1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 CurFn(nullptr), ReturnValue(Address::invalid()), 69 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 70 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 71 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 72 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 73 NormalCleanupDest(Address::invalid()), NextCleanupDestIndex(1), 74 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 75 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 76 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 77 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 78 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 79 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 80 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 81 CXXStructorImplicitParamDecl(nullptr), 82 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 83 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 84 TerminateHandler(nullptr), TrapBB(nullptr), 85 ShouldEmitLifetimeMarkers( 86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 87 if (!suppressNewContext) 88 CGM.getCXXABI().getMangleContext().startNewFunction(); 89 90 llvm::FastMathFlags FMF; 91 if (CGM.getLangOpts().FastMath) 92 FMF.setFast(); 93 if (CGM.getLangOpts().FiniteMathOnly) { 94 FMF.setNoNaNs(); 95 FMF.setNoInfs(); 96 } 97 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 98 FMF.setNoNaNs(); 99 } 100 if (CGM.getCodeGenOpts().NoSignedZeros) { 101 FMF.setNoSignedZeros(); 102 } 103 if (CGM.getCodeGenOpts().ReciprocalMath) { 104 FMF.setAllowReciprocal(); 105 } 106 if (CGM.getCodeGenOpts().Reassociate) { 107 FMF.setAllowReassoc(); 108 } 109 Builder.setFastMathFlags(FMF); 110 } 111 112 CodeGenFunction::~CodeGenFunction() { 113 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 114 115 // If there are any unclaimed block infos, go ahead and destroy them 116 // now. This can happen if IR-gen gets clever and skips evaluating 117 // something. 118 if (FirstBlockInfo) 119 destroyBlockInfos(FirstBlockInfo); 120 121 if (getLangOpts().OpenMP && CurFn) 122 CGM.getOpenMPRuntime().functionFinished(*this); 123 } 124 125 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 TBAAAccessInfo *TBAAInfo) { 128 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 129 /* forPointeeType= */ true); 130 } 131 132 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 133 LValueBaseInfo *BaseInfo, 134 TBAAAccessInfo *TBAAInfo, 135 bool forPointeeType) { 136 if (TBAAInfo) 137 *TBAAInfo = CGM.getTBAAAccessInfo(T); 138 139 // Honor alignment typedef attributes even on incomplete types. 140 // We also honor them straight for C++ class types, even as pointees; 141 // there's an expressivity gap here. 142 if (auto TT = T->getAs<TypedefType>()) { 143 if (auto Align = TT->getDecl()->getMaxAlignment()) { 144 if (BaseInfo) 145 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 146 return getContext().toCharUnitsFromBits(Align); 147 } 148 } 149 150 if (BaseInfo) 151 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 152 153 CharUnits Alignment; 154 if (T->isIncompleteType()) { 155 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 156 } else { 157 // For C++ class pointees, we don't know whether we're pointing at a 158 // base or a complete object, so we generally need to use the 159 // non-virtual alignment. 160 const CXXRecordDecl *RD; 161 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 162 Alignment = CGM.getClassPointerAlignment(RD); 163 } else { 164 Alignment = getContext().getTypeAlignInChars(T); 165 if (T.getQualifiers().hasUnaligned()) 166 Alignment = CharUnits::One(); 167 } 168 169 // Cap to the global maximum type alignment unless the alignment 170 // was somehow explicit on the type. 171 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 172 if (Alignment.getQuantity() > MaxAlign && 173 !getContext().isAlignmentRequired(T)) 174 Alignment = CharUnits::fromQuantity(MaxAlign); 175 } 176 } 177 return Alignment; 178 } 179 180 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 TBAAAccessInfo TBAAInfo; 183 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 184 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 185 TBAAInfo); 186 } 187 188 /// Given a value of type T* that may not be to a complete object, 189 /// construct an l-value with the natural pointee alignment of T. 190 LValue 191 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 195 /* forPointeeType= */ true); 196 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 197 } 198 199 200 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 201 return CGM.getTypes().ConvertTypeForMem(T); 202 } 203 204 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 205 return CGM.getTypes().ConvertType(T); 206 } 207 208 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 209 type = type.getCanonicalType(); 210 while (true) { 211 switch (type->getTypeClass()) { 212 #define TYPE(name, parent) 213 #define ABSTRACT_TYPE(name, parent) 214 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 215 #define DEPENDENT_TYPE(name, parent) case Type::name: 216 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 217 #include "clang/AST/TypeNodes.def" 218 llvm_unreachable("non-canonical or dependent type in IR-generation"); 219 220 case Type::Auto: 221 case Type::DeducedTemplateSpecialization: 222 llvm_unreachable("undeduced type in IR-generation"); 223 224 // Various scalar types. 225 case Type::Builtin: 226 case Type::Pointer: 227 case Type::BlockPointer: 228 case Type::LValueReference: 229 case Type::RValueReference: 230 case Type::MemberPointer: 231 case Type::Vector: 232 case Type::ExtVector: 233 case Type::FunctionProto: 234 case Type::FunctionNoProto: 235 case Type::Enum: 236 case Type::ObjCObjectPointer: 237 case Type::Pipe: 238 return TEK_Scalar; 239 240 // Complexes. 241 case Type::Complex: 242 return TEK_Complex; 243 244 // Arrays, records, and Objective-C objects. 245 case Type::ConstantArray: 246 case Type::IncompleteArray: 247 case Type::VariableArray: 248 case Type::Record: 249 case Type::ObjCObject: 250 case Type::ObjCInterface: 251 return TEK_Aggregate; 252 253 // We operate on atomic values according to their underlying type. 254 case Type::Atomic: 255 type = cast<AtomicType>(type)->getValueType(); 256 continue; 257 } 258 llvm_unreachable("unknown type kind!"); 259 } 260 } 261 262 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 263 // For cleanliness, we try to avoid emitting the return block for 264 // simple cases. 265 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 266 267 if (CurBB) { 268 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 269 270 // We have a valid insert point, reuse it if it is empty or there are no 271 // explicit jumps to the return block. 272 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 273 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 274 delete ReturnBlock.getBlock(); 275 } else 276 EmitBlock(ReturnBlock.getBlock()); 277 return llvm::DebugLoc(); 278 } 279 280 // Otherwise, if the return block is the target of a single direct 281 // branch then we can just put the code in that block instead. This 282 // cleans up functions which started with a unified return block. 283 if (ReturnBlock.getBlock()->hasOneUse()) { 284 llvm::BranchInst *BI = 285 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 286 if (BI && BI->isUnconditional() && 287 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 288 // Record/return the DebugLoc of the simple 'return' expression to be used 289 // later by the actual 'ret' instruction. 290 llvm::DebugLoc Loc = BI->getDebugLoc(); 291 Builder.SetInsertPoint(BI->getParent()); 292 BI->eraseFromParent(); 293 delete ReturnBlock.getBlock(); 294 return Loc; 295 } 296 } 297 298 // FIXME: We are at an unreachable point, there is no reason to emit the block 299 // unless it has uses. However, we still need a place to put the debug 300 // region.end for now. 301 302 EmitBlock(ReturnBlock.getBlock()); 303 return llvm::DebugLoc(); 304 } 305 306 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 307 if (!BB) return; 308 if (!BB->use_empty()) 309 return CGF.CurFn->getBasicBlockList().push_back(BB); 310 delete BB; 311 } 312 313 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 314 assert(BreakContinueStack.empty() && 315 "mismatched push/pop in break/continue stack!"); 316 317 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 318 && NumSimpleReturnExprs == NumReturnExprs 319 && ReturnBlock.getBlock()->use_empty(); 320 // Usually the return expression is evaluated before the cleanup 321 // code. If the function contains only a simple return statement, 322 // such as a constant, the location before the cleanup code becomes 323 // the last useful breakpoint in the function, because the simple 324 // return expression will be evaluated after the cleanup code. To be 325 // safe, set the debug location for cleanup code to the location of 326 // the return statement. Otherwise the cleanup code should be at the 327 // end of the function's lexical scope. 328 // 329 // If there are multiple branches to the return block, the branch 330 // instructions will get the location of the return statements and 331 // all will be fine. 332 if (CGDebugInfo *DI = getDebugInfo()) { 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, LastStopPoint); 335 else 336 DI->EmitLocation(Builder, EndLoc); 337 } 338 339 // Pop any cleanups that might have been associated with the 340 // parameters. Do this in whatever block we're currently in; it's 341 // important to do this before we enter the return block or return 342 // edges will be *really* confused. 343 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 344 bool HasOnlyLifetimeMarkers = 345 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 346 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 347 if (HasCleanups) { 348 // Make sure the line table doesn't jump back into the body for 349 // the ret after it's been at EndLoc. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, EndLoc); 353 354 PopCleanupBlocks(PrologueCleanupDepth); 355 } 356 357 // Emit function epilog (to return). 358 llvm::DebugLoc Loc = EmitReturnBlock(); 359 360 if (ShouldInstrumentFunction()) { 361 if (CGM.getCodeGenOpts().InstrumentFunctions) 362 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 363 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 364 CurFn->addFnAttr("instrument-function-exit-inlined", 365 "__cyg_profile_func_exit"); 366 } 367 368 // Emit debug descriptor for function end. 369 if (CGDebugInfo *DI = getDebugInfo()) 370 DI->EmitFunctionEnd(Builder, CurFn); 371 372 // Reset the debug location to that of the simple 'return' expression, if any 373 // rather than that of the end of the function's scope '}'. 374 ApplyDebugLocation AL(*this, Loc); 375 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 376 EmitEndEHSpec(CurCodeDecl); 377 378 assert(EHStack.empty() && 379 "did not remove all scopes from cleanup stack!"); 380 381 // If someone did an indirect goto, emit the indirect goto block at the end of 382 // the function. 383 if (IndirectBranch) { 384 EmitBlock(IndirectBranch->getParent()); 385 Builder.ClearInsertionPoint(); 386 } 387 388 // If some of our locals escaped, insert a call to llvm.localescape in the 389 // entry block. 390 if (!EscapedLocals.empty()) { 391 // Invert the map from local to index into a simple vector. There should be 392 // no holes. 393 SmallVector<llvm::Value *, 4> EscapeArgs; 394 EscapeArgs.resize(EscapedLocals.size()); 395 for (auto &Pair : EscapedLocals) 396 EscapeArgs[Pair.second] = Pair.first; 397 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 398 &CGM.getModule(), llvm::Intrinsic::localescape); 399 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 400 } 401 402 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 403 llvm::Instruction *Ptr = AllocaInsertPt; 404 AllocaInsertPt = nullptr; 405 Ptr->eraseFromParent(); 406 407 // If someone took the address of a label but never did an indirect goto, we 408 // made a zero entry PHI node, which is illegal, zap it now. 409 if (IndirectBranch) { 410 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 411 if (PN->getNumIncomingValues() == 0) { 412 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 413 PN->eraseFromParent(); 414 } 415 } 416 417 EmitIfUsed(*this, EHResumeBlock); 418 EmitIfUsed(*this, TerminateLandingPad); 419 EmitIfUsed(*this, TerminateHandler); 420 EmitIfUsed(*this, UnreachableBlock); 421 422 for (const auto &FuncletAndParent : TerminateFunclets) 423 EmitIfUsed(*this, FuncletAndParent.second); 424 425 if (CGM.getCodeGenOpts().EmitDeclMetadata) 426 EmitDeclMetadata(); 427 428 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 429 I = DeferredReplacements.begin(), 430 E = DeferredReplacements.end(); 431 I != E; ++I) { 432 I->first->replaceAllUsesWith(I->second); 433 I->first->eraseFromParent(); 434 } 435 436 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 437 // PHIs if the current function is a coroutine. We don't do it for all 438 // functions as it may result in slight increase in numbers of instructions 439 // if compiled with no optimizations. We do it for coroutine as the lifetime 440 // of CleanupDestSlot alloca make correct coroutine frame building very 441 // difficult. 442 if (NormalCleanupDest.isValid() && isCoroutine()) { 443 llvm::DominatorTree DT(*CurFn); 444 llvm::PromoteMemToReg( 445 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 446 NormalCleanupDest = Address::invalid(); 447 } 448 } 449 450 /// ShouldInstrumentFunction - Return true if the current function should be 451 /// instrumented with __cyg_profile_func_* calls 452 bool CodeGenFunction::ShouldInstrumentFunction() { 453 if (!CGM.getCodeGenOpts().InstrumentFunctions && 454 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 455 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 456 return false; 457 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 458 return false; 459 return true; 460 } 461 462 /// ShouldXRayInstrument - Return true if the current function should be 463 /// instrumented with XRay nop sleds. 464 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 465 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 466 } 467 468 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 469 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation. 470 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 471 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 472 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 473 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 474 XRayInstrKind::Custom); 475 } 476 477 llvm::Constant * 478 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 479 llvm::Constant *Addr) { 480 // Addresses stored in prologue data can't require run-time fixups and must 481 // be PC-relative. Run-time fixups are undesirable because they necessitate 482 // writable text segments, which are unsafe. And absolute addresses are 483 // undesirable because they break PIE mode. 484 485 // Add a layer of indirection through a private global. Taking its address 486 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 487 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 488 /*isConstant=*/true, 489 llvm::GlobalValue::PrivateLinkage, Addr); 490 491 // Create a PC-relative address. 492 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 493 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 494 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 495 return (IntPtrTy == Int32Ty) 496 ? PCRelAsInt 497 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 498 } 499 500 llvm::Value * 501 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 502 llvm::Value *EncodedAddr) { 503 // Reconstruct the address of the global. 504 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 505 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 506 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 507 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 508 509 // Load the original pointer through the global. 510 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 511 "decoded_addr"); 512 } 513 514 static void removeImageAccessQualifier(std::string& TyName) { 515 std::string ReadOnlyQual("__read_only"); 516 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 517 if (ReadOnlyPos != std::string::npos) 518 // "+ 1" for the space after access qualifier. 519 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 520 else { 521 std::string WriteOnlyQual("__write_only"); 522 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 523 if (WriteOnlyPos != std::string::npos) 524 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 525 else { 526 std::string ReadWriteQual("__read_write"); 527 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 528 if (ReadWritePos != std::string::npos) 529 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 530 } 531 } 532 } 533 534 // Returns the address space id that should be produced to the 535 // kernel_arg_addr_space metadata. This is always fixed to the ids 536 // as specified in the SPIR 2.0 specification in order to differentiate 537 // for example in clGetKernelArgInfo() implementation between the address 538 // spaces with targets without unique mapping to the OpenCL address spaces 539 // (basically all single AS CPUs). 540 static unsigned ArgInfoAddressSpace(LangAS AS) { 541 switch (AS) { 542 case LangAS::opencl_global: return 1; 543 case LangAS::opencl_constant: return 2; 544 case LangAS::opencl_local: return 3; 545 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 546 default: 547 return 0; // Assume private. 548 } 549 } 550 551 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 552 // information in the program executable. The argument information stored 553 // includes the argument name, its type, the address and access qualifiers used. 554 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 555 CodeGenModule &CGM, llvm::LLVMContext &Context, 556 CGBuilderTy &Builder, ASTContext &ASTCtx) { 557 // Create MDNodes that represent the kernel arg metadata. 558 // Each MDNode is a list in the form of "key", N number of values which is 559 // the same number of values as their are kernel arguments. 560 561 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 562 563 // MDNode for the kernel argument address space qualifiers. 564 SmallVector<llvm::Metadata *, 8> addressQuals; 565 566 // MDNode for the kernel argument access qualifiers (images only). 567 SmallVector<llvm::Metadata *, 8> accessQuals; 568 569 // MDNode for the kernel argument type names. 570 SmallVector<llvm::Metadata *, 8> argTypeNames; 571 572 // MDNode for the kernel argument base type names. 573 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 574 575 // MDNode for the kernel argument type qualifiers. 576 SmallVector<llvm::Metadata *, 8> argTypeQuals; 577 578 // MDNode for the kernel argument names. 579 SmallVector<llvm::Metadata *, 8> argNames; 580 581 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 582 const ParmVarDecl *parm = FD->getParamDecl(i); 583 QualType ty = parm->getType(); 584 std::string typeQuals; 585 586 if (ty->isPointerType()) { 587 QualType pointeeTy = ty->getPointeeType(); 588 589 // Get address qualifier. 590 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 591 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 592 593 // Get argument type name. 594 std::string typeName = 595 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 596 597 // Turn "unsigned type" to "utype" 598 std::string::size_type pos = typeName.find("unsigned"); 599 if (pointeeTy.isCanonical() && pos != std::string::npos) 600 typeName.erase(pos+1, 8); 601 602 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 603 604 std::string baseTypeName = 605 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 606 Policy) + 607 "*"; 608 609 // Turn "unsigned type" to "utype" 610 pos = baseTypeName.find("unsigned"); 611 if (pos != std::string::npos) 612 baseTypeName.erase(pos+1, 8); 613 614 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 615 616 // Get argument type qualifiers: 617 if (ty.isRestrictQualified()) 618 typeQuals = "restrict"; 619 if (pointeeTy.isConstQualified() || 620 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 621 typeQuals += typeQuals.empty() ? "const" : " const"; 622 if (pointeeTy.isVolatileQualified()) 623 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 624 } else { 625 uint32_t AddrSpc = 0; 626 bool isPipe = ty->isPipeType(); 627 if (ty->isImageType() || isPipe) 628 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 629 630 addressQuals.push_back( 631 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 632 633 // Get argument type name. 634 std::string typeName; 635 if (isPipe) 636 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 637 .getAsString(Policy); 638 else 639 typeName = ty.getUnqualifiedType().getAsString(Policy); 640 641 // Turn "unsigned type" to "utype" 642 std::string::size_type pos = typeName.find("unsigned"); 643 if (ty.isCanonical() && pos != std::string::npos) 644 typeName.erase(pos+1, 8); 645 646 std::string baseTypeName; 647 if (isPipe) 648 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 649 ->getElementType().getCanonicalType() 650 .getAsString(Policy); 651 else 652 baseTypeName = 653 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 654 655 // Remove access qualifiers on images 656 // (as they are inseparable from type in clang implementation, 657 // but OpenCL spec provides a special query to get access qualifier 658 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 659 if (ty->isImageType()) { 660 removeImageAccessQualifier(typeName); 661 removeImageAccessQualifier(baseTypeName); 662 } 663 664 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 665 666 // Turn "unsigned type" to "utype" 667 pos = baseTypeName.find("unsigned"); 668 if (pos != std::string::npos) 669 baseTypeName.erase(pos+1, 8); 670 671 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 672 673 if (isPipe) 674 typeQuals = "pipe"; 675 } 676 677 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 678 679 // Get image and pipe access qualifier: 680 if (ty->isImageType()|| ty->isPipeType()) { 681 const Decl *PDecl = parm; 682 if (auto *TD = dyn_cast<TypedefType>(ty)) 683 PDecl = TD->getDecl(); 684 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 685 if (A && A->isWriteOnly()) 686 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 687 else if (A && A->isReadWrite()) 688 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 689 else 690 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 691 } else 692 accessQuals.push_back(llvm::MDString::get(Context, "none")); 693 694 // Get argument name. 695 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 696 } 697 698 Fn->setMetadata("kernel_arg_addr_space", 699 llvm::MDNode::get(Context, addressQuals)); 700 Fn->setMetadata("kernel_arg_access_qual", 701 llvm::MDNode::get(Context, accessQuals)); 702 Fn->setMetadata("kernel_arg_type", 703 llvm::MDNode::get(Context, argTypeNames)); 704 Fn->setMetadata("kernel_arg_base_type", 705 llvm::MDNode::get(Context, argBaseTypeNames)); 706 Fn->setMetadata("kernel_arg_type_qual", 707 llvm::MDNode::get(Context, argTypeQuals)); 708 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 709 Fn->setMetadata("kernel_arg_name", 710 llvm::MDNode::get(Context, argNames)); 711 } 712 713 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 714 llvm::Function *Fn) 715 { 716 if (!FD->hasAttr<OpenCLKernelAttr>()) 717 return; 718 719 llvm::LLVMContext &Context = getLLVMContext(); 720 721 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 722 723 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 724 QualType HintQTy = A->getTypeHint(); 725 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 726 bool IsSignedInteger = 727 HintQTy->isSignedIntegerType() || 728 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 729 llvm::Metadata *AttrMDArgs[] = { 730 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 731 CGM.getTypes().ConvertType(A->getTypeHint()))), 732 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 733 llvm::IntegerType::get(Context, 32), 734 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 735 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 736 } 737 738 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 739 llvm::Metadata *AttrMDArgs[] = { 740 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 741 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 742 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 743 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 744 } 745 746 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 747 llvm::Metadata *AttrMDArgs[] = { 748 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 749 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 750 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 751 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 752 } 753 754 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 755 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 756 llvm::Metadata *AttrMDArgs[] = { 757 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 758 Fn->setMetadata("intel_reqd_sub_group_size", 759 llvm::MDNode::get(Context, AttrMDArgs)); 760 } 761 } 762 763 /// Determine whether the function F ends with a return stmt. 764 static bool endsWithReturn(const Decl* F) { 765 const Stmt *Body = nullptr; 766 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 767 Body = FD->getBody(); 768 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 769 Body = OMD->getBody(); 770 771 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 772 auto LastStmt = CS->body_rbegin(); 773 if (LastStmt != CS->body_rend()) 774 return isa<ReturnStmt>(*LastStmt); 775 } 776 return false; 777 } 778 779 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 780 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 781 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 782 } 783 784 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 785 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 786 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 787 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 788 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 789 return false; 790 791 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 792 return false; 793 794 if (MD->getNumParams() == 2) { 795 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 796 if (!PT || !PT->isVoidPointerType() || 797 !PT->getPointeeType().isConstQualified()) 798 return false; 799 } 800 801 return true; 802 } 803 804 /// Return the UBSan prologue signature for \p FD if one is available. 805 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 806 const FunctionDecl *FD) { 807 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 808 if (!MD->isStatic()) 809 return nullptr; 810 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 811 } 812 813 void CodeGenFunction::StartFunction(GlobalDecl GD, 814 QualType RetTy, 815 llvm::Function *Fn, 816 const CGFunctionInfo &FnInfo, 817 const FunctionArgList &Args, 818 SourceLocation Loc, 819 SourceLocation StartLoc) { 820 assert(!CurFn && 821 "Do not use a CodeGenFunction object for more than one function"); 822 823 const Decl *D = GD.getDecl(); 824 825 DidCallStackSave = false; 826 CurCodeDecl = D; 827 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 828 if (FD->usesSEHTry()) 829 CurSEHParent = FD; 830 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 831 FnRetTy = RetTy; 832 CurFn = Fn; 833 CurFnInfo = &FnInfo; 834 assert(CurFn->isDeclaration() && "Function already has body?"); 835 836 // If this function has been blacklisted for any of the enabled sanitizers, 837 // disable the sanitizer for the function. 838 do { 839 #define SANITIZER(NAME, ID) \ 840 if (SanOpts.empty()) \ 841 break; \ 842 if (SanOpts.has(SanitizerKind::ID)) \ 843 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 844 SanOpts.set(SanitizerKind::ID, false); 845 846 #include "clang/Basic/Sanitizers.def" 847 #undef SANITIZER 848 } while (0); 849 850 if (D) { 851 // Apply the no_sanitize* attributes to SanOpts. 852 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 853 SanitizerMask mask = Attr->getMask(); 854 SanOpts.Mask &= ~mask; 855 if (mask & SanitizerKind::Address) 856 SanOpts.set(SanitizerKind::KernelAddress, false); 857 if (mask & SanitizerKind::KernelAddress) 858 SanOpts.set(SanitizerKind::Address, false); 859 } 860 } 861 862 // Apply sanitizer attributes to the function. 863 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 864 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 865 if (SanOpts.hasOneOf(SanitizerKind::HWAddress)) 866 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 867 if (SanOpts.has(SanitizerKind::Thread)) 868 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 869 if (SanOpts.has(SanitizerKind::Memory)) 870 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 871 if (SanOpts.has(SanitizerKind::SafeStack)) 872 Fn->addFnAttr(llvm::Attribute::SafeStack); 873 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 874 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 875 876 // Apply fuzzing attribute to the function. 877 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 878 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 879 880 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 881 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 882 if (SanOpts.has(SanitizerKind::Thread)) { 883 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 884 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 885 if (OMD->getMethodFamily() == OMF_dealloc || 886 OMD->getMethodFamily() == OMF_initialize || 887 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 888 markAsIgnoreThreadCheckingAtRuntime(Fn); 889 } 890 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 891 IdentifierInfo *II = FD->getIdentifier(); 892 if (II && II->isStr("__destroy_helper_block_")) 893 markAsIgnoreThreadCheckingAtRuntime(Fn); 894 } 895 } 896 897 // Ignore unrelated casts in STL allocate() since the allocator must cast 898 // from void* to T* before object initialization completes. Don't match on the 899 // namespace because not all allocators are in std:: 900 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 901 if (matchesStlAllocatorFn(D, getContext())) 902 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 903 } 904 905 // Apply xray attributes to the function (as a string, for now) 906 bool InstrumentXray = ShouldXRayInstrumentFunction() && 907 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 908 XRayInstrKind::Function); 909 if (D && InstrumentXray) { 910 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 911 if (XRayAttr->alwaysXRayInstrument()) 912 Fn->addFnAttr("function-instrument", "xray-always"); 913 if (XRayAttr->neverXRayInstrument()) 914 Fn->addFnAttr("function-instrument", "xray-never"); 915 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 916 Fn->addFnAttr("xray-log-args", 917 llvm::utostr(LogArgs->getArgumentCount())); 918 } 919 } else { 920 if (!CGM.imbueXRayAttrs(Fn, Loc)) 921 Fn->addFnAttr( 922 "xray-instruction-threshold", 923 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 924 } 925 } 926 927 // Add no-jump-tables value. 928 Fn->addFnAttr("no-jump-tables", 929 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 930 931 // Add profile-sample-accurate value. 932 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 933 Fn->addFnAttr("profile-sample-accurate"); 934 935 if (getLangOpts().OpenCL) { 936 // Add metadata for a kernel function. 937 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 938 EmitOpenCLKernelMetadata(FD, Fn); 939 } 940 941 // If we are checking function types, emit a function type signature as 942 // prologue data. 943 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 944 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 945 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 946 // Remove any (C++17) exception specifications, to allow calling e.g. a 947 // noexcept function through a non-noexcept pointer. 948 auto ProtoTy = 949 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 950 EST_None); 951 llvm::Constant *FTRTTIConst = 952 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 953 llvm::Constant *FTRTTIConstEncoded = 954 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 955 llvm::Constant *PrologueStructElems[] = {PrologueSig, 956 FTRTTIConstEncoded}; 957 llvm::Constant *PrologueStructConst = 958 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 959 Fn->setPrologueData(PrologueStructConst); 960 } 961 } 962 } 963 964 // If we're checking nullability, we need to know whether we can check the 965 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 966 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 967 auto Nullability = FnRetTy->getNullability(getContext()); 968 if (Nullability && *Nullability == NullabilityKind::NonNull) { 969 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 970 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 971 RetValNullabilityPrecondition = 972 llvm::ConstantInt::getTrue(getLLVMContext()); 973 } 974 } 975 976 // If we're in C++ mode and the function name is "main", it is guaranteed 977 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 978 // used within a program"). 979 if (getLangOpts().CPlusPlus) 980 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 981 if (FD->isMain()) 982 Fn->addFnAttr(llvm::Attribute::NoRecurse); 983 984 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 985 986 // Create a marker to make it easy to insert allocas into the entryblock 987 // later. Don't create this with the builder, because we don't want it 988 // folded. 989 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 990 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 991 992 ReturnBlock = getJumpDestInCurrentScope("return"); 993 994 Builder.SetInsertPoint(EntryBB); 995 996 // If we're checking the return value, allocate space for a pointer to a 997 // precise source location of the checked return statement. 998 if (requiresReturnValueCheck()) { 999 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1000 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 1001 } 1002 1003 // Emit subprogram debug descriptor. 1004 if (CGDebugInfo *DI = getDebugInfo()) { 1005 // Reconstruct the type from the argument list so that implicit parameters, 1006 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1007 // convention. 1008 CallingConv CC = CallingConv::CC_C; 1009 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 1010 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 1011 CC = SrcFnTy->getCallConv(); 1012 SmallVector<QualType, 16> ArgTypes; 1013 for (const VarDecl *VD : Args) 1014 ArgTypes.push_back(VD->getType()); 1015 QualType FnType = getContext().getFunctionType( 1016 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1017 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 1018 } 1019 1020 if (ShouldInstrumentFunction()) { 1021 if (CGM.getCodeGenOpts().InstrumentFunctions) 1022 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1023 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1024 CurFn->addFnAttr("instrument-function-entry-inlined", 1025 "__cyg_profile_func_enter"); 1026 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1027 CurFn->addFnAttr("instrument-function-entry-inlined", 1028 "__cyg_profile_func_enter_bare"); 1029 } 1030 1031 // Since emitting the mcount call here impacts optimizations such as function 1032 // inlining, we just add an attribute to insert a mcount call in backend. 1033 // The attribute "counting-function" is set to mcount function name which is 1034 // architecture dependent. 1035 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1036 // Calls to fentry/mcount should not be generated if function has 1037 // the no_instrument_function attribute. 1038 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1039 if (CGM.getCodeGenOpts().CallFEntry) 1040 Fn->addFnAttr("fentry-call", "true"); 1041 else { 1042 Fn->addFnAttr("instrument-function-entry-inlined", 1043 getTarget().getMCountName()); 1044 } 1045 } 1046 } 1047 1048 if (RetTy->isVoidType()) { 1049 // Void type; nothing to return. 1050 ReturnValue = Address::invalid(); 1051 1052 // Count the implicit return. 1053 if (!endsWithReturn(D)) 1054 ++NumReturnExprs; 1055 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1056 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1057 // Indirect aggregate return; emit returned value directly into sret slot. 1058 // This reduces code size, and affects correctness in C++. 1059 auto AI = CurFn->arg_begin(); 1060 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1061 ++AI; 1062 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1063 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1064 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1065 // Load the sret pointer from the argument struct and return into that. 1066 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1067 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1068 --EI; 1069 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1070 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1071 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1072 } else { 1073 ReturnValue = CreateIRTemp(RetTy, "retval"); 1074 1075 // Tell the epilog emitter to autorelease the result. We do this 1076 // now so that various specialized functions can suppress it 1077 // during their IR-generation. 1078 if (getLangOpts().ObjCAutoRefCount && 1079 !CurFnInfo->isReturnsRetained() && 1080 RetTy->isObjCRetainableType()) 1081 AutoreleaseResult = true; 1082 } 1083 1084 EmitStartEHSpec(CurCodeDecl); 1085 1086 PrologueCleanupDepth = EHStack.stable_begin(); 1087 1088 // Emit OpenMP specific initialization of the device functions. 1089 if (getLangOpts().OpenMP && CurCodeDecl) 1090 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1091 1092 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1093 1094 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1095 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1096 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1097 if (MD->getParent()->isLambda() && 1098 MD->getOverloadedOperator() == OO_Call) { 1099 // We're in a lambda; figure out the captures. 1100 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1101 LambdaThisCaptureField); 1102 if (LambdaThisCaptureField) { 1103 // If the lambda captures the object referred to by '*this' - either by 1104 // value or by reference, make sure CXXThisValue points to the correct 1105 // object. 1106 1107 // Get the lvalue for the field (which is a copy of the enclosing object 1108 // or contains the address of the enclosing object). 1109 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1110 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1111 // If the enclosing object was captured by value, just use its address. 1112 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1113 } else { 1114 // Load the lvalue pointed to by the field, since '*this' was captured 1115 // by reference. 1116 CXXThisValue = 1117 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1118 } 1119 } 1120 for (auto *FD : MD->getParent()->fields()) { 1121 if (FD->hasCapturedVLAType()) { 1122 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1123 SourceLocation()).getScalarVal(); 1124 auto VAT = FD->getCapturedVLAType(); 1125 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1126 } 1127 } 1128 } else { 1129 // Not in a lambda; just use 'this' from the method. 1130 // FIXME: Should we generate a new load for each use of 'this'? The 1131 // fast register allocator would be happier... 1132 CXXThisValue = CXXABIThisValue; 1133 } 1134 1135 // Check the 'this' pointer once per function, if it's available. 1136 if (CXXABIThisValue) { 1137 SanitizerSet SkippedChecks; 1138 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1139 QualType ThisTy = MD->getThisType(getContext()); 1140 1141 // If this is the call operator of a lambda with no capture-default, it 1142 // may have a static invoker function, which may call this operator with 1143 // a null 'this' pointer. 1144 if (isLambdaCallOperator(MD) && 1145 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1146 SkippedChecks.set(SanitizerKind::Null, true); 1147 1148 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1149 : TCK_MemberCall, 1150 Loc, CXXABIThisValue, ThisTy, 1151 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1152 SkippedChecks); 1153 } 1154 } 1155 1156 // If any of the arguments have a variably modified type, make sure to 1157 // emit the type size. 1158 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1159 i != e; ++i) { 1160 const VarDecl *VD = *i; 1161 1162 // Dig out the type as written from ParmVarDecls; it's unclear whether 1163 // the standard (C99 6.9.1p10) requires this, but we're following the 1164 // precedent set by gcc. 1165 QualType Ty; 1166 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1167 Ty = PVD->getOriginalType(); 1168 else 1169 Ty = VD->getType(); 1170 1171 if (Ty->isVariablyModifiedType()) 1172 EmitVariablyModifiedType(Ty); 1173 } 1174 // Emit a location at the end of the prologue. 1175 if (CGDebugInfo *DI = getDebugInfo()) 1176 DI->EmitLocation(Builder, StartLoc); 1177 } 1178 1179 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1180 const Stmt *Body) { 1181 incrementProfileCounter(Body); 1182 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1183 EmitCompoundStmtWithoutScope(*S); 1184 else 1185 EmitStmt(Body); 1186 } 1187 1188 /// When instrumenting to collect profile data, the counts for some blocks 1189 /// such as switch cases need to not include the fall-through counts, so 1190 /// emit a branch around the instrumentation code. When not instrumenting, 1191 /// this just calls EmitBlock(). 1192 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1193 const Stmt *S) { 1194 llvm::BasicBlock *SkipCountBB = nullptr; 1195 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1196 // When instrumenting for profiling, the fallthrough to certain 1197 // statements needs to skip over the instrumentation code so that we 1198 // get an accurate count. 1199 SkipCountBB = createBasicBlock("skipcount"); 1200 EmitBranch(SkipCountBB); 1201 } 1202 EmitBlock(BB); 1203 uint64_t CurrentCount = getCurrentProfileCount(); 1204 incrementProfileCounter(S); 1205 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1206 if (SkipCountBB) 1207 EmitBlock(SkipCountBB); 1208 } 1209 1210 /// Tries to mark the given function nounwind based on the 1211 /// non-existence of any throwing calls within it. We believe this is 1212 /// lightweight enough to do at -O0. 1213 static void TryMarkNoThrow(llvm::Function *F) { 1214 // LLVM treats 'nounwind' on a function as part of the type, so we 1215 // can't do this on functions that can be overwritten. 1216 if (F->isInterposable()) return; 1217 1218 for (llvm::BasicBlock &BB : *F) 1219 for (llvm::Instruction &I : BB) 1220 if (I.mayThrow()) 1221 return; 1222 1223 F->setDoesNotThrow(); 1224 } 1225 1226 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1227 FunctionArgList &Args) { 1228 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1229 QualType ResTy = FD->getReturnType(); 1230 1231 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1232 if (MD && MD->isInstance()) { 1233 if (CGM.getCXXABI().HasThisReturn(GD)) 1234 ResTy = MD->getThisType(getContext()); 1235 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1236 ResTy = CGM.getContext().VoidPtrTy; 1237 CGM.getCXXABI().buildThisParam(*this, Args); 1238 } 1239 1240 // The base version of an inheriting constructor whose constructed base is a 1241 // virtual base is not passed any arguments (because it doesn't actually call 1242 // the inherited constructor). 1243 bool PassedParams = true; 1244 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1245 if (auto Inherited = CD->getInheritedConstructor()) 1246 PassedParams = 1247 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1248 1249 if (PassedParams) { 1250 for (auto *Param : FD->parameters()) { 1251 Args.push_back(Param); 1252 if (!Param->hasAttr<PassObjectSizeAttr>()) 1253 continue; 1254 1255 auto *Implicit = ImplicitParamDecl::Create( 1256 getContext(), Param->getDeclContext(), Param->getLocation(), 1257 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1258 SizeArguments[Param] = Implicit; 1259 Args.push_back(Implicit); 1260 } 1261 } 1262 1263 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1264 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1265 1266 return ResTy; 1267 } 1268 1269 static bool 1270 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1271 const ASTContext &Context) { 1272 QualType T = FD->getReturnType(); 1273 // Avoid the optimization for functions that return a record type with a 1274 // trivial destructor or another trivially copyable type. 1275 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1276 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1277 return !ClassDecl->hasTrivialDestructor(); 1278 } 1279 return !T.isTriviallyCopyableType(Context); 1280 } 1281 1282 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1283 const CGFunctionInfo &FnInfo) { 1284 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1285 CurGD = GD; 1286 1287 FunctionArgList Args; 1288 QualType ResTy = BuildFunctionArgList(GD, Args); 1289 1290 // Check if we should generate debug info for this function. 1291 if (FD->hasAttr<NoDebugAttr>()) 1292 DebugInfo = nullptr; // disable debug info indefinitely for this function 1293 1294 // The function might not have a body if we're generating thunks for a 1295 // function declaration. 1296 SourceRange BodyRange; 1297 if (Stmt *Body = FD->getBody()) 1298 BodyRange = Body->getSourceRange(); 1299 else 1300 BodyRange = FD->getLocation(); 1301 CurEHLocation = BodyRange.getEnd(); 1302 1303 // Use the location of the start of the function to determine where 1304 // the function definition is located. By default use the location 1305 // of the declaration as the location for the subprogram. A function 1306 // may lack a declaration in the source code if it is created by code 1307 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1308 SourceLocation Loc = FD->getLocation(); 1309 1310 // If this is a function specialization then use the pattern body 1311 // as the location for the function. 1312 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1313 if (SpecDecl->hasBody(SpecDecl)) 1314 Loc = SpecDecl->getLocation(); 1315 1316 Stmt *Body = FD->getBody(); 1317 1318 // Initialize helper which will detect jumps which can cause invalid lifetime 1319 // markers. 1320 if (Body && ShouldEmitLifetimeMarkers) 1321 Bypasses.Init(Body); 1322 1323 // Emit the standard function prologue. 1324 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1325 1326 // Generate the body of the function. 1327 PGO.assignRegionCounters(GD, CurFn); 1328 if (isa<CXXDestructorDecl>(FD)) 1329 EmitDestructorBody(Args); 1330 else if (isa<CXXConstructorDecl>(FD)) 1331 EmitConstructorBody(Args); 1332 else if (getLangOpts().CUDA && 1333 !getLangOpts().CUDAIsDevice && 1334 FD->hasAttr<CUDAGlobalAttr>()) 1335 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1336 else if (isa<CXXMethodDecl>(FD) && 1337 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1338 // The lambda static invoker function is special, because it forwards or 1339 // clones the body of the function call operator (but is actually static). 1340 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1341 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1342 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1343 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1344 // Implicit copy-assignment gets the same special treatment as implicit 1345 // copy-constructors. 1346 emitImplicitAssignmentOperatorBody(Args); 1347 } else if (Body) { 1348 EmitFunctionBody(Args, Body); 1349 } else 1350 llvm_unreachable("no definition for emitted function"); 1351 1352 // C++11 [stmt.return]p2: 1353 // Flowing off the end of a function [...] results in undefined behavior in 1354 // a value-returning function. 1355 // C11 6.9.1p12: 1356 // If the '}' that terminates a function is reached, and the value of the 1357 // function call is used by the caller, the behavior is undefined. 1358 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1359 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1360 bool ShouldEmitUnreachable = 1361 CGM.getCodeGenOpts().StrictReturn || 1362 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1363 if (SanOpts.has(SanitizerKind::Return)) { 1364 SanitizerScope SanScope(this); 1365 llvm::Value *IsFalse = Builder.getFalse(); 1366 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1367 SanitizerHandler::MissingReturn, 1368 EmitCheckSourceLocation(FD->getLocation()), None); 1369 } else if (ShouldEmitUnreachable) { 1370 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1371 EmitTrapCall(llvm::Intrinsic::trap); 1372 } 1373 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1374 Builder.CreateUnreachable(); 1375 Builder.ClearInsertionPoint(); 1376 } 1377 } 1378 1379 // Emit the standard function epilogue. 1380 FinishFunction(BodyRange.getEnd()); 1381 1382 // If we haven't marked the function nothrow through other means, do 1383 // a quick pass now to see if we can. 1384 if (!CurFn->doesNotThrow()) 1385 TryMarkNoThrow(CurFn); 1386 } 1387 1388 /// ContainsLabel - Return true if the statement contains a label in it. If 1389 /// this statement is not executed normally, it not containing a label means 1390 /// that we can just remove the code. 1391 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1392 // Null statement, not a label! 1393 if (!S) return false; 1394 1395 // If this is a label, we have to emit the code, consider something like: 1396 // if (0) { ... foo: bar(); } goto foo; 1397 // 1398 // TODO: If anyone cared, we could track __label__'s, since we know that you 1399 // can't jump to one from outside their declared region. 1400 if (isa<LabelStmt>(S)) 1401 return true; 1402 1403 // If this is a case/default statement, and we haven't seen a switch, we have 1404 // to emit the code. 1405 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1406 return true; 1407 1408 // If this is a switch statement, we want to ignore cases below it. 1409 if (isa<SwitchStmt>(S)) 1410 IgnoreCaseStmts = true; 1411 1412 // Scan subexpressions for verboten labels. 1413 for (const Stmt *SubStmt : S->children()) 1414 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1415 return true; 1416 1417 return false; 1418 } 1419 1420 /// containsBreak - Return true if the statement contains a break out of it. 1421 /// If the statement (recursively) contains a switch or loop with a break 1422 /// inside of it, this is fine. 1423 bool CodeGenFunction::containsBreak(const Stmt *S) { 1424 // Null statement, not a label! 1425 if (!S) return false; 1426 1427 // If this is a switch or loop that defines its own break scope, then we can 1428 // include it and anything inside of it. 1429 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1430 isa<ForStmt>(S)) 1431 return false; 1432 1433 if (isa<BreakStmt>(S)) 1434 return true; 1435 1436 // Scan subexpressions for verboten breaks. 1437 for (const Stmt *SubStmt : S->children()) 1438 if (containsBreak(SubStmt)) 1439 return true; 1440 1441 return false; 1442 } 1443 1444 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1445 if (!S) return false; 1446 1447 // Some statement kinds add a scope and thus never add a decl to the current 1448 // scope. Note, this list is longer than the list of statements that might 1449 // have an unscoped decl nested within them, but this way is conservatively 1450 // correct even if more statement kinds are added. 1451 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1452 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1453 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1454 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1455 return false; 1456 1457 if (isa<DeclStmt>(S)) 1458 return true; 1459 1460 for (const Stmt *SubStmt : S->children()) 1461 if (mightAddDeclToScope(SubStmt)) 1462 return true; 1463 1464 return false; 1465 } 1466 1467 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1468 /// to a constant, or if it does but contains a label, return false. If it 1469 /// constant folds return true and set the boolean result in Result. 1470 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1471 bool &ResultBool, 1472 bool AllowLabels) { 1473 llvm::APSInt ResultInt; 1474 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1475 return false; 1476 1477 ResultBool = ResultInt.getBoolValue(); 1478 return true; 1479 } 1480 1481 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1482 /// to a constant, or if it does but contains a label, return false. If it 1483 /// constant folds return true and set the folded value. 1484 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1485 llvm::APSInt &ResultInt, 1486 bool AllowLabels) { 1487 // FIXME: Rename and handle conversion of other evaluatable things 1488 // to bool. 1489 llvm::APSInt Int; 1490 if (!Cond->EvaluateAsInt(Int, getContext())) 1491 return false; // Not foldable, not integer or not fully evaluatable. 1492 1493 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1494 return false; // Contains a label. 1495 1496 ResultInt = Int; 1497 return true; 1498 } 1499 1500 1501 1502 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1503 /// statement) to the specified blocks. Based on the condition, this might try 1504 /// to simplify the codegen of the conditional based on the branch. 1505 /// 1506 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1507 llvm::BasicBlock *TrueBlock, 1508 llvm::BasicBlock *FalseBlock, 1509 uint64_t TrueCount) { 1510 Cond = Cond->IgnoreParens(); 1511 1512 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1513 1514 // Handle X && Y in a condition. 1515 if (CondBOp->getOpcode() == BO_LAnd) { 1516 // If we have "1 && X", simplify the code. "0 && X" would have constant 1517 // folded if the case was simple enough. 1518 bool ConstantBool = false; 1519 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1520 ConstantBool) { 1521 // br(1 && X) -> br(X). 1522 incrementProfileCounter(CondBOp); 1523 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1524 TrueCount); 1525 } 1526 1527 // If we have "X && 1", simplify the code to use an uncond branch. 1528 // "X && 0" would have been constant folded to 0. 1529 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1530 ConstantBool) { 1531 // br(X && 1) -> br(X). 1532 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1533 TrueCount); 1534 } 1535 1536 // Emit the LHS as a conditional. If the LHS conditional is false, we 1537 // want to jump to the FalseBlock. 1538 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1539 // The counter tells us how often we evaluate RHS, and all of TrueCount 1540 // can be propagated to that branch. 1541 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1542 1543 ConditionalEvaluation eval(*this); 1544 { 1545 ApplyDebugLocation DL(*this, Cond); 1546 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1547 EmitBlock(LHSTrue); 1548 } 1549 1550 incrementProfileCounter(CondBOp); 1551 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1552 1553 // Any temporaries created here are conditional. 1554 eval.begin(*this); 1555 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1556 eval.end(*this); 1557 1558 return; 1559 } 1560 1561 if (CondBOp->getOpcode() == BO_LOr) { 1562 // If we have "0 || X", simplify the code. "1 || X" would have constant 1563 // folded if the case was simple enough. 1564 bool ConstantBool = false; 1565 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1566 !ConstantBool) { 1567 // br(0 || X) -> br(X). 1568 incrementProfileCounter(CondBOp); 1569 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1570 TrueCount); 1571 } 1572 1573 // If we have "X || 0", simplify the code to use an uncond branch. 1574 // "X || 1" would have been constant folded to 1. 1575 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1576 !ConstantBool) { 1577 // br(X || 0) -> br(X). 1578 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1579 TrueCount); 1580 } 1581 1582 // Emit the LHS as a conditional. If the LHS conditional is true, we 1583 // want to jump to the TrueBlock. 1584 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1585 // We have the count for entry to the RHS and for the whole expression 1586 // being true, so we can divy up True count between the short circuit and 1587 // the RHS. 1588 uint64_t LHSCount = 1589 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1590 uint64_t RHSCount = TrueCount - LHSCount; 1591 1592 ConditionalEvaluation eval(*this); 1593 { 1594 ApplyDebugLocation DL(*this, Cond); 1595 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1596 EmitBlock(LHSFalse); 1597 } 1598 1599 incrementProfileCounter(CondBOp); 1600 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1601 1602 // Any temporaries created here are conditional. 1603 eval.begin(*this); 1604 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1605 1606 eval.end(*this); 1607 1608 return; 1609 } 1610 } 1611 1612 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1613 // br(!x, t, f) -> br(x, f, t) 1614 if (CondUOp->getOpcode() == UO_LNot) { 1615 // Negate the count. 1616 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1617 // Negate the condition and swap the destination blocks. 1618 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1619 FalseCount); 1620 } 1621 } 1622 1623 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1624 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1625 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1626 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1627 1628 ConditionalEvaluation cond(*this); 1629 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1630 getProfileCount(CondOp)); 1631 1632 // When computing PGO branch weights, we only know the overall count for 1633 // the true block. This code is essentially doing tail duplication of the 1634 // naive code-gen, introducing new edges for which counts are not 1635 // available. Divide the counts proportionally between the LHS and RHS of 1636 // the conditional operator. 1637 uint64_t LHSScaledTrueCount = 0; 1638 if (TrueCount) { 1639 double LHSRatio = 1640 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1641 LHSScaledTrueCount = TrueCount * LHSRatio; 1642 } 1643 1644 cond.begin(*this); 1645 EmitBlock(LHSBlock); 1646 incrementProfileCounter(CondOp); 1647 { 1648 ApplyDebugLocation DL(*this, Cond); 1649 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1650 LHSScaledTrueCount); 1651 } 1652 cond.end(*this); 1653 1654 cond.begin(*this); 1655 EmitBlock(RHSBlock); 1656 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1657 TrueCount - LHSScaledTrueCount); 1658 cond.end(*this); 1659 1660 return; 1661 } 1662 1663 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1664 // Conditional operator handling can give us a throw expression as a 1665 // condition for a case like: 1666 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1667 // Fold this to: 1668 // br(c, throw x, br(y, t, f)) 1669 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1670 return; 1671 } 1672 1673 // If the branch has a condition wrapped by __builtin_unpredictable, 1674 // create metadata that specifies that the branch is unpredictable. 1675 // Don't bother if not optimizing because that metadata would not be used. 1676 llvm::MDNode *Unpredictable = nullptr; 1677 auto *Call = dyn_cast<CallExpr>(Cond); 1678 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1679 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1680 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1681 llvm::MDBuilder MDHelper(getLLVMContext()); 1682 Unpredictable = MDHelper.createUnpredictable(); 1683 } 1684 } 1685 1686 // Create branch weights based on the number of times we get here and the 1687 // number of times the condition should be true. 1688 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1689 llvm::MDNode *Weights = 1690 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1691 1692 // Emit the code with the fully general case. 1693 llvm::Value *CondV; 1694 { 1695 ApplyDebugLocation DL(*this, Cond); 1696 CondV = EvaluateExprAsBool(Cond); 1697 } 1698 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1699 } 1700 1701 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1702 /// specified stmt yet. 1703 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1704 CGM.ErrorUnsupported(S, Type); 1705 } 1706 1707 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1708 /// variable-length array whose elements have a non-zero bit-pattern. 1709 /// 1710 /// \param baseType the inner-most element type of the array 1711 /// \param src - a char* pointing to the bit-pattern for a single 1712 /// base element of the array 1713 /// \param sizeInChars - the total size of the VLA, in chars 1714 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1715 Address dest, Address src, 1716 llvm::Value *sizeInChars) { 1717 CGBuilderTy &Builder = CGF.Builder; 1718 1719 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1720 llvm::Value *baseSizeInChars 1721 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1722 1723 Address begin = 1724 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1725 llvm::Value *end = 1726 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1727 1728 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1729 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1730 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1731 1732 // Make a loop over the VLA. C99 guarantees that the VLA element 1733 // count must be nonzero. 1734 CGF.EmitBlock(loopBB); 1735 1736 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1737 cur->addIncoming(begin.getPointer(), originBB); 1738 1739 CharUnits curAlign = 1740 dest.getAlignment().alignmentOfArrayElement(baseSize); 1741 1742 // memcpy the individual element bit-pattern. 1743 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1744 /*volatile*/ false); 1745 1746 // Go to the next element. 1747 llvm::Value *next = 1748 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1749 1750 // Leave if that's the end of the VLA. 1751 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1752 Builder.CreateCondBr(done, contBB, loopBB); 1753 cur->addIncoming(next, loopBB); 1754 1755 CGF.EmitBlock(contBB); 1756 } 1757 1758 void 1759 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1760 // Ignore empty classes in C++. 1761 if (getLangOpts().CPlusPlus) { 1762 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1763 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1764 return; 1765 } 1766 } 1767 1768 // Cast the dest ptr to the appropriate i8 pointer type. 1769 if (DestPtr.getElementType() != Int8Ty) 1770 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1771 1772 // Get size and alignment info for this aggregate. 1773 CharUnits size = getContext().getTypeSizeInChars(Ty); 1774 1775 llvm::Value *SizeVal; 1776 const VariableArrayType *vla; 1777 1778 // Don't bother emitting a zero-byte memset. 1779 if (size.isZero()) { 1780 // But note that getTypeInfo returns 0 for a VLA. 1781 if (const VariableArrayType *vlaType = 1782 dyn_cast_or_null<VariableArrayType>( 1783 getContext().getAsArrayType(Ty))) { 1784 auto VlaSize = getVLASize(vlaType); 1785 SizeVal = VlaSize.NumElts; 1786 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1787 if (!eltSize.isOne()) 1788 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1789 vla = vlaType; 1790 } else { 1791 return; 1792 } 1793 } else { 1794 SizeVal = CGM.getSize(size); 1795 vla = nullptr; 1796 } 1797 1798 // If the type contains a pointer to data member we can't memset it to zero. 1799 // Instead, create a null constant and copy it to the destination. 1800 // TODO: there are other patterns besides zero that we can usefully memset, 1801 // like -1, which happens to be the pattern used by member-pointers. 1802 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1803 // For a VLA, emit a single element, then splat that over the VLA. 1804 if (vla) Ty = getContext().getBaseElementType(vla); 1805 1806 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1807 1808 llvm::GlobalVariable *NullVariable = 1809 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1810 /*isConstant=*/true, 1811 llvm::GlobalVariable::PrivateLinkage, 1812 NullConstant, Twine()); 1813 CharUnits NullAlign = DestPtr.getAlignment(); 1814 NullVariable->setAlignment(NullAlign.getQuantity()); 1815 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1816 NullAlign); 1817 1818 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1819 1820 // Get and call the appropriate llvm.memcpy overload. 1821 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1822 return; 1823 } 1824 1825 // Otherwise, just memset the whole thing to zero. This is legal 1826 // because in LLVM, all default initializers (other than the ones we just 1827 // handled above) are guaranteed to have a bit pattern of all zeros. 1828 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1829 } 1830 1831 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1832 // Make sure that there is a block for the indirect goto. 1833 if (!IndirectBranch) 1834 GetIndirectGotoBlock(); 1835 1836 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1837 1838 // Make sure the indirect branch includes all of the address-taken blocks. 1839 IndirectBranch->addDestination(BB); 1840 return llvm::BlockAddress::get(CurFn, BB); 1841 } 1842 1843 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1844 // If we already made the indirect branch for indirect goto, return its block. 1845 if (IndirectBranch) return IndirectBranch->getParent(); 1846 1847 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1848 1849 // Create the PHI node that indirect gotos will add entries to. 1850 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1851 "indirect.goto.dest"); 1852 1853 // Create the indirect branch instruction. 1854 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1855 return IndirectBranch->getParent(); 1856 } 1857 1858 /// Computes the length of an array in elements, as well as the base 1859 /// element type and a properly-typed first element pointer. 1860 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1861 QualType &baseType, 1862 Address &addr) { 1863 const ArrayType *arrayType = origArrayType; 1864 1865 // If it's a VLA, we have to load the stored size. Note that 1866 // this is the size of the VLA in bytes, not its size in elements. 1867 llvm::Value *numVLAElements = nullptr; 1868 if (isa<VariableArrayType>(arrayType)) { 1869 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1870 1871 // Walk into all VLAs. This doesn't require changes to addr, 1872 // which has type T* where T is the first non-VLA element type. 1873 do { 1874 QualType elementType = arrayType->getElementType(); 1875 arrayType = getContext().getAsArrayType(elementType); 1876 1877 // If we only have VLA components, 'addr' requires no adjustment. 1878 if (!arrayType) { 1879 baseType = elementType; 1880 return numVLAElements; 1881 } 1882 } while (isa<VariableArrayType>(arrayType)); 1883 1884 // We get out here only if we find a constant array type 1885 // inside the VLA. 1886 } 1887 1888 // We have some number of constant-length arrays, so addr should 1889 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1890 // down to the first element of addr. 1891 SmallVector<llvm::Value*, 8> gepIndices; 1892 1893 // GEP down to the array type. 1894 llvm::ConstantInt *zero = Builder.getInt32(0); 1895 gepIndices.push_back(zero); 1896 1897 uint64_t countFromCLAs = 1; 1898 QualType eltType; 1899 1900 llvm::ArrayType *llvmArrayType = 1901 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1902 while (llvmArrayType) { 1903 assert(isa<ConstantArrayType>(arrayType)); 1904 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1905 == llvmArrayType->getNumElements()); 1906 1907 gepIndices.push_back(zero); 1908 countFromCLAs *= llvmArrayType->getNumElements(); 1909 eltType = arrayType->getElementType(); 1910 1911 llvmArrayType = 1912 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1913 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1914 assert((!llvmArrayType || arrayType) && 1915 "LLVM and Clang types are out-of-synch"); 1916 } 1917 1918 if (arrayType) { 1919 // From this point onwards, the Clang array type has been emitted 1920 // as some other type (probably a packed struct). Compute the array 1921 // size, and just emit the 'begin' expression as a bitcast. 1922 while (arrayType) { 1923 countFromCLAs *= 1924 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1925 eltType = arrayType->getElementType(); 1926 arrayType = getContext().getAsArrayType(eltType); 1927 } 1928 1929 llvm::Type *baseType = ConvertType(eltType); 1930 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1931 } else { 1932 // Create the actual GEP. 1933 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1934 gepIndices, "array.begin"), 1935 addr.getAlignment()); 1936 } 1937 1938 baseType = eltType; 1939 1940 llvm::Value *numElements 1941 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1942 1943 // If we had any VLA dimensions, factor them in. 1944 if (numVLAElements) 1945 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1946 1947 return numElements; 1948 } 1949 1950 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1951 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1952 assert(vla && "type was not a variable array type!"); 1953 return getVLASize(vla); 1954 } 1955 1956 CodeGenFunction::VlaSizePair 1957 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1958 // The number of elements so far; always size_t. 1959 llvm::Value *numElements = nullptr; 1960 1961 QualType elementType; 1962 do { 1963 elementType = type->getElementType(); 1964 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1965 assert(vlaSize && "no size for VLA!"); 1966 assert(vlaSize->getType() == SizeTy); 1967 1968 if (!numElements) { 1969 numElements = vlaSize; 1970 } else { 1971 // It's undefined behavior if this wraps around, so mark it that way. 1972 // FIXME: Teach -fsanitize=undefined to trap this. 1973 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1974 } 1975 } while ((type = getContext().getAsVariableArrayType(elementType))); 1976 1977 return { numElements, elementType }; 1978 } 1979 1980 CodeGenFunction::VlaSizePair 1981 CodeGenFunction::getVLAElements1D(QualType type) { 1982 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1983 assert(vla && "type was not a variable array type!"); 1984 return getVLAElements1D(vla); 1985 } 1986 1987 CodeGenFunction::VlaSizePair 1988 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1989 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1990 assert(VlaSize && "no size for VLA!"); 1991 assert(VlaSize->getType() == SizeTy); 1992 return { VlaSize, Vla->getElementType() }; 1993 } 1994 1995 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1996 assert(type->isVariablyModifiedType() && 1997 "Must pass variably modified type to EmitVLASizes!"); 1998 1999 EnsureInsertPoint(); 2000 2001 // We're going to walk down into the type and look for VLA 2002 // expressions. 2003 do { 2004 assert(type->isVariablyModifiedType()); 2005 2006 const Type *ty = type.getTypePtr(); 2007 switch (ty->getTypeClass()) { 2008 2009 #define TYPE(Class, Base) 2010 #define ABSTRACT_TYPE(Class, Base) 2011 #define NON_CANONICAL_TYPE(Class, Base) 2012 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2013 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2014 #include "clang/AST/TypeNodes.def" 2015 llvm_unreachable("unexpected dependent type!"); 2016 2017 // These types are never variably-modified. 2018 case Type::Builtin: 2019 case Type::Complex: 2020 case Type::Vector: 2021 case Type::ExtVector: 2022 case Type::Record: 2023 case Type::Enum: 2024 case Type::Elaborated: 2025 case Type::TemplateSpecialization: 2026 case Type::ObjCTypeParam: 2027 case Type::ObjCObject: 2028 case Type::ObjCInterface: 2029 case Type::ObjCObjectPointer: 2030 llvm_unreachable("type class is never variably-modified!"); 2031 2032 case Type::Adjusted: 2033 type = cast<AdjustedType>(ty)->getAdjustedType(); 2034 break; 2035 2036 case Type::Decayed: 2037 type = cast<DecayedType>(ty)->getPointeeType(); 2038 break; 2039 2040 case Type::Pointer: 2041 type = cast<PointerType>(ty)->getPointeeType(); 2042 break; 2043 2044 case Type::BlockPointer: 2045 type = cast<BlockPointerType>(ty)->getPointeeType(); 2046 break; 2047 2048 case Type::LValueReference: 2049 case Type::RValueReference: 2050 type = cast<ReferenceType>(ty)->getPointeeType(); 2051 break; 2052 2053 case Type::MemberPointer: 2054 type = cast<MemberPointerType>(ty)->getPointeeType(); 2055 break; 2056 2057 case Type::ConstantArray: 2058 case Type::IncompleteArray: 2059 // Losing element qualification here is fine. 2060 type = cast<ArrayType>(ty)->getElementType(); 2061 break; 2062 2063 case Type::VariableArray: { 2064 // Losing element qualification here is fine. 2065 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2066 2067 // Unknown size indication requires no size computation. 2068 // Otherwise, evaluate and record it. 2069 if (const Expr *size = vat->getSizeExpr()) { 2070 // It's possible that we might have emitted this already, 2071 // e.g. with a typedef and a pointer to it. 2072 llvm::Value *&entry = VLASizeMap[size]; 2073 if (!entry) { 2074 llvm::Value *Size = EmitScalarExpr(size); 2075 2076 // C11 6.7.6.2p5: 2077 // If the size is an expression that is not an integer constant 2078 // expression [...] each time it is evaluated it shall have a value 2079 // greater than zero. 2080 if (SanOpts.has(SanitizerKind::VLABound) && 2081 size->getType()->isSignedIntegerType()) { 2082 SanitizerScope SanScope(this); 2083 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2084 llvm::Constant *StaticArgs[] = { 2085 EmitCheckSourceLocation(size->getLocStart()), 2086 EmitCheckTypeDescriptor(size->getType()) 2087 }; 2088 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2089 SanitizerKind::VLABound), 2090 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2091 } 2092 2093 // Always zexting here would be wrong if it weren't 2094 // undefined behavior to have a negative bound. 2095 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2096 } 2097 } 2098 type = vat->getElementType(); 2099 break; 2100 } 2101 2102 case Type::FunctionProto: 2103 case Type::FunctionNoProto: 2104 type = cast<FunctionType>(ty)->getReturnType(); 2105 break; 2106 2107 case Type::Paren: 2108 case Type::TypeOf: 2109 case Type::UnaryTransform: 2110 case Type::Attributed: 2111 case Type::SubstTemplateTypeParm: 2112 case Type::PackExpansion: 2113 // Keep walking after single level desugaring. 2114 type = type.getSingleStepDesugaredType(getContext()); 2115 break; 2116 2117 case Type::Typedef: 2118 case Type::Decltype: 2119 case Type::Auto: 2120 case Type::DeducedTemplateSpecialization: 2121 // Stop walking: nothing to do. 2122 return; 2123 2124 case Type::TypeOfExpr: 2125 // Stop walking: emit typeof expression. 2126 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2127 return; 2128 2129 case Type::Atomic: 2130 type = cast<AtomicType>(ty)->getValueType(); 2131 break; 2132 2133 case Type::Pipe: 2134 type = cast<PipeType>(ty)->getElementType(); 2135 break; 2136 } 2137 } while (type->isVariablyModifiedType()); 2138 } 2139 2140 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2141 if (getContext().getBuiltinVaListType()->isArrayType()) 2142 return EmitPointerWithAlignment(E); 2143 return EmitLValue(E).getAddress(); 2144 } 2145 2146 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2147 return EmitLValue(E).getAddress(); 2148 } 2149 2150 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2151 const APValue &Init) { 2152 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2153 if (CGDebugInfo *Dbg = getDebugInfo()) 2154 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2155 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2156 } 2157 2158 CodeGenFunction::PeepholeProtection 2159 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2160 // At the moment, the only aggressive peephole we do in IR gen 2161 // is trunc(zext) folding, but if we add more, we can easily 2162 // extend this protection. 2163 2164 if (!rvalue.isScalar()) return PeepholeProtection(); 2165 llvm::Value *value = rvalue.getScalarVal(); 2166 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2167 2168 // Just make an extra bitcast. 2169 assert(HaveInsertPoint()); 2170 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2171 Builder.GetInsertBlock()); 2172 2173 PeepholeProtection protection; 2174 protection.Inst = inst; 2175 return protection; 2176 } 2177 2178 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2179 if (!protection.Inst) return; 2180 2181 // In theory, we could try to duplicate the peepholes now, but whatever. 2182 protection.Inst->eraseFromParent(); 2183 } 2184 2185 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2186 llvm::Value *AnnotatedVal, 2187 StringRef AnnotationStr, 2188 SourceLocation Location) { 2189 llvm::Value *Args[4] = { 2190 AnnotatedVal, 2191 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2192 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2193 CGM.EmitAnnotationLineNo(Location) 2194 }; 2195 return Builder.CreateCall(AnnotationFn, Args); 2196 } 2197 2198 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2199 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2200 // FIXME We create a new bitcast for every annotation because that's what 2201 // llvm-gcc was doing. 2202 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2203 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2204 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2205 I->getAnnotation(), D->getLocation()); 2206 } 2207 2208 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2209 Address Addr) { 2210 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2211 llvm::Value *V = Addr.getPointer(); 2212 llvm::Type *VTy = V->getType(); 2213 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2214 CGM.Int8PtrTy); 2215 2216 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2217 // FIXME Always emit the cast inst so we can differentiate between 2218 // annotation on the first field of a struct and annotation on the struct 2219 // itself. 2220 if (VTy != CGM.Int8PtrTy) 2221 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2222 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2223 V = Builder.CreateBitCast(V, VTy); 2224 } 2225 2226 return Address(V, Addr.getAlignment()); 2227 } 2228 2229 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2230 2231 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2232 : CGF(CGF) { 2233 assert(!CGF->IsSanitizerScope); 2234 CGF->IsSanitizerScope = true; 2235 } 2236 2237 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2238 CGF->IsSanitizerScope = false; 2239 } 2240 2241 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2242 const llvm::Twine &Name, 2243 llvm::BasicBlock *BB, 2244 llvm::BasicBlock::iterator InsertPt) const { 2245 LoopStack.InsertHelper(I); 2246 if (IsSanitizerScope) 2247 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2248 } 2249 2250 void CGBuilderInserter::InsertHelper( 2251 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2252 llvm::BasicBlock::iterator InsertPt) const { 2253 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2254 if (CGF) 2255 CGF->InsertHelper(I, Name, BB, InsertPt); 2256 } 2257 2258 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2259 CodeGenModule &CGM, const FunctionDecl *FD, 2260 std::string &FirstMissing) { 2261 // If there aren't any required features listed then go ahead and return. 2262 if (ReqFeatures.empty()) 2263 return false; 2264 2265 // Now build up the set of caller features and verify that all the required 2266 // features are there. 2267 llvm::StringMap<bool> CallerFeatureMap; 2268 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2269 2270 // If we have at least one of the features in the feature list return 2271 // true, otherwise return false. 2272 return std::all_of( 2273 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2274 SmallVector<StringRef, 1> OrFeatures; 2275 Feature.split(OrFeatures, "|"); 2276 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2277 [&](StringRef Feature) { 2278 if (!CallerFeatureMap.lookup(Feature)) { 2279 FirstMissing = Feature.str(); 2280 return false; 2281 } 2282 return true; 2283 }); 2284 }); 2285 } 2286 2287 // Emits an error if we don't have a valid set of target features for the 2288 // called function. 2289 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2290 const FunctionDecl *TargetDecl) { 2291 // Early exit if this is an indirect call. 2292 if (!TargetDecl) 2293 return; 2294 2295 // Get the current enclosing function if it exists. If it doesn't 2296 // we can't check the target features anyhow. 2297 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2298 if (!FD) 2299 return; 2300 2301 // Grab the required features for the call. For a builtin this is listed in 2302 // the td file with the default cpu, for an always_inline function this is any 2303 // listed cpu and any listed features. 2304 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2305 std::string MissingFeature; 2306 if (BuiltinID) { 2307 SmallVector<StringRef, 1> ReqFeatures; 2308 const char *FeatureList = 2309 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2310 // Return if the builtin doesn't have any required features. 2311 if (!FeatureList || StringRef(FeatureList) == "") 2312 return; 2313 StringRef(FeatureList).split(ReqFeatures, ","); 2314 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2315 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2316 << TargetDecl->getDeclName() 2317 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2318 2319 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2320 // Get the required features for the callee. 2321 SmallVector<StringRef, 1> ReqFeatures; 2322 llvm::StringMap<bool> CalleeFeatureMap; 2323 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2324 for (const auto &F : CalleeFeatureMap) { 2325 // Only positive features are "required". 2326 if (F.getValue()) 2327 ReqFeatures.push_back(F.getKey()); 2328 } 2329 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2330 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2331 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2332 } 2333 } 2334 2335 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2336 if (!CGM.getCodeGenOpts().SanitizeStats) 2337 return; 2338 2339 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2340 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2341 CGM.getSanStats().create(IRB, SSK); 2342 } 2343 2344 llvm::Value * 2345 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2346 llvm::Value *TrueCondition = nullptr; 2347 if (!RO.ParsedAttribute.Architecture.empty()) 2348 TrueCondition = EmitX86CpuIs(RO.ParsedAttribute.Architecture); 2349 2350 if (!RO.ParsedAttribute.Features.empty()) { 2351 SmallVector<StringRef, 8> FeatureList; 2352 llvm::for_each(RO.ParsedAttribute.Features, 2353 [&FeatureList](const std::string &Feature) { 2354 FeatureList.push_back(StringRef{Feature}.substr(1)); 2355 }); 2356 llvm::Value *FeatureCmp = EmitX86CpuSupports(FeatureList); 2357 TrueCondition = TrueCondition ? Builder.CreateAnd(TrueCondition, FeatureCmp) 2358 : FeatureCmp; 2359 } 2360 return TrueCondition; 2361 } 2362 2363 void CodeGenFunction::EmitMultiVersionResolver( 2364 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2365 assert((getContext().getTargetInfo().getTriple().getArch() == 2366 llvm::Triple::x86 || 2367 getContext().getTargetInfo().getTriple().getArch() == 2368 llvm::Triple::x86_64) && 2369 "Only implemented for x86 targets"); 2370 2371 // Main function's basic block. 2372 llvm::BasicBlock *CurBlock = createBasicBlock("entry", Resolver); 2373 Builder.SetInsertPoint(CurBlock); 2374 EmitX86CpuInit(); 2375 2376 llvm::Function *DefaultFunc = nullptr; 2377 for (const MultiVersionResolverOption &RO : Options) { 2378 Builder.SetInsertPoint(CurBlock); 2379 llvm::Value *TrueCondition = FormResolverCondition(RO); 2380 2381 if (!TrueCondition) { 2382 DefaultFunc = RO.Function; 2383 } else { 2384 llvm::BasicBlock *RetBlock = createBasicBlock("ro_ret", Resolver); 2385 llvm::IRBuilder<> RetBuilder(RetBlock); 2386 RetBuilder.CreateRet(RO.Function); 2387 CurBlock = createBasicBlock("ro_else", Resolver); 2388 Builder.CreateCondBr(TrueCondition, RetBlock, CurBlock); 2389 } 2390 } 2391 2392 assert(DefaultFunc && "No default version?"); 2393 // Emit return from the 'else-ist' block. 2394 Builder.SetInsertPoint(CurBlock); 2395 Builder.CreateRet(DefaultFunc); 2396 } 2397 2398 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2399 if (CGDebugInfo *DI = getDebugInfo()) 2400 return DI->SourceLocToDebugLoc(Location); 2401 2402 return llvm::DebugLoc(); 2403 } 2404