1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/DataLayout.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/MDBuilder.h" 28 #include "llvm/Operator.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getLangOpts().SanitizeNull | 37 CGM.getLangOpts().SanitizeAlignment | 38 CGM.getLangOpts().SanitizeObjectSize | 39 CGM.getLangOpts().SanitizeVptr), 40 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 41 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 42 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 43 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 44 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 45 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0), 46 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0), 47 TerminateHandler(0), TrapBB(0) { 48 if (!suppressNewContext) 49 CGM.getCXXABI().getMangleContext().startNewFunction(); 50 51 llvm::FastMathFlags FMF; 52 if (CGM.getLangOpts().FastMath) 53 FMF.setUnsafeAlgebra(); 54 if (CGM.getLangOpts().FiniteMathOnly) { 55 FMF.setNoNaNs(); 56 FMF.setNoInfs(); 57 } 58 Builder.SetFastMathFlags(FMF); 59 } 60 61 CodeGenFunction::~CodeGenFunction() { 62 // If there are any unclaimed block infos, go ahead and destroy them 63 // now. This can happen if IR-gen gets clever and skips evaluating 64 // something. 65 if (FirstBlockInfo) 66 destroyBlockInfos(FirstBlockInfo); 67 } 68 69 70 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 71 return CGM.getTypes().ConvertTypeForMem(T); 72 } 73 74 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 75 return CGM.getTypes().ConvertType(T); 76 } 77 78 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 79 switch (type.getCanonicalType()->getTypeClass()) { 80 #define TYPE(name, parent) 81 #define ABSTRACT_TYPE(name, parent) 82 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 83 #define DEPENDENT_TYPE(name, parent) case Type::name: 84 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 85 #include "clang/AST/TypeNodes.def" 86 llvm_unreachable("non-canonical or dependent type in IR-generation"); 87 88 case Type::Builtin: 89 case Type::Pointer: 90 case Type::BlockPointer: 91 case Type::LValueReference: 92 case Type::RValueReference: 93 case Type::MemberPointer: 94 case Type::Vector: 95 case Type::ExtVector: 96 case Type::FunctionProto: 97 case Type::FunctionNoProto: 98 case Type::Enum: 99 case Type::ObjCObjectPointer: 100 return false; 101 102 // Complexes, arrays, records, and Objective-C objects. 103 case Type::Complex: 104 case Type::ConstantArray: 105 case Type::IncompleteArray: 106 case Type::VariableArray: 107 case Type::Record: 108 case Type::ObjCObject: 109 case Type::ObjCInterface: 110 return true; 111 112 // In IRGen, atomic types are just the underlying type 113 case Type::Atomic: 114 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 115 } 116 llvm_unreachable("unknown type kind!"); 117 } 118 119 void CodeGenFunction::EmitReturnBlock() { 120 // For cleanliness, we try to avoid emitting the return block for 121 // simple cases. 122 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 123 124 if (CurBB) { 125 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 126 127 // We have a valid insert point, reuse it if it is empty or there are no 128 // explicit jumps to the return block. 129 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 130 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 131 delete ReturnBlock.getBlock(); 132 } else 133 EmitBlock(ReturnBlock.getBlock()); 134 return; 135 } 136 137 // Otherwise, if the return block is the target of a single direct 138 // branch then we can just put the code in that block instead. This 139 // cleans up functions which started with a unified return block. 140 if (ReturnBlock.getBlock()->hasOneUse()) { 141 llvm::BranchInst *BI = 142 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 143 if (BI && BI->isUnconditional() && 144 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 145 // Reset insertion point, including debug location, and delete the branch. 146 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 147 Builder.SetInsertPoint(BI->getParent()); 148 BI->eraseFromParent(); 149 delete ReturnBlock.getBlock(); 150 return; 151 } 152 } 153 154 // FIXME: We are at an unreachable point, there is no reason to emit the block 155 // unless it has uses. However, we still need a place to put the debug 156 // region.end for now. 157 158 EmitBlock(ReturnBlock.getBlock()); 159 } 160 161 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 162 if (!BB) return; 163 if (!BB->use_empty()) 164 return CGF.CurFn->getBasicBlockList().push_back(BB); 165 delete BB; 166 } 167 168 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 169 assert(BreakContinueStack.empty() && 170 "mismatched push/pop in break/continue stack!"); 171 172 // Pop any cleanups that might have been associated with the 173 // parameters. Do this in whatever block we're currently in; it's 174 // important to do this before we enter the return block or return 175 // edges will be *really* confused. 176 if (EHStack.stable_begin() != PrologueCleanupDepth) 177 PopCleanupBlocks(PrologueCleanupDepth); 178 179 // Emit function epilog (to return). 180 EmitReturnBlock(); 181 182 if (ShouldInstrumentFunction()) 183 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 184 185 // Emit debug descriptor for function end. 186 if (CGDebugInfo *DI = getDebugInfo()) { 187 DI->setLocation(EndLoc); 188 DI->EmitFunctionEnd(Builder); 189 } 190 191 EmitFunctionEpilog(*CurFnInfo); 192 EmitEndEHSpec(CurCodeDecl); 193 194 assert(EHStack.empty() && 195 "did not remove all scopes from cleanup stack!"); 196 197 // If someone did an indirect goto, emit the indirect goto block at the end of 198 // the function. 199 if (IndirectBranch) { 200 EmitBlock(IndirectBranch->getParent()); 201 Builder.ClearInsertionPoint(); 202 } 203 204 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 205 llvm::Instruction *Ptr = AllocaInsertPt; 206 AllocaInsertPt = 0; 207 Ptr->eraseFromParent(); 208 209 // If someone took the address of a label but never did an indirect goto, we 210 // made a zero entry PHI node, which is illegal, zap it now. 211 if (IndirectBranch) { 212 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 213 if (PN->getNumIncomingValues() == 0) { 214 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 215 PN->eraseFromParent(); 216 } 217 } 218 219 EmitIfUsed(*this, EHResumeBlock); 220 EmitIfUsed(*this, TerminateLandingPad); 221 EmitIfUsed(*this, TerminateHandler); 222 EmitIfUsed(*this, UnreachableBlock); 223 224 if (CGM.getCodeGenOpts().EmitDeclMetadata) 225 EmitDeclMetadata(); 226 } 227 228 /// ShouldInstrumentFunction - Return true if the current function should be 229 /// instrumented with __cyg_profile_func_* calls 230 bool CodeGenFunction::ShouldInstrumentFunction() { 231 if (!CGM.getCodeGenOpts().InstrumentFunctions) 232 return false; 233 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 234 return false; 235 return true; 236 } 237 238 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 239 /// instrumentation function with the current function and the call site, if 240 /// function instrumentation is enabled. 241 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 242 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 243 llvm::PointerType *PointerTy = Int8PtrTy; 244 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 245 llvm::FunctionType *FunctionTy = 246 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 247 248 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 249 llvm::CallInst *CallSite = Builder.CreateCall( 250 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 251 llvm::ConstantInt::get(Int32Ty, 0), 252 "callsite"); 253 254 Builder.CreateCall2(F, 255 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 256 CallSite); 257 } 258 259 void CodeGenFunction::EmitMCountInstrumentation() { 260 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 261 262 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 263 Target.getMCountName()); 264 Builder.CreateCall(MCountFn); 265 } 266 267 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 268 // information in the program executable. The argument information stored 269 // includes the argument name, its type, the address and access qualifiers used. 270 // FIXME: Add type, address, and access qualifiers. 271 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 272 CodeGenModule &CGM,llvm::LLVMContext &Context, 273 llvm::SmallVector <llvm::Value*, 5> &kernelMDArgs) { 274 275 // Create MDNodes that represents the kernel arg metadata. 276 // Each MDNode is a list in the form of "key", N number of values which is 277 // the same number of values as their are kernel arguments. 278 279 // MDNode for the kernel argument names. 280 SmallVector<llvm::Value*, 8> argNames; 281 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 282 283 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 284 const ParmVarDecl *parm = FD->getParamDecl(i); 285 286 // Get argument name. 287 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 288 289 } 290 // Add MDNode to the list of all metadata. 291 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 292 } 293 294 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 295 llvm::Function *Fn) 296 { 297 if (!FD->hasAttr<OpenCLKernelAttr>()) 298 return; 299 300 llvm::LLVMContext &Context = getLLVMContext(); 301 302 llvm::SmallVector <llvm::Value*, 5> kernelMDArgs; 303 kernelMDArgs.push_back(Fn); 304 305 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 306 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 307 308 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 309 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 310 llvm::Value *attrMDArgs[] = { 311 llvm::MDString::get(Context, "work_group_size_hint"), 312 Builder.getInt32(attr->getXDim()), 313 Builder.getInt32(attr->getYDim()), 314 Builder.getInt32(attr->getZDim()) 315 }; 316 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 317 } 318 319 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 320 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 321 llvm::Value *attrMDArgs[] = { 322 llvm::MDString::get(Context, "reqd_work_group_size"), 323 Builder.getInt32(attr->getXDim()), 324 Builder.getInt32(attr->getYDim()), 325 Builder.getInt32(attr->getZDim()) 326 }; 327 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 328 } 329 330 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 331 llvm::NamedMDNode *OpenCLKernelMetadata = 332 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 333 OpenCLKernelMetadata->addOperand(kernelMDNode); 334 } 335 336 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 337 llvm::Function *Fn, 338 const CGFunctionInfo &FnInfo, 339 const FunctionArgList &Args, 340 SourceLocation StartLoc) { 341 const Decl *D = GD.getDecl(); 342 343 DidCallStackSave = false; 344 CurCodeDecl = CurFuncDecl = D; 345 FnRetTy = RetTy; 346 CurFn = Fn; 347 CurFnInfo = &FnInfo; 348 assert(CurFn->isDeclaration() && "Function already has body?"); 349 350 // Pass inline keyword to optimizer if it appears explicitly on any 351 // declaration. 352 if (!CGM.getCodeGenOpts().NoInline) 353 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 354 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 355 RE = FD->redecls_end(); RI != RE; ++RI) 356 if (RI->isInlineSpecified()) { 357 Fn->addFnAttr(llvm::Attributes::InlineHint); 358 break; 359 } 360 361 if (getLangOpts().OpenCL) { 362 // Add metadata for a kernel function. 363 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 364 EmitOpenCLKernelMetadata(FD, Fn); 365 } 366 367 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 368 369 // Create a marker to make it easy to insert allocas into the entryblock 370 // later. Don't create this with the builder, because we don't want it 371 // folded. 372 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 373 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 374 if (Builder.isNamePreserving()) 375 AllocaInsertPt->setName("allocapt"); 376 377 ReturnBlock = getJumpDestInCurrentScope("return"); 378 379 Builder.SetInsertPoint(EntryBB); 380 381 // Emit subprogram debug descriptor. 382 if (CGDebugInfo *DI = getDebugInfo()) { 383 unsigned NumArgs = 0; 384 QualType *ArgsArray = new QualType[Args.size()]; 385 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 386 i != e; ++i) { 387 ArgsArray[NumArgs++] = (*i)->getType(); 388 } 389 390 QualType FnType = 391 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 392 FunctionProtoType::ExtProtoInfo()); 393 394 delete[] ArgsArray; 395 396 DI->setLocation(StartLoc); 397 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 398 } 399 400 if (ShouldInstrumentFunction()) 401 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 402 403 if (CGM.getCodeGenOpts().InstrumentForProfiling) 404 EmitMCountInstrumentation(); 405 406 if (RetTy->isVoidType()) { 407 // Void type; nothing to return. 408 ReturnValue = 0; 409 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 410 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 411 // Indirect aggregate return; emit returned value directly into sret slot. 412 // This reduces code size, and affects correctness in C++. 413 ReturnValue = CurFn->arg_begin(); 414 } else { 415 ReturnValue = CreateIRTemp(RetTy, "retval"); 416 417 // Tell the epilog emitter to autorelease the result. We do this 418 // now so that various specialized functions can suppress it 419 // during their IR-generation. 420 if (getLangOpts().ObjCAutoRefCount && 421 !CurFnInfo->isReturnsRetained() && 422 RetTy->isObjCRetainableType()) 423 AutoreleaseResult = true; 424 } 425 426 EmitStartEHSpec(CurCodeDecl); 427 428 PrologueCleanupDepth = EHStack.stable_begin(); 429 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 430 431 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 432 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 433 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 434 if (MD->getParent()->isLambda() && 435 MD->getOverloadedOperator() == OO_Call) { 436 // We're in a lambda; figure out the captures. 437 MD->getParent()->getCaptureFields(LambdaCaptureFields, 438 LambdaThisCaptureField); 439 if (LambdaThisCaptureField) { 440 // If this lambda captures this, load it. 441 QualType LambdaTagType = 442 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 443 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 444 LambdaTagType); 445 LValue ThisLValue = EmitLValueForField(LambdaLV, 446 LambdaThisCaptureField); 447 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 448 } 449 } else { 450 // Not in a lambda; just use 'this' from the method. 451 // FIXME: Should we generate a new load for each use of 'this'? The 452 // fast register allocator would be happier... 453 CXXThisValue = CXXABIThisValue; 454 } 455 } 456 457 // If any of the arguments have a variably modified type, make sure to 458 // emit the type size. 459 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 460 i != e; ++i) { 461 const VarDecl *VD = *i; 462 463 // Dig out the type as written from ParmVarDecls; it's unclear whether 464 // the standard (C99 6.9.1p10) requires this, but we're following the 465 // precedent set by gcc. 466 QualType Ty; 467 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 468 Ty = PVD->getOriginalType(); 469 else 470 Ty = VD->getType(); 471 472 if (Ty->isVariablyModifiedType()) 473 EmitVariablyModifiedType(Ty); 474 } 475 // Emit a location at the end of the prologue. 476 if (CGDebugInfo *DI = getDebugInfo()) 477 DI->EmitLocation(Builder, StartLoc); 478 } 479 480 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 481 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 482 assert(FD->getBody()); 483 EmitStmt(FD->getBody()); 484 } 485 486 /// Tries to mark the given function nounwind based on the 487 /// non-existence of any throwing calls within it. We believe this is 488 /// lightweight enough to do at -O0. 489 static void TryMarkNoThrow(llvm::Function *F) { 490 // LLVM treats 'nounwind' on a function as part of the type, so we 491 // can't do this on functions that can be overwritten. 492 if (F->mayBeOverridden()) return; 493 494 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 495 for (llvm::BasicBlock::iterator 496 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 497 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 498 if (!Call->doesNotThrow()) 499 return; 500 } else if (isa<llvm::ResumeInst>(&*BI)) { 501 return; 502 } 503 F->setDoesNotThrow(); 504 } 505 506 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 507 const CGFunctionInfo &FnInfo) { 508 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 509 510 // Check if we should generate debug info for this function. 511 if (!FD->hasAttr<NoDebugAttr>()) 512 maybeInitializeDebugInfo(); 513 514 FunctionArgList Args; 515 QualType ResTy = FD->getResultType(); 516 517 CurGD = GD; 518 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 519 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 520 521 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 522 Args.push_back(FD->getParamDecl(i)); 523 524 SourceRange BodyRange; 525 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 526 527 // Emit the standard function prologue. 528 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 529 530 // Generate the body of the function. 531 if (isa<CXXDestructorDecl>(FD)) 532 EmitDestructorBody(Args); 533 else if (isa<CXXConstructorDecl>(FD)) 534 EmitConstructorBody(Args); 535 else if (getLangOpts().CUDA && 536 !CGM.getCodeGenOpts().CUDAIsDevice && 537 FD->hasAttr<CUDAGlobalAttr>()) 538 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 539 else if (isa<CXXConversionDecl>(FD) && 540 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 541 // The lambda conversion to block pointer is special; the semantics can't be 542 // expressed in the AST, so IRGen needs to special-case it. 543 EmitLambdaToBlockPointerBody(Args); 544 } else if (isa<CXXMethodDecl>(FD) && 545 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 546 // The lambda "__invoke" function is special, because it forwards or 547 // clones the body of the function call operator (but is actually static). 548 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 549 } 550 else 551 EmitFunctionBody(Args); 552 553 // C++11 [stmt.return]p2: 554 // Flowing off the end of a function [...] results in undefined behavior in 555 // a value-returning function. 556 // C11 6.9.1p12: 557 // If the '}' that terminates a function is reached, and the value of the 558 // function call is used by the caller, the behavior is undefined. 559 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 560 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 561 if (getLangOpts().SanitizeReturn) 562 EmitCheck(Builder.getFalse(), "missing_return", 563 EmitCheckSourceLocation(FD->getLocation()), 564 llvm::ArrayRef<llvm::Value*>(), CRK_Unrecoverable); 565 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 566 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 567 Builder.CreateUnreachable(); 568 Builder.ClearInsertionPoint(); 569 } 570 571 // Emit the standard function epilogue. 572 FinishFunction(BodyRange.getEnd()); 573 574 // If we haven't marked the function nothrow through other means, do 575 // a quick pass now to see if we can. 576 if (!CurFn->doesNotThrow()) 577 TryMarkNoThrow(CurFn); 578 } 579 580 /// ContainsLabel - Return true if the statement contains a label in it. If 581 /// this statement is not executed normally, it not containing a label means 582 /// that we can just remove the code. 583 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 584 // Null statement, not a label! 585 if (S == 0) return false; 586 587 // If this is a label, we have to emit the code, consider something like: 588 // if (0) { ... foo: bar(); } goto foo; 589 // 590 // TODO: If anyone cared, we could track __label__'s, since we know that you 591 // can't jump to one from outside their declared region. 592 if (isa<LabelStmt>(S)) 593 return true; 594 595 // If this is a case/default statement, and we haven't seen a switch, we have 596 // to emit the code. 597 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 598 return true; 599 600 // If this is a switch statement, we want to ignore cases below it. 601 if (isa<SwitchStmt>(S)) 602 IgnoreCaseStmts = true; 603 604 // Scan subexpressions for verboten labels. 605 for (Stmt::const_child_range I = S->children(); I; ++I) 606 if (ContainsLabel(*I, IgnoreCaseStmts)) 607 return true; 608 609 return false; 610 } 611 612 /// containsBreak - Return true if the statement contains a break out of it. 613 /// If the statement (recursively) contains a switch or loop with a break 614 /// inside of it, this is fine. 615 bool CodeGenFunction::containsBreak(const Stmt *S) { 616 // Null statement, not a label! 617 if (S == 0) return false; 618 619 // If this is a switch or loop that defines its own break scope, then we can 620 // include it and anything inside of it. 621 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 622 isa<ForStmt>(S)) 623 return false; 624 625 if (isa<BreakStmt>(S)) 626 return true; 627 628 // Scan subexpressions for verboten breaks. 629 for (Stmt::const_child_range I = S->children(); I; ++I) 630 if (containsBreak(*I)) 631 return true; 632 633 return false; 634 } 635 636 637 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 638 /// to a constant, or if it does but contains a label, return false. If it 639 /// constant folds return true and set the boolean result in Result. 640 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 641 bool &ResultBool) { 642 llvm::APSInt ResultInt; 643 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 644 return false; 645 646 ResultBool = ResultInt.getBoolValue(); 647 return true; 648 } 649 650 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 651 /// to a constant, or if it does but contains a label, return false. If it 652 /// constant folds return true and set the folded value. 653 bool CodeGenFunction:: 654 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 655 // FIXME: Rename and handle conversion of other evaluatable things 656 // to bool. 657 llvm::APSInt Int; 658 if (!Cond->EvaluateAsInt(Int, getContext())) 659 return false; // Not foldable, not integer or not fully evaluatable. 660 661 if (CodeGenFunction::ContainsLabel(Cond)) 662 return false; // Contains a label. 663 664 ResultInt = Int; 665 return true; 666 } 667 668 669 670 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 671 /// statement) to the specified blocks. Based on the condition, this might try 672 /// to simplify the codegen of the conditional based on the branch. 673 /// 674 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 675 llvm::BasicBlock *TrueBlock, 676 llvm::BasicBlock *FalseBlock) { 677 Cond = Cond->IgnoreParens(); 678 679 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 680 // Handle X && Y in a condition. 681 if (CondBOp->getOpcode() == BO_LAnd) { 682 // If we have "1 && X", simplify the code. "0 && X" would have constant 683 // folded if the case was simple enough. 684 bool ConstantBool = false; 685 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 686 ConstantBool) { 687 // br(1 && X) -> br(X). 688 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 689 } 690 691 // If we have "X && 1", simplify the code to use an uncond branch. 692 // "X && 0" would have been constant folded to 0. 693 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 694 ConstantBool) { 695 // br(X && 1) -> br(X). 696 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 697 } 698 699 // Emit the LHS as a conditional. If the LHS conditional is false, we 700 // want to jump to the FalseBlock. 701 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 702 703 ConditionalEvaluation eval(*this); 704 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 705 EmitBlock(LHSTrue); 706 707 // Any temporaries created here are conditional. 708 eval.begin(*this); 709 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 710 eval.end(*this); 711 712 return; 713 } 714 715 if (CondBOp->getOpcode() == BO_LOr) { 716 // If we have "0 || X", simplify the code. "1 || X" would have constant 717 // folded if the case was simple enough. 718 bool ConstantBool = false; 719 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 720 !ConstantBool) { 721 // br(0 || X) -> br(X). 722 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 723 } 724 725 // If we have "X || 0", simplify the code to use an uncond branch. 726 // "X || 1" would have been constant folded to 1. 727 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 728 !ConstantBool) { 729 // br(X || 0) -> br(X). 730 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 731 } 732 733 // Emit the LHS as a conditional. If the LHS conditional is true, we 734 // want to jump to the TrueBlock. 735 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 736 737 ConditionalEvaluation eval(*this); 738 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 739 EmitBlock(LHSFalse); 740 741 // Any temporaries created here are conditional. 742 eval.begin(*this); 743 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 744 eval.end(*this); 745 746 return; 747 } 748 } 749 750 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 751 // br(!x, t, f) -> br(x, f, t) 752 if (CondUOp->getOpcode() == UO_LNot) 753 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 754 } 755 756 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 757 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 758 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 759 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 760 761 ConditionalEvaluation cond(*this); 762 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 763 764 cond.begin(*this); 765 EmitBlock(LHSBlock); 766 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 767 cond.end(*this); 768 769 cond.begin(*this); 770 EmitBlock(RHSBlock); 771 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 772 cond.end(*this); 773 774 return; 775 } 776 777 // Emit the code with the fully general case. 778 llvm::Value *CondV = EvaluateExprAsBool(Cond); 779 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 780 } 781 782 /// ErrorUnsupported - Print out an error that codegen doesn't support the 783 /// specified stmt yet. 784 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 785 bool OmitOnError) { 786 CGM.ErrorUnsupported(S, Type, OmitOnError); 787 } 788 789 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 790 /// variable-length array whose elements have a non-zero bit-pattern. 791 /// 792 /// \param baseType the inner-most element type of the array 793 /// \param src - a char* pointing to the bit-pattern for a single 794 /// base element of the array 795 /// \param sizeInChars - the total size of the VLA, in chars 796 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 797 llvm::Value *dest, llvm::Value *src, 798 llvm::Value *sizeInChars) { 799 std::pair<CharUnits,CharUnits> baseSizeAndAlign 800 = CGF.getContext().getTypeInfoInChars(baseType); 801 802 CGBuilderTy &Builder = CGF.Builder; 803 804 llvm::Value *baseSizeInChars 805 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 806 807 llvm::Type *i8p = Builder.getInt8PtrTy(); 808 809 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 810 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 811 812 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 813 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 814 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 815 816 // Make a loop over the VLA. C99 guarantees that the VLA element 817 // count must be nonzero. 818 CGF.EmitBlock(loopBB); 819 820 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 821 cur->addIncoming(begin, originBB); 822 823 // memcpy the individual element bit-pattern. 824 Builder.CreateMemCpy(cur, src, baseSizeInChars, 825 baseSizeAndAlign.second.getQuantity(), 826 /*volatile*/ false); 827 828 // Go to the next element. 829 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 830 831 // Leave if that's the end of the VLA. 832 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 833 Builder.CreateCondBr(done, contBB, loopBB); 834 cur->addIncoming(next, loopBB); 835 836 CGF.EmitBlock(contBB); 837 } 838 839 void 840 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 841 // Ignore empty classes in C++. 842 if (getLangOpts().CPlusPlus) { 843 if (const RecordType *RT = Ty->getAs<RecordType>()) { 844 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 845 return; 846 } 847 } 848 849 // Cast the dest ptr to the appropriate i8 pointer type. 850 unsigned DestAS = 851 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 852 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 853 if (DestPtr->getType() != BP) 854 DestPtr = Builder.CreateBitCast(DestPtr, BP); 855 856 // Get size and alignment info for this aggregate. 857 std::pair<CharUnits, CharUnits> TypeInfo = 858 getContext().getTypeInfoInChars(Ty); 859 CharUnits Size = TypeInfo.first; 860 CharUnits Align = TypeInfo.second; 861 862 llvm::Value *SizeVal; 863 const VariableArrayType *vla; 864 865 // Don't bother emitting a zero-byte memset. 866 if (Size.isZero()) { 867 // But note that getTypeInfo returns 0 for a VLA. 868 if (const VariableArrayType *vlaType = 869 dyn_cast_or_null<VariableArrayType>( 870 getContext().getAsArrayType(Ty))) { 871 QualType eltType; 872 llvm::Value *numElts; 873 llvm::tie(numElts, eltType) = getVLASize(vlaType); 874 875 SizeVal = numElts; 876 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 877 if (!eltSize.isOne()) 878 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 879 vla = vlaType; 880 } else { 881 return; 882 } 883 } else { 884 SizeVal = CGM.getSize(Size); 885 vla = 0; 886 } 887 888 // If the type contains a pointer to data member we can't memset it to zero. 889 // Instead, create a null constant and copy it to the destination. 890 // TODO: there are other patterns besides zero that we can usefully memset, 891 // like -1, which happens to be the pattern used by member-pointers. 892 if (!CGM.getTypes().isZeroInitializable(Ty)) { 893 // For a VLA, emit a single element, then splat that over the VLA. 894 if (vla) Ty = getContext().getBaseElementType(vla); 895 896 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 897 898 llvm::GlobalVariable *NullVariable = 899 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 900 /*isConstant=*/true, 901 llvm::GlobalVariable::PrivateLinkage, 902 NullConstant, Twine()); 903 llvm::Value *SrcPtr = 904 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 905 906 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 907 908 // Get and call the appropriate llvm.memcpy overload. 909 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 910 return; 911 } 912 913 // Otherwise, just memset the whole thing to zero. This is legal 914 // because in LLVM, all default initializers (other than the ones we just 915 // handled above) are guaranteed to have a bit pattern of all zeros. 916 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 917 Align.getQuantity(), false); 918 } 919 920 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 921 // Make sure that there is a block for the indirect goto. 922 if (IndirectBranch == 0) 923 GetIndirectGotoBlock(); 924 925 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 926 927 // Make sure the indirect branch includes all of the address-taken blocks. 928 IndirectBranch->addDestination(BB); 929 return llvm::BlockAddress::get(CurFn, BB); 930 } 931 932 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 933 // If we already made the indirect branch for indirect goto, return its block. 934 if (IndirectBranch) return IndirectBranch->getParent(); 935 936 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 937 938 // Create the PHI node that indirect gotos will add entries to. 939 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 940 "indirect.goto.dest"); 941 942 // Create the indirect branch instruction. 943 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 944 return IndirectBranch->getParent(); 945 } 946 947 /// Computes the length of an array in elements, as well as the base 948 /// element type and a properly-typed first element pointer. 949 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 950 QualType &baseType, 951 llvm::Value *&addr) { 952 const ArrayType *arrayType = origArrayType; 953 954 // If it's a VLA, we have to load the stored size. Note that 955 // this is the size of the VLA in bytes, not its size in elements. 956 llvm::Value *numVLAElements = 0; 957 if (isa<VariableArrayType>(arrayType)) { 958 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 959 960 // Walk into all VLAs. This doesn't require changes to addr, 961 // which has type T* where T is the first non-VLA element type. 962 do { 963 QualType elementType = arrayType->getElementType(); 964 arrayType = getContext().getAsArrayType(elementType); 965 966 // If we only have VLA components, 'addr' requires no adjustment. 967 if (!arrayType) { 968 baseType = elementType; 969 return numVLAElements; 970 } 971 } while (isa<VariableArrayType>(arrayType)); 972 973 // We get out here only if we find a constant array type 974 // inside the VLA. 975 } 976 977 // We have some number of constant-length arrays, so addr should 978 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 979 // down to the first element of addr. 980 SmallVector<llvm::Value*, 8> gepIndices; 981 982 // GEP down to the array type. 983 llvm::ConstantInt *zero = Builder.getInt32(0); 984 gepIndices.push_back(zero); 985 986 uint64_t countFromCLAs = 1; 987 QualType eltType; 988 989 llvm::ArrayType *llvmArrayType = 990 dyn_cast<llvm::ArrayType>( 991 cast<llvm::PointerType>(addr->getType())->getElementType()); 992 while (llvmArrayType) { 993 assert(isa<ConstantArrayType>(arrayType)); 994 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 995 == llvmArrayType->getNumElements()); 996 997 gepIndices.push_back(zero); 998 countFromCLAs *= llvmArrayType->getNumElements(); 999 eltType = arrayType->getElementType(); 1000 1001 llvmArrayType = 1002 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1003 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1004 assert((!llvmArrayType || arrayType) && 1005 "LLVM and Clang types are out-of-synch"); 1006 } 1007 1008 if (arrayType) { 1009 // From this point onwards, the Clang array type has been emitted 1010 // as some other type (probably a packed struct). Compute the array 1011 // size, and just emit the 'begin' expression as a bitcast. 1012 while (arrayType) { 1013 countFromCLAs *= 1014 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1015 eltType = arrayType->getElementType(); 1016 arrayType = getContext().getAsArrayType(eltType); 1017 } 1018 1019 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1020 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1021 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1022 } else { 1023 // Create the actual GEP. 1024 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1025 } 1026 1027 baseType = eltType; 1028 1029 llvm::Value *numElements 1030 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1031 1032 // If we had any VLA dimensions, factor them in. 1033 if (numVLAElements) 1034 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1035 1036 return numElements; 1037 } 1038 1039 std::pair<llvm::Value*, QualType> 1040 CodeGenFunction::getVLASize(QualType type) { 1041 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1042 assert(vla && "type was not a variable array type!"); 1043 return getVLASize(vla); 1044 } 1045 1046 std::pair<llvm::Value*, QualType> 1047 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1048 // The number of elements so far; always size_t. 1049 llvm::Value *numElements = 0; 1050 1051 QualType elementType; 1052 do { 1053 elementType = type->getElementType(); 1054 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1055 assert(vlaSize && "no size for VLA!"); 1056 assert(vlaSize->getType() == SizeTy); 1057 1058 if (!numElements) { 1059 numElements = vlaSize; 1060 } else { 1061 // It's undefined behavior if this wraps around, so mark it that way. 1062 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1063 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1064 } 1065 } while ((type = getContext().getAsVariableArrayType(elementType))); 1066 1067 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1068 } 1069 1070 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1071 assert(type->isVariablyModifiedType() && 1072 "Must pass variably modified type to EmitVLASizes!"); 1073 1074 EnsureInsertPoint(); 1075 1076 // We're going to walk down into the type and look for VLA 1077 // expressions. 1078 do { 1079 assert(type->isVariablyModifiedType()); 1080 1081 const Type *ty = type.getTypePtr(); 1082 switch (ty->getTypeClass()) { 1083 1084 #define TYPE(Class, Base) 1085 #define ABSTRACT_TYPE(Class, Base) 1086 #define NON_CANONICAL_TYPE(Class, Base) 1087 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1088 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1089 #include "clang/AST/TypeNodes.def" 1090 llvm_unreachable("unexpected dependent type!"); 1091 1092 // These types are never variably-modified. 1093 case Type::Builtin: 1094 case Type::Complex: 1095 case Type::Vector: 1096 case Type::ExtVector: 1097 case Type::Record: 1098 case Type::Enum: 1099 case Type::Elaborated: 1100 case Type::TemplateSpecialization: 1101 case Type::ObjCObject: 1102 case Type::ObjCInterface: 1103 case Type::ObjCObjectPointer: 1104 llvm_unreachable("type class is never variably-modified!"); 1105 1106 case Type::Pointer: 1107 type = cast<PointerType>(ty)->getPointeeType(); 1108 break; 1109 1110 case Type::BlockPointer: 1111 type = cast<BlockPointerType>(ty)->getPointeeType(); 1112 break; 1113 1114 case Type::LValueReference: 1115 case Type::RValueReference: 1116 type = cast<ReferenceType>(ty)->getPointeeType(); 1117 break; 1118 1119 case Type::MemberPointer: 1120 type = cast<MemberPointerType>(ty)->getPointeeType(); 1121 break; 1122 1123 case Type::ConstantArray: 1124 case Type::IncompleteArray: 1125 // Losing element qualification here is fine. 1126 type = cast<ArrayType>(ty)->getElementType(); 1127 break; 1128 1129 case Type::VariableArray: { 1130 // Losing element qualification here is fine. 1131 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1132 1133 // Unknown size indication requires no size computation. 1134 // Otherwise, evaluate and record it. 1135 if (const Expr *size = vat->getSizeExpr()) { 1136 // It's possible that we might have emitted this already, 1137 // e.g. with a typedef and a pointer to it. 1138 llvm::Value *&entry = VLASizeMap[size]; 1139 if (!entry) { 1140 llvm::Value *Size = EmitScalarExpr(size); 1141 1142 // C11 6.7.6.2p5: 1143 // If the size is an expression that is not an integer constant 1144 // expression [...] each time it is evaluated it shall have a value 1145 // greater than zero. 1146 if (getLangOpts().SanitizeVLABound && 1147 size->getType()->isSignedIntegerType()) { 1148 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1149 llvm::Constant *StaticArgs[] = { 1150 EmitCheckSourceLocation(size->getLocStart()), 1151 EmitCheckTypeDescriptor(size->getType()) 1152 }; 1153 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1154 "vla_bound_not_positive", StaticArgs, Size, 1155 CRK_Recoverable); 1156 } 1157 1158 // Always zexting here would be wrong if it weren't 1159 // undefined behavior to have a negative bound. 1160 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1161 } 1162 } 1163 type = vat->getElementType(); 1164 break; 1165 } 1166 1167 case Type::FunctionProto: 1168 case Type::FunctionNoProto: 1169 type = cast<FunctionType>(ty)->getResultType(); 1170 break; 1171 1172 case Type::Paren: 1173 case Type::TypeOf: 1174 case Type::UnaryTransform: 1175 case Type::Attributed: 1176 case Type::SubstTemplateTypeParm: 1177 // Keep walking after single level desugaring. 1178 type = type.getSingleStepDesugaredType(getContext()); 1179 break; 1180 1181 case Type::Typedef: 1182 case Type::Decltype: 1183 case Type::Auto: 1184 // Stop walking: nothing to do. 1185 return; 1186 1187 case Type::TypeOfExpr: 1188 // Stop walking: emit typeof expression. 1189 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1190 return; 1191 1192 case Type::Atomic: 1193 type = cast<AtomicType>(ty)->getValueType(); 1194 break; 1195 } 1196 } while (type->isVariablyModifiedType()); 1197 } 1198 1199 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1200 if (getContext().getBuiltinVaListType()->isArrayType()) 1201 return EmitScalarExpr(E); 1202 return EmitLValue(E).getAddress(); 1203 } 1204 1205 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1206 llvm::Constant *Init) { 1207 assert (Init && "Invalid DeclRefExpr initializer!"); 1208 if (CGDebugInfo *Dbg = getDebugInfo()) 1209 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1210 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1211 } 1212 1213 CodeGenFunction::PeepholeProtection 1214 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1215 // At the moment, the only aggressive peephole we do in IR gen 1216 // is trunc(zext) folding, but if we add more, we can easily 1217 // extend this protection. 1218 1219 if (!rvalue.isScalar()) return PeepholeProtection(); 1220 llvm::Value *value = rvalue.getScalarVal(); 1221 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1222 1223 // Just make an extra bitcast. 1224 assert(HaveInsertPoint()); 1225 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1226 Builder.GetInsertBlock()); 1227 1228 PeepholeProtection protection; 1229 protection.Inst = inst; 1230 return protection; 1231 } 1232 1233 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1234 if (!protection.Inst) return; 1235 1236 // In theory, we could try to duplicate the peepholes now, but whatever. 1237 protection.Inst->eraseFromParent(); 1238 } 1239 1240 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1241 llvm::Value *AnnotatedVal, 1242 llvm::StringRef AnnotationStr, 1243 SourceLocation Location) { 1244 llvm::Value *Args[4] = { 1245 AnnotatedVal, 1246 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1247 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1248 CGM.EmitAnnotationLineNo(Location) 1249 }; 1250 return Builder.CreateCall(AnnotationFn, Args); 1251 } 1252 1253 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1254 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1255 // FIXME We create a new bitcast for every annotation because that's what 1256 // llvm-gcc was doing. 1257 for (specific_attr_iterator<AnnotateAttr> 1258 ai = D->specific_attr_begin<AnnotateAttr>(), 1259 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1260 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1261 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1262 (*ai)->getAnnotation(), D->getLocation()); 1263 } 1264 1265 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1266 llvm::Value *V) { 1267 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1268 llvm::Type *VTy = V->getType(); 1269 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1270 CGM.Int8PtrTy); 1271 1272 for (specific_attr_iterator<AnnotateAttr> 1273 ai = D->specific_attr_begin<AnnotateAttr>(), 1274 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1275 // FIXME Always emit the cast inst so we can differentiate between 1276 // annotation on the first field of a struct and annotation on the struct 1277 // itself. 1278 if (VTy != CGM.Int8PtrTy) 1279 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1280 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1281 V = Builder.CreateBitCast(V, VTy); 1282 } 1283 1284 return V; 1285 } 1286