1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Disable lifetime markers in msan builds. 49 // FIXME: Remove this when msan works with lifetime markers. 50 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 51 return false; 52 53 // Asan uses markers for use-after-scope checks. 54 if (CGOpts.SanitizeAddressUseAfterScope) 55 return true; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP && CurFn) 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 120 LValueBaseInfo *BaseInfo) { 121 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 122 /*forPointee*/ true); 123 } 124 125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 bool forPointeeType) { 128 // Honor alignment typedef attributes even on incomplete types. 129 // We also honor them straight for C++ class types, even as pointees; 130 // there's an expressivity gap here. 131 if (auto TT = T->getAs<TypedefType>()) { 132 if (auto Align = TT->getDecl()->getMaxAlignment()) { 133 if (BaseInfo) 134 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 135 return getContext().toCharUnitsFromBits(Align); 136 } 137 } 138 139 if (BaseInfo) 140 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 141 142 CharUnits Alignment; 143 if (T->isIncompleteType()) { 144 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 145 } else { 146 // For C++ class pointees, we don't know whether we're pointing at a 147 // base or a complete object, so we generally need to use the 148 // non-virtual alignment. 149 const CXXRecordDecl *RD; 150 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 151 Alignment = CGM.getClassPointerAlignment(RD); 152 } else { 153 Alignment = getContext().getTypeAlignInChars(T); 154 if (T.getQualifiers().hasUnaligned()) 155 Alignment = CharUnits::One(); 156 } 157 158 // Cap to the global maximum type alignment unless the alignment 159 // was somehow explicit on the type. 160 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 161 if (Alignment.getQuantity() > MaxAlign && 162 !getContext().isAlignmentRequired(T)) 163 Alignment = CharUnits::fromQuantity(MaxAlign); 164 } 165 } 166 return Alignment; 167 } 168 169 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 170 LValueBaseInfo BaseInfo; 171 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); 172 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 173 CGM.getTBAAInfo(T)); 174 } 175 176 /// Given a value of type T* that may not be to a complete object, 177 /// construct an l-value with the natural pointee alignment of T. 178 LValue 179 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 180 LValueBaseInfo BaseInfo; 181 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); 182 return MakeAddrLValue(Address(V, Align), T, BaseInfo); 183 } 184 185 186 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 187 return CGM.getTypes().ConvertTypeForMem(T); 188 } 189 190 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 191 return CGM.getTypes().ConvertType(T); 192 } 193 194 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 195 type = type.getCanonicalType(); 196 while (true) { 197 switch (type->getTypeClass()) { 198 #define TYPE(name, parent) 199 #define ABSTRACT_TYPE(name, parent) 200 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 201 #define DEPENDENT_TYPE(name, parent) case Type::name: 202 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 203 #include "clang/AST/TypeNodes.def" 204 llvm_unreachable("non-canonical or dependent type in IR-generation"); 205 206 case Type::Auto: 207 case Type::DeducedTemplateSpecialization: 208 llvm_unreachable("undeduced type in IR-generation"); 209 210 // Various scalar types. 211 case Type::Builtin: 212 case Type::Pointer: 213 case Type::BlockPointer: 214 case Type::LValueReference: 215 case Type::RValueReference: 216 case Type::MemberPointer: 217 case Type::Vector: 218 case Type::ExtVector: 219 case Type::FunctionProto: 220 case Type::FunctionNoProto: 221 case Type::Enum: 222 case Type::ObjCObjectPointer: 223 case Type::Pipe: 224 return TEK_Scalar; 225 226 // Complexes. 227 case Type::Complex: 228 return TEK_Complex; 229 230 // Arrays, records, and Objective-C objects. 231 case Type::ConstantArray: 232 case Type::IncompleteArray: 233 case Type::VariableArray: 234 case Type::Record: 235 case Type::ObjCObject: 236 case Type::ObjCInterface: 237 return TEK_Aggregate; 238 239 // We operate on atomic values according to their underlying type. 240 case Type::Atomic: 241 type = cast<AtomicType>(type)->getValueType(); 242 continue; 243 } 244 llvm_unreachable("unknown type kind!"); 245 } 246 } 247 248 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 249 // For cleanliness, we try to avoid emitting the return block for 250 // simple cases. 251 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 252 253 if (CurBB) { 254 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 255 256 // We have a valid insert point, reuse it if it is empty or there are no 257 // explicit jumps to the return block. 258 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 259 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 260 delete ReturnBlock.getBlock(); 261 } else 262 EmitBlock(ReturnBlock.getBlock()); 263 return llvm::DebugLoc(); 264 } 265 266 // Otherwise, if the return block is the target of a single direct 267 // branch then we can just put the code in that block instead. This 268 // cleans up functions which started with a unified return block. 269 if (ReturnBlock.getBlock()->hasOneUse()) { 270 llvm::BranchInst *BI = 271 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 272 if (BI && BI->isUnconditional() && 273 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 274 // Record/return the DebugLoc of the simple 'return' expression to be used 275 // later by the actual 'ret' instruction. 276 llvm::DebugLoc Loc = BI->getDebugLoc(); 277 Builder.SetInsertPoint(BI->getParent()); 278 BI->eraseFromParent(); 279 delete ReturnBlock.getBlock(); 280 return Loc; 281 } 282 } 283 284 // FIXME: We are at an unreachable point, there is no reason to emit the block 285 // unless it has uses. However, we still need a place to put the debug 286 // region.end for now. 287 288 EmitBlock(ReturnBlock.getBlock()); 289 return llvm::DebugLoc(); 290 } 291 292 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 293 if (!BB) return; 294 if (!BB->use_empty()) 295 return CGF.CurFn->getBasicBlockList().push_back(BB); 296 delete BB; 297 } 298 299 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 300 assert(BreakContinueStack.empty() && 301 "mismatched push/pop in break/continue stack!"); 302 303 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 304 && NumSimpleReturnExprs == NumReturnExprs 305 && ReturnBlock.getBlock()->use_empty(); 306 // Usually the return expression is evaluated before the cleanup 307 // code. If the function contains only a simple return statement, 308 // such as a constant, the location before the cleanup code becomes 309 // the last useful breakpoint in the function, because the simple 310 // return expression will be evaluated after the cleanup code. To be 311 // safe, set the debug location for cleanup code to the location of 312 // the return statement. Otherwise the cleanup code should be at the 313 // end of the function's lexical scope. 314 // 315 // If there are multiple branches to the return block, the branch 316 // instructions will get the location of the return statements and 317 // all will be fine. 318 if (CGDebugInfo *DI = getDebugInfo()) { 319 if (OnlySimpleReturnStmts) 320 DI->EmitLocation(Builder, LastStopPoint); 321 else 322 DI->EmitLocation(Builder, EndLoc); 323 } 324 325 // Pop any cleanups that might have been associated with the 326 // parameters. Do this in whatever block we're currently in; it's 327 // important to do this before we enter the return block or return 328 // edges will be *really* confused. 329 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 330 bool HasOnlyLifetimeMarkers = 331 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 332 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 333 if (HasCleanups) { 334 // Make sure the line table doesn't jump back into the body for 335 // the ret after it's been at EndLoc. 336 if (CGDebugInfo *DI = getDebugInfo()) 337 if (OnlySimpleReturnStmts) 338 DI->EmitLocation(Builder, EndLoc); 339 340 PopCleanupBlocks(PrologueCleanupDepth); 341 } 342 343 // Emit function epilog (to return). 344 llvm::DebugLoc Loc = EmitReturnBlock(); 345 346 if (ShouldInstrumentFunction()) 347 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 348 349 // Emit debug descriptor for function end. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 DI->EmitFunctionEnd(Builder, CurFn); 352 353 // Reset the debug location to that of the simple 'return' expression, if any 354 // rather than that of the end of the function's scope '}'. 355 ApplyDebugLocation AL(*this, Loc); 356 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 357 EmitEndEHSpec(CurCodeDecl); 358 359 assert(EHStack.empty() && 360 "did not remove all scopes from cleanup stack!"); 361 362 // If someone did an indirect goto, emit the indirect goto block at the end of 363 // the function. 364 if (IndirectBranch) { 365 EmitBlock(IndirectBranch->getParent()); 366 Builder.ClearInsertionPoint(); 367 } 368 369 // If some of our locals escaped, insert a call to llvm.localescape in the 370 // entry block. 371 if (!EscapedLocals.empty()) { 372 // Invert the map from local to index into a simple vector. There should be 373 // no holes. 374 SmallVector<llvm::Value *, 4> EscapeArgs; 375 EscapeArgs.resize(EscapedLocals.size()); 376 for (auto &Pair : EscapedLocals) 377 EscapeArgs[Pair.second] = Pair.first; 378 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 379 &CGM.getModule(), llvm::Intrinsic::localescape); 380 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 381 } 382 383 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 384 llvm::Instruction *Ptr = AllocaInsertPt; 385 AllocaInsertPt = nullptr; 386 Ptr->eraseFromParent(); 387 388 // If someone took the address of a label but never did an indirect goto, we 389 // made a zero entry PHI node, which is illegal, zap it now. 390 if (IndirectBranch) { 391 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 392 if (PN->getNumIncomingValues() == 0) { 393 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 394 PN->eraseFromParent(); 395 } 396 } 397 398 EmitIfUsed(*this, EHResumeBlock); 399 EmitIfUsed(*this, TerminateLandingPad); 400 EmitIfUsed(*this, TerminateHandler); 401 EmitIfUsed(*this, UnreachableBlock); 402 403 if (CGM.getCodeGenOpts().EmitDeclMetadata) 404 EmitDeclMetadata(); 405 406 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 407 I = DeferredReplacements.begin(), 408 E = DeferredReplacements.end(); 409 I != E; ++I) { 410 I->first->replaceAllUsesWith(I->second); 411 I->first->eraseFromParent(); 412 } 413 } 414 415 /// ShouldInstrumentFunction - Return true if the current function should be 416 /// instrumented with __cyg_profile_func_* calls 417 bool CodeGenFunction::ShouldInstrumentFunction() { 418 if (!CGM.getCodeGenOpts().InstrumentFunctions) 419 return false; 420 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 421 return false; 422 return true; 423 } 424 425 /// ShouldXRayInstrument - Return true if the current function should be 426 /// instrumented with XRay nop sleds. 427 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 428 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 429 } 430 431 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 432 /// instrumentation function with the current function and the call site, if 433 /// function instrumentation is enabled. 434 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 435 auto NL = ApplyDebugLocation::CreateArtificial(*this); 436 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 437 llvm::PointerType *PointerTy = Int8PtrTy; 438 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 439 llvm::FunctionType *FunctionTy = 440 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 441 442 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 443 llvm::CallInst *CallSite = Builder.CreateCall( 444 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 445 llvm::ConstantInt::get(Int32Ty, 0), 446 "callsite"); 447 448 llvm::Value *args[] = { 449 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 450 CallSite 451 }; 452 453 EmitNounwindRuntimeCall(F, args); 454 } 455 456 static void removeImageAccessQualifier(std::string& TyName) { 457 std::string ReadOnlyQual("__read_only"); 458 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 459 if (ReadOnlyPos != std::string::npos) 460 // "+ 1" for the space after access qualifier. 461 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 462 else { 463 std::string WriteOnlyQual("__write_only"); 464 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 465 if (WriteOnlyPos != std::string::npos) 466 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 467 else { 468 std::string ReadWriteQual("__read_write"); 469 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 470 if (ReadWritePos != std::string::npos) 471 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 472 } 473 } 474 } 475 476 // Returns the address space id that should be produced to the 477 // kernel_arg_addr_space metadata. This is always fixed to the ids 478 // as specified in the SPIR 2.0 specification in order to differentiate 479 // for example in clGetKernelArgInfo() implementation between the address 480 // spaces with targets without unique mapping to the OpenCL address spaces 481 // (basically all single AS CPUs). 482 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 483 switch (LangAS) { 484 case LangAS::opencl_global: return 1; 485 case LangAS::opencl_constant: return 2; 486 case LangAS::opencl_local: return 3; 487 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 488 default: 489 return 0; // Assume private. 490 } 491 } 492 493 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 494 // information in the program executable. The argument information stored 495 // includes the argument name, its type, the address and access qualifiers used. 496 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 497 CodeGenModule &CGM, llvm::LLVMContext &Context, 498 CGBuilderTy &Builder, ASTContext &ASTCtx) { 499 // Create MDNodes that represent the kernel arg metadata. 500 // Each MDNode is a list in the form of "key", N number of values which is 501 // the same number of values as their are kernel arguments. 502 503 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 504 505 // MDNode for the kernel argument address space qualifiers. 506 SmallVector<llvm::Metadata *, 8> addressQuals; 507 508 // MDNode for the kernel argument access qualifiers (images only). 509 SmallVector<llvm::Metadata *, 8> accessQuals; 510 511 // MDNode for the kernel argument type names. 512 SmallVector<llvm::Metadata *, 8> argTypeNames; 513 514 // MDNode for the kernel argument base type names. 515 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 516 517 // MDNode for the kernel argument type qualifiers. 518 SmallVector<llvm::Metadata *, 8> argTypeQuals; 519 520 // MDNode for the kernel argument names. 521 SmallVector<llvm::Metadata *, 8> argNames; 522 523 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 524 const ParmVarDecl *parm = FD->getParamDecl(i); 525 QualType ty = parm->getType(); 526 std::string typeQuals; 527 528 if (ty->isPointerType()) { 529 QualType pointeeTy = ty->getPointeeType(); 530 531 // Get address qualifier. 532 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 533 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 534 535 // Get argument type name. 536 std::string typeName = 537 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 538 539 // Turn "unsigned type" to "utype" 540 std::string::size_type pos = typeName.find("unsigned"); 541 if (pointeeTy.isCanonical() && pos != std::string::npos) 542 typeName.erase(pos+1, 8); 543 544 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 545 546 std::string baseTypeName = 547 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 548 Policy) + 549 "*"; 550 551 // Turn "unsigned type" to "utype" 552 pos = baseTypeName.find("unsigned"); 553 if (pos != std::string::npos) 554 baseTypeName.erase(pos+1, 8); 555 556 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 557 558 // Get argument type qualifiers: 559 if (ty.isRestrictQualified()) 560 typeQuals = "restrict"; 561 if (pointeeTy.isConstQualified() || 562 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 563 typeQuals += typeQuals.empty() ? "const" : " const"; 564 if (pointeeTy.isVolatileQualified()) 565 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 566 } else { 567 uint32_t AddrSpc = 0; 568 bool isPipe = ty->isPipeType(); 569 if (ty->isImageType() || isPipe) 570 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 571 572 addressQuals.push_back( 573 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 574 575 // Get argument type name. 576 std::string typeName; 577 if (isPipe) 578 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 579 .getAsString(Policy); 580 else 581 typeName = ty.getUnqualifiedType().getAsString(Policy); 582 583 // Turn "unsigned type" to "utype" 584 std::string::size_type pos = typeName.find("unsigned"); 585 if (ty.isCanonical() && pos != std::string::npos) 586 typeName.erase(pos+1, 8); 587 588 std::string baseTypeName; 589 if (isPipe) 590 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 591 ->getElementType().getCanonicalType() 592 .getAsString(Policy); 593 else 594 baseTypeName = 595 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 596 597 // Remove access qualifiers on images 598 // (as they are inseparable from type in clang implementation, 599 // but OpenCL spec provides a special query to get access qualifier 600 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 601 if (ty->isImageType()) { 602 removeImageAccessQualifier(typeName); 603 removeImageAccessQualifier(baseTypeName); 604 } 605 606 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 607 608 // Turn "unsigned type" to "utype" 609 pos = baseTypeName.find("unsigned"); 610 if (pos != std::string::npos) 611 baseTypeName.erase(pos+1, 8); 612 613 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 614 615 if (isPipe) 616 typeQuals = "pipe"; 617 } 618 619 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 620 621 // Get image and pipe access qualifier: 622 if (ty->isImageType()|| ty->isPipeType()) { 623 const Decl *PDecl = parm; 624 if (auto *TD = dyn_cast<TypedefType>(ty)) 625 PDecl = TD->getDecl(); 626 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 627 if (A && A->isWriteOnly()) 628 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 629 else if (A && A->isReadWrite()) 630 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 631 else 632 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 633 } else 634 accessQuals.push_back(llvm::MDString::get(Context, "none")); 635 636 // Get argument name. 637 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 638 } 639 640 Fn->setMetadata("kernel_arg_addr_space", 641 llvm::MDNode::get(Context, addressQuals)); 642 Fn->setMetadata("kernel_arg_access_qual", 643 llvm::MDNode::get(Context, accessQuals)); 644 Fn->setMetadata("kernel_arg_type", 645 llvm::MDNode::get(Context, argTypeNames)); 646 Fn->setMetadata("kernel_arg_base_type", 647 llvm::MDNode::get(Context, argBaseTypeNames)); 648 Fn->setMetadata("kernel_arg_type_qual", 649 llvm::MDNode::get(Context, argTypeQuals)); 650 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 651 Fn->setMetadata("kernel_arg_name", 652 llvm::MDNode::get(Context, argNames)); 653 } 654 655 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 656 llvm::Function *Fn) 657 { 658 if (!FD->hasAttr<OpenCLKernelAttr>()) 659 return; 660 661 llvm::LLVMContext &Context = getLLVMContext(); 662 663 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 664 665 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 666 QualType HintQTy = A->getTypeHint(); 667 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 668 bool IsSignedInteger = 669 HintQTy->isSignedIntegerType() || 670 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 671 llvm::Metadata *AttrMDArgs[] = { 672 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 673 CGM.getTypes().ConvertType(A->getTypeHint()))), 674 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 675 llvm::IntegerType::get(Context, 32), 676 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 677 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 678 } 679 680 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 681 llvm::Metadata *AttrMDArgs[] = { 682 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 683 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 684 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 685 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 686 } 687 688 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 689 llvm::Metadata *AttrMDArgs[] = { 690 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 691 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 692 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 693 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 694 } 695 696 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 697 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 698 llvm::Metadata *AttrMDArgs[] = { 699 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 700 Fn->setMetadata("intel_reqd_sub_group_size", 701 llvm::MDNode::get(Context, AttrMDArgs)); 702 } 703 } 704 705 /// Determine whether the function F ends with a return stmt. 706 static bool endsWithReturn(const Decl* F) { 707 const Stmt *Body = nullptr; 708 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 709 Body = FD->getBody(); 710 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 711 Body = OMD->getBody(); 712 713 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 714 auto LastStmt = CS->body_rbegin(); 715 if (LastStmt != CS->body_rend()) 716 return isa<ReturnStmt>(*LastStmt); 717 } 718 return false; 719 } 720 721 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 722 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 723 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 724 } 725 726 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 727 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 728 if (!MD || !MD->getName().equals("allocate") || 729 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 730 return false; 731 732 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 733 return false; 734 735 if (MD->getNumParams() == 2) { 736 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 737 if (!PT || !PT->isVoidPointerType() || 738 !PT->getPointeeType().isConstQualified()) 739 return false; 740 } 741 742 return true; 743 } 744 745 void CodeGenFunction::StartFunction(GlobalDecl GD, 746 QualType RetTy, 747 llvm::Function *Fn, 748 const CGFunctionInfo &FnInfo, 749 const FunctionArgList &Args, 750 SourceLocation Loc, 751 SourceLocation StartLoc) { 752 assert(!CurFn && 753 "Do not use a CodeGenFunction object for more than one function"); 754 755 const Decl *D = GD.getDecl(); 756 757 DidCallStackSave = false; 758 CurCodeDecl = D; 759 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 760 if (FD->usesSEHTry()) 761 CurSEHParent = FD; 762 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 763 FnRetTy = RetTy; 764 CurFn = Fn; 765 CurFnInfo = &FnInfo; 766 assert(CurFn->isDeclaration() && "Function already has body?"); 767 768 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 769 SanOpts.clear(); 770 771 if (D) { 772 // Apply the no_sanitize* attributes to SanOpts. 773 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 774 SanOpts.Mask &= ~Attr->getMask(); 775 } 776 777 // Apply sanitizer attributes to the function. 778 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 779 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 780 if (SanOpts.has(SanitizerKind::Thread)) 781 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 782 if (SanOpts.has(SanitizerKind::Memory)) 783 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 784 if (SanOpts.has(SanitizerKind::SafeStack)) 785 Fn->addFnAttr(llvm::Attribute::SafeStack); 786 787 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 788 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 789 if (SanOpts.has(SanitizerKind::Thread)) { 790 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 791 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 792 if (OMD->getMethodFamily() == OMF_dealloc || 793 OMD->getMethodFamily() == OMF_initialize || 794 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 795 markAsIgnoreThreadCheckingAtRuntime(Fn); 796 } 797 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 798 IdentifierInfo *II = FD->getIdentifier(); 799 if (II && II->isStr("__destroy_helper_block_")) 800 markAsIgnoreThreadCheckingAtRuntime(Fn); 801 } 802 } 803 804 // Ignore unrelated casts in STL allocate() since the allocator must cast 805 // from void* to T* before object initialization completes. Don't match on the 806 // namespace because not all allocators are in std:: 807 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 808 if (matchesStlAllocatorFn(D, getContext())) 809 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 810 } 811 812 // Apply xray attributes to the function (as a string, for now) 813 if (D && ShouldXRayInstrumentFunction()) { 814 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 815 if (XRayAttr->alwaysXRayInstrument()) 816 Fn->addFnAttr("function-instrument", "xray-always"); 817 if (XRayAttr->neverXRayInstrument()) 818 Fn->addFnAttr("function-instrument", "xray-never"); 819 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 820 Fn->addFnAttr("xray-log-args", 821 llvm::utostr(LogArgs->getArgumentCount())); 822 } 823 } else { 824 if (!CGM.imbueXRayAttrs(Fn, Loc)) 825 Fn->addFnAttr( 826 "xray-instruction-threshold", 827 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 828 } 829 } 830 831 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 832 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 833 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 834 835 // Add no-jump-tables value. 836 Fn->addFnAttr("no-jump-tables", 837 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 838 839 if (getLangOpts().OpenCL) { 840 // Add metadata for a kernel function. 841 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 842 EmitOpenCLKernelMetadata(FD, Fn); 843 } 844 845 // If we are checking function types, emit a function type signature as 846 // prologue data. 847 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 848 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 849 if (llvm::Constant *PrologueSig = 850 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 851 llvm::Constant *FTRTTIConst = 852 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 853 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 854 llvm::Constant *PrologueStructConst = 855 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 856 Fn->setPrologueData(PrologueStructConst); 857 } 858 } 859 } 860 861 // If we're checking nullability, we need to know whether we can check the 862 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 863 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 864 auto Nullability = FnRetTy->getNullability(getContext()); 865 if (Nullability && *Nullability == NullabilityKind::NonNull) { 866 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 867 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 868 RetValNullabilityPrecondition = 869 llvm::ConstantInt::getTrue(getLLVMContext()); 870 } 871 } 872 873 // If we're in C++ mode and the function name is "main", it is guaranteed 874 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 875 // used within a program"). 876 if (getLangOpts().CPlusPlus) 877 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 878 if (FD->isMain()) 879 Fn->addFnAttr(llvm::Attribute::NoRecurse); 880 881 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 882 883 // Create a marker to make it easy to insert allocas into the entryblock 884 // later. Don't create this with the builder, because we don't want it 885 // folded. 886 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 887 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 888 889 ReturnBlock = getJumpDestInCurrentScope("return"); 890 891 Builder.SetInsertPoint(EntryBB); 892 893 // If we're checking the return value, allocate space for a pointer to a 894 // precise source location of the checked return statement. 895 if (requiresReturnValueCheck()) { 896 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 897 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 898 } 899 900 // Emit subprogram debug descriptor. 901 if (CGDebugInfo *DI = getDebugInfo()) { 902 // Reconstruct the type from the argument list so that implicit parameters, 903 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 904 // convention. 905 CallingConv CC = CallingConv::CC_C; 906 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 907 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 908 CC = SrcFnTy->getCallConv(); 909 SmallVector<QualType, 16> ArgTypes; 910 for (const VarDecl *VD : Args) 911 ArgTypes.push_back(VD->getType()); 912 QualType FnType = getContext().getFunctionType( 913 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 914 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 915 } 916 917 if (ShouldInstrumentFunction()) 918 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 919 920 // Since emitting the mcount call here impacts optimizations such as function 921 // inlining, we just add an attribute to insert a mcount call in backend. 922 // The attribute "counting-function" is set to mcount function name which is 923 // architecture dependent. 924 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 925 if (CGM.getCodeGenOpts().CallFEntry) 926 Fn->addFnAttr("fentry-call", "true"); 927 else { 928 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 929 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 930 } 931 } 932 933 if (RetTy->isVoidType()) { 934 // Void type; nothing to return. 935 ReturnValue = Address::invalid(); 936 937 // Count the implicit return. 938 if (!endsWithReturn(D)) 939 ++NumReturnExprs; 940 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 941 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 942 // Indirect aggregate return; emit returned value directly into sret slot. 943 // This reduces code size, and affects correctness in C++. 944 auto AI = CurFn->arg_begin(); 945 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 946 ++AI; 947 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 948 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 949 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 950 // Load the sret pointer from the argument struct and return into that. 951 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 952 llvm::Function::arg_iterator EI = CurFn->arg_end(); 953 --EI; 954 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 955 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 956 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 957 } else { 958 ReturnValue = CreateIRTemp(RetTy, "retval"); 959 960 // Tell the epilog emitter to autorelease the result. We do this 961 // now so that various specialized functions can suppress it 962 // during their IR-generation. 963 if (getLangOpts().ObjCAutoRefCount && 964 !CurFnInfo->isReturnsRetained() && 965 RetTy->isObjCRetainableType()) 966 AutoreleaseResult = true; 967 } 968 969 EmitStartEHSpec(CurCodeDecl); 970 971 PrologueCleanupDepth = EHStack.stable_begin(); 972 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 973 974 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 975 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 976 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 977 if (MD->getParent()->isLambda() && 978 MD->getOverloadedOperator() == OO_Call) { 979 // We're in a lambda; figure out the captures. 980 MD->getParent()->getCaptureFields(LambdaCaptureFields, 981 LambdaThisCaptureField); 982 if (LambdaThisCaptureField) { 983 // If the lambda captures the object referred to by '*this' - either by 984 // value or by reference, make sure CXXThisValue points to the correct 985 // object. 986 987 // Get the lvalue for the field (which is a copy of the enclosing object 988 // or contains the address of the enclosing object). 989 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 990 if (!LambdaThisCaptureField->getType()->isPointerType()) { 991 // If the enclosing object was captured by value, just use its address. 992 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 993 } else { 994 // Load the lvalue pointed to by the field, since '*this' was captured 995 // by reference. 996 CXXThisValue = 997 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 998 } 999 } 1000 for (auto *FD : MD->getParent()->fields()) { 1001 if (FD->hasCapturedVLAType()) { 1002 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1003 SourceLocation()).getScalarVal(); 1004 auto VAT = FD->getCapturedVLAType(); 1005 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1006 } 1007 } 1008 } else { 1009 // Not in a lambda; just use 'this' from the method. 1010 // FIXME: Should we generate a new load for each use of 'this'? The 1011 // fast register allocator would be happier... 1012 CXXThisValue = CXXABIThisValue; 1013 } 1014 1015 // Check the 'this' pointer once per function, if it's available. 1016 if (CXXThisValue) { 1017 SanitizerSet SkippedChecks; 1018 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1019 QualType ThisTy = MD->getThisType(getContext()); 1020 EmitTypeCheck(TCK_Load, Loc, CXXThisValue, ThisTy, 1021 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1022 SkippedChecks); 1023 } 1024 } 1025 1026 // If any of the arguments have a variably modified type, make sure to 1027 // emit the type size. 1028 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1029 i != e; ++i) { 1030 const VarDecl *VD = *i; 1031 1032 // Dig out the type as written from ParmVarDecls; it's unclear whether 1033 // the standard (C99 6.9.1p10) requires this, but we're following the 1034 // precedent set by gcc. 1035 QualType Ty; 1036 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1037 Ty = PVD->getOriginalType(); 1038 else 1039 Ty = VD->getType(); 1040 1041 if (Ty->isVariablyModifiedType()) 1042 EmitVariablyModifiedType(Ty); 1043 } 1044 // Emit a location at the end of the prologue. 1045 if (CGDebugInfo *DI = getDebugInfo()) 1046 DI->EmitLocation(Builder, StartLoc); 1047 } 1048 1049 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1050 const Stmt *Body) { 1051 incrementProfileCounter(Body); 1052 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1053 EmitCompoundStmtWithoutScope(*S); 1054 else 1055 EmitStmt(Body); 1056 } 1057 1058 /// When instrumenting to collect profile data, the counts for some blocks 1059 /// such as switch cases need to not include the fall-through counts, so 1060 /// emit a branch around the instrumentation code. When not instrumenting, 1061 /// this just calls EmitBlock(). 1062 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1063 const Stmt *S) { 1064 llvm::BasicBlock *SkipCountBB = nullptr; 1065 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1066 // When instrumenting for profiling, the fallthrough to certain 1067 // statements needs to skip over the instrumentation code so that we 1068 // get an accurate count. 1069 SkipCountBB = createBasicBlock("skipcount"); 1070 EmitBranch(SkipCountBB); 1071 } 1072 EmitBlock(BB); 1073 uint64_t CurrentCount = getCurrentProfileCount(); 1074 incrementProfileCounter(S); 1075 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1076 if (SkipCountBB) 1077 EmitBlock(SkipCountBB); 1078 } 1079 1080 /// Tries to mark the given function nounwind based on the 1081 /// non-existence of any throwing calls within it. We believe this is 1082 /// lightweight enough to do at -O0. 1083 static void TryMarkNoThrow(llvm::Function *F) { 1084 // LLVM treats 'nounwind' on a function as part of the type, so we 1085 // can't do this on functions that can be overwritten. 1086 if (F->isInterposable()) return; 1087 1088 for (llvm::BasicBlock &BB : *F) 1089 for (llvm::Instruction &I : BB) 1090 if (I.mayThrow()) 1091 return; 1092 1093 F->setDoesNotThrow(); 1094 } 1095 1096 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1097 FunctionArgList &Args) { 1098 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1099 QualType ResTy = FD->getReturnType(); 1100 1101 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1102 if (MD && MD->isInstance()) { 1103 if (CGM.getCXXABI().HasThisReturn(GD)) 1104 ResTy = MD->getThisType(getContext()); 1105 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1106 ResTy = CGM.getContext().VoidPtrTy; 1107 CGM.getCXXABI().buildThisParam(*this, Args); 1108 } 1109 1110 // The base version of an inheriting constructor whose constructed base is a 1111 // virtual base is not passed any arguments (because it doesn't actually call 1112 // the inherited constructor). 1113 bool PassedParams = true; 1114 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1115 if (auto Inherited = CD->getInheritedConstructor()) 1116 PassedParams = 1117 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1118 1119 if (PassedParams) { 1120 for (auto *Param : FD->parameters()) { 1121 Args.push_back(Param); 1122 if (!Param->hasAttr<PassObjectSizeAttr>()) 1123 continue; 1124 1125 auto *Implicit = ImplicitParamDecl::Create( 1126 getContext(), Param->getDeclContext(), Param->getLocation(), 1127 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1128 SizeArguments[Param] = Implicit; 1129 Args.push_back(Implicit); 1130 } 1131 } 1132 1133 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1134 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1135 1136 return ResTy; 1137 } 1138 1139 static bool 1140 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1141 const ASTContext &Context) { 1142 QualType T = FD->getReturnType(); 1143 // Avoid the optimization for functions that return a record type with a 1144 // trivial destructor or another trivially copyable type. 1145 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1146 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1147 return !ClassDecl->hasTrivialDestructor(); 1148 } 1149 return !T.isTriviallyCopyableType(Context); 1150 } 1151 1152 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1153 const CGFunctionInfo &FnInfo) { 1154 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1155 CurGD = GD; 1156 1157 FunctionArgList Args; 1158 QualType ResTy = BuildFunctionArgList(GD, Args); 1159 1160 // Check if we should generate debug info for this function. 1161 if (FD->hasAttr<NoDebugAttr>()) 1162 DebugInfo = nullptr; // disable debug info indefinitely for this function 1163 1164 // The function might not have a body if we're generating thunks for a 1165 // function declaration. 1166 SourceRange BodyRange; 1167 if (Stmt *Body = FD->getBody()) 1168 BodyRange = Body->getSourceRange(); 1169 else 1170 BodyRange = FD->getLocation(); 1171 CurEHLocation = BodyRange.getEnd(); 1172 1173 // Use the location of the start of the function to determine where 1174 // the function definition is located. By default use the location 1175 // of the declaration as the location for the subprogram. A function 1176 // may lack a declaration in the source code if it is created by code 1177 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1178 SourceLocation Loc = FD->getLocation(); 1179 1180 // If this is a function specialization then use the pattern body 1181 // as the location for the function. 1182 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1183 if (SpecDecl->hasBody(SpecDecl)) 1184 Loc = SpecDecl->getLocation(); 1185 1186 Stmt *Body = FD->getBody(); 1187 1188 // Initialize helper which will detect jumps which can cause invalid lifetime 1189 // markers. 1190 if (Body && ShouldEmitLifetimeMarkers) 1191 Bypasses.Init(Body); 1192 1193 // Emit the standard function prologue. 1194 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1195 1196 // Generate the body of the function. 1197 PGO.assignRegionCounters(GD, CurFn); 1198 if (isa<CXXDestructorDecl>(FD)) 1199 EmitDestructorBody(Args); 1200 else if (isa<CXXConstructorDecl>(FD)) 1201 EmitConstructorBody(Args); 1202 else if (getLangOpts().CUDA && 1203 !getLangOpts().CUDAIsDevice && 1204 FD->hasAttr<CUDAGlobalAttr>()) 1205 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1206 else if (isa<CXXConversionDecl>(FD) && 1207 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1208 // The lambda conversion to block pointer is special; the semantics can't be 1209 // expressed in the AST, so IRGen needs to special-case it. 1210 EmitLambdaToBlockPointerBody(Args); 1211 } else if (isa<CXXMethodDecl>(FD) && 1212 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1213 // The lambda static invoker function is special, because it forwards or 1214 // clones the body of the function call operator (but is actually static). 1215 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1216 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1217 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1218 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1219 // Implicit copy-assignment gets the same special treatment as implicit 1220 // copy-constructors. 1221 emitImplicitAssignmentOperatorBody(Args); 1222 } else if (Body) { 1223 EmitFunctionBody(Args, Body); 1224 } else 1225 llvm_unreachable("no definition for emitted function"); 1226 1227 // C++11 [stmt.return]p2: 1228 // Flowing off the end of a function [...] results in undefined behavior in 1229 // a value-returning function. 1230 // C11 6.9.1p12: 1231 // If the '}' that terminates a function is reached, and the value of the 1232 // function call is used by the caller, the behavior is undefined. 1233 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1234 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1235 bool ShouldEmitUnreachable = 1236 CGM.getCodeGenOpts().StrictReturn || 1237 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1238 if (SanOpts.has(SanitizerKind::Return)) { 1239 SanitizerScope SanScope(this); 1240 llvm::Value *IsFalse = Builder.getFalse(); 1241 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1242 SanitizerHandler::MissingReturn, 1243 EmitCheckSourceLocation(FD->getLocation()), None); 1244 } else if (ShouldEmitUnreachable) { 1245 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1246 EmitTrapCall(llvm::Intrinsic::trap); 1247 } 1248 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1249 Builder.CreateUnreachable(); 1250 Builder.ClearInsertionPoint(); 1251 } 1252 } 1253 1254 // Emit the standard function epilogue. 1255 FinishFunction(BodyRange.getEnd()); 1256 1257 // If we haven't marked the function nothrow through other means, do 1258 // a quick pass now to see if we can. 1259 if (!CurFn->doesNotThrow()) 1260 TryMarkNoThrow(CurFn); 1261 } 1262 1263 /// ContainsLabel - Return true if the statement contains a label in it. If 1264 /// this statement is not executed normally, it not containing a label means 1265 /// that we can just remove the code. 1266 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1267 // Null statement, not a label! 1268 if (!S) return false; 1269 1270 // If this is a label, we have to emit the code, consider something like: 1271 // if (0) { ... foo: bar(); } goto foo; 1272 // 1273 // TODO: If anyone cared, we could track __label__'s, since we know that you 1274 // can't jump to one from outside their declared region. 1275 if (isa<LabelStmt>(S)) 1276 return true; 1277 1278 // If this is a case/default statement, and we haven't seen a switch, we have 1279 // to emit the code. 1280 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1281 return true; 1282 1283 // If this is a switch statement, we want to ignore cases below it. 1284 if (isa<SwitchStmt>(S)) 1285 IgnoreCaseStmts = true; 1286 1287 // Scan subexpressions for verboten labels. 1288 for (const Stmt *SubStmt : S->children()) 1289 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1290 return true; 1291 1292 return false; 1293 } 1294 1295 /// containsBreak - Return true if the statement contains a break out of it. 1296 /// If the statement (recursively) contains a switch or loop with a break 1297 /// inside of it, this is fine. 1298 bool CodeGenFunction::containsBreak(const Stmt *S) { 1299 // Null statement, not a label! 1300 if (!S) return false; 1301 1302 // If this is a switch or loop that defines its own break scope, then we can 1303 // include it and anything inside of it. 1304 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1305 isa<ForStmt>(S)) 1306 return false; 1307 1308 if (isa<BreakStmt>(S)) 1309 return true; 1310 1311 // Scan subexpressions for verboten breaks. 1312 for (const Stmt *SubStmt : S->children()) 1313 if (containsBreak(SubStmt)) 1314 return true; 1315 1316 return false; 1317 } 1318 1319 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1320 if (!S) return false; 1321 1322 // Some statement kinds add a scope and thus never add a decl to the current 1323 // scope. Note, this list is longer than the list of statements that might 1324 // have an unscoped decl nested within them, but this way is conservatively 1325 // correct even if more statement kinds are added. 1326 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1327 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1328 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1329 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1330 return false; 1331 1332 if (isa<DeclStmt>(S)) 1333 return true; 1334 1335 for (const Stmt *SubStmt : S->children()) 1336 if (mightAddDeclToScope(SubStmt)) 1337 return true; 1338 1339 return false; 1340 } 1341 1342 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1343 /// to a constant, or if it does but contains a label, return false. If it 1344 /// constant folds return true and set the boolean result in Result. 1345 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1346 bool &ResultBool, 1347 bool AllowLabels) { 1348 llvm::APSInt ResultInt; 1349 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1350 return false; 1351 1352 ResultBool = ResultInt.getBoolValue(); 1353 return true; 1354 } 1355 1356 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1357 /// to a constant, or if it does but contains a label, return false. If it 1358 /// constant folds return true and set the folded value. 1359 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1360 llvm::APSInt &ResultInt, 1361 bool AllowLabels) { 1362 // FIXME: Rename and handle conversion of other evaluatable things 1363 // to bool. 1364 llvm::APSInt Int; 1365 if (!Cond->EvaluateAsInt(Int, getContext())) 1366 return false; // Not foldable, not integer or not fully evaluatable. 1367 1368 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1369 return false; // Contains a label. 1370 1371 ResultInt = Int; 1372 return true; 1373 } 1374 1375 1376 1377 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1378 /// statement) to the specified blocks. Based on the condition, this might try 1379 /// to simplify the codegen of the conditional based on the branch. 1380 /// 1381 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1382 llvm::BasicBlock *TrueBlock, 1383 llvm::BasicBlock *FalseBlock, 1384 uint64_t TrueCount) { 1385 Cond = Cond->IgnoreParens(); 1386 1387 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1388 1389 // Handle X && Y in a condition. 1390 if (CondBOp->getOpcode() == BO_LAnd) { 1391 // If we have "1 && X", simplify the code. "0 && X" would have constant 1392 // folded if the case was simple enough. 1393 bool ConstantBool = false; 1394 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1395 ConstantBool) { 1396 // br(1 && X) -> br(X). 1397 incrementProfileCounter(CondBOp); 1398 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1399 TrueCount); 1400 } 1401 1402 // If we have "X && 1", simplify the code to use an uncond branch. 1403 // "X && 0" would have been constant folded to 0. 1404 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1405 ConstantBool) { 1406 // br(X && 1) -> br(X). 1407 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1408 TrueCount); 1409 } 1410 1411 // Emit the LHS as a conditional. If the LHS conditional is false, we 1412 // want to jump to the FalseBlock. 1413 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1414 // The counter tells us how often we evaluate RHS, and all of TrueCount 1415 // can be propagated to that branch. 1416 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1417 1418 ConditionalEvaluation eval(*this); 1419 { 1420 ApplyDebugLocation DL(*this, Cond); 1421 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1422 EmitBlock(LHSTrue); 1423 } 1424 1425 incrementProfileCounter(CondBOp); 1426 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1427 1428 // Any temporaries created here are conditional. 1429 eval.begin(*this); 1430 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1431 eval.end(*this); 1432 1433 return; 1434 } 1435 1436 if (CondBOp->getOpcode() == BO_LOr) { 1437 // If we have "0 || X", simplify the code. "1 || X" would have constant 1438 // folded if the case was simple enough. 1439 bool ConstantBool = false; 1440 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1441 !ConstantBool) { 1442 // br(0 || X) -> br(X). 1443 incrementProfileCounter(CondBOp); 1444 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1445 TrueCount); 1446 } 1447 1448 // If we have "X || 0", simplify the code to use an uncond branch. 1449 // "X || 1" would have been constant folded to 1. 1450 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1451 !ConstantBool) { 1452 // br(X || 0) -> br(X). 1453 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1454 TrueCount); 1455 } 1456 1457 // Emit the LHS as a conditional. If the LHS conditional is true, we 1458 // want to jump to the TrueBlock. 1459 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1460 // We have the count for entry to the RHS and for the whole expression 1461 // being true, so we can divy up True count between the short circuit and 1462 // the RHS. 1463 uint64_t LHSCount = 1464 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1465 uint64_t RHSCount = TrueCount - LHSCount; 1466 1467 ConditionalEvaluation eval(*this); 1468 { 1469 ApplyDebugLocation DL(*this, Cond); 1470 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1471 EmitBlock(LHSFalse); 1472 } 1473 1474 incrementProfileCounter(CondBOp); 1475 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1476 1477 // Any temporaries created here are conditional. 1478 eval.begin(*this); 1479 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1480 1481 eval.end(*this); 1482 1483 return; 1484 } 1485 } 1486 1487 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1488 // br(!x, t, f) -> br(x, f, t) 1489 if (CondUOp->getOpcode() == UO_LNot) { 1490 // Negate the count. 1491 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1492 // Negate the condition and swap the destination blocks. 1493 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1494 FalseCount); 1495 } 1496 } 1497 1498 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1499 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1500 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1501 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1502 1503 ConditionalEvaluation cond(*this); 1504 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1505 getProfileCount(CondOp)); 1506 1507 // When computing PGO branch weights, we only know the overall count for 1508 // the true block. This code is essentially doing tail duplication of the 1509 // naive code-gen, introducing new edges for which counts are not 1510 // available. Divide the counts proportionally between the LHS and RHS of 1511 // the conditional operator. 1512 uint64_t LHSScaledTrueCount = 0; 1513 if (TrueCount) { 1514 double LHSRatio = 1515 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1516 LHSScaledTrueCount = TrueCount * LHSRatio; 1517 } 1518 1519 cond.begin(*this); 1520 EmitBlock(LHSBlock); 1521 incrementProfileCounter(CondOp); 1522 { 1523 ApplyDebugLocation DL(*this, Cond); 1524 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1525 LHSScaledTrueCount); 1526 } 1527 cond.end(*this); 1528 1529 cond.begin(*this); 1530 EmitBlock(RHSBlock); 1531 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1532 TrueCount - LHSScaledTrueCount); 1533 cond.end(*this); 1534 1535 return; 1536 } 1537 1538 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1539 // Conditional operator handling can give us a throw expression as a 1540 // condition for a case like: 1541 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1542 // Fold this to: 1543 // br(c, throw x, br(y, t, f)) 1544 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1545 return; 1546 } 1547 1548 // If the branch has a condition wrapped by __builtin_unpredictable, 1549 // create metadata that specifies that the branch is unpredictable. 1550 // Don't bother if not optimizing because that metadata would not be used. 1551 llvm::MDNode *Unpredictable = nullptr; 1552 auto *Call = dyn_cast<CallExpr>(Cond); 1553 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1554 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1555 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1556 llvm::MDBuilder MDHelper(getLLVMContext()); 1557 Unpredictable = MDHelper.createUnpredictable(); 1558 } 1559 } 1560 1561 // Create branch weights based on the number of times we get here and the 1562 // number of times the condition should be true. 1563 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1564 llvm::MDNode *Weights = 1565 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1566 1567 // Emit the code with the fully general case. 1568 llvm::Value *CondV; 1569 { 1570 ApplyDebugLocation DL(*this, Cond); 1571 CondV = EvaluateExprAsBool(Cond); 1572 } 1573 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1574 } 1575 1576 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1577 /// specified stmt yet. 1578 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1579 CGM.ErrorUnsupported(S, Type); 1580 } 1581 1582 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1583 /// variable-length array whose elements have a non-zero bit-pattern. 1584 /// 1585 /// \param baseType the inner-most element type of the array 1586 /// \param src - a char* pointing to the bit-pattern for a single 1587 /// base element of the array 1588 /// \param sizeInChars - the total size of the VLA, in chars 1589 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1590 Address dest, Address src, 1591 llvm::Value *sizeInChars) { 1592 CGBuilderTy &Builder = CGF.Builder; 1593 1594 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1595 llvm::Value *baseSizeInChars 1596 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1597 1598 Address begin = 1599 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1600 llvm::Value *end = 1601 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1602 1603 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1604 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1605 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1606 1607 // Make a loop over the VLA. C99 guarantees that the VLA element 1608 // count must be nonzero. 1609 CGF.EmitBlock(loopBB); 1610 1611 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1612 cur->addIncoming(begin.getPointer(), originBB); 1613 1614 CharUnits curAlign = 1615 dest.getAlignment().alignmentOfArrayElement(baseSize); 1616 1617 // memcpy the individual element bit-pattern. 1618 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1619 /*volatile*/ false); 1620 1621 // Go to the next element. 1622 llvm::Value *next = 1623 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1624 1625 // Leave if that's the end of the VLA. 1626 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1627 Builder.CreateCondBr(done, contBB, loopBB); 1628 cur->addIncoming(next, loopBB); 1629 1630 CGF.EmitBlock(contBB); 1631 } 1632 1633 void 1634 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1635 // Ignore empty classes in C++. 1636 if (getLangOpts().CPlusPlus) { 1637 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1638 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1639 return; 1640 } 1641 } 1642 1643 // Cast the dest ptr to the appropriate i8 pointer type. 1644 if (DestPtr.getElementType() != Int8Ty) 1645 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1646 1647 // Get size and alignment info for this aggregate. 1648 CharUnits size = getContext().getTypeSizeInChars(Ty); 1649 1650 llvm::Value *SizeVal; 1651 const VariableArrayType *vla; 1652 1653 // Don't bother emitting a zero-byte memset. 1654 if (size.isZero()) { 1655 // But note that getTypeInfo returns 0 for a VLA. 1656 if (const VariableArrayType *vlaType = 1657 dyn_cast_or_null<VariableArrayType>( 1658 getContext().getAsArrayType(Ty))) { 1659 QualType eltType; 1660 llvm::Value *numElts; 1661 std::tie(numElts, eltType) = getVLASize(vlaType); 1662 1663 SizeVal = numElts; 1664 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1665 if (!eltSize.isOne()) 1666 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1667 vla = vlaType; 1668 } else { 1669 return; 1670 } 1671 } else { 1672 SizeVal = CGM.getSize(size); 1673 vla = nullptr; 1674 } 1675 1676 // If the type contains a pointer to data member we can't memset it to zero. 1677 // Instead, create a null constant and copy it to the destination. 1678 // TODO: there are other patterns besides zero that we can usefully memset, 1679 // like -1, which happens to be the pattern used by member-pointers. 1680 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1681 // For a VLA, emit a single element, then splat that over the VLA. 1682 if (vla) Ty = getContext().getBaseElementType(vla); 1683 1684 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1685 1686 llvm::GlobalVariable *NullVariable = 1687 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1688 /*isConstant=*/true, 1689 llvm::GlobalVariable::PrivateLinkage, 1690 NullConstant, Twine()); 1691 CharUnits NullAlign = DestPtr.getAlignment(); 1692 NullVariable->setAlignment(NullAlign.getQuantity()); 1693 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1694 NullAlign); 1695 1696 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1697 1698 // Get and call the appropriate llvm.memcpy overload. 1699 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1700 return; 1701 } 1702 1703 // Otherwise, just memset the whole thing to zero. This is legal 1704 // because in LLVM, all default initializers (other than the ones we just 1705 // handled above) are guaranteed to have a bit pattern of all zeros. 1706 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1707 } 1708 1709 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1710 // Make sure that there is a block for the indirect goto. 1711 if (!IndirectBranch) 1712 GetIndirectGotoBlock(); 1713 1714 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1715 1716 // Make sure the indirect branch includes all of the address-taken blocks. 1717 IndirectBranch->addDestination(BB); 1718 return llvm::BlockAddress::get(CurFn, BB); 1719 } 1720 1721 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1722 // If we already made the indirect branch for indirect goto, return its block. 1723 if (IndirectBranch) return IndirectBranch->getParent(); 1724 1725 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1726 1727 // Create the PHI node that indirect gotos will add entries to. 1728 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1729 "indirect.goto.dest"); 1730 1731 // Create the indirect branch instruction. 1732 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1733 return IndirectBranch->getParent(); 1734 } 1735 1736 /// Computes the length of an array in elements, as well as the base 1737 /// element type and a properly-typed first element pointer. 1738 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1739 QualType &baseType, 1740 Address &addr) { 1741 const ArrayType *arrayType = origArrayType; 1742 1743 // If it's a VLA, we have to load the stored size. Note that 1744 // this is the size of the VLA in bytes, not its size in elements. 1745 llvm::Value *numVLAElements = nullptr; 1746 if (isa<VariableArrayType>(arrayType)) { 1747 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1748 1749 // Walk into all VLAs. This doesn't require changes to addr, 1750 // which has type T* where T is the first non-VLA element type. 1751 do { 1752 QualType elementType = arrayType->getElementType(); 1753 arrayType = getContext().getAsArrayType(elementType); 1754 1755 // If we only have VLA components, 'addr' requires no adjustment. 1756 if (!arrayType) { 1757 baseType = elementType; 1758 return numVLAElements; 1759 } 1760 } while (isa<VariableArrayType>(arrayType)); 1761 1762 // We get out here only if we find a constant array type 1763 // inside the VLA. 1764 } 1765 1766 // We have some number of constant-length arrays, so addr should 1767 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1768 // down to the first element of addr. 1769 SmallVector<llvm::Value*, 8> gepIndices; 1770 1771 // GEP down to the array type. 1772 llvm::ConstantInt *zero = Builder.getInt32(0); 1773 gepIndices.push_back(zero); 1774 1775 uint64_t countFromCLAs = 1; 1776 QualType eltType; 1777 1778 llvm::ArrayType *llvmArrayType = 1779 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1780 while (llvmArrayType) { 1781 assert(isa<ConstantArrayType>(arrayType)); 1782 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1783 == llvmArrayType->getNumElements()); 1784 1785 gepIndices.push_back(zero); 1786 countFromCLAs *= llvmArrayType->getNumElements(); 1787 eltType = arrayType->getElementType(); 1788 1789 llvmArrayType = 1790 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1791 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1792 assert((!llvmArrayType || arrayType) && 1793 "LLVM and Clang types are out-of-synch"); 1794 } 1795 1796 if (arrayType) { 1797 // From this point onwards, the Clang array type has been emitted 1798 // as some other type (probably a packed struct). Compute the array 1799 // size, and just emit the 'begin' expression as a bitcast. 1800 while (arrayType) { 1801 countFromCLAs *= 1802 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1803 eltType = arrayType->getElementType(); 1804 arrayType = getContext().getAsArrayType(eltType); 1805 } 1806 1807 llvm::Type *baseType = ConvertType(eltType); 1808 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1809 } else { 1810 // Create the actual GEP. 1811 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1812 gepIndices, "array.begin"), 1813 addr.getAlignment()); 1814 } 1815 1816 baseType = eltType; 1817 1818 llvm::Value *numElements 1819 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1820 1821 // If we had any VLA dimensions, factor them in. 1822 if (numVLAElements) 1823 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1824 1825 return numElements; 1826 } 1827 1828 std::pair<llvm::Value*, QualType> 1829 CodeGenFunction::getVLASize(QualType type) { 1830 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1831 assert(vla && "type was not a variable array type!"); 1832 return getVLASize(vla); 1833 } 1834 1835 std::pair<llvm::Value*, QualType> 1836 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1837 // The number of elements so far; always size_t. 1838 llvm::Value *numElements = nullptr; 1839 1840 QualType elementType; 1841 do { 1842 elementType = type->getElementType(); 1843 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1844 assert(vlaSize && "no size for VLA!"); 1845 assert(vlaSize->getType() == SizeTy); 1846 1847 if (!numElements) { 1848 numElements = vlaSize; 1849 } else { 1850 // It's undefined behavior if this wraps around, so mark it that way. 1851 // FIXME: Teach -fsanitize=undefined to trap this. 1852 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1853 } 1854 } while ((type = getContext().getAsVariableArrayType(elementType))); 1855 1856 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1857 } 1858 1859 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1860 assert(type->isVariablyModifiedType() && 1861 "Must pass variably modified type to EmitVLASizes!"); 1862 1863 EnsureInsertPoint(); 1864 1865 // We're going to walk down into the type and look for VLA 1866 // expressions. 1867 do { 1868 assert(type->isVariablyModifiedType()); 1869 1870 const Type *ty = type.getTypePtr(); 1871 switch (ty->getTypeClass()) { 1872 1873 #define TYPE(Class, Base) 1874 #define ABSTRACT_TYPE(Class, Base) 1875 #define NON_CANONICAL_TYPE(Class, Base) 1876 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1877 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1878 #include "clang/AST/TypeNodes.def" 1879 llvm_unreachable("unexpected dependent type!"); 1880 1881 // These types are never variably-modified. 1882 case Type::Builtin: 1883 case Type::Complex: 1884 case Type::Vector: 1885 case Type::ExtVector: 1886 case Type::Record: 1887 case Type::Enum: 1888 case Type::Elaborated: 1889 case Type::TemplateSpecialization: 1890 case Type::ObjCTypeParam: 1891 case Type::ObjCObject: 1892 case Type::ObjCInterface: 1893 case Type::ObjCObjectPointer: 1894 llvm_unreachable("type class is never variably-modified!"); 1895 1896 case Type::Adjusted: 1897 type = cast<AdjustedType>(ty)->getAdjustedType(); 1898 break; 1899 1900 case Type::Decayed: 1901 type = cast<DecayedType>(ty)->getPointeeType(); 1902 break; 1903 1904 case Type::Pointer: 1905 type = cast<PointerType>(ty)->getPointeeType(); 1906 break; 1907 1908 case Type::BlockPointer: 1909 type = cast<BlockPointerType>(ty)->getPointeeType(); 1910 break; 1911 1912 case Type::LValueReference: 1913 case Type::RValueReference: 1914 type = cast<ReferenceType>(ty)->getPointeeType(); 1915 break; 1916 1917 case Type::MemberPointer: 1918 type = cast<MemberPointerType>(ty)->getPointeeType(); 1919 break; 1920 1921 case Type::ConstantArray: 1922 case Type::IncompleteArray: 1923 // Losing element qualification here is fine. 1924 type = cast<ArrayType>(ty)->getElementType(); 1925 break; 1926 1927 case Type::VariableArray: { 1928 // Losing element qualification here is fine. 1929 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1930 1931 // Unknown size indication requires no size computation. 1932 // Otherwise, evaluate and record it. 1933 if (const Expr *size = vat->getSizeExpr()) { 1934 // It's possible that we might have emitted this already, 1935 // e.g. with a typedef and a pointer to it. 1936 llvm::Value *&entry = VLASizeMap[size]; 1937 if (!entry) { 1938 llvm::Value *Size = EmitScalarExpr(size); 1939 1940 // C11 6.7.6.2p5: 1941 // If the size is an expression that is not an integer constant 1942 // expression [...] each time it is evaluated it shall have a value 1943 // greater than zero. 1944 if (SanOpts.has(SanitizerKind::VLABound) && 1945 size->getType()->isSignedIntegerType()) { 1946 SanitizerScope SanScope(this); 1947 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1948 llvm::Constant *StaticArgs[] = { 1949 EmitCheckSourceLocation(size->getLocStart()), 1950 EmitCheckTypeDescriptor(size->getType()) 1951 }; 1952 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1953 SanitizerKind::VLABound), 1954 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1955 } 1956 1957 // Always zexting here would be wrong if it weren't 1958 // undefined behavior to have a negative bound. 1959 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1960 } 1961 } 1962 type = vat->getElementType(); 1963 break; 1964 } 1965 1966 case Type::FunctionProto: 1967 case Type::FunctionNoProto: 1968 type = cast<FunctionType>(ty)->getReturnType(); 1969 break; 1970 1971 case Type::Paren: 1972 case Type::TypeOf: 1973 case Type::UnaryTransform: 1974 case Type::Attributed: 1975 case Type::SubstTemplateTypeParm: 1976 case Type::PackExpansion: 1977 // Keep walking after single level desugaring. 1978 type = type.getSingleStepDesugaredType(getContext()); 1979 break; 1980 1981 case Type::Typedef: 1982 case Type::Decltype: 1983 case Type::Auto: 1984 case Type::DeducedTemplateSpecialization: 1985 // Stop walking: nothing to do. 1986 return; 1987 1988 case Type::TypeOfExpr: 1989 // Stop walking: emit typeof expression. 1990 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1991 return; 1992 1993 case Type::Atomic: 1994 type = cast<AtomicType>(ty)->getValueType(); 1995 break; 1996 1997 case Type::Pipe: 1998 type = cast<PipeType>(ty)->getElementType(); 1999 break; 2000 } 2001 } while (type->isVariablyModifiedType()); 2002 } 2003 2004 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2005 if (getContext().getBuiltinVaListType()->isArrayType()) 2006 return EmitPointerWithAlignment(E); 2007 return EmitLValue(E).getAddress(); 2008 } 2009 2010 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2011 return EmitLValue(E).getAddress(); 2012 } 2013 2014 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2015 const APValue &Init) { 2016 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2017 if (CGDebugInfo *Dbg = getDebugInfo()) 2018 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2019 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2020 } 2021 2022 CodeGenFunction::PeepholeProtection 2023 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2024 // At the moment, the only aggressive peephole we do in IR gen 2025 // is trunc(zext) folding, but if we add more, we can easily 2026 // extend this protection. 2027 2028 if (!rvalue.isScalar()) return PeepholeProtection(); 2029 llvm::Value *value = rvalue.getScalarVal(); 2030 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2031 2032 // Just make an extra bitcast. 2033 assert(HaveInsertPoint()); 2034 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2035 Builder.GetInsertBlock()); 2036 2037 PeepholeProtection protection; 2038 protection.Inst = inst; 2039 return protection; 2040 } 2041 2042 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2043 if (!protection.Inst) return; 2044 2045 // In theory, we could try to duplicate the peepholes now, but whatever. 2046 protection.Inst->eraseFromParent(); 2047 } 2048 2049 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2050 llvm::Value *AnnotatedVal, 2051 StringRef AnnotationStr, 2052 SourceLocation Location) { 2053 llvm::Value *Args[4] = { 2054 AnnotatedVal, 2055 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2056 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2057 CGM.EmitAnnotationLineNo(Location) 2058 }; 2059 return Builder.CreateCall(AnnotationFn, Args); 2060 } 2061 2062 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2063 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2064 // FIXME We create a new bitcast for every annotation because that's what 2065 // llvm-gcc was doing. 2066 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2067 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2068 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2069 I->getAnnotation(), D->getLocation()); 2070 } 2071 2072 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2073 Address Addr) { 2074 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2075 llvm::Value *V = Addr.getPointer(); 2076 llvm::Type *VTy = V->getType(); 2077 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2078 CGM.Int8PtrTy); 2079 2080 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2081 // FIXME Always emit the cast inst so we can differentiate between 2082 // annotation on the first field of a struct and annotation on the struct 2083 // itself. 2084 if (VTy != CGM.Int8PtrTy) 2085 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2086 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2087 V = Builder.CreateBitCast(V, VTy); 2088 } 2089 2090 return Address(V, Addr.getAlignment()); 2091 } 2092 2093 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2094 2095 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2096 : CGF(CGF) { 2097 assert(!CGF->IsSanitizerScope); 2098 CGF->IsSanitizerScope = true; 2099 } 2100 2101 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2102 CGF->IsSanitizerScope = false; 2103 } 2104 2105 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2106 const llvm::Twine &Name, 2107 llvm::BasicBlock *BB, 2108 llvm::BasicBlock::iterator InsertPt) const { 2109 LoopStack.InsertHelper(I); 2110 if (IsSanitizerScope) 2111 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2112 } 2113 2114 void CGBuilderInserter::InsertHelper( 2115 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2116 llvm::BasicBlock::iterator InsertPt) const { 2117 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2118 if (CGF) 2119 CGF->InsertHelper(I, Name, BB, InsertPt); 2120 } 2121 2122 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2123 CodeGenModule &CGM, const FunctionDecl *FD, 2124 std::string &FirstMissing) { 2125 // If there aren't any required features listed then go ahead and return. 2126 if (ReqFeatures.empty()) 2127 return false; 2128 2129 // Now build up the set of caller features and verify that all the required 2130 // features are there. 2131 llvm::StringMap<bool> CallerFeatureMap; 2132 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2133 2134 // If we have at least one of the features in the feature list return 2135 // true, otherwise return false. 2136 return std::all_of( 2137 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2138 SmallVector<StringRef, 1> OrFeatures; 2139 Feature.split(OrFeatures, "|"); 2140 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2141 [&](StringRef Feature) { 2142 if (!CallerFeatureMap.lookup(Feature)) { 2143 FirstMissing = Feature.str(); 2144 return false; 2145 } 2146 return true; 2147 }); 2148 }); 2149 } 2150 2151 // Emits an error if we don't have a valid set of target features for the 2152 // called function. 2153 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2154 const FunctionDecl *TargetDecl) { 2155 // Early exit if this is an indirect call. 2156 if (!TargetDecl) 2157 return; 2158 2159 // Get the current enclosing function if it exists. If it doesn't 2160 // we can't check the target features anyhow. 2161 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2162 if (!FD) 2163 return; 2164 2165 // Grab the required features for the call. For a builtin this is listed in 2166 // the td file with the default cpu, for an always_inline function this is any 2167 // listed cpu and any listed features. 2168 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2169 std::string MissingFeature; 2170 if (BuiltinID) { 2171 SmallVector<StringRef, 1> ReqFeatures; 2172 const char *FeatureList = 2173 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2174 // Return if the builtin doesn't have any required features. 2175 if (!FeatureList || StringRef(FeatureList) == "") 2176 return; 2177 StringRef(FeatureList).split(ReqFeatures, ","); 2178 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2179 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2180 << TargetDecl->getDeclName() 2181 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2182 2183 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2184 // Get the required features for the callee. 2185 SmallVector<StringRef, 1> ReqFeatures; 2186 llvm::StringMap<bool> CalleeFeatureMap; 2187 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2188 for (const auto &F : CalleeFeatureMap) { 2189 // Only positive features are "required". 2190 if (F.getValue()) 2191 ReqFeatures.push_back(F.getKey()); 2192 } 2193 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2194 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2195 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2196 } 2197 } 2198 2199 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2200 if (!CGM.getCodeGenOpts().SanitizeStats) 2201 return; 2202 2203 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2204 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2205 CGM.getSanStats().create(IRB, SSK); 2206 } 2207 2208 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2209 if (CGDebugInfo *DI = getDebugInfo()) 2210 return DI->SourceLocToDebugLoc(Location); 2211 2212 return llvm::DebugLoc(); 2213 } 2214