features anyhow. 2433 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2434 if (!FD) 2435 return; 2436 2437 // Grab the required features for the call. For a builtin this is listed in 2438 // the td file with the default cpu, for an always_inline function this is any 2439 // listed cpu and any listed features. 2440 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2441 std::string MissingFeature; 2442 llvm::StringMap<bool> CallerFeatureMap; 2443 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2444 if (BuiltinID) { 2445 StringRef FeatureList( 2446 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2447 // Return if the builtin doesn't have any required features. 2448 if (FeatureList.empty()) 2449 return; 2450 assert(FeatureList.find(' ') == StringRef::npos && 2451 "Space in feature list"); 2452 TargetFeatures TF(CallerFeatureMap); 2453 if (!TF.hasRequiredFeatures(FeatureList)) 2454 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2455 << TargetDecl->getDeclName() << FeatureList; 2456 } else if (!TargetDecl->isMultiVersion() && 2457 TargetDecl->hasAttr<TargetAttr>()) { 2458 // Get the required features for the callee. 2459 2460 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2461 ParsedTargetAttr ParsedAttr = 2462 CGM.getContext().filterFunctionTargetAttrs(TD); 2463 2464 SmallVector<StringRef, 1> ReqFeatures; 2465 llvm::StringMap<bool> CalleeFeatureMap; 2466 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2467 2468 for (const auto &F : ParsedAttr.Features) { 2469 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2470 ReqFeatures.push_back(StringRef(F).substr(1)); 2471 } 2472 2473 for (const auto &F : CalleeFeatureMap) { 2474 // Only positive features are "required". 2475 if (F.getValue()) 2476 ReqFeatures.push_back(F.getKey()); 2477 } 2478 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2479 if (!CallerFeatureMap.lookup(Feature)) { 2480 MissingFeature = Feature.str(); 2481 return false; 2482 } 2483 return true; 2484 })) 2485 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2486 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2487 } 2488 } 2489 2490 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2491 if (!CGM.getCodeGenOpts().SanitizeStats) 2492 return; 2493 2494 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2495 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2496 CGM.getSanStats().create(IRB, SSK); 2497 } 2498 2499 llvm::Value * 2500 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2501 llvm::Value *Condition = nullptr; 2502 2503 if (!RO.Conditions.Architecture.empty()) 2504 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2505 2506 if (!RO.Conditions.Features.empty()) { 2507 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2508 Condition = 2509 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2510 } 2511 return Condition; 2512 } 2513 2514 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2515 llvm::Function *Resolver, 2516 CGBuilderTy &Builder, 2517 llvm::Function *FuncToReturn, 2518 bool SupportsIFunc) { 2519 if (SupportsIFunc) { 2520 Builder.CreateRet(FuncToReturn); 2521 return; 2522 } 2523 2524 llvm::SmallVector<llvm::Value *, 10> Args; 2525 llvm::for_each(Resolver->args(), 2526 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2527 2528 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2529 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2530 2531 if (Resolver->getReturnType()->isVoidTy()) 2532 Builder.CreateRetVoid(); 2533 else 2534 Builder.CreateRet(Result); 2535 } 2536 2537 void CodeGenFunction::EmitMultiVersionResolver( 2538 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2539 assert(getContext().getTargetInfo().getTriple().isX86() && 2540 "Only implemented for x86 targets"); 2541 2542 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2543 2544 // Main function's basic block. 2545 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2546 Builder.SetInsertPoint(CurBlock); 2547 EmitX86CpuInit(); 2548 2549 for (const MultiVersionResolverOption &RO : Options) { 2550 Builder.SetInsertPoint(CurBlock); 2551 llvm::Value *Condition = FormResolverCondition(RO); 2552 2553 // The 'default' or 'generic' case. 2554 if (!Condition) { 2555 assert(&RO == Options.end() - 1 && 2556 "Default or Generic case must be last"); 2557 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2558 SupportsIFunc); 2559 return; 2560 } 2561 2562 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2563 CGBuilderTy RetBuilder(*this, RetBlock); 2564 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2565 SupportsIFunc); 2566 CurBlock = createBasicBlock("resolver_else", Resolver); 2567 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2568 } 2569 2570 // If no generic/default, emit an unreachable. 2571 Builder.SetInsertPoint(CurBlock); 2572 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2573 TrapCall->setDoesNotReturn(); 2574 TrapCall->setDoesNotThrow(); 2575 Builder.CreateUnreachable(); 2576 Builder.ClearInsertionPoint(); 2577 } 2578 2579 // Loc - where the diagnostic will point, where in the source code this 2580 // alignment has failed. 2581 // SecondaryLoc - if present (will be present if sufficiently different from 2582 // Loc), the diagnostic will additionally point a "Note:" to this location. 2583 // It should be the location where the __attribute__((assume_aligned)) 2584 // was written e.g. 2585 void CodeGenFunction::emitAlignmentAssumptionCheck( 2586 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2587 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2588 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2589 llvm::Instruction *Assumption) { 2590 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2591 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2592 llvm::Intrinsic::getDeclaration( 2593 Builder.GetInsertBlock()->getParent()->getParent(), 2594 llvm::Intrinsic::assume) && 2595 "Assumption should be a call to llvm.assume()."); 2596 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2597 "Assumption should be the last instruction of the basic block, " 2598 "since the basic block is still being generated."); 2599 2600 if (!SanOpts.has(SanitizerKind::Alignment)) 2601 return; 2602 2603 // Don't check pointers to volatile data. The behavior here is implementation- 2604 // defined. 2605 if (Ty->getPointeeType().isVolatileQualified()) 2606 return; 2607 2608 // We need to temorairly remove the assumption so we can insert the 2609 // sanitizer check before it, else the check will be dropped by optimizations. 2610 Assumption->removeFromParent(); 2611 2612 { 2613 SanitizerScope SanScope(this); 2614 2615 if (!OffsetValue) 2616 OffsetValue = Builder.getInt1(0); // no offset. 2617 2618 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2619 EmitCheckSourceLocation(SecondaryLoc), 2620 EmitCheckTypeDescriptor(Ty)}; 2621 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2622 EmitCheckValue(Alignment), 2623 EmitCheckValue(OffsetValue)}; 2624 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2625 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2626 } 2627 2628 // We are now in the (new, empty) "cont" basic block. 2629 // Reintroduce the assumption. 2630 Builder.Insert(Assumption); 2631 // FIXME: Assumption still has it's original basic block as it's Parent. 2632 } 2633 2634 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2635 if (CGDebugInfo *DI = getDebugInfo()) 2636 return DI->SourceLocToDebugLoc(Location); 2637 2638 return llvm::DebugLoc(); 2639 } 2640 2641 static Optional<std::pair<uint32_t, uint32_t>> 2642 getLikelihoodWeights(Stmt::Likelihood LH) { 2643 switch (LH) { 2644 case Stmt::LH_Unlikely: 2645 return std::pair<uint32_t, uint32_t>(llvm::UnlikelyBranchWeight, 2646 llvm::LikelyBranchWeight); 2647 case Stmt::LH_None: 2648 return None; 2649 case Stmt::LH_Likely: 2650 return std::pair<uint32_t, uint32_t>(llvm::LikelyBranchWeight, 2651 llvm::UnlikelyBranchWeight); 2652 } 2653 llvm_unreachable("Unknown Likelihood"); 2654 } 2655 2656 llvm::MDNode *CodeGenFunction::createBranchWeights(Stmt::Likelihood LH) const { 2657 Optional<std::pair<uint32_t, uint32_t>> LHW = getLikelihoodWeights(LH); 2658 if (!LHW) 2659 return nullptr; 2660 2661 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2662 return MDHelper.createBranchWeights(LHW->first, LHW->second); 2663 } 2664 2665 llvm::MDNode *CodeGenFunction::createProfileOrBranchWeightsForLoop( 2666 const Stmt *Cond, uint64_t LoopCount, const Stmt *Body) const { 2667 llvm::MDNode *Weights = createProfileWeightsForLoop(Cond, LoopCount); 2668 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 2669 Weights = createBranchWeights(Stmt::getLikelihood(Body)); 2670 2671 return Weights; 2672 } 2673