1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Operator.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
42 /// markers.
43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
44                                       const LangOptions &LangOpts) {
45   if (CGOpts.DisableLifetimeMarkers)
46     return false;
47 
48   // Disable lifetime markers in msan builds.
49   // FIXME: Remove this when msan works with lifetime markers.
50   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
51     return false;
52 
53   // Asan uses markers for use-after-scope checks.
54   if (CGOpts.SanitizeAddressUseAfterScope)
55     return true;
56 
57   // For now, only in optimized builds.
58   return CGOpts.OptimizationLevel != 0;
59 }
60 
61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
62     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
63       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
64               CGBuilderInserterTy(this)),
65       CurFn(nullptr), ReturnValue(Address::invalid()),
66       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
67       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
68       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
69       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
70       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
71       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
72       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
73       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
74       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
75       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
76       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
77       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
78       CXXStructorImplicitParamDecl(nullptr),
79       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
80       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
81       TerminateHandler(nullptr), TrapBB(nullptr),
82       ShouldEmitLifetimeMarkers(
83           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
84   if (!suppressNewContext)
85     CGM.getCXXABI().getMangleContext().startNewFunction();
86 
87   llvm::FastMathFlags FMF;
88   if (CGM.getLangOpts().FastMath)
89     FMF.setUnsafeAlgebra();
90   if (CGM.getLangOpts().FiniteMathOnly) {
91     FMF.setNoNaNs();
92     FMF.setNoInfs();
93   }
94   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
95     FMF.setNoNaNs();
96   }
97   if (CGM.getCodeGenOpts().NoSignedZeros) {
98     FMF.setNoSignedZeros();
99   }
100   if (CGM.getCodeGenOpts().ReciprocalMath) {
101     FMF.setAllowReciprocal();
102   }
103   Builder.setFastMathFlags(FMF);
104 }
105 
106 CodeGenFunction::~CodeGenFunction() {
107   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
108 
109   // If there are any unclaimed block infos, go ahead and destroy them
110   // now.  This can happen if IR-gen gets clever and skips evaluating
111   // something.
112   if (FirstBlockInfo)
113     destroyBlockInfos(FirstBlockInfo);
114 
115   if (getLangOpts().OpenMP && CurFn)
116     CGM.getOpenMPRuntime().functionFinished(*this);
117 }
118 
119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
120                                                     LValueBaseInfo *BaseInfo) {
121   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo,
122                                  /*forPointee*/ true);
123 }
124 
125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
126                                                    LValueBaseInfo *BaseInfo,
127                                                    bool forPointeeType) {
128   // Honor alignment typedef attributes even on incomplete types.
129   // We also honor them straight for C++ class types, even as pointees;
130   // there's an expressivity gap here.
131   if (auto TT = T->getAs<TypedefType>()) {
132     if (auto Align = TT->getDecl()->getMaxAlignment()) {
133       if (BaseInfo)
134         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false);
135       return getContext().toCharUnitsFromBits(Align);
136     }
137   }
138 
139   if (BaseInfo)
140     *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false);
141 
142   CharUnits Alignment;
143   if (T->isIncompleteType()) {
144     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
145   } else {
146     // For C++ class pointees, we don't know whether we're pointing at a
147     // base or a complete object, so we generally need to use the
148     // non-virtual alignment.
149     const CXXRecordDecl *RD;
150     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
151       Alignment = CGM.getClassPointerAlignment(RD);
152     } else {
153       Alignment = getContext().getTypeAlignInChars(T);
154       if (T.getQualifiers().hasUnaligned())
155         Alignment = CharUnits::One();
156     }
157 
158     // Cap to the global maximum type alignment unless the alignment
159     // was somehow explicit on the type.
160     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
161       if (Alignment.getQuantity() > MaxAlign &&
162           !getContext().isAlignmentRequired(T))
163         Alignment = CharUnits::fromQuantity(MaxAlign);
164     }
165   }
166   return Alignment;
167 }
168 
169 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
170   LValueBaseInfo BaseInfo;
171   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo);
172   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
173                           CGM.getTBAAInfo(T));
174 }
175 
176 /// Given a value of type T* that may not be to a complete object,
177 /// construct an l-value with the natural pointee alignment of T.
178 LValue
179 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
180   LValueBaseInfo BaseInfo;
181   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true);
182   return MakeAddrLValue(Address(V, Align), T, BaseInfo);
183 }
184 
185 
186 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
187   return CGM.getTypes().ConvertTypeForMem(T);
188 }
189 
190 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
191   return CGM.getTypes().ConvertType(T);
192 }
193 
194 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
195   type = type.getCanonicalType();
196   while (true) {
197     switch (type->getTypeClass()) {
198 #define TYPE(name, parent)
199 #define ABSTRACT_TYPE(name, parent)
200 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
201 #define DEPENDENT_TYPE(name, parent) case Type::name:
202 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
203 #include "clang/AST/TypeNodes.def"
204       llvm_unreachable("non-canonical or dependent type in IR-generation");
205 
206     case Type::Auto:
207     case Type::DeducedTemplateSpecialization:
208       llvm_unreachable("undeduced type in IR-generation");
209 
210     // Various scalar types.
211     case Type::Builtin:
212     case Type::Pointer:
213     case Type::BlockPointer:
214     case Type::LValueReference:
215     case Type::RValueReference:
216     case Type::MemberPointer:
217     case Type::Vector:
218     case Type::ExtVector:
219     case Type::FunctionProto:
220     case Type::FunctionNoProto:
221     case Type::Enum:
222     case Type::ObjCObjectPointer:
223     case Type::Pipe:
224       return TEK_Scalar;
225 
226     // Complexes.
227     case Type::Complex:
228       return TEK_Complex;
229 
230     // Arrays, records, and Objective-C objects.
231     case Type::ConstantArray:
232     case Type::IncompleteArray:
233     case Type::VariableArray:
234     case Type::Record:
235     case Type::ObjCObject:
236     case Type::ObjCInterface:
237       return TEK_Aggregate;
238 
239     // We operate on atomic values according to their underlying type.
240     case Type::Atomic:
241       type = cast<AtomicType>(type)->getValueType();
242       continue;
243     }
244     llvm_unreachable("unknown type kind!");
245   }
246 }
247 
248 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
249   // For cleanliness, we try to avoid emitting the return block for
250   // simple cases.
251   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
252 
253   if (CurBB) {
254     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
255 
256     // We have a valid insert point, reuse it if it is empty or there are no
257     // explicit jumps to the return block.
258     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
259       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
260       delete ReturnBlock.getBlock();
261     } else
262       EmitBlock(ReturnBlock.getBlock());
263     return llvm::DebugLoc();
264   }
265 
266   // Otherwise, if the return block is the target of a single direct
267   // branch then we can just put the code in that block instead. This
268   // cleans up functions which started with a unified return block.
269   if (ReturnBlock.getBlock()->hasOneUse()) {
270     llvm::BranchInst *BI =
271       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
272     if (BI && BI->isUnconditional() &&
273         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
274       // Record/return the DebugLoc of the simple 'return' expression to be used
275       // later by the actual 'ret' instruction.
276       llvm::DebugLoc Loc = BI->getDebugLoc();
277       Builder.SetInsertPoint(BI->getParent());
278       BI->eraseFromParent();
279       delete ReturnBlock.getBlock();
280       return Loc;
281     }
282   }
283 
284   // FIXME: We are at an unreachable point, there is no reason to emit the block
285   // unless it has uses. However, we still need a place to put the debug
286   // region.end for now.
287 
288   EmitBlock(ReturnBlock.getBlock());
289   return llvm::DebugLoc();
290 }
291 
292 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
293   if (!BB) return;
294   if (!BB->use_empty())
295     return CGF.CurFn->getBasicBlockList().push_back(BB);
296   delete BB;
297 }
298 
299 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
300   assert(BreakContinueStack.empty() &&
301          "mismatched push/pop in break/continue stack!");
302 
303   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
304     && NumSimpleReturnExprs == NumReturnExprs
305     && ReturnBlock.getBlock()->use_empty();
306   // Usually the return expression is evaluated before the cleanup
307   // code.  If the function contains only a simple return statement,
308   // such as a constant, the location before the cleanup code becomes
309   // the last useful breakpoint in the function, because the simple
310   // return expression will be evaluated after the cleanup code. To be
311   // safe, set the debug location for cleanup code to the location of
312   // the return statement.  Otherwise the cleanup code should be at the
313   // end of the function's lexical scope.
314   //
315   // If there are multiple branches to the return block, the branch
316   // instructions will get the location of the return statements and
317   // all will be fine.
318   if (CGDebugInfo *DI = getDebugInfo()) {
319     if (OnlySimpleReturnStmts)
320       DI->EmitLocation(Builder, LastStopPoint);
321     else
322       DI->EmitLocation(Builder, EndLoc);
323   }
324 
325   // Pop any cleanups that might have been associated with the
326   // parameters.  Do this in whatever block we're currently in; it's
327   // important to do this before we enter the return block or return
328   // edges will be *really* confused.
329   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
330   bool HasOnlyLifetimeMarkers =
331       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
332   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
333   if (HasCleanups) {
334     // Make sure the line table doesn't jump back into the body for
335     // the ret after it's been at EndLoc.
336     if (CGDebugInfo *DI = getDebugInfo())
337       if (OnlySimpleReturnStmts)
338         DI->EmitLocation(Builder, EndLoc);
339 
340     PopCleanupBlocks(PrologueCleanupDepth);
341   }
342 
343   // Emit function epilog (to return).
344   llvm::DebugLoc Loc = EmitReturnBlock();
345 
346   if (ShouldInstrumentFunction())
347     EmitFunctionInstrumentation("__cyg_profile_func_exit");
348 
349   // Emit debug descriptor for function end.
350   if (CGDebugInfo *DI = getDebugInfo())
351     DI->EmitFunctionEnd(Builder, CurFn);
352 
353   // Reset the debug location to that of the simple 'return' expression, if any
354   // rather than that of the end of the function's scope '}'.
355   ApplyDebugLocation AL(*this, Loc);
356   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
357   EmitEndEHSpec(CurCodeDecl);
358 
359   assert(EHStack.empty() &&
360          "did not remove all scopes from cleanup stack!");
361 
362   // If someone did an indirect goto, emit the indirect goto block at the end of
363   // the function.
364   if (IndirectBranch) {
365     EmitBlock(IndirectBranch->getParent());
366     Builder.ClearInsertionPoint();
367   }
368 
369   // If some of our locals escaped, insert a call to llvm.localescape in the
370   // entry block.
371   if (!EscapedLocals.empty()) {
372     // Invert the map from local to index into a simple vector. There should be
373     // no holes.
374     SmallVector<llvm::Value *, 4> EscapeArgs;
375     EscapeArgs.resize(EscapedLocals.size());
376     for (auto &Pair : EscapedLocals)
377       EscapeArgs[Pair.second] = Pair.first;
378     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
379         &CGM.getModule(), llvm::Intrinsic::localescape);
380     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
381   }
382 
383   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
384   llvm::Instruction *Ptr = AllocaInsertPt;
385   AllocaInsertPt = nullptr;
386   Ptr->eraseFromParent();
387 
388   // If someone took the address of a label but never did an indirect goto, we
389   // made a zero entry PHI node, which is illegal, zap it now.
390   if (IndirectBranch) {
391     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
392     if (PN->getNumIncomingValues() == 0) {
393       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
394       PN->eraseFromParent();
395     }
396   }
397 
398   EmitIfUsed(*this, EHResumeBlock);
399   EmitIfUsed(*this, TerminateLandingPad);
400   EmitIfUsed(*this, TerminateHandler);
401   EmitIfUsed(*this, UnreachableBlock);
402 
403   if (CGM.getCodeGenOpts().EmitDeclMetadata)
404     EmitDeclMetadata();
405 
406   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
407            I = DeferredReplacements.begin(),
408            E = DeferredReplacements.end();
409        I != E; ++I) {
410     I->first->replaceAllUsesWith(I->second);
411     I->first->eraseFromParent();
412   }
413 }
414 
415 /// ShouldInstrumentFunction - Return true if the current function should be
416 /// instrumented with __cyg_profile_func_* calls
417 bool CodeGenFunction::ShouldInstrumentFunction() {
418   if (!CGM.getCodeGenOpts().InstrumentFunctions)
419     return false;
420   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
421     return false;
422   return true;
423 }
424 
425 /// ShouldXRayInstrument - Return true if the current function should be
426 /// instrumented with XRay nop sleds.
427 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
428   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
429 }
430 
431 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
432 /// instrumentation function with the current function and the call site, if
433 /// function instrumentation is enabled.
434 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
435   auto NL = ApplyDebugLocation::CreateArtificial(*this);
436   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
437   llvm::PointerType *PointerTy = Int8PtrTy;
438   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
439   llvm::FunctionType *FunctionTy =
440     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
441 
442   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
443   llvm::CallInst *CallSite = Builder.CreateCall(
444     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
445     llvm::ConstantInt::get(Int32Ty, 0),
446     "callsite");
447 
448   llvm::Value *args[] = {
449     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
450     CallSite
451   };
452 
453   EmitNounwindRuntimeCall(F, args);
454 }
455 
456 static void removeImageAccessQualifier(std::string& TyName) {
457   std::string ReadOnlyQual("__read_only");
458   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
459   if (ReadOnlyPos != std::string::npos)
460     // "+ 1" for the space after access qualifier.
461     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
462   else {
463     std::string WriteOnlyQual("__write_only");
464     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
465     if (WriteOnlyPos != std::string::npos)
466       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
467     else {
468       std::string ReadWriteQual("__read_write");
469       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
470       if (ReadWritePos != std::string::npos)
471         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
472     }
473   }
474 }
475 
476 // Returns the address space id that should be produced to the
477 // kernel_arg_addr_space metadata. This is always fixed to the ids
478 // as specified in the SPIR 2.0 specification in order to differentiate
479 // for example in clGetKernelArgInfo() implementation between the address
480 // spaces with targets without unique mapping to the OpenCL address spaces
481 // (basically all single AS CPUs).
482 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
483   switch (LangAS) {
484   case LangAS::opencl_global:   return 1;
485   case LangAS::opencl_constant: return 2;
486   case LangAS::opencl_local:    return 3;
487   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
488   default:
489     return 0; // Assume private.
490   }
491 }
492 
493 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
494 // information in the program executable. The argument information stored
495 // includes the argument name, its type, the address and access qualifiers used.
496 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
497                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
498                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
499   // Create MDNodes that represent the kernel arg metadata.
500   // Each MDNode is a list in the form of "key", N number of values which is
501   // the same number of values as their are kernel arguments.
502 
503   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
504 
505   // MDNode for the kernel argument address space qualifiers.
506   SmallVector<llvm::Metadata *, 8> addressQuals;
507 
508   // MDNode for the kernel argument access qualifiers (images only).
509   SmallVector<llvm::Metadata *, 8> accessQuals;
510 
511   // MDNode for the kernel argument type names.
512   SmallVector<llvm::Metadata *, 8> argTypeNames;
513 
514   // MDNode for the kernel argument base type names.
515   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
516 
517   // MDNode for the kernel argument type qualifiers.
518   SmallVector<llvm::Metadata *, 8> argTypeQuals;
519 
520   // MDNode for the kernel argument names.
521   SmallVector<llvm::Metadata *, 8> argNames;
522 
523   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
524     const ParmVarDecl *parm = FD->getParamDecl(i);
525     QualType ty = parm->getType();
526     std::string typeQuals;
527 
528     if (ty->isPointerType()) {
529       QualType pointeeTy = ty->getPointeeType();
530 
531       // Get address qualifier.
532       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
533         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
534 
535       // Get argument type name.
536       std::string typeName =
537           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
538 
539       // Turn "unsigned type" to "utype"
540       std::string::size_type pos = typeName.find("unsigned");
541       if (pointeeTy.isCanonical() && pos != std::string::npos)
542         typeName.erase(pos+1, 8);
543 
544       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
545 
546       std::string baseTypeName =
547           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
548               Policy) +
549           "*";
550 
551       // Turn "unsigned type" to "utype"
552       pos = baseTypeName.find("unsigned");
553       if (pos != std::string::npos)
554         baseTypeName.erase(pos+1, 8);
555 
556       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
557 
558       // Get argument type qualifiers:
559       if (ty.isRestrictQualified())
560         typeQuals = "restrict";
561       if (pointeeTy.isConstQualified() ||
562           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
563         typeQuals += typeQuals.empty() ? "const" : " const";
564       if (pointeeTy.isVolatileQualified())
565         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
566     } else {
567       uint32_t AddrSpc = 0;
568       bool isPipe = ty->isPipeType();
569       if (ty->isImageType() || isPipe)
570         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
571 
572       addressQuals.push_back(
573           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
574 
575       // Get argument type name.
576       std::string typeName;
577       if (isPipe)
578         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
579                      .getAsString(Policy);
580       else
581         typeName = ty.getUnqualifiedType().getAsString(Policy);
582 
583       // Turn "unsigned type" to "utype"
584       std::string::size_type pos = typeName.find("unsigned");
585       if (ty.isCanonical() && pos != std::string::npos)
586         typeName.erase(pos+1, 8);
587 
588       std::string baseTypeName;
589       if (isPipe)
590         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
591                           ->getElementType().getCanonicalType()
592                           .getAsString(Policy);
593       else
594         baseTypeName =
595           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
596 
597       // Remove access qualifiers on images
598       // (as they are inseparable from type in clang implementation,
599       // but OpenCL spec provides a special query to get access qualifier
600       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
601       if (ty->isImageType()) {
602         removeImageAccessQualifier(typeName);
603         removeImageAccessQualifier(baseTypeName);
604       }
605 
606       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
607 
608       // Turn "unsigned type" to "utype"
609       pos = baseTypeName.find("unsigned");
610       if (pos != std::string::npos)
611         baseTypeName.erase(pos+1, 8);
612 
613       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
614 
615       if (isPipe)
616         typeQuals = "pipe";
617     }
618 
619     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
620 
621     // Get image and pipe access qualifier:
622     if (ty->isImageType()|| ty->isPipeType()) {
623       const Decl *PDecl = parm;
624       if (auto *TD = dyn_cast<TypedefType>(ty))
625         PDecl = TD->getDecl();
626       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
627       if (A && A->isWriteOnly())
628         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
629       else if (A && A->isReadWrite())
630         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
631       else
632         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
633     } else
634       accessQuals.push_back(llvm::MDString::get(Context, "none"));
635 
636     // Get argument name.
637     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
638   }
639 
640   Fn->setMetadata("kernel_arg_addr_space",
641                   llvm::MDNode::get(Context, addressQuals));
642   Fn->setMetadata("kernel_arg_access_qual",
643                   llvm::MDNode::get(Context, accessQuals));
644   Fn->setMetadata("kernel_arg_type",
645                   llvm::MDNode::get(Context, argTypeNames));
646   Fn->setMetadata("kernel_arg_base_type",
647                   llvm::MDNode::get(Context, argBaseTypeNames));
648   Fn->setMetadata("kernel_arg_type_qual",
649                   llvm::MDNode::get(Context, argTypeQuals));
650   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
651     Fn->setMetadata("kernel_arg_name",
652                     llvm::MDNode::get(Context, argNames));
653 }
654 
655 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
656                                                llvm::Function *Fn)
657 {
658   if (!FD->hasAttr<OpenCLKernelAttr>())
659     return;
660 
661   llvm::LLVMContext &Context = getLLVMContext();
662 
663   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
664 
665   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
666     QualType HintQTy = A->getTypeHint();
667     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
668     bool IsSignedInteger =
669         HintQTy->isSignedIntegerType() ||
670         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
671     llvm::Metadata *AttrMDArgs[] = {
672         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
673             CGM.getTypes().ConvertType(A->getTypeHint()))),
674         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
675             llvm::IntegerType::get(Context, 32),
676             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
677     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
678   }
679 
680   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
681     llvm::Metadata *AttrMDArgs[] = {
682         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
683         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
684         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
685     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
686   }
687 
688   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
689     llvm::Metadata *AttrMDArgs[] = {
690         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
691         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
692         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
693     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
694   }
695 
696   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
697           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
698     llvm::Metadata *AttrMDArgs[] = {
699         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
700     Fn->setMetadata("intel_reqd_sub_group_size",
701                     llvm::MDNode::get(Context, AttrMDArgs));
702   }
703 }
704 
705 /// Determine whether the function F ends with a return stmt.
706 static bool endsWithReturn(const Decl* F) {
707   const Stmt *Body = nullptr;
708   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
709     Body = FD->getBody();
710   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
711     Body = OMD->getBody();
712 
713   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
714     auto LastStmt = CS->body_rbegin();
715     if (LastStmt != CS->body_rend())
716       return isa<ReturnStmt>(*LastStmt);
717   }
718   return false;
719 }
720 
721 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
722   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
723   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
724 }
725 
726 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
727   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
728   if (!MD || !MD->getName().equals("allocate") ||
729       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
730     return false;
731 
732   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
733     return false;
734 
735   if (MD->getNumParams() == 2) {
736     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
737     if (!PT || !PT->isVoidPointerType() ||
738         !PT->getPointeeType().isConstQualified())
739       return false;
740   }
741 
742   return true;
743 }
744 
745 void CodeGenFunction::StartFunction(GlobalDecl GD,
746                                     QualType RetTy,
747                                     llvm::Function *Fn,
748                                     const CGFunctionInfo &FnInfo,
749                                     const FunctionArgList &Args,
750                                     SourceLocation Loc,
751                                     SourceLocation StartLoc) {
752   assert(!CurFn &&
753          "Do not use a CodeGenFunction object for more than one function");
754 
755   const Decl *D = GD.getDecl();
756 
757   DidCallStackSave = false;
758   CurCodeDecl = D;
759   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
760     if (FD->usesSEHTry())
761       CurSEHParent = FD;
762   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
763   FnRetTy = RetTy;
764   CurFn = Fn;
765   CurFnInfo = &FnInfo;
766   assert(CurFn->isDeclaration() && "Function already has body?");
767 
768   if (CGM.isInSanitizerBlacklist(Fn, Loc))
769     SanOpts.clear();
770 
771   if (D) {
772     // Apply the no_sanitize* attributes to SanOpts.
773     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
774       SanOpts.Mask &= ~Attr->getMask();
775   }
776 
777   // Apply sanitizer attributes to the function.
778   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
779     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
780   if (SanOpts.has(SanitizerKind::Thread))
781     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
782   if (SanOpts.has(SanitizerKind::Memory))
783     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
784   if (SanOpts.has(SanitizerKind::SafeStack))
785     Fn->addFnAttr(llvm::Attribute::SafeStack);
786 
787   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
788   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
789   if (SanOpts.has(SanitizerKind::Thread)) {
790     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
791       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
792       if (OMD->getMethodFamily() == OMF_dealloc ||
793           OMD->getMethodFamily() == OMF_initialize ||
794           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
795         markAsIgnoreThreadCheckingAtRuntime(Fn);
796       }
797     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
798       IdentifierInfo *II = FD->getIdentifier();
799       if (II && II->isStr("__destroy_helper_block_"))
800         markAsIgnoreThreadCheckingAtRuntime(Fn);
801     }
802   }
803 
804   // Ignore unrelated casts in STL allocate() since the allocator must cast
805   // from void* to T* before object initialization completes. Don't match on the
806   // namespace because not all allocators are in std::
807   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
808     if (matchesStlAllocatorFn(D, getContext()))
809       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
810   }
811 
812   // Apply xray attributes to the function (as a string, for now)
813   if (D && ShouldXRayInstrumentFunction()) {
814     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
815       if (XRayAttr->alwaysXRayInstrument())
816         Fn->addFnAttr("function-instrument", "xray-always");
817       if (XRayAttr->neverXRayInstrument())
818         Fn->addFnAttr("function-instrument", "xray-never");
819       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
820         Fn->addFnAttr("xray-log-args",
821                       llvm::utostr(LogArgs->getArgumentCount()));
822       }
823     } else {
824       if (!CGM.imbueXRayAttrs(Fn, Loc))
825         Fn->addFnAttr(
826             "xray-instruction-threshold",
827             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
828     }
829   }
830 
831   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
832     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
833       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
834 
835   // Add no-jump-tables value.
836   Fn->addFnAttr("no-jump-tables",
837                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
838 
839   if (getLangOpts().OpenCL) {
840     // Add metadata for a kernel function.
841     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
842       EmitOpenCLKernelMetadata(FD, Fn);
843   }
844 
845   // If we are checking function types, emit a function type signature as
846   // prologue data.
847   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
848     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
849       if (llvm::Constant *PrologueSig =
850               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
851         llvm::Constant *FTRTTIConst =
852             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
853         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
854         llvm::Constant *PrologueStructConst =
855             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
856         Fn->setPrologueData(PrologueStructConst);
857       }
858     }
859   }
860 
861   // If we're checking nullability, we need to know whether we can check the
862   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
863   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
864     auto Nullability = FnRetTy->getNullability(getContext());
865     if (Nullability && *Nullability == NullabilityKind::NonNull) {
866       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
867             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
868         RetValNullabilityPrecondition =
869             llvm::ConstantInt::getTrue(getLLVMContext());
870     }
871   }
872 
873   // If we're in C++ mode and the function name is "main", it is guaranteed
874   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
875   // used within a program").
876   if (getLangOpts().CPlusPlus)
877     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
878       if (FD->isMain())
879         Fn->addFnAttr(llvm::Attribute::NoRecurse);
880 
881   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
882 
883   // Create a marker to make it easy to insert allocas into the entryblock
884   // later.  Don't create this with the builder, because we don't want it
885   // folded.
886   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
887   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
888 
889   ReturnBlock = getJumpDestInCurrentScope("return");
890 
891   Builder.SetInsertPoint(EntryBB);
892 
893   // If we're checking the return value, allocate space for a pointer to a
894   // precise source location of the checked return statement.
895   if (requiresReturnValueCheck()) {
896     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
897     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
898   }
899 
900   // Emit subprogram debug descriptor.
901   if (CGDebugInfo *DI = getDebugInfo()) {
902     // Reconstruct the type from the argument list so that implicit parameters,
903     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
904     // convention.
905     CallingConv CC = CallingConv::CC_C;
906     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
907       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
908         CC = SrcFnTy->getCallConv();
909     SmallVector<QualType, 16> ArgTypes;
910     for (const VarDecl *VD : Args)
911       ArgTypes.push_back(VD->getType());
912     QualType FnType = getContext().getFunctionType(
913         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
914     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
915   }
916 
917   if (ShouldInstrumentFunction())
918     EmitFunctionInstrumentation("__cyg_profile_func_enter");
919 
920   // Since emitting the mcount call here impacts optimizations such as function
921   // inlining, we just add an attribute to insert a mcount call in backend.
922   // The attribute "counting-function" is set to mcount function name which is
923   // architecture dependent.
924   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
925     if (CGM.getCodeGenOpts().CallFEntry)
926       Fn->addFnAttr("fentry-call", "true");
927     else {
928       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
929         Fn->addFnAttr("counting-function", getTarget().getMCountName());
930     }
931   }
932 
933   if (RetTy->isVoidType()) {
934     // Void type; nothing to return.
935     ReturnValue = Address::invalid();
936 
937     // Count the implicit return.
938     if (!endsWithReturn(D))
939       ++NumReturnExprs;
940   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
941              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
942     // Indirect aggregate return; emit returned value directly into sret slot.
943     // This reduces code size, and affects correctness in C++.
944     auto AI = CurFn->arg_begin();
945     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
946       ++AI;
947     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
948   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
949              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
950     // Load the sret pointer from the argument struct and return into that.
951     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
952     llvm::Function::arg_iterator EI = CurFn->arg_end();
953     --EI;
954     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
955     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
956     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
957   } else {
958     ReturnValue = CreateIRTemp(RetTy, "retval");
959 
960     // Tell the epilog emitter to autorelease the result.  We do this
961     // now so that various specialized functions can suppress it
962     // during their IR-generation.
963     if (getLangOpts().ObjCAutoRefCount &&
964         !CurFnInfo->isReturnsRetained() &&
965         RetTy->isObjCRetainableType())
966       AutoreleaseResult = true;
967   }
968 
969   EmitStartEHSpec(CurCodeDecl);
970 
971   PrologueCleanupDepth = EHStack.stable_begin();
972   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
973 
974   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
975     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
976     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
977     if (MD->getParent()->isLambda() &&
978         MD->getOverloadedOperator() == OO_Call) {
979       // We're in a lambda; figure out the captures.
980       MD->getParent()->getCaptureFields(LambdaCaptureFields,
981                                         LambdaThisCaptureField);
982       if (LambdaThisCaptureField) {
983         // If the lambda captures the object referred to by '*this' - either by
984         // value or by reference, make sure CXXThisValue points to the correct
985         // object.
986 
987         // Get the lvalue for the field (which is a copy of the enclosing object
988         // or contains the address of the enclosing object).
989         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
990         if (!LambdaThisCaptureField->getType()->isPointerType()) {
991           // If the enclosing object was captured by value, just use its address.
992           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
993         } else {
994           // Load the lvalue pointed to by the field, since '*this' was captured
995           // by reference.
996           CXXThisValue =
997               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
998         }
999       }
1000       for (auto *FD : MD->getParent()->fields()) {
1001         if (FD->hasCapturedVLAType()) {
1002           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1003                                            SourceLocation()).getScalarVal();
1004           auto VAT = FD->getCapturedVLAType();
1005           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1006         }
1007       }
1008     } else {
1009       // Not in a lambda; just use 'this' from the method.
1010       // FIXME: Should we generate a new load for each use of 'this'?  The
1011       // fast register allocator would be happier...
1012       CXXThisValue = CXXABIThisValue;
1013     }
1014 
1015     // Check the 'this' pointer once per function, if it's available.
1016     if (CXXThisValue) {
1017       SanitizerSet SkippedChecks;
1018       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1019       QualType ThisTy = MD->getThisType(getContext());
1020       EmitTypeCheck(TCK_Load, Loc, CXXThisValue, ThisTy,
1021                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1022                     SkippedChecks);
1023     }
1024   }
1025 
1026   // If any of the arguments have a variably modified type, make sure to
1027   // emit the type size.
1028   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1029        i != e; ++i) {
1030     const VarDecl *VD = *i;
1031 
1032     // Dig out the type as written from ParmVarDecls; it's unclear whether
1033     // the standard (C99 6.9.1p10) requires this, but we're following the
1034     // precedent set by gcc.
1035     QualType Ty;
1036     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1037       Ty = PVD->getOriginalType();
1038     else
1039       Ty = VD->getType();
1040 
1041     if (Ty->isVariablyModifiedType())
1042       EmitVariablyModifiedType(Ty);
1043   }
1044   // Emit a location at the end of the prologue.
1045   if (CGDebugInfo *DI = getDebugInfo())
1046     DI->EmitLocation(Builder, StartLoc);
1047 }
1048 
1049 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1050                                        const Stmt *Body) {
1051   incrementProfileCounter(Body);
1052   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1053     EmitCompoundStmtWithoutScope(*S);
1054   else
1055     EmitStmt(Body);
1056 }
1057 
1058 /// When instrumenting to collect profile data, the counts for some blocks
1059 /// such as switch cases need to not include the fall-through counts, so
1060 /// emit a branch around the instrumentation code. When not instrumenting,
1061 /// this just calls EmitBlock().
1062 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1063                                                const Stmt *S) {
1064   llvm::BasicBlock *SkipCountBB = nullptr;
1065   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1066     // When instrumenting for profiling, the fallthrough to certain
1067     // statements needs to skip over the instrumentation code so that we
1068     // get an accurate count.
1069     SkipCountBB = createBasicBlock("skipcount");
1070     EmitBranch(SkipCountBB);
1071   }
1072   EmitBlock(BB);
1073   uint64_t CurrentCount = getCurrentProfileCount();
1074   incrementProfileCounter(S);
1075   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1076   if (SkipCountBB)
1077     EmitBlock(SkipCountBB);
1078 }
1079 
1080 /// Tries to mark the given function nounwind based on the
1081 /// non-existence of any throwing calls within it.  We believe this is
1082 /// lightweight enough to do at -O0.
1083 static void TryMarkNoThrow(llvm::Function *F) {
1084   // LLVM treats 'nounwind' on a function as part of the type, so we
1085   // can't do this on functions that can be overwritten.
1086   if (F->isInterposable()) return;
1087 
1088   for (llvm::BasicBlock &BB : *F)
1089     for (llvm::Instruction &I : BB)
1090       if (I.mayThrow())
1091         return;
1092 
1093   F->setDoesNotThrow();
1094 }
1095 
1096 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1097                                                FunctionArgList &Args) {
1098   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1099   QualType ResTy = FD->getReturnType();
1100 
1101   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1102   if (MD && MD->isInstance()) {
1103     if (CGM.getCXXABI().HasThisReturn(GD))
1104       ResTy = MD->getThisType(getContext());
1105     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1106       ResTy = CGM.getContext().VoidPtrTy;
1107     CGM.getCXXABI().buildThisParam(*this, Args);
1108   }
1109 
1110   // The base version of an inheriting constructor whose constructed base is a
1111   // virtual base is not passed any arguments (because it doesn't actually call
1112   // the inherited constructor).
1113   bool PassedParams = true;
1114   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1115     if (auto Inherited = CD->getInheritedConstructor())
1116       PassedParams =
1117           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1118 
1119   if (PassedParams) {
1120     for (auto *Param : FD->parameters()) {
1121       Args.push_back(Param);
1122       if (!Param->hasAttr<PassObjectSizeAttr>())
1123         continue;
1124 
1125       auto *Implicit = ImplicitParamDecl::Create(
1126           getContext(), Param->getDeclContext(), Param->getLocation(),
1127           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1128       SizeArguments[Param] = Implicit;
1129       Args.push_back(Implicit);
1130     }
1131   }
1132 
1133   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1134     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1135 
1136   return ResTy;
1137 }
1138 
1139 static bool
1140 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1141                                              const ASTContext &Context) {
1142   QualType T = FD->getReturnType();
1143   // Avoid the optimization for functions that return a record type with a
1144   // trivial destructor or another trivially copyable type.
1145   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1146     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1147       return !ClassDecl->hasTrivialDestructor();
1148   }
1149   return !T.isTriviallyCopyableType(Context);
1150 }
1151 
1152 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1153                                    const CGFunctionInfo &FnInfo) {
1154   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1155   CurGD = GD;
1156 
1157   FunctionArgList Args;
1158   QualType ResTy = BuildFunctionArgList(GD, Args);
1159 
1160   // Check if we should generate debug info for this function.
1161   if (FD->hasAttr<NoDebugAttr>())
1162     DebugInfo = nullptr; // disable debug info indefinitely for this function
1163 
1164   // The function might not have a body if we're generating thunks for a
1165   // function declaration.
1166   SourceRange BodyRange;
1167   if (Stmt *Body = FD->getBody())
1168     BodyRange = Body->getSourceRange();
1169   else
1170     BodyRange = FD->getLocation();
1171   CurEHLocation = BodyRange.getEnd();
1172 
1173   // Use the location of the start of the function to determine where
1174   // the function definition is located. By default use the location
1175   // of the declaration as the location for the subprogram. A function
1176   // may lack a declaration in the source code if it is created by code
1177   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1178   SourceLocation Loc = FD->getLocation();
1179 
1180   // If this is a function specialization then use the pattern body
1181   // as the location for the function.
1182   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1183     if (SpecDecl->hasBody(SpecDecl))
1184       Loc = SpecDecl->getLocation();
1185 
1186   Stmt *Body = FD->getBody();
1187 
1188   // Initialize helper which will detect jumps which can cause invalid lifetime
1189   // markers.
1190   if (Body && ShouldEmitLifetimeMarkers)
1191     Bypasses.Init(Body);
1192 
1193   // Emit the standard function prologue.
1194   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1195 
1196   // Generate the body of the function.
1197   PGO.assignRegionCounters(GD, CurFn);
1198   if (isa<CXXDestructorDecl>(FD))
1199     EmitDestructorBody(Args);
1200   else if (isa<CXXConstructorDecl>(FD))
1201     EmitConstructorBody(Args);
1202   else if (getLangOpts().CUDA &&
1203            !getLangOpts().CUDAIsDevice &&
1204            FD->hasAttr<CUDAGlobalAttr>())
1205     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1206   else if (isa<CXXConversionDecl>(FD) &&
1207            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1208     // The lambda conversion to block pointer is special; the semantics can't be
1209     // expressed in the AST, so IRGen needs to special-case it.
1210     EmitLambdaToBlockPointerBody(Args);
1211   } else if (isa<CXXMethodDecl>(FD) &&
1212              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1213     // The lambda static invoker function is special, because it forwards or
1214     // clones the body of the function call operator (but is actually static).
1215     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1216   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1217              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1218               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1219     // Implicit copy-assignment gets the same special treatment as implicit
1220     // copy-constructors.
1221     emitImplicitAssignmentOperatorBody(Args);
1222   } else if (Body) {
1223     EmitFunctionBody(Args, Body);
1224   } else
1225     llvm_unreachable("no definition for emitted function");
1226 
1227   // C++11 [stmt.return]p2:
1228   //   Flowing off the end of a function [...] results in undefined behavior in
1229   //   a value-returning function.
1230   // C11 6.9.1p12:
1231   //   If the '}' that terminates a function is reached, and the value of the
1232   //   function call is used by the caller, the behavior is undefined.
1233   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1234       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1235     bool ShouldEmitUnreachable =
1236         CGM.getCodeGenOpts().StrictReturn ||
1237         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1238     if (SanOpts.has(SanitizerKind::Return)) {
1239       SanitizerScope SanScope(this);
1240       llvm::Value *IsFalse = Builder.getFalse();
1241       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1242                 SanitizerHandler::MissingReturn,
1243                 EmitCheckSourceLocation(FD->getLocation()), None);
1244     } else if (ShouldEmitUnreachable) {
1245       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1246         EmitTrapCall(llvm::Intrinsic::trap);
1247     }
1248     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1249       Builder.CreateUnreachable();
1250       Builder.ClearInsertionPoint();
1251     }
1252   }
1253 
1254   // Emit the standard function epilogue.
1255   FinishFunction(BodyRange.getEnd());
1256 
1257   // If we haven't marked the function nothrow through other means, do
1258   // a quick pass now to see if we can.
1259   if (!CurFn->doesNotThrow())
1260     TryMarkNoThrow(CurFn);
1261 }
1262 
1263 /// ContainsLabel - Return true if the statement contains a label in it.  If
1264 /// this statement is not executed normally, it not containing a label means
1265 /// that we can just remove the code.
1266 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1267   // Null statement, not a label!
1268   if (!S) return false;
1269 
1270   // If this is a label, we have to emit the code, consider something like:
1271   // if (0) {  ...  foo:  bar(); }  goto foo;
1272   //
1273   // TODO: If anyone cared, we could track __label__'s, since we know that you
1274   // can't jump to one from outside their declared region.
1275   if (isa<LabelStmt>(S))
1276     return true;
1277 
1278   // If this is a case/default statement, and we haven't seen a switch, we have
1279   // to emit the code.
1280   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1281     return true;
1282 
1283   // If this is a switch statement, we want to ignore cases below it.
1284   if (isa<SwitchStmt>(S))
1285     IgnoreCaseStmts = true;
1286 
1287   // Scan subexpressions for verboten labels.
1288   for (const Stmt *SubStmt : S->children())
1289     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1290       return true;
1291 
1292   return false;
1293 }
1294 
1295 /// containsBreak - Return true if the statement contains a break out of it.
1296 /// If the statement (recursively) contains a switch or loop with a break
1297 /// inside of it, this is fine.
1298 bool CodeGenFunction::containsBreak(const Stmt *S) {
1299   // Null statement, not a label!
1300   if (!S) return false;
1301 
1302   // If this is a switch or loop that defines its own break scope, then we can
1303   // include it and anything inside of it.
1304   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1305       isa<ForStmt>(S))
1306     return false;
1307 
1308   if (isa<BreakStmt>(S))
1309     return true;
1310 
1311   // Scan subexpressions for verboten breaks.
1312   for (const Stmt *SubStmt : S->children())
1313     if (containsBreak(SubStmt))
1314       return true;
1315 
1316   return false;
1317 }
1318 
1319 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1320   if (!S) return false;
1321 
1322   // Some statement kinds add a scope and thus never add a decl to the current
1323   // scope. Note, this list is longer than the list of statements that might
1324   // have an unscoped decl nested within them, but this way is conservatively
1325   // correct even if more statement kinds are added.
1326   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1327       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1328       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1329       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1330     return false;
1331 
1332   if (isa<DeclStmt>(S))
1333     return true;
1334 
1335   for (const Stmt *SubStmt : S->children())
1336     if (mightAddDeclToScope(SubStmt))
1337       return true;
1338 
1339   return false;
1340 }
1341 
1342 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1343 /// to a constant, or if it does but contains a label, return false.  If it
1344 /// constant folds return true and set the boolean result in Result.
1345 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1346                                                    bool &ResultBool,
1347                                                    bool AllowLabels) {
1348   llvm::APSInt ResultInt;
1349   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1350     return false;
1351 
1352   ResultBool = ResultInt.getBoolValue();
1353   return true;
1354 }
1355 
1356 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1357 /// to a constant, or if it does but contains a label, return false.  If it
1358 /// constant folds return true and set the folded value.
1359 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1360                                                    llvm::APSInt &ResultInt,
1361                                                    bool AllowLabels) {
1362   // FIXME: Rename and handle conversion of other evaluatable things
1363   // to bool.
1364   llvm::APSInt Int;
1365   if (!Cond->EvaluateAsInt(Int, getContext()))
1366     return false;  // Not foldable, not integer or not fully evaluatable.
1367 
1368   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1369     return false;  // Contains a label.
1370 
1371   ResultInt = Int;
1372   return true;
1373 }
1374 
1375 
1376 
1377 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1378 /// statement) to the specified blocks.  Based on the condition, this might try
1379 /// to simplify the codegen of the conditional based on the branch.
1380 ///
1381 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1382                                            llvm::BasicBlock *TrueBlock,
1383                                            llvm::BasicBlock *FalseBlock,
1384                                            uint64_t TrueCount) {
1385   Cond = Cond->IgnoreParens();
1386 
1387   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1388 
1389     // Handle X && Y in a condition.
1390     if (CondBOp->getOpcode() == BO_LAnd) {
1391       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1392       // folded if the case was simple enough.
1393       bool ConstantBool = false;
1394       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1395           ConstantBool) {
1396         // br(1 && X) -> br(X).
1397         incrementProfileCounter(CondBOp);
1398         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1399                                     TrueCount);
1400       }
1401 
1402       // If we have "X && 1", simplify the code to use an uncond branch.
1403       // "X && 0" would have been constant folded to 0.
1404       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1405           ConstantBool) {
1406         // br(X && 1) -> br(X).
1407         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1408                                     TrueCount);
1409       }
1410 
1411       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1412       // want to jump to the FalseBlock.
1413       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1414       // The counter tells us how often we evaluate RHS, and all of TrueCount
1415       // can be propagated to that branch.
1416       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1417 
1418       ConditionalEvaluation eval(*this);
1419       {
1420         ApplyDebugLocation DL(*this, Cond);
1421         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1422         EmitBlock(LHSTrue);
1423       }
1424 
1425       incrementProfileCounter(CondBOp);
1426       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1427 
1428       // Any temporaries created here are conditional.
1429       eval.begin(*this);
1430       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1431       eval.end(*this);
1432 
1433       return;
1434     }
1435 
1436     if (CondBOp->getOpcode() == BO_LOr) {
1437       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1438       // folded if the case was simple enough.
1439       bool ConstantBool = false;
1440       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1441           !ConstantBool) {
1442         // br(0 || X) -> br(X).
1443         incrementProfileCounter(CondBOp);
1444         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1445                                     TrueCount);
1446       }
1447 
1448       // If we have "X || 0", simplify the code to use an uncond branch.
1449       // "X || 1" would have been constant folded to 1.
1450       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1451           !ConstantBool) {
1452         // br(X || 0) -> br(X).
1453         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1454                                     TrueCount);
1455       }
1456 
1457       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1458       // want to jump to the TrueBlock.
1459       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1460       // We have the count for entry to the RHS and for the whole expression
1461       // being true, so we can divy up True count between the short circuit and
1462       // the RHS.
1463       uint64_t LHSCount =
1464           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1465       uint64_t RHSCount = TrueCount - LHSCount;
1466 
1467       ConditionalEvaluation eval(*this);
1468       {
1469         ApplyDebugLocation DL(*this, Cond);
1470         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1471         EmitBlock(LHSFalse);
1472       }
1473 
1474       incrementProfileCounter(CondBOp);
1475       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1476 
1477       // Any temporaries created here are conditional.
1478       eval.begin(*this);
1479       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1480 
1481       eval.end(*this);
1482 
1483       return;
1484     }
1485   }
1486 
1487   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1488     // br(!x, t, f) -> br(x, f, t)
1489     if (CondUOp->getOpcode() == UO_LNot) {
1490       // Negate the count.
1491       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1492       // Negate the condition and swap the destination blocks.
1493       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1494                                   FalseCount);
1495     }
1496   }
1497 
1498   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1499     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1500     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1501     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1502 
1503     ConditionalEvaluation cond(*this);
1504     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1505                          getProfileCount(CondOp));
1506 
1507     // When computing PGO branch weights, we only know the overall count for
1508     // the true block. This code is essentially doing tail duplication of the
1509     // naive code-gen, introducing new edges for which counts are not
1510     // available. Divide the counts proportionally between the LHS and RHS of
1511     // the conditional operator.
1512     uint64_t LHSScaledTrueCount = 0;
1513     if (TrueCount) {
1514       double LHSRatio =
1515           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1516       LHSScaledTrueCount = TrueCount * LHSRatio;
1517     }
1518 
1519     cond.begin(*this);
1520     EmitBlock(LHSBlock);
1521     incrementProfileCounter(CondOp);
1522     {
1523       ApplyDebugLocation DL(*this, Cond);
1524       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1525                            LHSScaledTrueCount);
1526     }
1527     cond.end(*this);
1528 
1529     cond.begin(*this);
1530     EmitBlock(RHSBlock);
1531     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1532                          TrueCount - LHSScaledTrueCount);
1533     cond.end(*this);
1534 
1535     return;
1536   }
1537 
1538   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1539     // Conditional operator handling can give us a throw expression as a
1540     // condition for a case like:
1541     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1542     // Fold this to:
1543     //   br(c, throw x, br(y, t, f))
1544     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1545     return;
1546   }
1547 
1548   // If the branch has a condition wrapped by __builtin_unpredictable,
1549   // create metadata that specifies that the branch is unpredictable.
1550   // Don't bother if not optimizing because that metadata would not be used.
1551   llvm::MDNode *Unpredictable = nullptr;
1552   auto *Call = dyn_cast<CallExpr>(Cond);
1553   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1554     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1555     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1556       llvm::MDBuilder MDHelper(getLLVMContext());
1557       Unpredictable = MDHelper.createUnpredictable();
1558     }
1559   }
1560 
1561   // Create branch weights based on the number of times we get here and the
1562   // number of times the condition should be true.
1563   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1564   llvm::MDNode *Weights =
1565       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1566 
1567   // Emit the code with the fully general case.
1568   llvm::Value *CondV;
1569   {
1570     ApplyDebugLocation DL(*this, Cond);
1571     CondV = EvaluateExprAsBool(Cond);
1572   }
1573   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1574 }
1575 
1576 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1577 /// specified stmt yet.
1578 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1579   CGM.ErrorUnsupported(S, Type);
1580 }
1581 
1582 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1583 /// variable-length array whose elements have a non-zero bit-pattern.
1584 ///
1585 /// \param baseType the inner-most element type of the array
1586 /// \param src - a char* pointing to the bit-pattern for a single
1587 /// base element of the array
1588 /// \param sizeInChars - the total size of the VLA, in chars
1589 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1590                                Address dest, Address src,
1591                                llvm::Value *sizeInChars) {
1592   CGBuilderTy &Builder = CGF.Builder;
1593 
1594   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1595   llvm::Value *baseSizeInChars
1596     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1597 
1598   Address begin =
1599     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1600   llvm::Value *end =
1601     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1602 
1603   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1604   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1605   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1606 
1607   // Make a loop over the VLA.  C99 guarantees that the VLA element
1608   // count must be nonzero.
1609   CGF.EmitBlock(loopBB);
1610 
1611   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1612   cur->addIncoming(begin.getPointer(), originBB);
1613 
1614   CharUnits curAlign =
1615     dest.getAlignment().alignmentOfArrayElement(baseSize);
1616 
1617   // memcpy the individual element bit-pattern.
1618   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1619                        /*volatile*/ false);
1620 
1621   // Go to the next element.
1622   llvm::Value *next =
1623     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1624 
1625   // Leave if that's the end of the VLA.
1626   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1627   Builder.CreateCondBr(done, contBB, loopBB);
1628   cur->addIncoming(next, loopBB);
1629 
1630   CGF.EmitBlock(contBB);
1631 }
1632 
1633 void
1634 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1635   // Ignore empty classes in C++.
1636   if (getLangOpts().CPlusPlus) {
1637     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1638       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1639         return;
1640     }
1641   }
1642 
1643   // Cast the dest ptr to the appropriate i8 pointer type.
1644   if (DestPtr.getElementType() != Int8Ty)
1645     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1646 
1647   // Get size and alignment info for this aggregate.
1648   CharUnits size = getContext().getTypeSizeInChars(Ty);
1649 
1650   llvm::Value *SizeVal;
1651   const VariableArrayType *vla;
1652 
1653   // Don't bother emitting a zero-byte memset.
1654   if (size.isZero()) {
1655     // But note that getTypeInfo returns 0 for a VLA.
1656     if (const VariableArrayType *vlaType =
1657           dyn_cast_or_null<VariableArrayType>(
1658                                           getContext().getAsArrayType(Ty))) {
1659       QualType eltType;
1660       llvm::Value *numElts;
1661       std::tie(numElts, eltType) = getVLASize(vlaType);
1662 
1663       SizeVal = numElts;
1664       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1665       if (!eltSize.isOne())
1666         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1667       vla = vlaType;
1668     } else {
1669       return;
1670     }
1671   } else {
1672     SizeVal = CGM.getSize(size);
1673     vla = nullptr;
1674   }
1675 
1676   // If the type contains a pointer to data member we can't memset it to zero.
1677   // Instead, create a null constant and copy it to the destination.
1678   // TODO: there are other patterns besides zero that we can usefully memset,
1679   // like -1, which happens to be the pattern used by member-pointers.
1680   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1681     // For a VLA, emit a single element, then splat that over the VLA.
1682     if (vla) Ty = getContext().getBaseElementType(vla);
1683 
1684     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1685 
1686     llvm::GlobalVariable *NullVariable =
1687       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1688                                /*isConstant=*/true,
1689                                llvm::GlobalVariable::PrivateLinkage,
1690                                NullConstant, Twine());
1691     CharUnits NullAlign = DestPtr.getAlignment();
1692     NullVariable->setAlignment(NullAlign.getQuantity());
1693     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1694                    NullAlign);
1695 
1696     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1697 
1698     // Get and call the appropriate llvm.memcpy overload.
1699     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1700     return;
1701   }
1702 
1703   // Otherwise, just memset the whole thing to zero.  This is legal
1704   // because in LLVM, all default initializers (other than the ones we just
1705   // handled above) are guaranteed to have a bit pattern of all zeros.
1706   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1707 }
1708 
1709 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1710   // Make sure that there is a block for the indirect goto.
1711   if (!IndirectBranch)
1712     GetIndirectGotoBlock();
1713 
1714   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1715 
1716   // Make sure the indirect branch includes all of the address-taken blocks.
1717   IndirectBranch->addDestination(BB);
1718   return llvm::BlockAddress::get(CurFn, BB);
1719 }
1720 
1721 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1722   // If we already made the indirect branch for indirect goto, return its block.
1723   if (IndirectBranch) return IndirectBranch->getParent();
1724 
1725   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1726 
1727   // Create the PHI node that indirect gotos will add entries to.
1728   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1729                                               "indirect.goto.dest");
1730 
1731   // Create the indirect branch instruction.
1732   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1733   return IndirectBranch->getParent();
1734 }
1735 
1736 /// Computes the length of an array in elements, as well as the base
1737 /// element type and a properly-typed first element pointer.
1738 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1739                                               QualType &baseType,
1740                                               Address &addr) {
1741   const ArrayType *arrayType = origArrayType;
1742 
1743   // If it's a VLA, we have to load the stored size.  Note that
1744   // this is the size of the VLA in bytes, not its size in elements.
1745   llvm::Value *numVLAElements = nullptr;
1746   if (isa<VariableArrayType>(arrayType)) {
1747     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1748 
1749     // Walk into all VLAs.  This doesn't require changes to addr,
1750     // which has type T* where T is the first non-VLA element type.
1751     do {
1752       QualType elementType = arrayType->getElementType();
1753       arrayType = getContext().getAsArrayType(elementType);
1754 
1755       // If we only have VLA components, 'addr' requires no adjustment.
1756       if (!arrayType) {
1757         baseType = elementType;
1758         return numVLAElements;
1759       }
1760     } while (isa<VariableArrayType>(arrayType));
1761 
1762     // We get out here only if we find a constant array type
1763     // inside the VLA.
1764   }
1765 
1766   // We have some number of constant-length arrays, so addr should
1767   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1768   // down to the first element of addr.
1769   SmallVector<llvm::Value*, 8> gepIndices;
1770 
1771   // GEP down to the array type.
1772   llvm::ConstantInt *zero = Builder.getInt32(0);
1773   gepIndices.push_back(zero);
1774 
1775   uint64_t countFromCLAs = 1;
1776   QualType eltType;
1777 
1778   llvm::ArrayType *llvmArrayType =
1779     dyn_cast<llvm::ArrayType>(addr.getElementType());
1780   while (llvmArrayType) {
1781     assert(isa<ConstantArrayType>(arrayType));
1782     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1783              == llvmArrayType->getNumElements());
1784 
1785     gepIndices.push_back(zero);
1786     countFromCLAs *= llvmArrayType->getNumElements();
1787     eltType = arrayType->getElementType();
1788 
1789     llvmArrayType =
1790       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1791     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1792     assert((!llvmArrayType || arrayType) &&
1793            "LLVM and Clang types are out-of-synch");
1794   }
1795 
1796   if (arrayType) {
1797     // From this point onwards, the Clang array type has been emitted
1798     // as some other type (probably a packed struct). Compute the array
1799     // size, and just emit the 'begin' expression as a bitcast.
1800     while (arrayType) {
1801       countFromCLAs *=
1802           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1803       eltType = arrayType->getElementType();
1804       arrayType = getContext().getAsArrayType(eltType);
1805     }
1806 
1807     llvm::Type *baseType = ConvertType(eltType);
1808     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1809   } else {
1810     // Create the actual GEP.
1811     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1812                                              gepIndices, "array.begin"),
1813                    addr.getAlignment());
1814   }
1815 
1816   baseType = eltType;
1817 
1818   llvm::Value *numElements
1819     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1820 
1821   // If we had any VLA dimensions, factor them in.
1822   if (numVLAElements)
1823     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1824 
1825   return numElements;
1826 }
1827 
1828 std::pair<llvm::Value*, QualType>
1829 CodeGenFunction::getVLASize(QualType type) {
1830   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1831   assert(vla && "type was not a variable array type!");
1832   return getVLASize(vla);
1833 }
1834 
1835 std::pair<llvm::Value*, QualType>
1836 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1837   // The number of elements so far; always size_t.
1838   llvm::Value *numElements = nullptr;
1839 
1840   QualType elementType;
1841   do {
1842     elementType = type->getElementType();
1843     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1844     assert(vlaSize && "no size for VLA!");
1845     assert(vlaSize->getType() == SizeTy);
1846 
1847     if (!numElements) {
1848       numElements = vlaSize;
1849     } else {
1850       // It's undefined behavior if this wraps around, so mark it that way.
1851       // FIXME: Teach -fsanitize=undefined to trap this.
1852       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1853     }
1854   } while ((type = getContext().getAsVariableArrayType(elementType)));
1855 
1856   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1857 }
1858 
1859 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1860   assert(type->isVariablyModifiedType() &&
1861          "Must pass variably modified type to EmitVLASizes!");
1862 
1863   EnsureInsertPoint();
1864 
1865   // We're going to walk down into the type and look for VLA
1866   // expressions.
1867   do {
1868     assert(type->isVariablyModifiedType());
1869 
1870     const Type *ty = type.getTypePtr();
1871     switch (ty->getTypeClass()) {
1872 
1873 #define TYPE(Class, Base)
1874 #define ABSTRACT_TYPE(Class, Base)
1875 #define NON_CANONICAL_TYPE(Class, Base)
1876 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1877 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1878 #include "clang/AST/TypeNodes.def"
1879       llvm_unreachable("unexpected dependent type!");
1880 
1881     // These types are never variably-modified.
1882     case Type::Builtin:
1883     case Type::Complex:
1884     case Type::Vector:
1885     case Type::ExtVector:
1886     case Type::Record:
1887     case Type::Enum:
1888     case Type::Elaborated:
1889     case Type::TemplateSpecialization:
1890     case Type::ObjCTypeParam:
1891     case Type::ObjCObject:
1892     case Type::ObjCInterface:
1893     case Type::ObjCObjectPointer:
1894       llvm_unreachable("type class is never variably-modified!");
1895 
1896     case Type::Adjusted:
1897       type = cast<AdjustedType>(ty)->getAdjustedType();
1898       break;
1899 
1900     case Type::Decayed:
1901       type = cast<DecayedType>(ty)->getPointeeType();
1902       break;
1903 
1904     case Type::Pointer:
1905       type = cast<PointerType>(ty)->getPointeeType();
1906       break;
1907 
1908     case Type::BlockPointer:
1909       type = cast<BlockPointerType>(ty)->getPointeeType();
1910       break;
1911 
1912     case Type::LValueReference:
1913     case Type::RValueReference:
1914       type = cast<ReferenceType>(ty)->getPointeeType();
1915       break;
1916 
1917     case Type::MemberPointer:
1918       type = cast<MemberPointerType>(ty)->getPointeeType();
1919       break;
1920 
1921     case Type::ConstantArray:
1922     case Type::IncompleteArray:
1923       // Losing element qualification here is fine.
1924       type = cast<ArrayType>(ty)->getElementType();
1925       break;
1926 
1927     case Type::VariableArray: {
1928       // Losing element qualification here is fine.
1929       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1930 
1931       // Unknown size indication requires no size computation.
1932       // Otherwise, evaluate and record it.
1933       if (const Expr *size = vat->getSizeExpr()) {
1934         // It's possible that we might have emitted this already,
1935         // e.g. with a typedef and a pointer to it.
1936         llvm::Value *&entry = VLASizeMap[size];
1937         if (!entry) {
1938           llvm::Value *Size = EmitScalarExpr(size);
1939 
1940           // C11 6.7.6.2p5:
1941           //   If the size is an expression that is not an integer constant
1942           //   expression [...] each time it is evaluated it shall have a value
1943           //   greater than zero.
1944           if (SanOpts.has(SanitizerKind::VLABound) &&
1945               size->getType()->isSignedIntegerType()) {
1946             SanitizerScope SanScope(this);
1947             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1948             llvm::Constant *StaticArgs[] = {
1949               EmitCheckSourceLocation(size->getLocStart()),
1950               EmitCheckTypeDescriptor(size->getType())
1951             };
1952             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1953                                      SanitizerKind::VLABound),
1954                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1955           }
1956 
1957           // Always zexting here would be wrong if it weren't
1958           // undefined behavior to have a negative bound.
1959           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1960         }
1961       }
1962       type = vat->getElementType();
1963       break;
1964     }
1965 
1966     case Type::FunctionProto:
1967     case Type::FunctionNoProto:
1968       type = cast<FunctionType>(ty)->getReturnType();
1969       break;
1970 
1971     case Type::Paren:
1972     case Type::TypeOf:
1973     case Type::UnaryTransform:
1974     case Type::Attributed:
1975     case Type::SubstTemplateTypeParm:
1976     case Type::PackExpansion:
1977       // Keep walking after single level desugaring.
1978       type = type.getSingleStepDesugaredType(getContext());
1979       break;
1980 
1981     case Type::Typedef:
1982     case Type::Decltype:
1983     case Type::Auto:
1984     case Type::DeducedTemplateSpecialization:
1985       // Stop walking: nothing to do.
1986       return;
1987 
1988     case Type::TypeOfExpr:
1989       // Stop walking: emit typeof expression.
1990       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1991       return;
1992 
1993     case Type::Atomic:
1994       type = cast<AtomicType>(ty)->getValueType();
1995       break;
1996 
1997     case Type::Pipe:
1998       type = cast<PipeType>(ty)->getElementType();
1999       break;
2000     }
2001   } while (type->isVariablyModifiedType());
2002 }
2003 
2004 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2005   if (getContext().getBuiltinVaListType()->isArrayType())
2006     return EmitPointerWithAlignment(E);
2007   return EmitLValue(E).getAddress();
2008 }
2009 
2010 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2011   return EmitLValue(E).getAddress();
2012 }
2013 
2014 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2015                                               const APValue &Init) {
2016   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2017   if (CGDebugInfo *Dbg = getDebugInfo())
2018     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2019       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2020 }
2021 
2022 CodeGenFunction::PeepholeProtection
2023 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2024   // At the moment, the only aggressive peephole we do in IR gen
2025   // is trunc(zext) folding, but if we add more, we can easily
2026   // extend this protection.
2027 
2028   if (!rvalue.isScalar()) return PeepholeProtection();
2029   llvm::Value *value = rvalue.getScalarVal();
2030   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2031 
2032   // Just make an extra bitcast.
2033   assert(HaveInsertPoint());
2034   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2035                                                   Builder.GetInsertBlock());
2036 
2037   PeepholeProtection protection;
2038   protection.Inst = inst;
2039   return protection;
2040 }
2041 
2042 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2043   if (!protection.Inst) return;
2044 
2045   // In theory, we could try to duplicate the peepholes now, but whatever.
2046   protection.Inst->eraseFromParent();
2047 }
2048 
2049 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2050                                                  llvm::Value *AnnotatedVal,
2051                                                  StringRef AnnotationStr,
2052                                                  SourceLocation Location) {
2053   llvm::Value *Args[4] = {
2054     AnnotatedVal,
2055     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2056     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2057     CGM.EmitAnnotationLineNo(Location)
2058   };
2059   return Builder.CreateCall(AnnotationFn, Args);
2060 }
2061 
2062 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2063   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2064   // FIXME We create a new bitcast for every annotation because that's what
2065   // llvm-gcc was doing.
2066   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2067     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2068                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2069                        I->getAnnotation(), D->getLocation());
2070 }
2071 
2072 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2073                                               Address Addr) {
2074   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2075   llvm::Value *V = Addr.getPointer();
2076   llvm::Type *VTy = V->getType();
2077   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2078                                     CGM.Int8PtrTy);
2079 
2080   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2081     // FIXME Always emit the cast inst so we can differentiate between
2082     // annotation on the first field of a struct and annotation on the struct
2083     // itself.
2084     if (VTy != CGM.Int8PtrTy)
2085       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2086     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2087     V = Builder.CreateBitCast(V, VTy);
2088   }
2089 
2090   return Address(V, Addr.getAlignment());
2091 }
2092 
2093 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2094 
2095 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2096     : CGF(CGF) {
2097   assert(!CGF->IsSanitizerScope);
2098   CGF->IsSanitizerScope = true;
2099 }
2100 
2101 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2102   CGF->IsSanitizerScope = false;
2103 }
2104 
2105 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2106                                    const llvm::Twine &Name,
2107                                    llvm::BasicBlock *BB,
2108                                    llvm::BasicBlock::iterator InsertPt) const {
2109   LoopStack.InsertHelper(I);
2110   if (IsSanitizerScope)
2111     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2112 }
2113 
2114 void CGBuilderInserter::InsertHelper(
2115     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2116     llvm::BasicBlock::iterator InsertPt) const {
2117   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2118   if (CGF)
2119     CGF->InsertHelper(I, Name, BB, InsertPt);
2120 }
2121 
2122 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2123                                 CodeGenModule &CGM, const FunctionDecl *FD,
2124                                 std::string &FirstMissing) {
2125   // If there aren't any required features listed then go ahead and return.
2126   if (ReqFeatures.empty())
2127     return false;
2128 
2129   // Now build up the set of caller features and verify that all the required
2130   // features are there.
2131   llvm::StringMap<bool> CallerFeatureMap;
2132   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2133 
2134   // If we have at least one of the features in the feature list return
2135   // true, otherwise return false.
2136   return std::all_of(
2137       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2138         SmallVector<StringRef, 1> OrFeatures;
2139         Feature.split(OrFeatures, "|");
2140         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2141                            [&](StringRef Feature) {
2142                              if (!CallerFeatureMap.lookup(Feature)) {
2143                                FirstMissing = Feature.str();
2144                                return false;
2145                              }
2146                              return true;
2147                            });
2148       });
2149 }
2150 
2151 // Emits an error if we don't have a valid set of target features for the
2152 // called function.
2153 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2154                                           const FunctionDecl *TargetDecl) {
2155   // Early exit if this is an indirect call.
2156   if (!TargetDecl)
2157     return;
2158 
2159   // Get the current enclosing function if it exists. If it doesn't
2160   // we can't check the target features anyhow.
2161   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2162   if (!FD)
2163     return;
2164 
2165   // Grab the required features for the call. For a builtin this is listed in
2166   // the td file with the default cpu, for an always_inline function this is any
2167   // listed cpu and any listed features.
2168   unsigned BuiltinID = TargetDecl->getBuiltinID();
2169   std::string MissingFeature;
2170   if (BuiltinID) {
2171     SmallVector<StringRef, 1> ReqFeatures;
2172     const char *FeatureList =
2173         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2174     // Return if the builtin doesn't have any required features.
2175     if (!FeatureList || StringRef(FeatureList) == "")
2176       return;
2177     StringRef(FeatureList).split(ReqFeatures, ",");
2178     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2179       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2180           << TargetDecl->getDeclName()
2181           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2182 
2183   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2184     // Get the required features for the callee.
2185     SmallVector<StringRef, 1> ReqFeatures;
2186     llvm::StringMap<bool> CalleeFeatureMap;
2187     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2188     for (const auto &F : CalleeFeatureMap) {
2189       // Only positive features are "required".
2190       if (F.getValue())
2191         ReqFeatures.push_back(F.getKey());
2192     }
2193     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2194       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2195           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2196   }
2197 }
2198 
2199 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2200   if (!CGM.getCodeGenOpts().SanitizeStats)
2201     return;
2202 
2203   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2204   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2205   CGM.getSanStats().create(IRB, SSK);
2206 }
2207 
2208 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2209   if (CGDebugInfo *DI = getDebugInfo())
2210     return DI->SourceLocToDebugLoc(Location);
2211 
2212   return llvm::DebugLoc();
2213 }
2214