1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Operator.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 45 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 46 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 47 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 48 OutermostConditional(0), TerminateLandingPad(0), 49 TerminateHandler(0), TrapBB(0) { 50 if (!suppressNewContext) 51 CGM.getCXXABI().getMangleContext().startNewFunction(); 52 53 llvm::FastMathFlags FMF; 54 if (CGM.getLangOpts().FastMath) 55 FMF.setUnsafeAlgebra(); 56 if (CGM.getLangOpts().FiniteMathOnly) { 57 FMF.setNoNaNs(); 58 FMF.setNoInfs(); 59 } 60 Builder.SetFastMathFlags(FMF); 61 } 62 63 CodeGenFunction::~CodeGenFunction() { 64 // If there are any unclaimed block infos, go ahead and destroy them 65 // now. This can happen if IR-gen gets clever and skips evaluating 66 // something. 67 if (FirstBlockInfo) 68 destroyBlockInfos(FirstBlockInfo); 69 } 70 71 72 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 73 return CGM.getTypes().ConvertTypeForMem(T); 74 } 75 76 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 77 return CGM.getTypes().ConvertType(T); 78 } 79 80 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 81 type = type.getCanonicalType(); 82 while (true) { 83 switch (type->getTypeClass()) { 84 #define TYPE(name, parent) 85 #define ABSTRACT_TYPE(name, parent) 86 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 87 #define DEPENDENT_TYPE(name, parent) case Type::name: 88 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 89 #include "clang/AST/TypeNodes.def" 90 llvm_unreachable("non-canonical or dependent type in IR-generation"); 91 92 // Various scalar types. 93 case Type::Builtin: 94 case Type::Pointer: 95 case Type::BlockPointer: 96 case Type::LValueReference: 97 case Type::RValueReference: 98 case Type::MemberPointer: 99 case Type::Vector: 100 case Type::ExtVector: 101 case Type::FunctionProto: 102 case Type::FunctionNoProto: 103 case Type::Enum: 104 case Type::ObjCObjectPointer: 105 return TEK_Scalar; 106 107 // Complexes. 108 case Type::Complex: 109 return TEK_Complex; 110 111 // Arrays, records, and Objective-C objects. 112 case Type::ConstantArray: 113 case Type::IncompleteArray: 114 case Type::VariableArray: 115 case Type::Record: 116 case Type::ObjCObject: 117 case Type::ObjCInterface: 118 return TEK_Aggregate; 119 120 // We operate on atomic values according to their underlying type. 121 case Type::Atomic: 122 type = cast<AtomicType>(type)->getValueType(); 123 continue; 124 } 125 llvm_unreachable("unknown type kind!"); 126 } 127 } 128 129 void CodeGenFunction::EmitReturnBlock() { 130 // For cleanliness, we try to avoid emitting the return block for 131 // simple cases. 132 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 133 134 if (CurBB) { 135 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 136 137 // We have a valid insert point, reuse it if it is empty or there are no 138 // explicit jumps to the return block. 139 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 140 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 141 delete ReturnBlock.getBlock(); 142 } else 143 EmitBlock(ReturnBlock.getBlock()); 144 return; 145 } 146 147 // Otherwise, if the return block is the target of a single direct 148 // branch then we can just put the code in that block instead. This 149 // cleans up functions which started with a unified return block. 150 if (ReturnBlock.getBlock()->hasOneUse()) { 151 llvm::BranchInst *BI = 152 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 153 if (BI && BI->isUnconditional() && 154 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 155 // Reset insertion point, including debug location, and delete the 156 // branch. This is really subtle and only works because the next change 157 // in location will hit the caching in CGDebugInfo::EmitLocation and not 158 // override this. 159 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 160 Builder.SetInsertPoint(BI->getParent()); 161 BI->eraseFromParent(); 162 delete ReturnBlock.getBlock(); 163 return; 164 } 165 } 166 167 // FIXME: We are at an unreachable point, there is no reason to emit the block 168 // unless it has uses. However, we still need a place to put the debug 169 // region.end for now. 170 171 EmitBlock(ReturnBlock.getBlock()); 172 } 173 174 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 175 if (!BB) return; 176 if (!BB->use_empty()) 177 return CGF.CurFn->getBasicBlockList().push_back(BB); 178 delete BB; 179 } 180 181 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 182 assert(BreakContinueStack.empty() && 183 "mismatched push/pop in break/continue stack!"); 184 185 if (CGDebugInfo *DI = getDebugInfo()) 186 DI->EmitLocation(Builder, EndLoc); 187 188 // Pop any cleanups that might have been associated with the 189 // parameters. Do this in whatever block we're currently in; it's 190 // important to do this before we enter the return block or return 191 // edges will be *really* confused. 192 if (EHStack.stable_begin() != PrologueCleanupDepth) 193 PopCleanupBlocks(PrologueCleanupDepth); 194 195 // Emit function epilog (to return). 196 EmitReturnBlock(); 197 198 if (ShouldInstrumentFunction()) 199 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 200 201 // Emit debug descriptor for function end. 202 if (CGDebugInfo *DI = getDebugInfo()) { 203 DI->EmitFunctionEnd(Builder); 204 } 205 206 EmitFunctionEpilog(*CurFnInfo); 207 EmitEndEHSpec(CurCodeDecl); 208 209 assert(EHStack.empty() && 210 "did not remove all scopes from cleanup stack!"); 211 212 // If someone did an indirect goto, emit the indirect goto block at the end of 213 // the function. 214 if (IndirectBranch) { 215 EmitBlock(IndirectBranch->getParent()); 216 Builder.ClearInsertionPoint(); 217 } 218 219 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 220 llvm::Instruction *Ptr = AllocaInsertPt; 221 AllocaInsertPt = 0; 222 Ptr->eraseFromParent(); 223 224 // If someone took the address of a label but never did an indirect goto, we 225 // made a zero entry PHI node, which is illegal, zap it now. 226 if (IndirectBranch) { 227 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 228 if (PN->getNumIncomingValues() == 0) { 229 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 230 PN->eraseFromParent(); 231 } 232 } 233 234 EmitIfUsed(*this, EHResumeBlock); 235 EmitIfUsed(*this, TerminateLandingPad); 236 EmitIfUsed(*this, TerminateHandler); 237 EmitIfUsed(*this, UnreachableBlock); 238 239 if (CGM.getCodeGenOpts().EmitDeclMetadata) 240 EmitDeclMetadata(); 241 } 242 243 /// ShouldInstrumentFunction - Return true if the current function should be 244 /// instrumented with __cyg_profile_func_* calls 245 bool CodeGenFunction::ShouldInstrumentFunction() { 246 if (!CGM.getCodeGenOpts().InstrumentFunctions) 247 return false; 248 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 249 return false; 250 return true; 251 } 252 253 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 254 /// instrumentation function with the current function and the call site, if 255 /// function instrumentation is enabled. 256 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 257 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 258 llvm::PointerType *PointerTy = Int8PtrTy; 259 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 260 llvm::FunctionType *FunctionTy = 261 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 262 263 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 264 llvm::CallInst *CallSite = Builder.CreateCall( 265 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 266 llvm::ConstantInt::get(Int32Ty, 0), 267 "callsite"); 268 269 llvm::Value *args[] = { 270 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 271 CallSite 272 }; 273 274 EmitNounwindRuntimeCall(F, args); 275 } 276 277 void CodeGenFunction::EmitMCountInstrumentation() { 278 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 279 280 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 281 Target.getMCountName()); 282 EmitNounwindRuntimeCall(MCountFn); 283 } 284 285 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 286 // information in the program executable. The argument information stored 287 // includes the argument name, its type, the address and access qualifiers used. 288 // FIXME: Add type, address, and access qualifiers. 289 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 290 CodeGenModule &CGM,llvm::LLVMContext &Context, 291 SmallVector <llvm::Value*, 5> &kernelMDArgs) { 292 293 // Create MDNodes that represents the kernel arg metadata. 294 // Each MDNode is a list in the form of "key", N number of values which is 295 // the same number of values as their are kernel arguments. 296 297 // MDNode for the kernel argument names. 298 SmallVector<llvm::Value*, 8> argNames; 299 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 300 301 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 302 const ParmVarDecl *parm = FD->getParamDecl(i); 303 304 // Get argument name. 305 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 306 307 } 308 // Add MDNode to the list of all metadata. 309 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 310 } 311 312 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 313 llvm::Function *Fn) 314 { 315 if (!FD->hasAttr<OpenCLKernelAttr>()) 316 return; 317 318 llvm::LLVMContext &Context = getLLVMContext(); 319 320 SmallVector <llvm::Value*, 5> kernelMDArgs; 321 kernelMDArgs.push_back(Fn); 322 323 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 324 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 325 326 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 327 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 328 llvm::Value *attrMDArgs[] = { 329 llvm::MDString::get(Context, "work_group_size_hint"), 330 Builder.getInt32(attr->getXDim()), 331 Builder.getInt32(attr->getYDim()), 332 Builder.getInt32(attr->getZDim()) 333 }; 334 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 335 } 336 337 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 338 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 339 llvm::Value *attrMDArgs[] = { 340 llvm::MDString::get(Context, "reqd_work_group_size"), 341 Builder.getInt32(attr->getXDim()), 342 Builder.getInt32(attr->getYDim()), 343 Builder.getInt32(attr->getZDim()) 344 }; 345 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 346 } 347 348 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 349 llvm::NamedMDNode *OpenCLKernelMetadata = 350 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 351 OpenCLKernelMetadata->addOperand(kernelMDNode); 352 } 353 354 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 355 llvm::Function *Fn, 356 const CGFunctionInfo &FnInfo, 357 const FunctionArgList &Args, 358 SourceLocation StartLoc) { 359 const Decl *D = GD.getDecl(); 360 361 DidCallStackSave = false; 362 CurCodeDecl = CurFuncDecl = D; 363 FnRetTy = RetTy; 364 CurFn = Fn; 365 CurFnInfo = &FnInfo; 366 assert(CurFn->isDeclaration() && "Function already has body?"); 367 368 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 369 SanOpts = &SanitizerOptions::Disabled; 370 SanitizePerformTypeCheck = false; 371 } 372 373 // Pass inline keyword to optimizer if it appears explicitly on any 374 // declaration. 375 if (!CGM.getCodeGenOpts().NoInline) 376 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 377 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 378 RE = FD->redecls_end(); RI != RE; ++RI) 379 if (RI->isInlineSpecified()) { 380 Fn->addFnAttr(llvm::Attribute::InlineHint); 381 break; 382 } 383 384 if (getLangOpts().OpenCL) { 385 // Add metadata for a kernel function. 386 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 387 EmitOpenCLKernelMetadata(FD, Fn); 388 } 389 390 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 391 392 // Create a marker to make it easy to insert allocas into the entryblock 393 // later. Don't create this with the builder, because we don't want it 394 // folded. 395 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 396 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 397 if (Builder.isNamePreserving()) 398 AllocaInsertPt->setName("allocapt"); 399 400 ReturnBlock = getJumpDestInCurrentScope("return"); 401 402 Builder.SetInsertPoint(EntryBB); 403 404 // Emit subprogram debug descriptor. 405 if (CGDebugInfo *DI = getDebugInfo()) { 406 unsigned NumArgs = 0; 407 QualType *ArgsArray = new QualType[Args.size()]; 408 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 409 i != e; ++i) { 410 ArgsArray[NumArgs++] = (*i)->getType(); 411 } 412 413 QualType FnType = 414 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 415 FunctionProtoType::ExtProtoInfo()); 416 417 delete[] ArgsArray; 418 419 DI->setLocation(StartLoc); 420 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 421 } 422 423 if (ShouldInstrumentFunction()) 424 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 425 426 if (CGM.getCodeGenOpts().InstrumentForProfiling) 427 EmitMCountInstrumentation(); 428 429 if (RetTy->isVoidType()) { 430 // Void type; nothing to return. 431 ReturnValue = 0; 432 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 433 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 434 // Indirect aggregate return; emit returned value directly into sret slot. 435 // This reduces code size, and affects correctness in C++. 436 ReturnValue = CurFn->arg_begin(); 437 } else { 438 ReturnValue = CreateIRTemp(RetTy, "retval"); 439 440 // Tell the epilog emitter to autorelease the result. We do this 441 // now so that various specialized functions can suppress it 442 // during their IR-generation. 443 if (getLangOpts().ObjCAutoRefCount && 444 !CurFnInfo->isReturnsRetained() && 445 RetTy->isObjCRetainableType()) 446 AutoreleaseResult = true; 447 } 448 449 EmitStartEHSpec(CurCodeDecl); 450 451 PrologueCleanupDepth = EHStack.stable_begin(); 452 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 453 454 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 455 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 456 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 457 if (MD->getParent()->isLambda() && 458 MD->getOverloadedOperator() == OO_Call) { 459 // We're in a lambda; figure out the captures. 460 MD->getParent()->getCaptureFields(LambdaCaptureFields, 461 LambdaThisCaptureField); 462 if (LambdaThisCaptureField) { 463 // If this lambda captures this, load it. 464 QualType LambdaTagType = 465 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 466 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 467 LambdaTagType); 468 LValue ThisLValue = EmitLValueForField(LambdaLV, 469 LambdaThisCaptureField); 470 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 471 } 472 } else { 473 // Not in a lambda; just use 'this' from the method. 474 // FIXME: Should we generate a new load for each use of 'this'? The 475 // fast register allocator would be happier... 476 CXXThisValue = CXXABIThisValue; 477 } 478 } 479 480 // If any of the arguments have a variably modified type, make sure to 481 // emit the type size. 482 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 483 i != e; ++i) { 484 const VarDecl *VD = *i; 485 486 // Dig out the type as written from ParmVarDecls; it's unclear whether 487 // the standard (C99 6.9.1p10) requires this, but we're following the 488 // precedent set by gcc. 489 QualType Ty; 490 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 491 Ty = PVD->getOriginalType(); 492 else 493 Ty = VD->getType(); 494 495 if (Ty->isVariablyModifiedType()) 496 EmitVariablyModifiedType(Ty); 497 } 498 // Emit a location at the end of the prologue. 499 if (CGDebugInfo *DI = getDebugInfo()) 500 DI->EmitLocation(Builder, StartLoc); 501 } 502 503 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 504 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 505 assert(FD->getBody()); 506 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 507 EmitCompoundStmtWithoutScope(*S); 508 else 509 EmitStmt(FD->getBody()); 510 } 511 512 /// Tries to mark the given function nounwind based on the 513 /// non-existence of any throwing calls within it. We believe this is 514 /// lightweight enough to do at -O0. 515 static void TryMarkNoThrow(llvm::Function *F) { 516 // LLVM treats 'nounwind' on a function as part of the type, so we 517 // can't do this on functions that can be overwritten. 518 if (F->mayBeOverridden()) return; 519 520 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 521 for (llvm::BasicBlock::iterator 522 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 523 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 524 if (!Call->doesNotThrow()) 525 return; 526 } else if (isa<llvm::ResumeInst>(&*BI)) { 527 return; 528 } 529 F->setDoesNotThrow(); 530 } 531 532 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 533 const CGFunctionInfo &FnInfo) { 534 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 535 536 // Check if we should generate debug info for this function. 537 if (!FD->hasAttr<NoDebugAttr>()) 538 maybeInitializeDebugInfo(); 539 540 FunctionArgList Args; 541 QualType ResTy = FD->getResultType(); 542 543 CurGD = GD; 544 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 545 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 546 547 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 548 Args.push_back(FD->getParamDecl(i)); 549 550 SourceRange BodyRange; 551 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 552 553 // Emit the standard function prologue. 554 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 555 556 // Generate the body of the function. 557 if (isa<CXXDestructorDecl>(FD)) 558 EmitDestructorBody(Args); 559 else if (isa<CXXConstructorDecl>(FD)) 560 EmitConstructorBody(Args); 561 else if (getLangOpts().CUDA && 562 !CGM.getCodeGenOpts().CUDAIsDevice && 563 FD->hasAttr<CUDAGlobalAttr>()) 564 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 565 else if (isa<CXXConversionDecl>(FD) && 566 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 567 // The lambda conversion to block pointer is special; the semantics can't be 568 // expressed in the AST, so IRGen needs to special-case it. 569 EmitLambdaToBlockPointerBody(Args); 570 } else if (isa<CXXMethodDecl>(FD) && 571 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 572 // The lambda "__invoke" function is special, because it forwards or 573 // clones the body of the function call operator (but is actually static). 574 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 575 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 576 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 577 // Implicit copy-assignment gets the same special treatment as implicit 578 // copy-constructors. 579 emitImplicitAssignmentOperatorBody(Args); 580 } 581 else 582 EmitFunctionBody(Args); 583 584 // C++11 [stmt.return]p2: 585 // Flowing off the end of a function [...] results in undefined behavior in 586 // a value-returning function. 587 // C11 6.9.1p12: 588 // If the '}' that terminates a function is reached, and the value of the 589 // function call is used by the caller, the behavior is undefined. 590 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 591 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 592 if (SanOpts->Return) 593 EmitCheck(Builder.getFalse(), "missing_return", 594 EmitCheckSourceLocation(FD->getLocation()), 595 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 596 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 597 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 598 Builder.CreateUnreachable(); 599 Builder.ClearInsertionPoint(); 600 } 601 602 // Emit the standard function epilogue. 603 FinishFunction(BodyRange.getEnd()); 604 605 // If we haven't marked the function nothrow through other means, do 606 // a quick pass now to see if we can. 607 if (!CurFn->doesNotThrow()) 608 TryMarkNoThrow(CurFn); 609 } 610 611 /// ContainsLabel - Return true if the statement contains a label in it. If 612 /// this statement is not executed normally, it not containing a label means 613 /// that we can just remove the code. 614 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 615 // Null statement, not a label! 616 if (S == 0) return false; 617 618 // If this is a label, we have to emit the code, consider something like: 619 // if (0) { ... foo: bar(); } goto foo; 620 // 621 // TODO: If anyone cared, we could track __label__'s, since we know that you 622 // can't jump to one from outside their declared region. 623 if (isa<LabelStmt>(S)) 624 return true; 625 626 // If this is a case/default statement, and we haven't seen a switch, we have 627 // to emit the code. 628 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 629 return true; 630 631 // If this is a switch statement, we want to ignore cases below it. 632 if (isa<SwitchStmt>(S)) 633 IgnoreCaseStmts = true; 634 635 // Scan subexpressions for verboten labels. 636 for (Stmt::const_child_range I = S->children(); I; ++I) 637 if (ContainsLabel(*I, IgnoreCaseStmts)) 638 return true; 639 640 return false; 641 } 642 643 /// containsBreak - Return true if the statement contains a break out of it. 644 /// If the statement (recursively) contains a switch or loop with a break 645 /// inside of it, this is fine. 646 bool CodeGenFunction::containsBreak(const Stmt *S) { 647 // Null statement, not a label! 648 if (S == 0) return false; 649 650 // If this is a switch or loop that defines its own break scope, then we can 651 // include it and anything inside of it. 652 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 653 isa<ForStmt>(S)) 654 return false; 655 656 if (isa<BreakStmt>(S)) 657 return true; 658 659 // Scan subexpressions for verboten breaks. 660 for (Stmt::const_child_range I = S->children(); I; ++I) 661 if (containsBreak(*I)) 662 return true; 663 664 return false; 665 } 666 667 668 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 669 /// to a constant, or if it does but contains a label, return false. If it 670 /// constant folds return true and set the boolean result in Result. 671 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 672 bool &ResultBool) { 673 llvm::APSInt ResultInt; 674 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 675 return false; 676 677 ResultBool = ResultInt.getBoolValue(); 678 return true; 679 } 680 681 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 682 /// to a constant, or if it does but contains a label, return false. If it 683 /// constant folds return true and set the folded value. 684 bool CodeGenFunction:: 685 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 686 // FIXME: Rename and handle conversion of other evaluatable things 687 // to bool. 688 llvm::APSInt Int; 689 if (!Cond->EvaluateAsInt(Int, getContext())) 690 return false; // Not foldable, not integer or not fully evaluatable. 691 692 if (CodeGenFunction::ContainsLabel(Cond)) 693 return false; // Contains a label. 694 695 ResultInt = Int; 696 return true; 697 } 698 699 700 701 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 702 /// statement) to the specified blocks. Based on the condition, this might try 703 /// to simplify the codegen of the conditional based on the branch. 704 /// 705 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 706 llvm::BasicBlock *TrueBlock, 707 llvm::BasicBlock *FalseBlock) { 708 Cond = Cond->IgnoreParens(); 709 710 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 711 // Handle X && Y in a condition. 712 if (CondBOp->getOpcode() == BO_LAnd) { 713 // If we have "1 && X", simplify the code. "0 && X" would have constant 714 // folded if the case was simple enough. 715 bool ConstantBool = false; 716 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 717 ConstantBool) { 718 // br(1 && X) -> br(X). 719 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 720 } 721 722 // If we have "X && 1", simplify the code to use an uncond branch. 723 // "X && 0" would have been constant folded to 0. 724 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 725 ConstantBool) { 726 // br(X && 1) -> br(X). 727 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 728 } 729 730 // Emit the LHS as a conditional. If the LHS conditional is false, we 731 // want to jump to the FalseBlock. 732 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 733 734 ConditionalEvaluation eval(*this); 735 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 736 EmitBlock(LHSTrue); 737 738 // Any temporaries created here are conditional. 739 eval.begin(*this); 740 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 741 eval.end(*this); 742 743 return; 744 } 745 746 if (CondBOp->getOpcode() == BO_LOr) { 747 // If we have "0 || X", simplify the code. "1 || X" would have constant 748 // folded if the case was simple enough. 749 bool ConstantBool = false; 750 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 751 !ConstantBool) { 752 // br(0 || X) -> br(X). 753 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 754 } 755 756 // If we have "X || 0", simplify the code to use an uncond branch. 757 // "X || 1" would have been constant folded to 1. 758 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 759 !ConstantBool) { 760 // br(X || 0) -> br(X). 761 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 762 } 763 764 // Emit the LHS as a conditional. If the LHS conditional is true, we 765 // want to jump to the TrueBlock. 766 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 767 768 ConditionalEvaluation eval(*this); 769 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 770 EmitBlock(LHSFalse); 771 772 // Any temporaries created here are conditional. 773 eval.begin(*this); 774 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 775 eval.end(*this); 776 777 return; 778 } 779 } 780 781 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 782 // br(!x, t, f) -> br(x, f, t) 783 if (CondUOp->getOpcode() == UO_LNot) 784 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 785 } 786 787 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 788 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 789 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 790 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 791 792 ConditionalEvaluation cond(*this); 793 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 794 795 cond.begin(*this); 796 EmitBlock(LHSBlock); 797 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 798 cond.end(*this); 799 800 cond.begin(*this); 801 EmitBlock(RHSBlock); 802 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 803 cond.end(*this); 804 805 return; 806 } 807 808 // Emit the code with the fully general case. 809 llvm::Value *CondV = EvaluateExprAsBool(Cond); 810 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 811 } 812 813 /// ErrorUnsupported - Print out an error that codegen doesn't support the 814 /// specified stmt yet. 815 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 816 bool OmitOnError) { 817 CGM.ErrorUnsupported(S, Type, OmitOnError); 818 } 819 820 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 821 /// variable-length array whose elements have a non-zero bit-pattern. 822 /// 823 /// \param baseType the inner-most element type of the array 824 /// \param src - a char* pointing to the bit-pattern for a single 825 /// base element of the array 826 /// \param sizeInChars - the total size of the VLA, in chars 827 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 828 llvm::Value *dest, llvm::Value *src, 829 llvm::Value *sizeInChars) { 830 std::pair<CharUnits,CharUnits> baseSizeAndAlign 831 = CGF.getContext().getTypeInfoInChars(baseType); 832 833 CGBuilderTy &Builder = CGF.Builder; 834 835 llvm::Value *baseSizeInChars 836 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 837 838 llvm::Type *i8p = Builder.getInt8PtrTy(); 839 840 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 841 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 842 843 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 844 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 845 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 846 847 // Make a loop over the VLA. C99 guarantees that the VLA element 848 // count must be nonzero. 849 CGF.EmitBlock(loopBB); 850 851 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 852 cur->addIncoming(begin, originBB); 853 854 // memcpy the individual element bit-pattern. 855 Builder.CreateMemCpy(cur, src, baseSizeInChars, 856 baseSizeAndAlign.second.getQuantity(), 857 /*volatile*/ false); 858 859 // Go to the next element. 860 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 861 862 // Leave if that's the end of the VLA. 863 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 864 Builder.CreateCondBr(done, contBB, loopBB); 865 cur->addIncoming(next, loopBB); 866 867 CGF.EmitBlock(contBB); 868 } 869 870 void 871 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 872 // Ignore empty classes in C++. 873 if (getLangOpts().CPlusPlus) { 874 if (const RecordType *RT = Ty->getAs<RecordType>()) { 875 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 876 return; 877 } 878 } 879 880 // Cast the dest ptr to the appropriate i8 pointer type. 881 unsigned DestAS = 882 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 883 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 884 if (DestPtr->getType() != BP) 885 DestPtr = Builder.CreateBitCast(DestPtr, BP); 886 887 // Get size and alignment info for this aggregate. 888 std::pair<CharUnits, CharUnits> TypeInfo = 889 getContext().getTypeInfoInChars(Ty); 890 CharUnits Size = TypeInfo.first; 891 CharUnits Align = TypeInfo.second; 892 893 llvm::Value *SizeVal; 894 const VariableArrayType *vla; 895 896 // Don't bother emitting a zero-byte memset. 897 if (Size.isZero()) { 898 // But note that getTypeInfo returns 0 for a VLA. 899 if (const VariableArrayType *vlaType = 900 dyn_cast_or_null<VariableArrayType>( 901 getContext().getAsArrayType(Ty))) { 902 QualType eltType; 903 llvm::Value *numElts; 904 llvm::tie(numElts, eltType) = getVLASize(vlaType); 905 906 SizeVal = numElts; 907 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 908 if (!eltSize.isOne()) 909 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 910 vla = vlaType; 911 } else { 912 return; 913 } 914 } else { 915 SizeVal = CGM.getSize(Size); 916 vla = 0; 917 } 918 919 // If the type contains a pointer to data member we can't memset it to zero. 920 // Instead, create a null constant and copy it to the destination. 921 // TODO: there are other patterns besides zero that we can usefully memset, 922 // like -1, which happens to be the pattern used by member-pointers. 923 if (!CGM.getTypes().isZeroInitializable(Ty)) { 924 // For a VLA, emit a single element, then splat that over the VLA. 925 if (vla) Ty = getContext().getBaseElementType(vla); 926 927 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 928 929 llvm::GlobalVariable *NullVariable = 930 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 931 /*isConstant=*/true, 932 llvm::GlobalVariable::PrivateLinkage, 933 NullConstant, Twine()); 934 llvm::Value *SrcPtr = 935 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 936 937 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 938 939 // Get and call the appropriate llvm.memcpy overload. 940 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 941 return; 942 } 943 944 // Otherwise, just memset the whole thing to zero. This is legal 945 // because in LLVM, all default initializers (other than the ones we just 946 // handled above) are guaranteed to have a bit pattern of all zeros. 947 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 948 Align.getQuantity(), false); 949 } 950 951 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 952 // Make sure that there is a block for the indirect goto. 953 if (IndirectBranch == 0) 954 GetIndirectGotoBlock(); 955 956 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 957 958 // Make sure the indirect branch includes all of the address-taken blocks. 959 IndirectBranch->addDestination(BB); 960 return llvm::BlockAddress::get(CurFn, BB); 961 } 962 963 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 964 // If we already made the indirect branch for indirect goto, return its block. 965 if (IndirectBranch) return IndirectBranch->getParent(); 966 967 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 968 969 // Create the PHI node that indirect gotos will add entries to. 970 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 971 "indirect.goto.dest"); 972 973 // Create the indirect branch instruction. 974 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 975 return IndirectBranch->getParent(); 976 } 977 978 /// Computes the length of an array in elements, as well as the base 979 /// element type and a properly-typed first element pointer. 980 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 981 QualType &baseType, 982 llvm::Value *&addr) { 983 const ArrayType *arrayType = origArrayType; 984 985 // If it's a VLA, we have to load the stored size. Note that 986 // this is the size of the VLA in bytes, not its size in elements. 987 llvm::Value *numVLAElements = 0; 988 if (isa<VariableArrayType>(arrayType)) { 989 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 990 991 // Walk into all VLAs. This doesn't require changes to addr, 992 // which has type T* where T is the first non-VLA element type. 993 do { 994 QualType elementType = arrayType->getElementType(); 995 arrayType = getContext().getAsArrayType(elementType); 996 997 // If we only have VLA components, 'addr' requires no adjustment. 998 if (!arrayType) { 999 baseType = elementType; 1000 return numVLAElements; 1001 } 1002 } while (isa<VariableArrayType>(arrayType)); 1003 1004 // We get out here only if we find a constant array type 1005 // inside the VLA. 1006 } 1007 1008 // We have some number of constant-length arrays, so addr should 1009 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1010 // down to the first element of addr. 1011 SmallVector<llvm::Value*, 8> gepIndices; 1012 1013 // GEP down to the array type. 1014 llvm::ConstantInt *zero = Builder.getInt32(0); 1015 gepIndices.push_back(zero); 1016 1017 uint64_t countFromCLAs = 1; 1018 QualType eltType; 1019 1020 llvm::ArrayType *llvmArrayType = 1021 dyn_cast<llvm::ArrayType>( 1022 cast<llvm::PointerType>(addr->getType())->getElementType()); 1023 while (llvmArrayType) { 1024 assert(isa<ConstantArrayType>(arrayType)); 1025 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1026 == llvmArrayType->getNumElements()); 1027 1028 gepIndices.push_back(zero); 1029 countFromCLAs *= llvmArrayType->getNumElements(); 1030 eltType = arrayType->getElementType(); 1031 1032 llvmArrayType = 1033 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1034 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1035 assert((!llvmArrayType || arrayType) && 1036 "LLVM and Clang types are out-of-synch"); 1037 } 1038 1039 if (arrayType) { 1040 // From this point onwards, the Clang array type has been emitted 1041 // as some other type (probably a packed struct). Compute the array 1042 // size, and just emit the 'begin' expression as a bitcast. 1043 while (arrayType) { 1044 countFromCLAs *= 1045 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1046 eltType = arrayType->getElementType(); 1047 arrayType = getContext().getAsArrayType(eltType); 1048 } 1049 1050 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1051 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1052 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1053 } else { 1054 // Create the actual GEP. 1055 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1056 } 1057 1058 baseType = eltType; 1059 1060 llvm::Value *numElements 1061 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1062 1063 // If we had any VLA dimensions, factor them in. 1064 if (numVLAElements) 1065 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1066 1067 return numElements; 1068 } 1069 1070 std::pair<llvm::Value*, QualType> 1071 CodeGenFunction::getVLASize(QualType type) { 1072 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1073 assert(vla && "type was not a variable array type!"); 1074 return getVLASize(vla); 1075 } 1076 1077 std::pair<llvm::Value*, QualType> 1078 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1079 // The number of elements so far; always size_t. 1080 llvm::Value *numElements = 0; 1081 1082 QualType elementType; 1083 do { 1084 elementType = type->getElementType(); 1085 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1086 assert(vlaSize && "no size for VLA!"); 1087 assert(vlaSize->getType() == SizeTy); 1088 1089 if (!numElements) { 1090 numElements = vlaSize; 1091 } else { 1092 // It's undefined behavior if this wraps around, so mark it that way. 1093 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1094 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1095 } 1096 } while ((type = getContext().getAsVariableArrayType(elementType))); 1097 1098 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1099 } 1100 1101 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1102 assert(type->isVariablyModifiedType() && 1103 "Must pass variably modified type to EmitVLASizes!"); 1104 1105 EnsureInsertPoint(); 1106 1107 // We're going to walk down into the type and look for VLA 1108 // expressions. 1109 do { 1110 assert(type->isVariablyModifiedType()); 1111 1112 const Type *ty = type.getTypePtr(); 1113 switch (ty->getTypeClass()) { 1114 1115 #define TYPE(Class, Base) 1116 #define ABSTRACT_TYPE(Class, Base) 1117 #define NON_CANONICAL_TYPE(Class, Base) 1118 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1119 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1120 #include "clang/AST/TypeNodes.def" 1121 llvm_unreachable("unexpected dependent type!"); 1122 1123 // These types are never variably-modified. 1124 case Type::Builtin: 1125 case Type::Complex: 1126 case Type::Vector: 1127 case Type::ExtVector: 1128 case Type::Record: 1129 case Type::Enum: 1130 case Type::Elaborated: 1131 case Type::TemplateSpecialization: 1132 case Type::ObjCObject: 1133 case Type::ObjCInterface: 1134 case Type::ObjCObjectPointer: 1135 llvm_unreachable("type class is never variably-modified!"); 1136 1137 case Type::Pointer: 1138 type = cast<PointerType>(ty)->getPointeeType(); 1139 break; 1140 1141 case Type::BlockPointer: 1142 type = cast<BlockPointerType>(ty)->getPointeeType(); 1143 break; 1144 1145 case Type::LValueReference: 1146 case Type::RValueReference: 1147 type = cast<ReferenceType>(ty)->getPointeeType(); 1148 break; 1149 1150 case Type::MemberPointer: 1151 type = cast<MemberPointerType>(ty)->getPointeeType(); 1152 break; 1153 1154 case Type::ConstantArray: 1155 case Type::IncompleteArray: 1156 // Losing element qualification here is fine. 1157 type = cast<ArrayType>(ty)->getElementType(); 1158 break; 1159 1160 case Type::VariableArray: { 1161 // Losing element qualification here is fine. 1162 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1163 1164 // Unknown size indication requires no size computation. 1165 // Otherwise, evaluate and record it. 1166 if (const Expr *size = vat->getSizeExpr()) { 1167 // It's possible that we might have emitted this already, 1168 // e.g. with a typedef and a pointer to it. 1169 llvm::Value *&entry = VLASizeMap[size]; 1170 if (!entry) { 1171 llvm::Value *Size = EmitScalarExpr(size); 1172 1173 // C11 6.7.6.2p5: 1174 // If the size is an expression that is not an integer constant 1175 // expression [...] each time it is evaluated it shall have a value 1176 // greater than zero. 1177 if (SanOpts->VLABound && 1178 size->getType()->isSignedIntegerType()) { 1179 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1180 llvm::Constant *StaticArgs[] = { 1181 EmitCheckSourceLocation(size->getLocStart()), 1182 EmitCheckTypeDescriptor(size->getType()) 1183 }; 1184 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1185 "vla_bound_not_positive", StaticArgs, Size, 1186 CRK_Recoverable); 1187 } 1188 1189 // Always zexting here would be wrong if it weren't 1190 // undefined behavior to have a negative bound. 1191 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1192 } 1193 } 1194 type = vat->getElementType(); 1195 break; 1196 } 1197 1198 case Type::FunctionProto: 1199 case Type::FunctionNoProto: 1200 type = cast<FunctionType>(ty)->getResultType(); 1201 break; 1202 1203 case Type::Paren: 1204 case Type::TypeOf: 1205 case Type::UnaryTransform: 1206 case Type::Attributed: 1207 case Type::SubstTemplateTypeParm: 1208 // Keep walking after single level desugaring. 1209 type = type.getSingleStepDesugaredType(getContext()); 1210 break; 1211 1212 case Type::Typedef: 1213 case Type::Decltype: 1214 case Type::Auto: 1215 // Stop walking: nothing to do. 1216 return; 1217 1218 case Type::TypeOfExpr: 1219 // Stop walking: emit typeof expression. 1220 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1221 return; 1222 1223 case Type::Atomic: 1224 type = cast<AtomicType>(ty)->getValueType(); 1225 break; 1226 } 1227 } while (type->isVariablyModifiedType()); 1228 } 1229 1230 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1231 if (getContext().getBuiltinVaListType()->isArrayType()) 1232 return EmitScalarExpr(E); 1233 return EmitLValue(E).getAddress(); 1234 } 1235 1236 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1237 llvm::Constant *Init) { 1238 assert (Init && "Invalid DeclRefExpr initializer!"); 1239 if (CGDebugInfo *Dbg = getDebugInfo()) 1240 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1241 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1242 } 1243 1244 CodeGenFunction::PeepholeProtection 1245 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1246 // At the moment, the only aggressive peephole we do in IR gen 1247 // is trunc(zext) folding, but if we add more, we can easily 1248 // extend this protection. 1249 1250 if (!rvalue.isScalar()) return PeepholeProtection(); 1251 llvm::Value *value = rvalue.getScalarVal(); 1252 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1253 1254 // Just make an extra bitcast. 1255 assert(HaveInsertPoint()); 1256 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1257 Builder.GetInsertBlock()); 1258 1259 PeepholeProtection protection; 1260 protection.Inst = inst; 1261 return protection; 1262 } 1263 1264 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1265 if (!protection.Inst) return; 1266 1267 // In theory, we could try to duplicate the peepholes now, but whatever. 1268 protection.Inst->eraseFromParent(); 1269 } 1270 1271 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1272 llvm::Value *AnnotatedVal, 1273 StringRef AnnotationStr, 1274 SourceLocation Location) { 1275 llvm::Value *Args[4] = { 1276 AnnotatedVal, 1277 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1278 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1279 CGM.EmitAnnotationLineNo(Location) 1280 }; 1281 return Builder.CreateCall(AnnotationFn, Args); 1282 } 1283 1284 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1285 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1286 // FIXME We create a new bitcast for every annotation because that's what 1287 // llvm-gcc was doing. 1288 for (specific_attr_iterator<AnnotateAttr> 1289 ai = D->specific_attr_begin<AnnotateAttr>(), 1290 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1291 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1292 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1293 (*ai)->getAnnotation(), D->getLocation()); 1294 } 1295 1296 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1297 llvm::Value *V) { 1298 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1299 llvm::Type *VTy = V->getType(); 1300 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1301 CGM.Int8PtrTy); 1302 1303 for (specific_attr_iterator<AnnotateAttr> 1304 ai = D->specific_attr_begin<AnnotateAttr>(), 1305 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1306 // FIXME Always emit the cast inst so we can differentiate between 1307 // annotation on the first field of a struct and annotation on the struct 1308 // itself. 1309 if (VTy != CGM.Int8PtrTy) 1310 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1311 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1312 V = Builder.CreateBitCast(V, VTy); 1313 } 1314 1315 return V; 1316 } 1317