1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/FPEnv.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 47 /// markers. 48 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 49 const LangOptions &LangOpts) { 50 if (CGOpts.DisableLifetimeMarkers) 51 return false; 52 53 // Sanitizers may use markers. 54 if (CGOpts.SanitizeAddressUseAfterScope || 55 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 56 LangOpts.Sanitize.has(SanitizerKind::Memory)) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 SetFPModel(); 94 } 95 96 CodeGenFunction::~CodeGenFunction() { 97 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 98 99 // If there are any unclaimed block infos, go ahead and destroy them 100 // now. This can happen if IR-gen gets clever and skips evaluating 101 // something. 102 if (FirstBlockInfo) 103 destroyBlockInfos(FirstBlockInfo); 104 105 if (getLangOpts().OpenMP && CurFn) 106 CGM.getOpenMPRuntime().functionFinished(*this); 107 } 108 109 // Map the LangOption for rounding mode into 110 // the corresponding enum in the IR. 111 static llvm::fp::RoundingMode ToConstrainedRoundingMD( 112 LangOptions::FPRoundingModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPR_ToNearest: return llvm::fp::rmToNearest; 116 case LangOptions::FPR_Downward: return llvm::fp::rmDownward; 117 case LangOptions::FPR_Upward: return llvm::fp::rmUpward; 118 case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero; 119 case LangOptions::FPR_Dynamic: return llvm::fp::rmDynamic; 120 } 121 llvm_unreachable("Unsupported FP RoundingMode"); 122 } 123 124 // Map the LangOption for exception behavior into 125 // the corresponding enum in the IR. 126 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD( 127 LangOptions::FPExceptionModeKind Kind) { 128 129 switch (Kind) { 130 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 131 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 132 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 133 } 134 llvm_unreachable("Unsupported FP Exception Behavior"); 135 } 136 137 void CodeGenFunction::SetFPModel() { 138 auto fpRoundingMode = ToConstrainedRoundingMD( 139 getLangOpts().getFPRoundingMode()); 140 auto fpExceptionBehavior = ToConstrainedExceptMD( 141 getLangOpts().getFPExceptionMode()); 142 143 if (fpExceptionBehavior == llvm::fp::ebIgnore && 144 fpRoundingMode == llvm::fp::rmToNearest) 145 // Constrained intrinsics are not used. 146 ; 147 else { 148 Builder.setIsFPConstrained(true); 149 Builder.setDefaultConstrainedRounding(fpRoundingMode); 150 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 151 } 152 } 153 154 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 155 LValueBaseInfo *BaseInfo, 156 TBAAAccessInfo *TBAAInfo) { 157 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 158 /* forPointeeType= */ true); 159 } 160 161 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 162 LValueBaseInfo *BaseInfo, 163 TBAAAccessInfo *TBAAInfo, 164 bool forPointeeType) { 165 if (TBAAInfo) 166 *TBAAInfo = CGM.getTBAAAccessInfo(T); 167 168 // Honor alignment typedef attributes even on incomplete types. 169 // We also honor them straight for C++ class types, even as pointees; 170 // there's an expressivity gap here. 171 if (auto TT = T->getAs<TypedefType>()) { 172 if (auto Align = TT->getDecl()->getMaxAlignment()) { 173 if (BaseInfo) 174 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 175 return getContext().toCharUnitsFromBits(Align); 176 } 177 } 178 179 if (BaseInfo) 180 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 181 182 CharUnits Alignment; 183 if (T->isIncompleteType()) { 184 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 185 } else { 186 // For C++ class pointees, we don't know whether we're pointing at a 187 // base or a complete object, so we generally need to use the 188 // non-virtual alignment. 189 const CXXRecordDecl *RD; 190 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 191 Alignment = CGM.getClassPointerAlignment(RD); 192 } else { 193 Alignment = getContext().getTypeAlignInChars(T); 194 if (T.getQualifiers().hasUnaligned()) 195 Alignment = CharUnits::One(); 196 } 197 198 // Cap to the global maximum type alignment unless the alignment 199 // was somehow explicit on the type. 200 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 201 if (Alignment.getQuantity() > MaxAlign && 202 !getContext().isAlignmentRequired(T)) 203 Alignment = CharUnits::fromQuantity(MaxAlign); 204 } 205 } 206 return Alignment; 207 } 208 209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 213 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 214 TBAAInfo); 215 } 216 217 /// Given a value of type T* that may not be to a complete object, 218 /// construct an l-value with the natural pointee alignment of T. 219 LValue 220 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 221 LValueBaseInfo BaseInfo; 222 TBAAAccessInfo TBAAInfo; 223 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 224 /* forPointeeType= */ true); 225 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 226 } 227 228 229 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 230 return CGM.getTypes().ConvertTypeForMem(T); 231 } 232 233 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 234 return CGM.getTypes().ConvertType(T); 235 } 236 237 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 238 type = type.getCanonicalType(); 239 while (true) { 240 switch (type->getTypeClass()) { 241 #define TYPE(name, parent) 242 #define ABSTRACT_TYPE(name, parent) 243 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 244 #define DEPENDENT_TYPE(name, parent) case Type::name: 245 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 246 #include "clang/AST/TypeNodes.inc" 247 llvm_unreachable("non-canonical or dependent type in IR-generation"); 248 249 case Type::Auto: 250 case Type::DeducedTemplateSpecialization: 251 llvm_unreachable("undeduced type in IR-generation"); 252 253 // Various scalar types. 254 case Type::Builtin: 255 case Type::Pointer: 256 case Type::BlockPointer: 257 case Type::LValueReference: 258 case Type::RValueReference: 259 case Type::MemberPointer: 260 case Type::Vector: 261 case Type::ExtVector: 262 case Type::FunctionProto: 263 case Type::FunctionNoProto: 264 case Type::Enum: 265 case Type::ObjCObjectPointer: 266 case Type::Pipe: 267 return TEK_Scalar; 268 269 // Complexes. 270 case Type::Complex: 271 return TEK_Complex; 272 273 // Arrays, records, and Objective-C objects. 274 case Type::ConstantArray: 275 case Type::IncompleteArray: 276 case Type::VariableArray: 277 case Type::Record: 278 case Type::ObjCObject: 279 case Type::ObjCInterface: 280 return TEK_Aggregate; 281 282 // We operate on atomic values according to their underlying type. 283 case Type::Atomic: 284 type = cast<AtomicType>(type)->getValueType(); 285 continue; 286 } 287 llvm_unreachable("unknown type kind!"); 288 } 289 } 290 291 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 292 // For cleanliness, we try to avoid emitting the return block for 293 // simple cases. 294 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 295 296 if (CurBB) { 297 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 298 299 // We have a valid insert point, reuse it if it is empty or there are no 300 // explicit jumps to the return block. 301 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 302 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 } else 306 EmitBlock(ReturnBlock.getBlock()); 307 return llvm::DebugLoc(); 308 } 309 310 // Otherwise, if the return block is the target of a single direct 311 // branch then we can just put the code in that block instead. This 312 // cleans up functions which started with a unified return block. 313 if (ReturnBlock.getBlock()->hasOneUse()) { 314 llvm::BranchInst *BI = 315 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 316 if (BI && BI->isUnconditional() && 317 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 318 // Record/return the DebugLoc of the simple 'return' expression to be used 319 // later by the actual 'ret' instruction. 320 llvm::DebugLoc Loc = BI->getDebugLoc(); 321 Builder.SetInsertPoint(BI->getParent()); 322 BI->eraseFromParent(); 323 delete ReturnBlock.getBlock(); 324 ReturnBlock = JumpDest(); 325 return Loc; 326 } 327 } 328 329 // FIXME: We are at an unreachable point, there is no reason to emit the block 330 // unless it has uses. However, we still need a place to put the debug 331 // region.end for now. 332 333 EmitBlock(ReturnBlock.getBlock()); 334 return llvm::DebugLoc(); 335 } 336 337 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 338 if (!BB) return; 339 if (!BB->use_empty()) 340 return CGF.CurFn->getBasicBlockList().push_back(BB); 341 delete BB; 342 } 343 344 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 345 assert(BreakContinueStack.empty() && 346 "mismatched push/pop in break/continue stack!"); 347 348 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 349 && NumSimpleReturnExprs == NumReturnExprs 350 && ReturnBlock.getBlock()->use_empty(); 351 // Usually the return expression is evaluated before the cleanup 352 // code. If the function contains only a simple return statement, 353 // such as a constant, the location before the cleanup code becomes 354 // the last useful breakpoint in the function, because the simple 355 // return expression will be evaluated after the cleanup code. To be 356 // safe, set the debug location for cleanup code to the location of 357 // the return statement. Otherwise the cleanup code should be at the 358 // end of the function's lexical scope. 359 // 360 // If there are multiple branches to the return block, the branch 361 // instructions will get the location of the return statements and 362 // all will be fine. 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, LastStopPoint); 366 else 367 DI->EmitLocation(Builder, EndLoc); 368 } 369 370 // Pop any cleanups that might have been associated with the 371 // parameters. Do this in whatever block we're currently in; it's 372 // important to do this before we enter the return block or return 373 // edges will be *really* confused. 374 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 375 bool HasOnlyLifetimeMarkers = 376 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 377 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 378 if (HasCleanups) { 379 // Make sure the line table doesn't jump back into the body for 380 // the ret after it's been at EndLoc. 381 Optional<ApplyDebugLocation> AL; 382 if (CGDebugInfo *DI = getDebugInfo()) { 383 if (OnlySimpleReturnStmts) 384 DI->EmitLocation(Builder, EndLoc); 385 else 386 // We may not have a valid end location. Try to apply it anyway, and 387 // fall back to an artificial location if needed. 388 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 389 } 390 391 PopCleanupBlocks(PrologueCleanupDepth); 392 } 393 394 // Emit function epilog (to return). 395 llvm::DebugLoc Loc = EmitReturnBlock(); 396 397 if (ShouldInstrumentFunction()) { 398 if (CGM.getCodeGenOpts().InstrumentFunctions) 399 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 400 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 401 CurFn->addFnAttr("instrument-function-exit-inlined", 402 "__cyg_profile_func_exit"); 403 } 404 405 // Emit debug descriptor for function end. 406 if (CGDebugInfo *DI = getDebugInfo()) 407 DI->EmitFunctionEnd(Builder, CurFn); 408 409 // Reset the debug location to that of the simple 'return' expression, if any 410 // rather than that of the end of the function's scope '}'. 411 ApplyDebugLocation AL(*this, Loc); 412 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 413 EmitEndEHSpec(CurCodeDecl); 414 415 assert(EHStack.empty() && 416 "did not remove all scopes from cleanup stack!"); 417 418 // If someone did an indirect goto, emit the indirect goto block at the end of 419 // the function. 420 if (IndirectBranch) { 421 EmitBlock(IndirectBranch->getParent()); 422 Builder.ClearInsertionPoint(); 423 } 424 425 // If some of our locals escaped, insert a call to llvm.localescape in the 426 // entry block. 427 if (!EscapedLocals.empty()) { 428 // Invert the map from local to index into a simple vector. There should be 429 // no holes. 430 SmallVector<llvm::Value *, 4> EscapeArgs; 431 EscapeArgs.resize(EscapedLocals.size()); 432 for (auto &Pair : EscapedLocals) 433 EscapeArgs[Pair.second] = Pair.first; 434 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 435 &CGM.getModule(), llvm::Intrinsic::localescape); 436 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 437 } 438 439 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 440 llvm::Instruction *Ptr = AllocaInsertPt; 441 AllocaInsertPt = nullptr; 442 Ptr->eraseFromParent(); 443 444 // If someone took the address of a label but never did an indirect goto, we 445 // made a zero entry PHI node, which is illegal, zap it now. 446 if (IndirectBranch) { 447 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 448 if (PN->getNumIncomingValues() == 0) { 449 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 450 PN->eraseFromParent(); 451 } 452 } 453 454 EmitIfUsed(*this, EHResumeBlock); 455 EmitIfUsed(*this, TerminateLandingPad); 456 EmitIfUsed(*this, TerminateHandler); 457 EmitIfUsed(*this, UnreachableBlock); 458 459 for (const auto &FuncletAndParent : TerminateFunclets) 460 EmitIfUsed(*this, FuncletAndParent.second); 461 462 if (CGM.getCodeGenOpts().EmitDeclMetadata) 463 EmitDeclMetadata(); 464 465 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 466 I = DeferredReplacements.begin(), 467 E = DeferredReplacements.end(); 468 I != E; ++I) { 469 I->first->replaceAllUsesWith(I->second); 470 I->first->eraseFromParent(); 471 } 472 473 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 474 // PHIs if the current function is a coroutine. We don't do it for all 475 // functions as it may result in slight increase in numbers of instructions 476 // if compiled with no optimizations. We do it for coroutine as the lifetime 477 // of CleanupDestSlot alloca make correct coroutine frame building very 478 // difficult. 479 if (NormalCleanupDest.isValid() && isCoroutine()) { 480 llvm::DominatorTree DT(*CurFn); 481 llvm::PromoteMemToReg( 482 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 483 NormalCleanupDest = Address::invalid(); 484 } 485 486 // Scan function arguments for vector width. 487 for (llvm::Argument &A : CurFn->args()) 488 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 489 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 490 VT->getPrimitiveSizeInBits().getFixedSize()); 491 492 // Update vector width based on return type. 493 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 494 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 495 VT->getPrimitiveSizeInBits().getFixedSize()); 496 497 // Add the required-vector-width attribute. This contains the max width from: 498 // 1. min-vector-width attribute used in the source program. 499 // 2. Any builtins used that have a vector width specified. 500 // 3. Values passed in and out of inline assembly. 501 // 4. Width of vector arguments and return types for this function. 502 // 5. Width of vector aguments and return types for functions called by this 503 // function. 504 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function has been blacklisted for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 // Apply the no_sanitize* attributes to SanOpts. 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 SanitizerMask mask = Attr->getMask(); 740 SanOpts.Mask &= ~mask; 741 if (mask & SanitizerKind::Address) 742 SanOpts.set(SanitizerKind::KernelAddress, false); 743 if (mask & SanitizerKind::KernelAddress) 744 SanOpts.set(SanitizerKind::Address, false); 745 if (mask & SanitizerKind::HWAddress) 746 SanOpts.set(SanitizerKind::KernelHWAddress, false); 747 if (mask & SanitizerKind::KernelHWAddress) 748 SanOpts.set(SanitizerKind::HWAddress, false); 749 } 750 } 751 752 // Apply sanitizer attributes to the function. 753 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 755 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 757 if (SanOpts.has(SanitizerKind::MemTag)) 758 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 759 if (SanOpts.has(SanitizerKind::Thread)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 761 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 763 if (SanOpts.has(SanitizerKind::SafeStack)) 764 Fn->addFnAttr(llvm::Attribute::SafeStack); 765 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 766 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 767 768 // Apply fuzzing attribute to the function. 769 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 770 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 771 772 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 773 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 774 if (SanOpts.has(SanitizerKind::Thread)) { 775 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 776 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 777 if (OMD->getMethodFamily() == OMF_dealloc || 778 OMD->getMethodFamily() == OMF_initialize || 779 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 780 markAsIgnoreThreadCheckingAtRuntime(Fn); 781 } 782 } 783 } 784 785 // Ignore unrelated casts in STL allocate() since the allocator must cast 786 // from void* to T* before object initialization completes. Don't match on the 787 // namespace because not all allocators are in std:: 788 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 789 if (matchesStlAllocatorFn(D, getContext())) 790 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 791 } 792 793 // Ignore null checks in coroutine functions since the coroutines passes 794 // are not aware of how to move the extra UBSan instructions across the split 795 // coroutine boundaries. 796 if (D && SanOpts.has(SanitizerKind::Null)) 797 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 798 if (FD->getBody() && 799 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 800 SanOpts.Mask &= ~SanitizerKind::Null; 801 802 // Apply xray attributes to the function (as a string, for now) 803 if (D) { 804 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 805 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 806 XRayInstrKind::Function)) { 807 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 808 Fn->addFnAttr("function-instrument", "xray-always"); 809 if (XRayAttr->neverXRayInstrument()) 810 Fn->addFnAttr("function-instrument", "xray-never"); 811 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 812 if (ShouldXRayInstrumentFunction()) 813 Fn->addFnAttr("xray-log-args", 814 llvm::utostr(LogArgs->getArgumentCount())); 815 } 816 } else { 817 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 818 Fn->addFnAttr( 819 "xray-instruction-threshold", 820 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 821 } 822 } 823 824 // Add no-jump-tables value. 825 Fn->addFnAttr("no-jump-tables", 826 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 827 828 // Add no-inline-line-tables value. 829 if (CGM.getCodeGenOpts().NoInlineLineTables) 830 Fn->addFnAttr("no-inline-line-tables"); 831 832 // Add profile-sample-accurate value. 833 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 834 Fn->addFnAttr("profile-sample-accurate"); 835 836 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 837 Fn->addFnAttr("cfi-canonical-jump-table"); 838 839 if (getLangOpts().OpenCL) { 840 // Add metadata for a kernel function. 841 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 842 EmitOpenCLKernelMetadata(FD, Fn); 843 } 844 845 // If we are checking function types, emit a function type signature as 846 // prologue data. 847 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 848 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 849 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 850 // Remove any (C++17) exception specifications, to allow calling e.g. a 851 // noexcept function through a non-noexcept pointer. 852 auto ProtoTy = 853 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 854 EST_None); 855 llvm::Constant *FTRTTIConst = 856 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 857 llvm::Constant *FTRTTIConstEncoded = 858 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 859 llvm::Constant *PrologueStructElems[] = {PrologueSig, 860 FTRTTIConstEncoded}; 861 llvm::Constant *PrologueStructConst = 862 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 863 Fn->setPrologueData(PrologueStructConst); 864 } 865 } 866 } 867 868 // If we're checking nullability, we need to know whether we can check the 869 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 870 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 871 auto Nullability = FnRetTy->getNullability(getContext()); 872 if (Nullability && *Nullability == NullabilityKind::NonNull) { 873 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 874 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 875 RetValNullabilityPrecondition = 876 llvm::ConstantInt::getTrue(getLLVMContext()); 877 } 878 } 879 880 // If we're in C++ mode and the function name is "main", it is guaranteed 881 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 882 // used within a program"). 883 if (getLangOpts().CPlusPlus) 884 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 885 if (FD->isMain()) 886 Fn->addFnAttr(llvm::Attribute::NoRecurse); 887 888 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 889 if (FD->usesFPIntrin()) 890 Fn->addFnAttr(llvm::Attribute::StrictFP); 891 892 // If a custom alignment is used, force realigning to this alignment on 893 // any main function which certainly will need it. 894 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 895 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 896 CGM.getCodeGenOpts().StackAlignment) 897 Fn->addFnAttr("stackrealign"); 898 899 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 900 901 // Create a marker to make it easy to insert allocas into the entryblock 902 // later. Don't create this with the builder, because we don't want it 903 // folded. 904 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 905 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 906 907 ReturnBlock = getJumpDestInCurrentScope("return"); 908 909 Builder.SetInsertPoint(EntryBB); 910 911 // If we're checking the return value, allocate space for a pointer to a 912 // precise source location of the checked return statement. 913 if (requiresReturnValueCheck()) { 914 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 915 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 916 } 917 918 // Emit subprogram debug descriptor. 919 if (CGDebugInfo *DI = getDebugInfo()) { 920 // Reconstruct the type from the argument list so that implicit parameters, 921 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 922 // convention. 923 CallingConv CC = CallingConv::CC_C; 924 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 925 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 926 CC = SrcFnTy->getCallConv(); 927 SmallVector<QualType, 16> ArgTypes; 928 for (const VarDecl *VD : Args) 929 ArgTypes.push_back(VD->getType()); 930 QualType FnType = getContext().getFunctionType( 931 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 932 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 933 Builder); 934 } 935 936 if (ShouldInstrumentFunction()) { 937 if (CGM.getCodeGenOpts().InstrumentFunctions) 938 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 939 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 940 CurFn->addFnAttr("instrument-function-entry-inlined", 941 "__cyg_profile_func_enter"); 942 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 943 CurFn->addFnAttr("instrument-function-entry-inlined", 944 "__cyg_profile_func_enter_bare"); 945 } 946 947 // Since emitting the mcount call here impacts optimizations such as function 948 // inlining, we just add an attribute to insert a mcount call in backend. 949 // The attribute "counting-function" is set to mcount function name which is 950 // architecture dependent. 951 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 952 // Calls to fentry/mcount should not be generated if function has 953 // the no_instrument_function attribute. 954 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 955 if (CGM.getCodeGenOpts().CallFEntry) 956 Fn->addFnAttr("fentry-call", "true"); 957 else { 958 Fn->addFnAttr("instrument-function-entry-inlined", 959 getTarget().getMCountName()); 960 } 961 if (CGM.getCodeGenOpts().MNopMCount) { 962 if (getContext().getTargetInfo().getTriple().getArch() != 963 llvm::Triple::systemz) 964 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 965 << "-mnop-mcount"; 966 if (!CGM.getCodeGenOpts().CallFEntry) 967 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 968 << "-mnop-mcount" << "-mfentry"; 969 Fn->addFnAttr("mnop-mcount"); 970 } 971 } 972 } 973 974 if (CGM.getCodeGenOpts().PackedStack) { 975 if (getContext().getTargetInfo().getTriple().getArch() != 976 llvm::Triple::systemz) 977 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 978 << "-mpacked-stack"; 979 Fn->addFnAttr("packed-stack"); 980 } 981 982 if (RetTy->isVoidType()) { 983 // Void type; nothing to return. 984 ReturnValue = Address::invalid(); 985 986 // Count the implicit return. 987 if (!endsWithReturn(D)) 988 ++NumReturnExprs; 989 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 990 // Indirect return; emit returned value directly into sret slot. 991 // This reduces code size, and affects correctness in C++. 992 auto AI = CurFn->arg_begin(); 993 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 994 ++AI; 995 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 996 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 997 ReturnValuePointer = 998 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 999 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1000 ReturnValue.getPointer(), Int8PtrTy), 1001 ReturnValuePointer); 1002 } 1003 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1004 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1005 // Load the sret pointer from the argument struct and return into that. 1006 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1007 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1008 --EI; 1009 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1010 ReturnValuePointer = Address(Addr, getPointerAlign()); 1011 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1012 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1013 } else { 1014 ReturnValue = CreateIRTemp(RetTy, "retval"); 1015 1016 // Tell the epilog emitter to autorelease the result. We do this 1017 // now so that various specialized functions can suppress it 1018 // during their IR-generation. 1019 if (getLangOpts().ObjCAutoRefCount && 1020 !CurFnInfo->isReturnsRetained() && 1021 RetTy->isObjCRetainableType()) 1022 AutoreleaseResult = true; 1023 } 1024 1025 EmitStartEHSpec(CurCodeDecl); 1026 1027 PrologueCleanupDepth = EHStack.stable_begin(); 1028 1029 // Emit OpenMP specific initialization of the device functions. 1030 if (getLangOpts().OpenMP && CurCodeDecl) 1031 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1032 1033 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1034 1035 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1036 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1037 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1038 if (MD->getParent()->isLambda() && 1039 MD->getOverloadedOperator() == OO_Call) { 1040 // We're in a lambda; figure out the captures. 1041 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1042 LambdaThisCaptureField); 1043 if (LambdaThisCaptureField) { 1044 // If the lambda captures the object referred to by '*this' - either by 1045 // value or by reference, make sure CXXThisValue points to the correct 1046 // object. 1047 1048 // Get the lvalue for the field (which is a copy of the enclosing object 1049 // or contains the address of the enclosing object). 1050 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1051 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1052 // If the enclosing object was captured by value, just use its address. 1053 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1054 } else { 1055 // Load the lvalue pointed to by the field, since '*this' was captured 1056 // by reference. 1057 CXXThisValue = 1058 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1059 } 1060 } 1061 for (auto *FD : MD->getParent()->fields()) { 1062 if (FD->hasCapturedVLAType()) { 1063 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1064 SourceLocation()).getScalarVal(); 1065 auto VAT = FD->getCapturedVLAType(); 1066 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1067 } 1068 } 1069 } else { 1070 // Not in a lambda; just use 'this' from the method. 1071 // FIXME: Should we generate a new load for each use of 'this'? The 1072 // fast register allocator would be happier... 1073 CXXThisValue = CXXABIThisValue; 1074 } 1075 1076 // Check the 'this' pointer once per function, if it's available. 1077 if (CXXABIThisValue) { 1078 SanitizerSet SkippedChecks; 1079 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1080 QualType ThisTy = MD->getThisType(); 1081 1082 // If this is the call operator of a lambda with no capture-default, it 1083 // may have a static invoker function, which may call this operator with 1084 // a null 'this' pointer. 1085 if (isLambdaCallOperator(MD) && 1086 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1087 SkippedChecks.set(SanitizerKind::Null, true); 1088 1089 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1090 : TCK_MemberCall, 1091 Loc, CXXABIThisValue, ThisTy, 1092 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1093 SkippedChecks); 1094 } 1095 } 1096 1097 // If any of the arguments have a variably modified type, make sure to 1098 // emit the type size. 1099 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1100 i != e; ++i) { 1101 const VarDecl *VD = *i; 1102 1103 // Dig out the type as written from ParmVarDecls; it's unclear whether 1104 // the standard (C99 6.9.1p10) requires this, but we're following the 1105 // precedent set by gcc. 1106 QualType Ty; 1107 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1108 Ty = PVD->getOriginalType(); 1109 else 1110 Ty = VD->getType(); 1111 1112 if (Ty->isVariablyModifiedType()) 1113 EmitVariablyModifiedType(Ty); 1114 } 1115 // Emit a location at the end of the prologue. 1116 if (CGDebugInfo *DI = getDebugInfo()) 1117 DI->EmitLocation(Builder, StartLoc); 1118 1119 // TODO: Do we need to handle this in two places like we do with 1120 // target-features/target-cpu? 1121 if (CurFuncDecl) 1122 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1123 LargestVectorWidth = VecWidth->getVectorWidth(); 1124 } 1125 1126 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1127 incrementProfileCounter(Body); 1128 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1129 EmitCompoundStmtWithoutScope(*S); 1130 else 1131 EmitStmt(Body); 1132 } 1133 1134 /// When instrumenting to collect profile data, the counts for some blocks 1135 /// such as switch cases need to not include the fall-through counts, so 1136 /// emit a branch around the instrumentation code. When not instrumenting, 1137 /// this just calls EmitBlock(). 1138 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1139 const Stmt *S) { 1140 llvm::BasicBlock *SkipCountBB = nullptr; 1141 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1142 // When instrumenting for profiling, the fallthrough to certain 1143 // statements needs to skip over the instrumentation code so that we 1144 // get an accurate count. 1145 SkipCountBB = createBasicBlock("skipcount"); 1146 EmitBranch(SkipCountBB); 1147 } 1148 EmitBlock(BB); 1149 uint64_t CurrentCount = getCurrentProfileCount(); 1150 incrementProfileCounter(S); 1151 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1152 if (SkipCountBB) 1153 EmitBlock(SkipCountBB); 1154 } 1155 1156 /// Tries to mark the given function nounwind based on the 1157 /// non-existence of any throwing calls within it. We believe this is 1158 /// lightweight enough to do at -O0. 1159 static void TryMarkNoThrow(llvm::Function *F) { 1160 // LLVM treats 'nounwind' on a function as part of the type, so we 1161 // can't do this on functions that can be overwritten. 1162 if (F->isInterposable()) return; 1163 1164 for (llvm::BasicBlock &BB : *F) 1165 for (llvm::Instruction &I : BB) 1166 if (I.mayThrow()) 1167 return; 1168 1169 F->setDoesNotThrow(); 1170 } 1171 1172 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1173 FunctionArgList &Args) { 1174 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1175 QualType ResTy = FD->getReturnType(); 1176 1177 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1178 if (MD && MD->isInstance()) { 1179 if (CGM.getCXXABI().HasThisReturn(GD)) 1180 ResTy = MD->getThisType(); 1181 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1182 ResTy = CGM.getContext().VoidPtrTy; 1183 CGM.getCXXABI().buildThisParam(*this, Args); 1184 } 1185 1186 // The base version of an inheriting constructor whose constructed base is a 1187 // virtual base is not passed any arguments (because it doesn't actually call 1188 // the inherited constructor). 1189 bool PassedParams = true; 1190 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1191 if (auto Inherited = CD->getInheritedConstructor()) 1192 PassedParams = 1193 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1194 1195 if (PassedParams) { 1196 for (auto *Param : FD->parameters()) { 1197 Args.push_back(Param); 1198 if (!Param->hasAttr<PassObjectSizeAttr>()) 1199 continue; 1200 1201 auto *Implicit = ImplicitParamDecl::Create( 1202 getContext(), Param->getDeclContext(), Param->getLocation(), 1203 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1204 SizeArguments[Param] = Implicit; 1205 Args.push_back(Implicit); 1206 } 1207 } 1208 1209 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1210 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1211 1212 return ResTy; 1213 } 1214 1215 static bool 1216 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1217 const ASTContext &Context) { 1218 QualType T = FD->getReturnType(); 1219 // Avoid the optimization for functions that return a record type with a 1220 // trivial destructor or another trivially copyable type. 1221 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1222 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1223 return !ClassDecl->hasTrivialDestructor(); 1224 } 1225 return !T.isTriviallyCopyableType(Context); 1226 } 1227 1228 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1229 const CGFunctionInfo &FnInfo) { 1230 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1231 CurGD = GD; 1232 1233 FunctionArgList Args; 1234 QualType ResTy = BuildFunctionArgList(GD, Args); 1235 1236 // Check if we should generate debug info for this function. 1237 if (FD->hasAttr<NoDebugAttr>()) 1238 DebugInfo = nullptr; // disable debug info indefinitely for this function 1239 1240 // The function might not have a body if we're generating thunks for a 1241 // function declaration. 1242 SourceRange BodyRange; 1243 if (Stmt *Body = FD->getBody()) 1244 BodyRange = Body->getSourceRange(); 1245 else 1246 BodyRange = FD->getLocation(); 1247 CurEHLocation = BodyRange.getEnd(); 1248 1249 // Use the location of the start of the function to determine where 1250 // the function definition is located. By default use the location 1251 // of the declaration as the location for the subprogram. A function 1252 // may lack a declaration in the source code if it is created by code 1253 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1254 SourceLocation Loc = FD->getLocation(); 1255 1256 // If this is a function specialization then use the pattern body 1257 // as the location for the function. 1258 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1259 if (SpecDecl->hasBody(SpecDecl)) 1260 Loc = SpecDecl->getLocation(); 1261 1262 Stmt *Body = FD->getBody(); 1263 1264 // Initialize helper which will detect jumps which can cause invalid lifetime 1265 // markers. 1266 if (Body && ShouldEmitLifetimeMarkers) 1267 Bypasses.Init(Body); 1268 1269 // Emit the standard function prologue. 1270 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1271 1272 // Generate the body of the function. 1273 PGO.assignRegionCounters(GD, CurFn); 1274 if (isa<CXXDestructorDecl>(FD)) 1275 EmitDestructorBody(Args); 1276 else if (isa<CXXConstructorDecl>(FD)) 1277 EmitConstructorBody(Args); 1278 else if (getLangOpts().CUDA && 1279 !getLangOpts().CUDAIsDevice && 1280 FD->hasAttr<CUDAGlobalAttr>()) 1281 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1282 else if (isa<CXXMethodDecl>(FD) && 1283 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1284 // The lambda static invoker function is special, because it forwards or 1285 // clones the body of the function call operator (but is actually static). 1286 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1287 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1288 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1289 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1290 // Implicit copy-assignment gets the same special treatment as implicit 1291 // copy-constructors. 1292 emitImplicitAssignmentOperatorBody(Args); 1293 } else if (Body) { 1294 EmitFunctionBody(Body); 1295 } else 1296 llvm_unreachable("no definition for emitted function"); 1297 1298 // C++11 [stmt.return]p2: 1299 // Flowing off the end of a function [...] results in undefined behavior in 1300 // a value-returning function. 1301 // C11 6.9.1p12: 1302 // If the '}' that terminates a function is reached, and the value of the 1303 // function call is used by the caller, the behavior is undefined. 1304 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1305 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1306 bool ShouldEmitUnreachable = 1307 CGM.getCodeGenOpts().StrictReturn || 1308 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1309 if (SanOpts.has(SanitizerKind::Return)) { 1310 SanitizerScope SanScope(this); 1311 llvm::Value *IsFalse = Builder.getFalse(); 1312 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1313 SanitizerHandler::MissingReturn, 1314 EmitCheckSourceLocation(FD->getLocation()), None); 1315 } else if (ShouldEmitUnreachable) { 1316 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1317 EmitTrapCall(llvm::Intrinsic::trap); 1318 } 1319 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1320 Builder.CreateUnreachable(); 1321 Builder.ClearInsertionPoint(); 1322 } 1323 } 1324 1325 // Emit the standard function epilogue. 1326 FinishFunction(BodyRange.getEnd()); 1327 1328 // If we haven't marked the function nothrow through other means, do 1329 // a quick pass now to see if we can. 1330 if (!CurFn->doesNotThrow()) 1331 TryMarkNoThrow(CurFn); 1332 } 1333 1334 /// ContainsLabel - Return true if the statement contains a label in it. If 1335 /// this statement is not executed normally, it not containing a label means 1336 /// that we can just remove the code. 1337 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1338 // Null statement, not a label! 1339 if (!S) return false; 1340 1341 // If this is a label, we have to emit the code, consider something like: 1342 // if (0) { ... foo: bar(); } goto foo; 1343 // 1344 // TODO: If anyone cared, we could track __label__'s, since we know that you 1345 // can't jump to one from outside their declared region. 1346 if (isa<LabelStmt>(S)) 1347 return true; 1348 1349 // If this is a case/default statement, and we haven't seen a switch, we have 1350 // to emit the code. 1351 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1352 return true; 1353 1354 // If this is a switch statement, we want to ignore cases below it. 1355 if (isa<SwitchStmt>(S)) 1356 IgnoreCaseStmts = true; 1357 1358 // Scan subexpressions for verboten labels. 1359 for (const Stmt *SubStmt : S->children()) 1360 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1361 return true; 1362 1363 return false; 1364 } 1365 1366 /// containsBreak - Return true if the statement contains a break out of it. 1367 /// If the statement (recursively) contains a switch or loop with a break 1368 /// inside of it, this is fine. 1369 bool CodeGenFunction::containsBreak(const Stmt *S) { 1370 // Null statement, not a label! 1371 if (!S) return false; 1372 1373 // If this is a switch or loop that defines its own break scope, then we can 1374 // include it and anything inside of it. 1375 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1376 isa<ForStmt>(S)) 1377 return false; 1378 1379 if (isa<BreakStmt>(S)) 1380 return true; 1381 1382 // Scan subexpressions for verboten breaks. 1383 for (const Stmt *SubStmt : S->children()) 1384 if (containsBreak(SubStmt)) 1385 return true; 1386 1387 return false; 1388 } 1389 1390 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1391 if (!S) return false; 1392 1393 // Some statement kinds add a scope and thus never add a decl to the current 1394 // scope. Note, this list is longer than the list of statements that might 1395 // have an unscoped decl nested within them, but this way is conservatively 1396 // correct even if more statement kinds are added. 1397 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1398 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1399 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1400 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1401 return false; 1402 1403 if (isa<DeclStmt>(S)) 1404 return true; 1405 1406 for (const Stmt *SubStmt : S->children()) 1407 if (mightAddDeclToScope(SubStmt)) 1408 return true; 1409 1410 return false; 1411 } 1412 1413 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1414 /// to a constant, or if it does but contains a label, return false. If it 1415 /// constant folds return true and set the boolean result in Result. 1416 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1417 bool &ResultBool, 1418 bool AllowLabels) { 1419 llvm::APSInt ResultInt; 1420 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1421 return false; 1422 1423 ResultBool = ResultInt.getBoolValue(); 1424 return true; 1425 } 1426 1427 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1428 /// to a constant, or if it does but contains a label, return false. If it 1429 /// constant folds return true and set the folded value. 1430 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1431 llvm::APSInt &ResultInt, 1432 bool AllowLabels) { 1433 // FIXME: Rename and handle conversion of other evaluatable things 1434 // to bool. 1435 Expr::EvalResult Result; 1436 if (!Cond->EvaluateAsInt(Result, getContext())) 1437 return false; // Not foldable, not integer or not fully evaluatable. 1438 1439 llvm::APSInt Int = Result.Val.getInt(); 1440 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1441 return false; // Contains a label. 1442 1443 ResultInt = Int; 1444 return true; 1445 } 1446 1447 1448 1449 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1450 /// statement) to the specified blocks. Based on the condition, this might try 1451 /// to simplify the codegen of the conditional based on the branch. 1452 /// 1453 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1454 llvm::BasicBlock *TrueBlock, 1455 llvm::BasicBlock *FalseBlock, 1456 uint64_t TrueCount) { 1457 Cond = Cond->IgnoreParens(); 1458 1459 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1460 1461 // Handle X && Y in a condition. 1462 if (CondBOp->getOpcode() == BO_LAnd) { 1463 // If we have "1 && X", simplify the code. "0 && X" would have constant 1464 // folded if the case was simple enough. 1465 bool ConstantBool = false; 1466 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1467 ConstantBool) { 1468 // br(1 && X) -> br(X). 1469 incrementProfileCounter(CondBOp); 1470 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1471 TrueCount); 1472 } 1473 1474 // If we have "X && 1", simplify the code to use an uncond branch. 1475 // "X && 0" would have been constant folded to 0. 1476 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1477 ConstantBool) { 1478 // br(X && 1) -> br(X). 1479 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1480 TrueCount); 1481 } 1482 1483 // Emit the LHS as a conditional. If the LHS conditional is false, we 1484 // want to jump to the FalseBlock. 1485 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1486 // The counter tells us how often we evaluate RHS, and all of TrueCount 1487 // can be propagated to that branch. 1488 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1489 1490 ConditionalEvaluation eval(*this); 1491 { 1492 ApplyDebugLocation DL(*this, Cond); 1493 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1494 EmitBlock(LHSTrue); 1495 } 1496 1497 incrementProfileCounter(CondBOp); 1498 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1499 1500 // Any temporaries created here are conditional. 1501 eval.begin(*this); 1502 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1503 eval.end(*this); 1504 1505 return; 1506 } 1507 1508 if (CondBOp->getOpcode() == BO_LOr) { 1509 // If we have "0 || X", simplify the code. "1 || X" would have constant 1510 // folded if the case was simple enough. 1511 bool ConstantBool = false; 1512 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1513 !ConstantBool) { 1514 // br(0 || X) -> br(X). 1515 incrementProfileCounter(CondBOp); 1516 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1517 TrueCount); 1518 } 1519 1520 // If we have "X || 0", simplify the code to use an uncond branch. 1521 // "X || 1" would have been constant folded to 1. 1522 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1523 !ConstantBool) { 1524 // br(X || 0) -> br(X). 1525 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1526 TrueCount); 1527 } 1528 1529 // Emit the LHS as a conditional. If the LHS conditional is true, we 1530 // want to jump to the TrueBlock. 1531 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1532 // We have the count for entry to the RHS and for the whole expression 1533 // being true, so we can divy up True count between the short circuit and 1534 // the RHS. 1535 uint64_t LHSCount = 1536 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1537 uint64_t RHSCount = TrueCount - LHSCount; 1538 1539 ConditionalEvaluation eval(*this); 1540 { 1541 ApplyDebugLocation DL(*this, Cond); 1542 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1543 EmitBlock(LHSFalse); 1544 } 1545 1546 incrementProfileCounter(CondBOp); 1547 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1548 1549 // Any temporaries created here are conditional. 1550 eval.begin(*this); 1551 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1552 1553 eval.end(*this); 1554 1555 return; 1556 } 1557 } 1558 1559 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1560 // br(!x, t, f) -> br(x, f, t) 1561 if (CondUOp->getOpcode() == UO_LNot) { 1562 // Negate the count. 1563 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1564 // Negate the condition and swap the destination blocks. 1565 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1566 FalseCount); 1567 } 1568 } 1569 1570 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1571 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1572 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1573 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1574 1575 ConditionalEvaluation cond(*this); 1576 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1577 getProfileCount(CondOp)); 1578 1579 // When computing PGO branch weights, we only know the overall count for 1580 // the true block. This code is essentially doing tail duplication of the 1581 // naive code-gen, introducing new edges for which counts are not 1582 // available. Divide the counts proportionally between the LHS and RHS of 1583 // the conditional operator. 1584 uint64_t LHSScaledTrueCount = 0; 1585 if (TrueCount) { 1586 double LHSRatio = 1587 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1588 LHSScaledTrueCount = TrueCount * LHSRatio; 1589 } 1590 1591 cond.begin(*this); 1592 EmitBlock(LHSBlock); 1593 incrementProfileCounter(CondOp); 1594 { 1595 ApplyDebugLocation DL(*this, Cond); 1596 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1597 LHSScaledTrueCount); 1598 } 1599 cond.end(*this); 1600 1601 cond.begin(*this); 1602 EmitBlock(RHSBlock); 1603 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1604 TrueCount - LHSScaledTrueCount); 1605 cond.end(*this); 1606 1607 return; 1608 } 1609 1610 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1611 // Conditional operator handling can give us a throw expression as a 1612 // condition for a case like: 1613 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1614 // Fold this to: 1615 // br(c, throw x, br(y, t, f)) 1616 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1617 return; 1618 } 1619 1620 // If the branch has a condition wrapped by __builtin_unpredictable, 1621 // create metadata that specifies that the branch is unpredictable. 1622 // Don't bother if not optimizing because that metadata would not be used. 1623 llvm::MDNode *Unpredictable = nullptr; 1624 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1625 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1626 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1627 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1628 llvm::MDBuilder MDHelper(getLLVMContext()); 1629 Unpredictable = MDHelper.createUnpredictable(); 1630 } 1631 } 1632 1633 // Create branch weights based on the number of times we get here and the 1634 // number of times the condition should be true. 1635 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1636 llvm::MDNode *Weights = 1637 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1638 1639 // Emit the code with the fully general case. 1640 llvm::Value *CondV; 1641 { 1642 ApplyDebugLocation DL(*this, Cond); 1643 CondV = EvaluateExprAsBool(Cond); 1644 } 1645 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1646 } 1647 1648 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1649 /// specified stmt yet. 1650 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1651 CGM.ErrorUnsupported(S, Type); 1652 } 1653 1654 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1655 /// variable-length array whose elements have a non-zero bit-pattern. 1656 /// 1657 /// \param baseType the inner-most element type of the array 1658 /// \param src - a char* pointing to the bit-pattern for a single 1659 /// base element of the array 1660 /// \param sizeInChars - the total size of the VLA, in chars 1661 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1662 Address dest, Address src, 1663 llvm::Value *sizeInChars) { 1664 CGBuilderTy &Builder = CGF.Builder; 1665 1666 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1667 llvm::Value *baseSizeInChars 1668 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1669 1670 Address begin = 1671 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1672 llvm::Value *end = 1673 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1674 1675 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1676 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1677 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1678 1679 // Make a loop over the VLA. C99 guarantees that the VLA element 1680 // count must be nonzero. 1681 CGF.EmitBlock(loopBB); 1682 1683 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1684 cur->addIncoming(begin.getPointer(), originBB); 1685 1686 CharUnits curAlign = 1687 dest.getAlignment().alignmentOfArrayElement(baseSize); 1688 1689 // memcpy the individual element bit-pattern. 1690 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1691 /*volatile*/ false); 1692 1693 // Go to the next element. 1694 llvm::Value *next = 1695 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1696 1697 // Leave if that's the end of the VLA. 1698 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1699 Builder.CreateCondBr(done, contBB, loopBB); 1700 cur->addIncoming(next, loopBB); 1701 1702 CGF.EmitBlock(contBB); 1703 } 1704 1705 void 1706 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1707 // Ignore empty classes in C++. 1708 if (getLangOpts().CPlusPlus) { 1709 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1710 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1711 return; 1712 } 1713 } 1714 1715 // Cast the dest ptr to the appropriate i8 pointer type. 1716 if (DestPtr.getElementType() != Int8Ty) 1717 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1718 1719 // Get size and alignment info for this aggregate. 1720 CharUnits size = getContext().getTypeSizeInChars(Ty); 1721 1722 llvm::Value *SizeVal; 1723 const VariableArrayType *vla; 1724 1725 // Don't bother emitting a zero-byte memset. 1726 if (size.isZero()) { 1727 // But note that getTypeInfo returns 0 for a VLA. 1728 if (const VariableArrayType *vlaType = 1729 dyn_cast_or_null<VariableArrayType>( 1730 getContext().getAsArrayType(Ty))) { 1731 auto VlaSize = getVLASize(vlaType); 1732 SizeVal = VlaSize.NumElts; 1733 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1734 if (!eltSize.isOne()) 1735 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1736 vla = vlaType; 1737 } else { 1738 return; 1739 } 1740 } else { 1741 SizeVal = CGM.getSize(size); 1742 vla = nullptr; 1743 } 1744 1745 // If the type contains a pointer to data member we can't memset it to zero. 1746 // Instead, create a null constant and copy it to the destination. 1747 // TODO: there are other patterns besides zero that we can usefully memset, 1748 // like -1, which happens to be the pattern used by member-pointers. 1749 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1750 // For a VLA, emit a single element, then splat that over the VLA. 1751 if (vla) Ty = getContext().getBaseElementType(vla); 1752 1753 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1754 1755 llvm::GlobalVariable *NullVariable = 1756 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1757 /*isConstant=*/true, 1758 llvm::GlobalVariable::PrivateLinkage, 1759 NullConstant, Twine()); 1760 CharUnits NullAlign = DestPtr.getAlignment(); 1761 NullVariable->setAlignment(NullAlign.getAsAlign()); 1762 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1763 NullAlign); 1764 1765 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1766 1767 // Get and call the appropriate llvm.memcpy overload. 1768 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1769 return; 1770 } 1771 1772 // Otherwise, just memset the whole thing to zero. This is legal 1773 // because in LLVM, all default initializers (other than the ones we just 1774 // handled above) are guaranteed to have a bit pattern of all zeros. 1775 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1776 } 1777 1778 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1779 // Make sure that there is a block for the indirect goto. 1780 if (!IndirectBranch) 1781 GetIndirectGotoBlock(); 1782 1783 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1784 1785 // Make sure the indirect branch includes all of the address-taken blocks. 1786 IndirectBranch->addDestination(BB); 1787 return llvm::BlockAddress::get(CurFn, BB); 1788 } 1789 1790 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1791 // If we already made the indirect branch for indirect goto, return its block. 1792 if (IndirectBranch) return IndirectBranch->getParent(); 1793 1794 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1795 1796 // Create the PHI node that indirect gotos will add entries to. 1797 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1798 "indirect.goto.dest"); 1799 1800 // Create the indirect branch instruction. 1801 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1802 return IndirectBranch->getParent(); 1803 } 1804 1805 /// Computes the length of an array in elements, as well as the base 1806 /// element type and a properly-typed first element pointer. 1807 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1808 QualType &baseType, 1809 Address &addr) { 1810 const ArrayType *arrayType = origArrayType; 1811 1812 // If it's a VLA, we have to load the stored size. Note that 1813 // this is the size of the VLA in bytes, not its size in elements. 1814 llvm::Value *numVLAElements = nullptr; 1815 if (isa<VariableArrayType>(arrayType)) { 1816 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1817 1818 // Walk into all VLAs. This doesn't require changes to addr, 1819 // which has type T* where T is the first non-VLA element type. 1820 do { 1821 QualType elementType = arrayType->getElementType(); 1822 arrayType = getContext().getAsArrayType(elementType); 1823 1824 // If we only have VLA components, 'addr' requires no adjustment. 1825 if (!arrayType) { 1826 baseType = elementType; 1827 return numVLAElements; 1828 } 1829 } while (isa<VariableArrayType>(arrayType)); 1830 1831 // We get out here only if we find a constant array type 1832 // inside the VLA. 1833 } 1834 1835 // We have some number of constant-length arrays, so addr should 1836 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1837 // down to the first element of addr. 1838 SmallVector<llvm::Value*, 8> gepIndices; 1839 1840 // GEP down to the array type. 1841 llvm::ConstantInt *zero = Builder.getInt32(0); 1842 gepIndices.push_back(zero); 1843 1844 uint64_t countFromCLAs = 1; 1845 QualType eltType; 1846 1847 llvm::ArrayType *llvmArrayType = 1848 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1849 while (llvmArrayType) { 1850 assert(isa<ConstantArrayType>(arrayType)); 1851 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1852 == llvmArrayType->getNumElements()); 1853 1854 gepIndices.push_back(zero); 1855 countFromCLAs *= llvmArrayType->getNumElements(); 1856 eltType = arrayType->getElementType(); 1857 1858 llvmArrayType = 1859 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1860 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1861 assert((!llvmArrayType || arrayType) && 1862 "LLVM and Clang types are out-of-synch"); 1863 } 1864 1865 if (arrayType) { 1866 // From this point onwards, the Clang array type has been emitted 1867 // as some other type (probably a packed struct). Compute the array 1868 // size, and just emit the 'begin' expression as a bitcast. 1869 while (arrayType) { 1870 countFromCLAs *= 1871 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1872 eltType = arrayType->getElementType(); 1873 arrayType = getContext().getAsArrayType(eltType); 1874 } 1875 1876 llvm::Type *baseType = ConvertType(eltType); 1877 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1878 } else { 1879 // Create the actual GEP. 1880 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1881 gepIndices, "array.begin"), 1882 addr.getAlignment()); 1883 } 1884 1885 baseType = eltType; 1886 1887 llvm::Value *numElements 1888 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1889 1890 // If we had any VLA dimensions, factor them in. 1891 if (numVLAElements) 1892 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1893 1894 return numElements; 1895 } 1896 1897 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1898 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1899 assert(vla && "type was not a variable array type!"); 1900 return getVLASize(vla); 1901 } 1902 1903 CodeGenFunction::VlaSizePair 1904 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1905 // The number of elements so far; always size_t. 1906 llvm::Value *numElements = nullptr; 1907 1908 QualType elementType; 1909 do { 1910 elementType = type->getElementType(); 1911 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1912 assert(vlaSize && "no size for VLA!"); 1913 assert(vlaSize->getType() == SizeTy); 1914 1915 if (!numElements) { 1916 numElements = vlaSize; 1917 } else { 1918 // It's undefined behavior if this wraps around, so mark it that way. 1919 // FIXME: Teach -fsanitize=undefined to trap this. 1920 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1921 } 1922 } while ((type = getContext().getAsVariableArrayType(elementType))); 1923 1924 return { numElements, elementType }; 1925 } 1926 1927 CodeGenFunction::VlaSizePair 1928 CodeGenFunction::getVLAElements1D(QualType type) { 1929 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1930 assert(vla && "type was not a variable array type!"); 1931 return getVLAElements1D(vla); 1932 } 1933 1934 CodeGenFunction::VlaSizePair 1935 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1936 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1937 assert(VlaSize && "no size for VLA!"); 1938 assert(VlaSize->getType() == SizeTy); 1939 return { VlaSize, Vla->getElementType() }; 1940 } 1941 1942 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1943 assert(type->isVariablyModifiedType() && 1944 "Must pass variably modified type to EmitVLASizes!"); 1945 1946 EnsureInsertPoint(); 1947 1948 // We're going to walk down into the type and look for VLA 1949 // expressions. 1950 do { 1951 assert(type->isVariablyModifiedType()); 1952 1953 const Type *ty = type.getTypePtr(); 1954 switch (ty->getTypeClass()) { 1955 1956 #define TYPE(Class, Base) 1957 #define ABSTRACT_TYPE(Class, Base) 1958 #define NON_CANONICAL_TYPE(Class, Base) 1959 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1960 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1961 #include "clang/AST/TypeNodes.inc" 1962 llvm_unreachable("unexpected dependent type!"); 1963 1964 // These types are never variably-modified. 1965 case Type::Builtin: 1966 case Type::Complex: 1967 case Type::Vector: 1968 case Type::ExtVector: 1969 case Type::Record: 1970 case Type::Enum: 1971 case Type::Elaborated: 1972 case Type::TemplateSpecialization: 1973 case Type::ObjCTypeParam: 1974 case Type::ObjCObject: 1975 case Type::ObjCInterface: 1976 case Type::ObjCObjectPointer: 1977 llvm_unreachable("type class is never variably-modified!"); 1978 1979 case Type::Adjusted: 1980 type = cast<AdjustedType>(ty)->getAdjustedType(); 1981 break; 1982 1983 case Type::Decayed: 1984 type = cast<DecayedType>(ty)->getPointeeType(); 1985 break; 1986 1987 case Type::Pointer: 1988 type = cast<PointerType>(ty)->getPointeeType(); 1989 break; 1990 1991 case Type::BlockPointer: 1992 type = cast<BlockPointerType>(ty)->getPointeeType(); 1993 break; 1994 1995 case Type::LValueReference: 1996 case Type::RValueReference: 1997 type = cast<ReferenceType>(ty)->getPointeeType(); 1998 break; 1999 2000 case Type::MemberPointer: 2001 type = cast<MemberPointerType>(ty)->getPointeeType(); 2002 break; 2003 2004 case Type::ConstantArray: 2005 case Type::IncompleteArray: 2006 // Losing element qualification here is fine. 2007 type = cast<ArrayType>(ty)->getElementType(); 2008 break; 2009 2010 case Type::VariableArray: { 2011 // Losing element qualification here is fine. 2012 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2013 2014 // Unknown size indication requires no size computation. 2015 // Otherwise, evaluate and record it. 2016 if (const Expr *size = vat->getSizeExpr()) { 2017 // It's possible that we might have emitted this already, 2018 // e.g. with a typedef and a pointer to it. 2019 llvm::Value *&entry = VLASizeMap[size]; 2020 if (!entry) { 2021 llvm::Value *Size = EmitScalarExpr(size); 2022 2023 // C11 6.7.6.2p5: 2024 // If the size is an expression that is not an integer constant 2025 // expression [...] each time it is evaluated it shall have a value 2026 // greater than zero. 2027 if (SanOpts.has(SanitizerKind::VLABound) && 2028 size->getType()->isSignedIntegerType()) { 2029 SanitizerScope SanScope(this); 2030 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2031 llvm::Constant *StaticArgs[] = { 2032 EmitCheckSourceLocation(size->getBeginLoc()), 2033 EmitCheckTypeDescriptor(size->getType())}; 2034 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2035 SanitizerKind::VLABound), 2036 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2037 } 2038 2039 // Always zexting here would be wrong if it weren't 2040 // undefined behavior to have a negative bound. 2041 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2042 } 2043 } 2044 type = vat->getElementType(); 2045 break; 2046 } 2047 2048 case Type::FunctionProto: 2049 case Type::FunctionNoProto: 2050 type = cast<FunctionType>(ty)->getReturnType(); 2051 break; 2052 2053 case Type::Paren: 2054 case Type::TypeOf: 2055 case Type::UnaryTransform: 2056 case Type::Attributed: 2057 case Type::SubstTemplateTypeParm: 2058 case Type::PackExpansion: 2059 case Type::MacroQualified: 2060 // Keep walking after single level desugaring. 2061 type = type.getSingleStepDesugaredType(getContext()); 2062 break; 2063 2064 case Type::Typedef: 2065 case Type::Decltype: 2066 case Type::Auto: 2067 case Type::DeducedTemplateSpecialization: 2068 // Stop walking: nothing to do. 2069 return; 2070 2071 case Type::TypeOfExpr: 2072 // Stop walking: emit typeof expression. 2073 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2074 return; 2075 2076 case Type::Atomic: 2077 type = cast<AtomicType>(ty)->getValueType(); 2078 break; 2079 2080 case Type::Pipe: 2081 type = cast<PipeType>(ty)->getElementType(); 2082 break; 2083 } 2084 } while (type->isVariablyModifiedType()); 2085 } 2086 2087 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2088 if (getContext().getBuiltinVaListType()->isArrayType()) 2089 return EmitPointerWithAlignment(E); 2090 return EmitLValue(E).getAddress(*this); 2091 } 2092 2093 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2094 return EmitLValue(E).getAddress(*this); 2095 } 2096 2097 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2098 const APValue &Init) { 2099 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2100 if (CGDebugInfo *Dbg = getDebugInfo()) 2101 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2102 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2103 } 2104 2105 CodeGenFunction::PeepholeProtection 2106 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2107 // At the moment, the only aggressive peephole we do in IR gen 2108 // is trunc(zext) folding, but if we add more, we can easily 2109 // extend this protection. 2110 2111 if (!rvalue.isScalar()) return PeepholeProtection(); 2112 llvm::Value *value = rvalue.getScalarVal(); 2113 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2114 2115 // Just make an extra bitcast. 2116 assert(HaveInsertPoint()); 2117 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2118 Builder.GetInsertBlock()); 2119 2120 PeepholeProtection protection; 2121 protection.Inst = inst; 2122 return protection; 2123 } 2124 2125 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2126 if (!protection.Inst) return; 2127 2128 // In theory, we could try to duplicate the peepholes now, but whatever. 2129 protection.Inst->eraseFromParent(); 2130 } 2131 2132 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2133 QualType Ty, SourceLocation Loc, 2134 SourceLocation AssumptionLoc, 2135 llvm::Value *Alignment, 2136 llvm::Value *OffsetValue) { 2137 llvm::Value *TheCheck; 2138 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2139 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2140 if (SanOpts.has(SanitizerKind::Alignment)) { 2141 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2142 OffsetValue, TheCheck, Assumption); 2143 } 2144 } 2145 2146 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2147 const Expr *E, 2148 SourceLocation AssumptionLoc, 2149 llvm::Value *Alignment, 2150 llvm::Value *OffsetValue) { 2151 if (auto *CE = dyn_cast<CastExpr>(E)) 2152 E = CE->getSubExprAsWritten(); 2153 QualType Ty = E->getType(); 2154 SourceLocation Loc = E->getExprLoc(); 2155 2156 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2157 OffsetValue); 2158 } 2159 2160 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2161 llvm::Value *AnnotatedVal, 2162 StringRef AnnotationStr, 2163 SourceLocation Location) { 2164 llvm::Value *Args[4] = { 2165 AnnotatedVal, 2166 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2167 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2168 CGM.EmitAnnotationLineNo(Location) 2169 }; 2170 return Builder.CreateCall(AnnotationFn, Args); 2171 } 2172 2173 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2174 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2175 // FIXME We create a new bitcast for every annotation because that's what 2176 // llvm-gcc was doing. 2177 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2178 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2179 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2180 I->getAnnotation(), D->getLocation()); 2181 } 2182 2183 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2184 Address Addr) { 2185 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2186 llvm::Value *V = Addr.getPointer(); 2187 llvm::Type *VTy = V->getType(); 2188 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2189 CGM.Int8PtrTy); 2190 2191 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2192 // FIXME Always emit the cast inst so we can differentiate between 2193 // annotation on the first field of a struct and annotation on the struct 2194 // itself. 2195 if (VTy != CGM.Int8PtrTy) 2196 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2197 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2198 V = Builder.CreateBitCast(V, VTy); 2199 } 2200 2201 return Address(V, Addr.getAlignment()); 2202 } 2203 2204 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2205 2206 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2207 : CGF(CGF) { 2208 assert(!CGF->IsSanitizerScope); 2209 CGF->IsSanitizerScope = true; 2210 } 2211 2212 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2213 CGF->IsSanitizerScope = false; 2214 } 2215 2216 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2217 const llvm::Twine &Name, 2218 llvm::BasicBlock *BB, 2219 llvm::BasicBlock::iterator InsertPt) const { 2220 LoopStack.InsertHelper(I); 2221 if (IsSanitizerScope) 2222 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2223 } 2224 2225 void CGBuilderInserter::InsertHelper( 2226 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2227 llvm::BasicBlock::iterator InsertPt) const { 2228 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2229 if (CGF) 2230 CGF->InsertHelper(I, Name, BB, InsertPt); 2231 } 2232 2233 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2234 CodeGenModule &CGM, const FunctionDecl *FD, 2235 std::string &FirstMissing) { 2236 // If there aren't any required features listed then go ahead and return. 2237 if (ReqFeatures.empty()) 2238 return false; 2239 2240 // Now build up the set of caller features and verify that all the required 2241 // features are there. 2242 llvm::StringMap<bool> CallerFeatureMap; 2243 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2244 2245 // If we have at least one of the features in the feature list return 2246 // true, otherwise return false. 2247 return std::all_of( 2248 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2249 SmallVector<StringRef, 1> OrFeatures; 2250 Feature.split(OrFeatures, '|'); 2251 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2252 if (!CallerFeatureMap.lookup(Feature)) { 2253 FirstMissing = Feature.str(); 2254 return false; 2255 } 2256 return true; 2257 }); 2258 }); 2259 } 2260 2261 // Emits an error if we don't have a valid set of target features for the 2262 // called function. 2263 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2264 const FunctionDecl *TargetDecl) { 2265 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2266 } 2267 2268 // Emits an error if we don't have a valid set of target features for the 2269 // called function. 2270 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2271 const FunctionDecl *TargetDecl) { 2272 // Early exit if this is an indirect call. 2273 if (!TargetDecl) 2274 return; 2275 2276 // Get the current enclosing function if it exists. If it doesn't 2277 // we can't check the target features anyhow. 2278 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2279 if (!FD) 2280 return; 2281 2282 // Grab the required features for the call. For a builtin this is listed in 2283 // the td file with the default cpu, for an always_inline function this is any 2284 // listed cpu and any listed features. 2285 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2286 std::string MissingFeature; 2287 if (BuiltinID) { 2288 SmallVector<StringRef, 1> ReqFeatures; 2289 const char *FeatureList = 2290 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2291 // Return if the builtin doesn't have any required features. 2292 if (!FeatureList || StringRef(FeatureList) == "") 2293 return; 2294 StringRef(FeatureList).split(ReqFeatures, ','); 2295 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2296 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2297 << TargetDecl->getDeclName() 2298 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2299 2300 } else if (!TargetDecl->isMultiVersion() && 2301 TargetDecl->hasAttr<TargetAttr>()) { 2302 // Get the required features for the callee. 2303 2304 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2305 ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2306 2307 SmallVector<StringRef, 1> ReqFeatures; 2308 llvm::StringMap<bool> CalleeFeatureMap; 2309 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2310 2311 for (const auto &F : ParsedAttr.Features) { 2312 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2313 ReqFeatures.push_back(StringRef(F).substr(1)); 2314 } 2315 2316 for (const auto &F : CalleeFeatureMap) { 2317 // Only positive features are "required". 2318 if (F.getValue()) 2319 ReqFeatures.push_back(F.getKey()); 2320 } 2321 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2322 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2323 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2324 } 2325 } 2326 2327 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2328 if (!CGM.getCodeGenOpts().SanitizeStats) 2329 return; 2330 2331 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2332 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2333 CGM.getSanStats().create(IRB, SSK); 2334 } 2335 2336 llvm::Value * 2337 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2338 llvm::Value *Condition = nullptr; 2339 2340 if (!RO.Conditions.Architecture.empty()) 2341 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2342 2343 if (!RO.Conditions.Features.empty()) { 2344 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2345 Condition = 2346 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2347 } 2348 return Condition; 2349 } 2350 2351 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2352 llvm::Function *Resolver, 2353 CGBuilderTy &Builder, 2354 llvm::Function *FuncToReturn, 2355 bool SupportsIFunc) { 2356 if (SupportsIFunc) { 2357 Builder.CreateRet(FuncToReturn); 2358 return; 2359 } 2360 2361 llvm::SmallVector<llvm::Value *, 10> Args; 2362 llvm::for_each(Resolver->args(), 2363 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2364 2365 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2366 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2367 2368 if (Resolver->getReturnType()->isVoidTy()) 2369 Builder.CreateRetVoid(); 2370 else 2371 Builder.CreateRet(Result); 2372 } 2373 2374 void CodeGenFunction::EmitMultiVersionResolver( 2375 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2376 assert((getContext().getTargetInfo().getTriple().getArch() == 2377 llvm::Triple::x86 || 2378 getContext().getTargetInfo().getTriple().getArch() == 2379 llvm::Triple::x86_64) && 2380 "Only implemented for x86 targets"); 2381 2382 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2383 2384 // Main function's basic block. 2385 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2386 Builder.SetInsertPoint(CurBlock); 2387 EmitX86CpuInit(); 2388 2389 for (const MultiVersionResolverOption &RO : Options) { 2390 Builder.SetInsertPoint(CurBlock); 2391 llvm::Value *Condition = FormResolverCondition(RO); 2392 2393 // The 'default' or 'generic' case. 2394 if (!Condition) { 2395 assert(&RO == Options.end() - 1 && 2396 "Default or Generic case must be last"); 2397 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2398 SupportsIFunc); 2399 return; 2400 } 2401 2402 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2403 CGBuilderTy RetBuilder(*this, RetBlock); 2404 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2405 SupportsIFunc); 2406 CurBlock = createBasicBlock("resolver_else", Resolver); 2407 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2408 } 2409 2410 // If no generic/default, emit an unreachable. 2411 Builder.SetInsertPoint(CurBlock); 2412 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2413 TrapCall->setDoesNotReturn(); 2414 TrapCall->setDoesNotThrow(); 2415 Builder.CreateUnreachable(); 2416 Builder.ClearInsertionPoint(); 2417 } 2418 2419 // Loc - where the diagnostic will point, where in the source code this 2420 // alignment has failed. 2421 // SecondaryLoc - if present (will be present if sufficiently different from 2422 // Loc), the diagnostic will additionally point a "Note:" to this location. 2423 // It should be the location where the __attribute__((assume_aligned)) 2424 // was written e.g. 2425 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2426 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2427 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2428 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2429 llvm::Instruction *Assumption) { 2430 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2431 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2432 llvm::Intrinsic::getDeclaration( 2433 Builder.GetInsertBlock()->getParent()->getParent(), 2434 llvm::Intrinsic::assume) && 2435 "Assumption should be a call to llvm.assume()."); 2436 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2437 "Assumption should be the last instruction of the basic block, " 2438 "since the basic block is still being generated."); 2439 2440 if (!SanOpts.has(SanitizerKind::Alignment)) 2441 return; 2442 2443 // Don't check pointers to volatile data. The behavior here is implementation- 2444 // defined. 2445 if (Ty->getPointeeType().isVolatileQualified()) 2446 return; 2447 2448 // We need to temorairly remove the assumption so we can insert the 2449 // sanitizer check before it, else the check will be dropped by optimizations. 2450 Assumption->removeFromParent(); 2451 2452 { 2453 SanitizerScope SanScope(this); 2454 2455 if (!OffsetValue) 2456 OffsetValue = Builder.getInt1(0); // no offset. 2457 2458 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2459 EmitCheckSourceLocation(SecondaryLoc), 2460 EmitCheckTypeDescriptor(Ty)}; 2461 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2462 EmitCheckValue(Alignment), 2463 EmitCheckValue(OffsetValue)}; 2464 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2465 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2466 } 2467 2468 // We are now in the (new, empty) "cont" basic block. 2469 // Reintroduce the assumption. 2470 Builder.Insert(Assumption); 2471 // FIXME: Assumption still has it's original basic block as it's Parent. 2472 } 2473 2474 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2475 if (CGDebugInfo *DI = getDebugInfo()) 2476 return DI->SourceLocToDebugLoc(Location); 2477 2478 return llvm::DebugLoc(); 2479 } 2480