1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Operator.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
34   : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
35     Builder(cgm.getModule().getContext()),
36     CapturedStmtInfo(0),
37     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
38                              CGM.getSanOpts().Alignment |
39                              CGM.getSanOpts().ObjectSize |
40                              CGM.getSanOpts().Vptr),
41     SanOpts(&CGM.getSanOpts()),
42     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
43     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
44     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
45     DebugInfo(0), DisableDebugInfo(false), CalleeWithThisReturn(0),
46     DidCallStackSave(false),
47     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
48     NumReturnExprs(0), NumSimpleReturnExprs(0),
49     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
50     CXXDefaultInitExprThis(0),
51     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
52     OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
53     TerminateHandler(0), TrapBB(0) {
54   if (!suppressNewContext)
55     CGM.getCXXABI().getMangleContext().startNewFunction();
56 
57   llvm::FastMathFlags FMF;
58   if (CGM.getLangOpts().FastMath)
59     FMF.setUnsafeAlgebra();
60   if (CGM.getLangOpts().FiniteMathOnly) {
61     FMF.setNoNaNs();
62     FMF.setNoInfs();
63   }
64   Builder.SetFastMathFlags(FMF);
65 }
66 
67 CodeGenFunction::~CodeGenFunction() {
68   // If there are any unclaimed block infos, go ahead and destroy them
69   // now.  This can happen if IR-gen gets clever and skips evaluating
70   // something.
71   if (FirstBlockInfo)
72     destroyBlockInfos(FirstBlockInfo);
73 }
74 
75 
76 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
77   return CGM.getTypes().ConvertTypeForMem(T);
78 }
79 
80 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
81   return CGM.getTypes().ConvertType(T);
82 }
83 
84 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
85   type = type.getCanonicalType();
86   while (true) {
87     switch (type->getTypeClass()) {
88 #define TYPE(name, parent)
89 #define ABSTRACT_TYPE(name, parent)
90 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
91 #define DEPENDENT_TYPE(name, parent) case Type::name:
92 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
93 #include "clang/AST/TypeNodes.def"
94       llvm_unreachable("non-canonical or dependent type in IR-generation");
95 
96     case Type::Auto:
97       llvm_unreachable("undeduced auto type in IR-generation");
98 
99     // Various scalar types.
100     case Type::Builtin:
101     case Type::Pointer:
102     case Type::BlockPointer:
103     case Type::LValueReference:
104     case Type::RValueReference:
105     case Type::MemberPointer:
106     case Type::Vector:
107     case Type::ExtVector:
108     case Type::FunctionProto:
109     case Type::FunctionNoProto:
110     case Type::Enum:
111     case Type::ObjCObjectPointer:
112       return TEK_Scalar;
113 
114     // Complexes.
115     case Type::Complex:
116       return TEK_Complex;
117 
118     // Arrays, records, and Objective-C objects.
119     case Type::ConstantArray:
120     case Type::IncompleteArray:
121     case Type::VariableArray:
122     case Type::Record:
123     case Type::ObjCObject:
124     case Type::ObjCInterface:
125       return TEK_Aggregate;
126 
127     // We operate on atomic values according to their underlying type.
128     case Type::Atomic:
129       type = cast<AtomicType>(type)->getValueType();
130       continue;
131     }
132     llvm_unreachable("unknown type kind!");
133   }
134 }
135 
136 void CodeGenFunction::EmitReturnBlock() {
137   // For cleanliness, we try to avoid emitting the return block for
138   // simple cases.
139   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
140 
141   if (CurBB) {
142     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
143 
144     // We have a valid insert point, reuse it if it is empty or there are no
145     // explicit jumps to the return block.
146     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
147       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
148       delete ReturnBlock.getBlock();
149     } else
150       EmitBlock(ReturnBlock.getBlock());
151     return;
152   }
153 
154   // Otherwise, if the return block is the target of a single direct
155   // branch then we can just put the code in that block instead. This
156   // cleans up functions which started with a unified return block.
157   if (ReturnBlock.getBlock()->hasOneUse()) {
158     llvm::BranchInst *BI =
159       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
160     if (BI && BI->isUnconditional() &&
161         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
162       // Reset insertion point, including debug location, and delete the
163       // branch.  This is really subtle and only works because the next change
164       // in location will hit the caching in CGDebugInfo::EmitLocation and not
165       // override this.
166       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
167       Builder.SetInsertPoint(BI->getParent());
168       BI->eraseFromParent();
169       delete ReturnBlock.getBlock();
170       return;
171     }
172   }
173 
174   // FIXME: We are at an unreachable point, there is no reason to emit the block
175   // unless it has uses. However, we still need a place to put the debug
176   // region.end for now.
177 
178   EmitBlock(ReturnBlock.getBlock());
179 }
180 
181 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
182   if (!BB) return;
183   if (!BB->use_empty())
184     return CGF.CurFn->getBasicBlockList().push_back(BB);
185   delete BB;
186 }
187 
188 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
189   assert(BreakContinueStack.empty() &&
190          "mismatched push/pop in break/continue stack!");
191 
192   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
193     && NumSimpleReturnExprs == NumReturnExprs;
194   // If the function contains only a simple return statement, the
195   // location before the cleanup code becomes the last useful
196   // breakpoint in the function, because the simple return expression
197   // will be evaluated after the cleanup code. To be safe, set the
198   // debug location for cleanup code to the location of the return
199   // statement. Otherwise the cleanup code should be at the end of the
200   // function's lexical scope.
201   if (CGDebugInfo *DI = getDebugInfo()) {
202     if (OnlySimpleReturnStmts)
203       DI->EmitLocation(Builder, LastStopPoint);
204     else
205       DI->EmitLocation(Builder, EndLoc);
206   }
207 
208   // Pop any cleanups that might have been associated with the
209   // parameters.  Do this in whatever block we're currently in; it's
210   // important to do this before we enter the return block or return
211   // edges will be *really* confused.
212   bool EmitRetDbgLoc = true;
213   if (EHStack.stable_begin() != PrologueCleanupDepth) {
214     PopCleanupBlocks(PrologueCleanupDepth);
215 
216     // Make sure the line table doesn't jump back into the body for
217     // the ret after it's been at EndLoc.
218     EmitRetDbgLoc = false;
219 
220     if (CGDebugInfo *DI = getDebugInfo())
221       if (OnlySimpleReturnStmts)
222         DI->EmitLocation(Builder, EndLoc);
223   }
224 
225   // Emit function epilog (to return).
226   EmitReturnBlock();
227 
228   if (ShouldInstrumentFunction())
229     EmitFunctionInstrumentation("__cyg_profile_func_exit");
230 
231   // Emit debug descriptor for function end.
232   if (CGDebugInfo *DI = getDebugInfo()) {
233     DI->EmitFunctionEnd(Builder);
234   }
235 
236   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc);
237   EmitEndEHSpec(CurCodeDecl);
238 
239   assert(EHStack.empty() &&
240          "did not remove all scopes from cleanup stack!");
241 
242   // If someone did an indirect goto, emit the indirect goto block at the end of
243   // the function.
244   if (IndirectBranch) {
245     EmitBlock(IndirectBranch->getParent());
246     Builder.ClearInsertionPoint();
247   }
248 
249   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
250   llvm::Instruction *Ptr = AllocaInsertPt;
251   AllocaInsertPt = 0;
252   Ptr->eraseFromParent();
253 
254   // If someone took the address of a label but never did an indirect goto, we
255   // made a zero entry PHI node, which is illegal, zap it now.
256   if (IndirectBranch) {
257     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
258     if (PN->getNumIncomingValues() == 0) {
259       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
260       PN->eraseFromParent();
261     }
262   }
263 
264   EmitIfUsed(*this, EHResumeBlock);
265   EmitIfUsed(*this, TerminateLandingPad);
266   EmitIfUsed(*this, TerminateHandler);
267   EmitIfUsed(*this, UnreachableBlock);
268 
269   if (CGM.getCodeGenOpts().EmitDeclMetadata)
270     EmitDeclMetadata();
271 }
272 
273 /// ShouldInstrumentFunction - Return true if the current function should be
274 /// instrumented with __cyg_profile_func_* calls
275 bool CodeGenFunction::ShouldInstrumentFunction() {
276   if (!CGM.getCodeGenOpts().InstrumentFunctions)
277     return false;
278   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
279     return false;
280   return true;
281 }
282 
283 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
284 /// instrumentation function with the current function and the call site, if
285 /// function instrumentation is enabled.
286 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
287   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
288   llvm::PointerType *PointerTy = Int8PtrTy;
289   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
290   llvm::FunctionType *FunctionTy =
291     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
292 
293   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
294   llvm::CallInst *CallSite = Builder.CreateCall(
295     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
296     llvm::ConstantInt::get(Int32Ty, 0),
297     "callsite");
298 
299   llvm::Value *args[] = {
300     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
301     CallSite
302   };
303 
304   EmitNounwindRuntimeCall(F, args);
305 }
306 
307 void CodeGenFunction::EmitMCountInstrumentation() {
308   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
309 
310   llvm::Constant *MCountFn =
311     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
312   EmitNounwindRuntimeCall(MCountFn);
313 }
314 
315 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
316 // information in the program executable. The argument information stored
317 // includes the argument name, its type, the address and access qualifiers used.
318 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
319                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
320                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
321                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
322   // Create MDNodes that represent the kernel arg metadata.
323   // Each MDNode is a list in the form of "key", N number of values which is
324   // the same number of values as their are kernel arguments.
325 
326   // MDNode for the kernel argument address space qualifiers.
327   SmallVector<llvm::Value*, 8> addressQuals;
328   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
329 
330   // MDNode for the kernel argument access qualifiers (images only).
331   SmallVector<llvm::Value*, 8> accessQuals;
332   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
333 
334   // MDNode for the kernel argument type names.
335   SmallVector<llvm::Value*, 8> argTypeNames;
336   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
337 
338   // MDNode for the kernel argument type qualifiers.
339   SmallVector<llvm::Value*, 8> argTypeQuals;
340   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
341 
342   // MDNode for the kernel argument names.
343   SmallVector<llvm::Value*, 8> argNames;
344   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
345 
346   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
347     const ParmVarDecl *parm = FD->getParamDecl(i);
348     QualType ty = parm->getType();
349     std::string typeQuals;
350 
351     if (ty->isPointerType()) {
352       QualType pointeeTy = ty->getPointeeType();
353 
354       // Get address qualifier.
355       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
356         pointeeTy.getAddressSpace())));
357 
358       // Get argument type name.
359       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
360 
361       // Turn "unsigned type" to "utype"
362       std::string::size_type pos = typeName.find("unsigned");
363       if (pos != std::string::npos)
364         typeName.erase(pos+1, 8);
365 
366       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
367 
368       // Get argument type qualifiers:
369       if (ty.isRestrictQualified())
370         typeQuals = "restrict";
371       if (pointeeTy.isConstQualified() ||
372           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
373         typeQuals += typeQuals.empty() ? "const" : " const";
374       if (pointeeTy.isVolatileQualified())
375         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
376     } else {
377       addressQuals.push_back(Builder.getInt32(0));
378 
379       // Get argument type name.
380       std::string typeName = ty.getUnqualifiedType().getAsString();
381 
382       // Turn "unsigned type" to "utype"
383       std::string::size_type pos = typeName.find("unsigned");
384       if (pos != std::string::npos)
385         typeName.erase(pos+1, 8);
386 
387       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
388 
389       // Get argument type qualifiers:
390       if (ty.isConstQualified())
391         typeQuals = "const";
392       if (ty.isVolatileQualified())
393         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
394     }
395 
396     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
397 
398     // Get image access qualifier:
399     if (ty->isImageType()) {
400       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
401           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
402         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
403       else
404         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
405     } else
406       accessQuals.push_back(llvm::MDString::get(Context, "none"));
407 
408     // Get argument name.
409     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
410   }
411 
412   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
413   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
414   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
415   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
416   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
417 }
418 
419 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
420                                                llvm::Function *Fn)
421 {
422   if (!FD->hasAttr<OpenCLKernelAttr>())
423     return;
424 
425   llvm::LLVMContext &Context = getLLVMContext();
426 
427   SmallVector <llvm::Value*, 5> kernelMDArgs;
428   kernelMDArgs.push_back(Fn);
429 
430   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
431     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
432                          Builder, getContext());
433 
434   if (FD->hasAttr<VecTypeHintAttr>()) {
435     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
436     QualType hintQTy = attr->getTypeHint();
437     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
438     bool isSignedInteger =
439         hintQTy->isSignedIntegerType() ||
440         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
441     llvm::Value *attrMDArgs[] = {
442       llvm::MDString::get(Context, "vec_type_hint"),
443       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
444       llvm::ConstantInt::get(
445           llvm::IntegerType::get(Context, 32),
446           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
447     };
448     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
449   }
450 
451   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
452     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
453     llvm::Value *attrMDArgs[] = {
454       llvm::MDString::get(Context, "work_group_size_hint"),
455       Builder.getInt32(attr->getXDim()),
456       Builder.getInt32(attr->getYDim()),
457       Builder.getInt32(attr->getZDim())
458     };
459     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
460   }
461 
462   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
463     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
464     llvm::Value *attrMDArgs[] = {
465       llvm::MDString::get(Context, "reqd_work_group_size"),
466       Builder.getInt32(attr->getXDim()),
467       Builder.getInt32(attr->getYDim()),
468       Builder.getInt32(attr->getZDim())
469     };
470     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
471   }
472 
473   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
474   llvm::NamedMDNode *OpenCLKernelMetadata =
475     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
476   OpenCLKernelMetadata->addOperand(kernelMDNode);
477 }
478 
479 void CodeGenFunction::StartFunction(GlobalDecl GD,
480                                     QualType RetTy,
481                                     llvm::Function *Fn,
482                                     const CGFunctionInfo &FnInfo,
483                                     const FunctionArgList &Args,
484                                     SourceLocation StartLoc) {
485   const Decl *D = GD.getDecl();
486 
487   DidCallStackSave = false;
488   CurCodeDecl = D;
489   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
490   FnRetTy = RetTy;
491   CurFn = Fn;
492   CurFnInfo = &FnInfo;
493   assert(CurFn->isDeclaration() && "Function already has body?");
494 
495   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
496     SanOpts = &SanitizerOptions::Disabled;
497     SanitizePerformTypeCheck = false;
498   }
499 
500   // Pass inline keyword to optimizer if it appears explicitly on any
501   // declaration.
502   if (!CGM.getCodeGenOpts().NoInline)
503     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
504       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
505              RE = FD->redecls_end(); RI != RE; ++RI)
506         if (RI->isInlineSpecified()) {
507           Fn->addFnAttr(llvm::Attribute::InlineHint);
508           break;
509         }
510 
511   if (getLangOpts().OpenCL) {
512     // Add metadata for a kernel function.
513     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
514       EmitOpenCLKernelMetadata(FD, Fn);
515   }
516 
517   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
518 
519   // Create a marker to make it easy to insert allocas into the entryblock
520   // later.  Don't create this with the builder, because we don't want it
521   // folded.
522   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
523   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
524   if (Builder.isNamePreserving())
525     AllocaInsertPt->setName("allocapt");
526 
527   ReturnBlock = getJumpDestInCurrentScope("return");
528 
529   Builder.SetInsertPoint(EntryBB);
530 
531   // Emit subprogram debug descriptor.
532   if (CGDebugInfo *DI = getDebugInfo()) {
533     SmallVector<QualType, 16> ArgTypes;
534     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
535 	 i != e; ++i) {
536       ArgTypes.push_back((*i)->getType());
537     }
538 
539     QualType FnType =
540       getContext().getFunctionType(RetTy, ArgTypes,
541                                    FunctionProtoType::ExtProtoInfo());
542 
543     DI->setLocation(StartLoc);
544     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
545   }
546 
547   if (ShouldInstrumentFunction())
548     EmitFunctionInstrumentation("__cyg_profile_func_enter");
549 
550   if (CGM.getCodeGenOpts().InstrumentForProfiling)
551     EmitMCountInstrumentation();
552 
553   if (RetTy->isVoidType()) {
554     // Void type; nothing to return.
555     ReturnValue = 0;
556   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
557              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
558     // Indirect aggregate return; emit returned value directly into sret slot.
559     // This reduces code size, and affects correctness in C++.
560     ReturnValue = CurFn->arg_begin();
561   } else {
562     ReturnValue = CreateIRTemp(RetTy, "retval");
563 
564     // Tell the epilog emitter to autorelease the result.  We do this
565     // now so that various specialized functions can suppress it
566     // during their IR-generation.
567     if (getLangOpts().ObjCAutoRefCount &&
568         !CurFnInfo->isReturnsRetained() &&
569         RetTy->isObjCRetainableType())
570       AutoreleaseResult = true;
571   }
572 
573   EmitStartEHSpec(CurCodeDecl);
574 
575   PrologueCleanupDepth = EHStack.stable_begin();
576   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
577 
578   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
579     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
580     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
581     if (MD->getParent()->isLambda() &&
582         MD->getOverloadedOperator() == OO_Call) {
583       // We're in a lambda; figure out the captures.
584       MD->getParent()->getCaptureFields(LambdaCaptureFields,
585                                         LambdaThisCaptureField);
586       if (LambdaThisCaptureField) {
587         // If this lambda captures this, load it.
588         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
589         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
590       }
591     } else {
592       // Not in a lambda; just use 'this' from the method.
593       // FIXME: Should we generate a new load for each use of 'this'?  The
594       // fast register allocator would be happier...
595       CXXThisValue = CXXABIThisValue;
596     }
597   }
598 
599   // If any of the arguments have a variably modified type, make sure to
600   // emit the type size.
601   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
602        i != e; ++i) {
603     const VarDecl *VD = *i;
604 
605     // Dig out the type as written from ParmVarDecls; it's unclear whether
606     // the standard (C99 6.9.1p10) requires this, but we're following the
607     // precedent set by gcc.
608     QualType Ty;
609     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
610       Ty = PVD->getOriginalType();
611     else
612       Ty = VD->getType();
613 
614     if (Ty->isVariablyModifiedType())
615       EmitVariablyModifiedType(Ty);
616   }
617   // Emit a location at the end of the prologue.
618   if (CGDebugInfo *DI = getDebugInfo())
619     DI->EmitLocation(Builder, StartLoc);
620 }
621 
622 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
623   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
624   assert(FD->getBody());
625   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
626     EmitCompoundStmtWithoutScope(*S);
627   else
628     EmitStmt(FD->getBody());
629 }
630 
631 /// Tries to mark the given function nounwind based on the
632 /// non-existence of any throwing calls within it.  We believe this is
633 /// lightweight enough to do at -O0.
634 static void TryMarkNoThrow(llvm::Function *F) {
635   // LLVM treats 'nounwind' on a function as part of the type, so we
636   // can't do this on functions that can be overwritten.
637   if (F->mayBeOverridden()) return;
638 
639   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
640     for (llvm::BasicBlock::iterator
641            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
642       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
643         if (!Call->doesNotThrow())
644           return;
645       } else if (isa<llvm::ResumeInst>(&*BI)) {
646         return;
647       }
648   F->setDoesNotThrow();
649 }
650 
651 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
652                                    const CGFunctionInfo &FnInfo) {
653   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
654 
655   // Check if we should generate debug info for this function.
656   if (!FD->hasAttr<NoDebugAttr>())
657     maybeInitializeDebugInfo();
658 
659   FunctionArgList Args;
660   QualType ResTy = FD->getResultType();
661 
662   CurGD = GD;
663   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
664     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
665 
666   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
667     Args.push_back(FD->getParamDecl(i));
668 
669   SourceRange BodyRange;
670   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
671   CurEHLocation = BodyRange.getEnd();
672 
673   // CalleeWithThisReturn keeps track of the last callee inside this function
674   // that returns 'this'. Before starting the function, we set it to null.
675   CalleeWithThisReturn = 0;
676 
677   // Emit the standard function prologue.
678   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
679 
680   // Generate the body of the function.
681   if (isa<CXXDestructorDecl>(FD))
682     EmitDestructorBody(Args);
683   else if (isa<CXXConstructorDecl>(FD))
684     EmitConstructorBody(Args);
685   else if (getLangOpts().CUDA &&
686            !CGM.getCodeGenOpts().CUDAIsDevice &&
687            FD->hasAttr<CUDAGlobalAttr>())
688     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
689   else if (isa<CXXConversionDecl>(FD) &&
690            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
691     // The lambda conversion to block pointer is special; the semantics can't be
692     // expressed in the AST, so IRGen needs to special-case it.
693     EmitLambdaToBlockPointerBody(Args);
694   } else if (isa<CXXMethodDecl>(FD) &&
695              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
696     // The lambda "__invoke" function is special, because it forwards or
697     // clones the body of the function call operator (but is actually static).
698     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
699   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
700              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
701     // Implicit copy-assignment gets the same special treatment as implicit
702     // copy-constructors.
703     emitImplicitAssignmentOperatorBody(Args);
704   }
705   else
706     EmitFunctionBody(Args);
707 
708   // C++11 [stmt.return]p2:
709   //   Flowing off the end of a function [...] results in undefined behavior in
710   //   a value-returning function.
711   // C11 6.9.1p12:
712   //   If the '}' that terminates a function is reached, and the value of the
713   //   function call is used by the caller, the behavior is undefined.
714   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
715       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
716     if (SanOpts->Return)
717       EmitCheck(Builder.getFalse(), "missing_return",
718                 EmitCheckSourceLocation(FD->getLocation()),
719                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
720     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
721       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
722     Builder.CreateUnreachable();
723     Builder.ClearInsertionPoint();
724   }
725 
726   // Emit the standard function epilogue.
727   FinishFunction(BodyRange.getEnd());
728   // CalleeWithThisReturn keeps track of the last callee inside this function
729   // that returns 'this'. After finishing the function, we set it to null.
730   CalleeWithThisReturn = 0;
731 
732   // If we haven't marked the function nothrow through other means, do
733   // a quick pass now to see if we can.
734   if (!CurFn->doesNotThrow())
735     TryMarkNoThrow(CurFn);
736 }
737 
738 /// ContainsLabel - Return true if the statement contains a label in it.  If
739 /// this statement is not executed normally, it not containing a label means
740 /// that we can just remove the code.
741 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
742   // Null statement, not a label!
743   if (S == 0) return false;
744 
745   // If this is a label, we have to emit the code, consider something like:
746   // if (0) {  ...  foo:  bar(); }  goto foo;
747   //
748   // TODO: If anyone cared, we could track __label__'s, since we know that you
749   // can't jump to one from outside their declared region.
750   if (isa<LabelStmt>(S))
751     return true;
752 
753   // If this is a case/default statement, and we haven't seen a switch, we have
754   // to emit the code.
755   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
756     return true;
757 
758   // If this is a switch statement, we want to ignore cases below it.
759   if (isa<SwitchStmt>(S))
760     IgnoreCaseStmts = true;
761 
762   // Scan subexpressions for verboten labels.
763   for (Stmt::const_child_range I = S->children(); I; ++I)
764     if (ContainsLabel(*I, IgnoreCaseStmts))
765       return true;
766 
767   return false;
768 }
769 
770 /// containsBreak - Return true if the statement contains a break out of it.
771 /// If the statement (recursively) contains a switch or loop with a break
772 /// inside of it, this is fine.
773 bool CodeGenFunction::containsBreak(const Stmt *S) {
774   // Null statement, not a label!
775   if (S == 0) return false;
776 
777   // If this is a switch or loop that defines its own break scope, then we can
778   // include it and anything inside of it.
779   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
780       isa<ForStmt>(S))
781     return false;
782 
783   if (isa<BreakStmt>(S))
784     return true;
785 
786   // Scan subexpressions for verboten breaks.
787   for (Stmt::const_child_range I = S->children(); I; ++I)
788     if (containsBreak(*I))
789       return true;
790 
791   return false;
792 }
793 
794 
795 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
796 /// to a constant, or if it does but contains a label, return false.  If it
797 /// constant folds return true and set the boolean result in Result.
798 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
799                                                    bool &ResultBool) {
800   llvm::APSInt ResultInt;
801   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
802     return false;
803 
804   ResultBool = ResultInt.getBoolValue();
805   return true;
806 }
807 
808 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
809 /// to a constant, or if it does but contains a label, return false.  If it
810 /// constant folds return true and set the folded value.
811 bool CodeGenFunction::
812 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
813   // FIXME: Rename and handle conversion of other evaluatable things
814   // to bool.
815   llvm::APSInt Int;
816   if (!Cond->EvaluateAsInt(Int, getContext()))
817     return false;  // Not foldable, not integer or not fully evaluatable.
818 
819   if (CodeGenFunction::ContainsLabel(Cond))
820     return false;  // Contains a label.
821 
822   ResultInt = Int;
823   return true;
824 }
825 
826 
827 
828 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
829 /// statement) to the specified blocks.  Based on the condition, this might try
830 /// to simplify the codegen of the conditional based on the branch.
831 ///
832 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
833                                            llvm::BasicBlock *TrueBlock,
834                                            llvm::BasicBlock *FalseBlock) {
835   Cond = Cond->IgnoreParens();
836 
837   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
838     // Handle X && Y in a condition.
839     if (CondBOp->getOpcode() == BO_LAnd) {
840       // If we have "1 && X", simplify the code.  "0 && X" would have constant
841       // folded if the case was simple enough.
842       bool ConstantBool = false;
843       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
844           ConstantBool) {
845         // br(1 && X) -> br(X).
846         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
847       }
848 
849       // If we have "X && 1", simplify the code to use an uncond branch.
850       // "X && 0" would have been constant folded to 0.
851       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
852           ConstantBool) {
853         // br(X && 1) -> br(X).
854         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
855       }
856 
857       // Emit the LHS as a conditional.  If the LHS conditional is false, we
858       // want to jump to the FalseBlock.
859       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
860 
861       ConditionalEvaluation eval(*this);
862       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
863       EmitBlock(LHSTrue);
864 
865       // Any temporaries created here are conditional.
866       eval.begin(*this);
867       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
868       eval.end(*this);
869 
870       return;
871     }
872 
873     if (CondBOp->getOpcode() == BO_LOr) {
874       // If we have "0 || X", simplify the code.  "1 || X" would have constant
875       // folded if the case was simple enough.
876       bool ConstantBool = false;
877       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
878           !ConstantBool) {
879         // br(0 || X) -> br(X).
880         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
881       }
882 
883       // If we have "X || 0", simplify the code to use an uncond branch.
884       // "X || 1" would have been constant folded to 1.
885       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
886           !ConstantBool) {
887         // br(X || 0) -> br(X).
888         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
889       }
890 
891       // Emit the LHS as a conditional.  If the LHS conditional is true, we
892       // want to jump to the TrueBlock.
893       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
894 
895       ConditionalEvaluation eval(*this);
896       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
897       EmitBlock(LHSFalse);
898 
899       // Any temporaries created here are conditional.
900       eval.begin(*this);
901       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
902       eval.end(*this);
903 
904       return;
905     }
906   }
907 
908   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
909     // br(!x, t, f) -> br(x, f, t)
910     if (CondUOp->getOpcode() == UO_LNot)
911       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
912   }
913 
914   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
915     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
916     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
917     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
918 
919     ConditionalEvaluation cond(*this);
920     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
921 
922     cond.begin(*this);
923     EmitBlock(LHSBlock);
924     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
925     cond.end(*this);
926 
927     cond.begin(*this);
928     EmitBlock(RHSBlock);
929     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
930     cond.end(*this);
931 
932     return;
933   }
934 
935   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
936     // Conditional operator handling can give us a throw expression as a
937     // condition for a case like:
938     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
939     // Fold this to:
940     //   br(c, throw x, br(y, t, f))
941     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
942     return;
943   }
944 
945   // Emit the code with the fully general case.
946   llvm::Value *CondV = EvaluateExprAsBool(Cond);
947   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
948 }
949 
950 /// ErrorUnsupported - Print out an error that codegen doesn't support the
951 /// specified stmt yet.
952 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
953                                        bool OmitOnError) {
954   CGM.ErrorUnsupported(S, Type, OmitOnError);
955 }
956 
957 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
958 /// variable-length array whose elements have a non-zero bit-pattern.
959 ///
960 /// \param baseType the inner-most element type of the array
961 /// \param src - a char* pointing to the bit-pattern for a single
962 /// base element of the array
963 /// \param sizeInChars - the total size of the VLA, in chars
964 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
965                                llvm::Value *dest, llvm::Value *src,
966                                llvm::Value *sizeInChars) {
967   std::pair<CharUnits,CharUnits> baseSizeAndAlign
968     = CGF.getContext().getTypeInfoInChars(baseType);
969 
970   CGBuilderTy &Builder = CGF.Builder;
971 
972   llvm::Value *baseSizeInChars
973     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
974 
975   llvm::Type *i8p = Builder.getInt8PtrTy();
976 
977   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
978   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
979 
980   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
981   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
982   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
983 
984   // Make a loop over the VLA.  C99 guarantees that the VLA element
985   // count must be nonzero.
986   CGF.EmitBlock(loopBB);
987 
988   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
989   cur->addIncoming(begin, originBB);
990 
991   // memcpy the individual element bit-pattern.
992   Builder.CreateMemCpy(cur, src, baseSizeInChars,
993                        baseSizeAndAlign.second.getQuantity(),
994                        /*volatile*/ false);
995 
996   // Go to the next element.
997   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
998 
999   // Leave if that's the end of the VLA.
1000   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1001   Builder.CreateCondBr(done, contBB, loopBB);
1002   cur->addIncoming(next, loopBB);
1003 
1004   CGF.EmitBlock(contBB);
1005 }
1006 
1007 void
1008 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1009   // Ignore empty classes in C++.
1010   if (getLangOpts().CPlusPlus) {
1011     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1012       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1013         return;
1014     }
1015   }
1016 
1017   // Cast the dest ptr to the appropriate i8 pointer type.
1018   unsigned DestAS =
1019     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1020   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1021   if (DestPtr->getType() != BP)
1022     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1023 
1024   // Get size and alignment info for this aggregate.
1025   std::pair<CharUnits, CharUnits> TypeInfo =
1026     getContext().getTypeInfoInChars(Ty);
1027   CharUnits Size = TypeInfo.first;
1028   CharUnits Align = TypeInfo.second;
1029 
1030   llvm::Value *SizeVal;
1031   const VariableArrayType *vla;
1032 
1033   // Don't bother emitting a zero-byte memset.
1034   if (Size.isZero()) {
1035     // But note that getTypeInfo returns 0 for a VLA.
1036     if (const VariableArrayType *vlaType =
1037           dyn_cast_or_null<VariableArrayType>(
1038                                           getContext().getAsArrayType(Ty))) {
1039       QualType eltType;
1040       llvm::Value *numElts;
1041       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1042 
1043       SizeVal = numElts;
1044       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1045       if (!eltSize.isOne())
1046         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1047       vla = vlaType;
1048     } else {
1049       return;
1050     }
1051   } else {
1052     SizeVal = CGM.getSize(Size);
1053     vla = 0;
1054   }
1055 
1056   // If the type contains a pointer to data member we can't memset it to zero.
1057   // Instead, create a null constant and copy it to the destination.
1058   // TODO: there are other patterns besides zero that we can usefully memset,
1059   // like -1, which happens to be the pattern used by member-pointers.
1060   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1061     // For a VLA, emit a single element, then splat that over the VLA.
1062     if (vla) Ty = getContext().getBaseElementType(vla);
1063 
1064     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1065 
1066     llvm::GlobalVariable *NullVariable =
1067       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1068                                /*isConstant=*/true,
1069                                llvm::GlobalVariable::PrivateLinkage,
1070                                NullConstant, Twine());
1071     llvm::Value *SrcPtr =
1072       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1073 
1074     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1075 
1076     // Get and call the appropriate llvm.memcpy overload.
1077     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1078     return;
1079   }
1080 
1081   // Otherwise, just memset the whole thing to zero.  This is legal
1082   // because in LLVM, all default initializers (other than the ones we just
1083   // handled above) are guaranteed to have a bit pattern of all zeros.
1084   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1085                        Align.getQuantity(), false);
1086 }
1087 
1088 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1089   // Make sure that there is a block for the indirect goto.
1090   if (IndirectBranch == 0)
1091     GetIndirectGotoBlock();
1092 
1093   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1094 
1095   // Make sure the indirect branch includes all of the address-taken blocks.
1096   IndirectBranch->addDestination(BB);
1097   return llvm::BlockAddress::get(CurFn, BB);
1098 }
1099 
1100 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1101   // If we already made the indirect branch for indirect goto, return its block.
1102   if (IndirectBranch) return IndirectBranch->getParent();
1103 
1104   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1105 
1106   // Create the PHI node that indirect gotos will add entries to.
1107   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1108                                               "indirect.goto.dest");
1109 
1110   // Create the indirect branch instruction.
1111   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1112   return IndirectBranch->getParent();
1113 }
1114 
1115 /// Computes the length of an array in elements, as well as the base
1116 /// element type and a properly-typed first element pointer.
1117 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1118                                               QualType &baseType,
1119                                               llvm::Value *&addr) {
1120   const ArrayType *arrayType = origArrayType;
1121 
1122   // If it's a VLA, we have to load the stored size.  Note that
1123   // this is the size of the VLA in bytes, not its size in elements.
1124   llvm::Value *numVLAElements = 0;
1125   if (isa<VariableArrayType>(arrayType)) {
1126     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1127 
1128     // Walk into all VLAs.  This doesn't require changes to addr,
1129     // which has type T* where T is the first non-VLA element type.
1130     do {
1131       QualType elementType = arrayType->getElementType();
1132       arrayType = getContext().getAsArrayType(elementType);
1133 
1134       // If we only have VLA components, 'addr' requires no adjustment.
1135       if (!arrayType) {
1136         baseType = elementType;
1137         return numVLAElements;
1138       }
1139     } while (isa<VariableArrayType>(arrayType));
1140 
1141     // We get out here only if we find a constant array type
1142     // inside the VLA.
1143   }
1144 
1145   // We have some number of constant-length arrays, so addr should
1146   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1147   // down to the first element of addr.
1148   SmallVector<llvm::Value*, 8> gepIndices;
1149 
1150   // GEP down to the array type.
1151   llvm::ConstantInt *zero = Builder.getInt32(0);
1152   gepIndices.push_back(zero);
1153 
1154   uint64_t countFromCLAs = 1;
1155   QualType eltType;
1156 
1157   llvm::ArrayType *llvmArrayType =
1158     dyn_cast<llvm::ArrayType>(
1159       cast<llvm::PointerType>(addr->getType())->getElementType());
1160   while (llvmArrayType) {
1161     assert(isa<ConstantArrayType>(arrayType));
1162     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1163              == llvmArrayType->getNumElements());
1164 
1165     gepIndices.push_back(zero);
1166     countFromCLAs *= llvmArrayType->getNumElements();
1167     eltType = arrayType->getElementType();
1168 
1169     llvmArrayType =
1170       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1171     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1172     assert((!llvmArrayType || arrayType) &&
1173            "LLVM and Clang types are out-of-synch");
1174   }
1175 
1176   if (arrayType) {
1177     // From this point onwards, the Clang array type has been emitted
1178     // as some other type (probably a packed struct). Compute the array
1179     // size, and just emit the 'begin' expression as a bitcast.
1180     while (arrayType) {
1181       countFromCLAs *=
1182           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1183       eltType = arrayType->getElementType();
1184       arrayType = getContext().getAsArrayType(eltType);
1185     }
1186 
1187     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1188     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1189     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1190   } else {
1191     // Create the actual GEP.
1192     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1193   }
1194 
1195   baseType = eltType;
1196 
1197   llvm::Value *numElements
1198     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1199 
1200   // If we had any VLA dimensions, factor them in.
1201   if (numVLAElements)
1202     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1203 
1204   return numElements;
1205 }
1206 
1207 std::pair<llvm::Value*, QualType>
1208 CodeGenFunction::getVLASize(QualType type) {
1209   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1210   assert(vla && "type was not a variable array type!");
1211   return getVLASize(vla);
1212 }
1213 
1214 std::pair<llvm::Value*, QualType>
1215 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1216   // The number of elements so far; always size_t.
1217   llvm::Value *numElements = 0;
1218 
1219   QualType elementType;
1220   do {
1221     elementType = type->getElementType();
1222     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1223     assert(vlaSize && "no size for VLA!");
1224     assert(vlaSize->getType() == SizeTy);
1225 
1226     if (!numElements) {
1227       numElements = vlaSize;
1228     } else {
1229       // It's undefined behavior if this wraps around, so mark it that way.
1230       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1231       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1232     }
1233   } while ((type = getContext().getAsVariableArrayType(elementType)));
1234 
1235   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1236 }
1237 
1238 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1239   assert(type->isVariablyModifiedType() &&
1240          "Must pass variably modified type to EmitVLASizes!");
1241 
1242   EnsureInsertPoint();
1243 
1244   // We're going to walk down into the type and look for VLA
1245   // expressions.
1246   do {
1247     assert(type->isVariablyModifiedType());
1248 
1249     const Type *ty = type.getTypePtr();
1250     switch (ty->getTypeClass()) {
1251 
1252 #define TYPE(Class, Base)
1253 #define ABSTRACT_TYPE(Class, Base)
1254 #define NON_CANONICAL_TYPE(Class, Base)
1255 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1256 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1257 #include "clang/AST/TypeNodes.def"
1258       llvm_unreachable("unexpected dependent type!");
1259 
1260     // These types are never variably-modified.
1261     case Type::Builtin:
1262     case Type::Complex:
1263     case Type::Vector:
1264     case Type::ExtVector:
1265     case Type::Record:
1266     case Type::Enum:
1267     case Type::Elaborated:
1268     case Type::TemplateSpecialization:
1269     case Type::ObjCObject:
1270     case Type::ObjCInterface:
1271     case Type::ObjCObjectPointer:
1272       llvm_unreachable("type class is never variably-modified!");
1273 
1274     case Type::Pointer:
1275       type = cast<PointerType>(ty)->getPointeeType();
1276       break;
1277 
1278     case Type::BlockPointer:
1279       type = cast<BlockPointerType>(ty)->getPointeeType();
1280       break;
1281 
1282     case Type::LValueReference:
1283     case Type::RValueReference:
1284       type = cast<ReferenceType>(ty)->getPointeeType();
1285       break;
1286 
1287     case Type::MemberPointer:
1288       type = cast<MemberPointerType>(ty)->getPointeeType();
1289       break;
1290 
1291     case Type::ConstantArray:
1292     case Type::IncompleteArray:
1293       // Losing element qualification here is fine.
1294       type = cast<ArrayType>(ty)->getElementType();
1295       break;
1296 
1297     case Type::VariableArray: {
1298       // Losing element qualification here is fine.
1299       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1300 
1301       // Unknown size indication requires no size computation.
1302       // Otherwise, evaluate and record it.
1303       if (const Expr *size = vat->getSizeExpr()) {
1304         // It's possible that we might have emitted this already,
1305         // e.g. with a typedef and a pointer to it.
1306         llvm::Value *&entry = VLASizeMap[size];
1307         if (!entry) {
1308           llvm::Value *Size = EmitScalarExpr(size);
1309 
1310           // C11 6.7.6.2p5:
1311           //   If the size is an expression that is not an integer constant
1312           //   expression [...] each time it is evaluated it shall have a value
1313           //   greater than zero.
1314           if (SanOpts->VLABound &&
1315               size->getType()->isSignedIntegerType()) {
1316             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1317             llvm::Constant *StaticArgs[] = {
1318               EmitCheckSourceLocation(size->getLocStart()),
1319               EmitCheckTypeDescriptor(size->getType())
1320             };
1321             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1322                       "vla_bound_not_positive", StaticArgs, Size,
1323                       CRK_Recoverable);
1324           }
1325 
1326           // Always zexting here would be wrong if it weren't
1327           // undefined behavior to have a negative bound.
1328           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1329         }
1330       }
1331       type = vat->getElementType();
1332       break;
1333     }
1334 
1335     case Type::FunctionProto:
1336     case Type::FunctionNoProto:
1337       type = cast<FunctionType>(ty)->getResultType();
1338       break;
1339 
1340     case Type::Paren:
1341     case Type::TypeOf:
1342     case Type::UnaryTransform:
1343     case Type::Attributed:
1344     case Type::SubstTemplateTypeParm:
1345       // Keep walking after single level desugaring.
1346       type = type.getSingleStepDesugaredType(getContext());
1347       break;
1348 
1349     case Type::Typedef:
1350     case Type::Decltype:
1351     case Type::Auto:
1352       // Stop walking: nothing to do.
1353       return;
1354 
1355     case Type::TypeOfExpr:
1356       // Stop walking: emit typeof expression.
1357       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1358       return;
1359 
1360     case Type::Atomic:
1361       type = cast<AtomicType>(ty)->getValueType();
1362       break;
1363     }
1364   } while (type->isVariablyModifiedType());
1365 }
1366 
1367 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1368   if (getContext().getBuiltinVaListType()->isArrayType())
1369     return EmitScalarExpr(E);
1370   return EmitLValue(E).getAddress();
1371 }
1372 
1373 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1374                                               llvm::Constant *Init) {
1375   assert (Init && "Invalid DeclRefExpr initializer!");
1376   if (CGDebugInfo *Dbg = getDebugInfo())
1377     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1378       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1379 }
1380 
1381 CodeGenFunction::PeepholeProtection
1382 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1383   // At the moment, the only aggressive peephole we do in IR gen
1384   // is trunc(zext) folding, but if we add more, we can easily
1385   // extend this protection.
1386 
1387   if (!rvalue.isScalar()) return PeepholeProtection();
1388   llvm::Value *value = rvalue.getScalarVal();
1389   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1390 
1391   // Just make an extra bitcast.
1392   assert(HaveInsertPoint());
1393   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1394                                                   Builder.GetInsertBlock());
1395 
1396   PeepholeProtection protection;
1397   protection.Inst = inst;
1398   return protection;
1399 }
1400 
1401 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1402   if (!protection.Inst) return;
1403 
1404   // In theory, we could try to duplicate the peepholes now, but whatever.
1405   protection.Inst->eraseFromParent();
1406 }
1407 
1408 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1409                                                  llvm::Value *AnnotatedVal,
1410                                                  StringRef AnnotationStr,
1411                                                  SourceLocation Location) {
1412   llvm::Value *Args[4] = {
1413     AnnotatedVal,
1414     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1415     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1416     CGM.EmitAnnotationLineNo(Location)
1417   };
1418   return Builder.CreateCall(AnnotationFn, Args);
1419 }
1420 
1421 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1422   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1423   // FIXME We create a new bitcast for every annotation because that's what
1424   // llvm-gcc was doing.
1425   for (specific_attr_iterator<AnnotateAttr>
1426        ai = D->specific_attr_begin<AnnotateAttr>(),
1427        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1428     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1429                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1430                        (*ai)->getAnnotation(), D->getLocation());
1431 }
1432 
1433 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1434                                                    llvm::Value *V) {
1435   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1436   llvm::Type *VTy = V->getType();
1437   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1438                                     CGM.Int8PtrTy);
1439 
1440   for (specific_attr_iterator<AnnotateAttr>
1441        ai = D->specific_attr_begin<AnnotateAttr>(),
1442        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1443     // FIXME Always emit the cast inst so we can differentiate between
1444     // annotation on the first field of a struct and annotation on the struct
1445     // itself.
1446     if (VTy != CGM.Int8PtrTy)
1447       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1448     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1449     V = Builder.CreateBitCast(V, VTy);
1450   }
1451 
1452   return V;
1453 }
1454 
1455 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1456