1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenPGO.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 39 CGBuilderInserterTy(this)), 40 CapturedStmtInfo(nullptr), SanOpts(&CGM.getLangOpts().Sanitize), 41 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 42 SawAsmBlock(false), BlockInfo(nullptr), BlockPointer(nullptr), 43 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 44 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 45 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 46 DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false), 47 DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm), 48 SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr), 49 UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0), 50 CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr), 51 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 52 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 53 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 54 TerminateHandler(nullptr), TrapBB(nullptr) { 55 if (!suppressNewContext) 56 CGM.getCXXABI().getMangleContext().startNewFunction(); 57 58 llvm::FastMathFlags FMF; 59 if (CGM.getLangOpts().FastMath) 60 FMF.setUnsafeAlgebra(); 61 if (CGM.getLangOpts().FiniteMathOnly) { 62 FMF.setNoNaNs(); 63 FMF.setNoInfs(); 64 } 65 Builder.SetFastMathFlags(FMF); 66 } 67 68 CodeGenFunction::~CodeGenFunction() { 69 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 70 71 // If there are any unclaimed block infos, go ahead and destroy them 72 // now. This can happen if IR-gen gets clever and skips evaluating 73 // something. 74 if (FirstBlockInfo) 75 destroyBlockInfos(FirstBlockInfo); 76 77 if (getLangOpts().OpenMP) { 78 CGM.getOpenMPRuntime().FunctionFinished(*this); 79 } 80 } 81 82 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 83 CharUnits Alignment; 84 if (CGM.getCXXABI().isTypeInfoCalculable(T)) { 85 Alignment = getContext().getTypeAlignInChars(T); 86 unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign; 87 if (MaxAlign && Alignment.getQuantity() > MaxAlign && 88 !getContext().isAlignmentRequired(T)) 89 Alignment = CharUnits::fromQuantity(MaxAlign); 90 } 91 return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); 92 } 93 94 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 95 return CGM.getTypes().ConvertTypeForMem(T); 96 } 97 98 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 99 return CGM.getTypes().ConvertType(T); 100 } 101 102 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 103 type = type.getCanonicalType(); 104 while (true) { 105 switch (type->getTypeClass()) { 106 #define TYPE(name, parent) 107 #define ABSTRACT_TYPE(name, parent) 108 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 109 #define DEPENDENT_TYPE(name, parent) case Type::name: 110 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 111 #include "clang/AST/TypeNodes.def" 112 llvm_unreachable("non-canonical or dependent type in IR-generation"); 113 114 case Type::Auto: 115 llvm_unreachable("undeduced auto type in IR-generation"); 116 117 // Various scalar types. 118 case Type::Builtin: 119 case Type::Pointer: 120 case Type::BlockPointer: 121 case Type::LValueReference: 122 case Type::RValueReference: 123 case Type::MemberPointer: 124 case Type::Vector: 125 case Type::ExtVector: 126 case Type::FunctionProto: 127 case Type::FunctionNoProto: 128 case Type::Enum: 129 case Type::ObjCObjectPointer: 130 return TEK_Scalar; 131 132 // Complexes. 133 case Type::Complex: 134 return TEK_Complex; 135 136 // Arrays, records, and Objective-C objects. 137 case Type::ConstantArray: 138 case Type::IncompleteArray: 139 case Type::VariableArray: 140 case Type::Record: 141 case Type::ObjCObject: 142 case Type::ObjCInterface: 143 return TEK_Aggregate; 144 145 // We operate on atomic values according to their underlying type. 146 case Type::Atomic: 147 type = cast<AtomicType>(type)->getValueType(); 148 continue; 149 } 150 llvm_unreachable("unknown type kind!"); 151 } 152 } 153 154 void CodeGenFunction::EmitReturnBlock() { 155 // For cleanliness, we try to avoid emitting the return block for 156 // simple cases. 157 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 158 159 if (CurBB) { 160 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 161 162 // We have a valid insert point, reuse it if it is empty or there are no 163 // explicit jumps to the return block. 164 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 165 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 166 delete ReturnBlock.getBlock(); 167 } else 168 EmitBlock(ReturnBlock.getBlock()); 169 return; 170 } 171 172 // Otherwise, if the return block is the target of a single direct 173 // branch then we can just put the code in that block instead. This 174 // cleans up functions which started with a unified return block. 175 if (ReturnBlock.getBlock()->hasOneUse()) { 176 llvm::BranchInst *BI = 177 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 178 if (BI && BI->isUnconditional() && 179 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 180 // Reset insertion point, including debug location, and delete the 181 // branch. This is really subtle and only works because the next change 182 // in location will hit the caching in CGDebugInfo::EmitLocation and not 183 // override this. 184 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 185 Builder.SetInsertPoint(BI->getParent()); 186 BI->eraseFromParent(); 187 delete ReturnBlock.getBlock(); 188 return; 189 } 190 } 191 192 // FIXME: We are at an unreachable point, there is no reason to emit the block 193 // unless it has uses. However, we still need a place to put the debug 194 // region.end for now. 195 196 EmitBlock(ReturnBlock.getBlock()); 197 } 198 199 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 200 if (!BB) return; 201 if (!BB->use_empty()) 202 return CGF.CurFn->getBasicBlockList().push_back(BB); 203 delete BB; 204 } 205 206 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 207 assert(BreakContinueStack.empty() && 208 "mismatched push/pop in break/continue stack!"); 209 210 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 211 && NumSimpleReturnExprs == NumReturnExprs 212 && ReturnBlock.getBlock()->use_empty(); 213 // Usually the return expression is evaluated before the cleanup 214 // code. If the function contains only a simple return statement, 215 // such as a constant, the location before the cleanup code becomes 216 // the last useful breakpoint in the function, because the simple 217 // return expression will be evaluated after the cleanup code. To be 218 // safe, set the debug location for cleanup code to the location of 219 // the return statement. Otherwise the cleanup code should be at the 220 // end of the function's lexical scope. 221 // 222 // If there are multiple branches to the return block, the branch 223 // instructions will get the location of the return statements and 224 // all will be fine. 225 if (CGDebugInfo *DI = getDebugInfo()) { 226 if (OnlySimpleReturnStmts) 227 DI->EmitLocation(Builder, LastStopPoint); 228 else 229 DI->EmitLocation(Builder, EndLoc); 230 } 231 232 // Some top level lifetime extended variables may still need 233 // to have their cleanups called. 234 if (!LifetimeExtendedCleanupStack.empty()) 235 MoveDeferedCleanups(0); 236 237 // Pop any cleanups that might have been associated with the 238 // parameters. Do this in whatever block we're currently in; it's 239 // important to do this before we enter the return block or return 240 // edges will be *really* confused. 241 bool EmitRetDbgLoc = true; 242 if (EHStack.stable_begin() != PrologueCleanupDepth) { 243 PopCleanupBlocks(PrologueCleanupDepth); 244 245 // Make sure the line table doesn't jump back into the body for 246 // the ret after it's been at EndLoc. 247 EmitRetDbgLoc = false; 248 249 if (CGDebugInfo *DI = getDebugInfo()) 250 if (OnlySimpleReturnStmts) 251 DI->EmitLocation(Builder, EndLoc); 252 } 253 254 // Emit function epilog (to return). 255 EmitReturnBlock(); 256 257 if (ShouldInstrumentFunction()) 258 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 259 260 // Emit debug descriptor for function end. 261 if (CGDebugInfo *DI = getDebugInfo()) { 262 DI->EmitFunctionEnd(Builder); 263 } 264 265 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 266 EmitEndEHSpec(CurCodeDecl); 267 268 assert(EHStack.empty() && 269 "did not remove all scopes from cleanup stack!"); 270 271 // If someone did an indirect goto, emit the indirect goto block at the end of 272 // the function. 273 if (IndirectBranch) { 274 EmitBlock(IndirectBranch->getParent()); 275 Builder.ClearInsertionPoint(); 276 } 277 278 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 279 llvm::Instruction *Ptr = AllocaInsertPt; 280 AllocaInsertPt = nullptr; 281 Ptr->eraseFromParent(); 282 283 // If someone took the address of a label but never did an indirect goto, we 284 // made a zero entry PHI node, which is illegal, zap it now. 285 if (IndirectBranch) { 286 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 287 if (PN->getNumIncomingValues() == 0) { 288 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 289 PN->eraseFromParent(); 290 } 291 } 292 293 EmitIfUsed(*this, EHResumeBlock); 294 EmitIfUsed(*this, TerminateLandingPad); 295 EmitIfUsed(*this, TerminateHandler); 296 EmitIfUsed(*this, UnreachableBlock); 297 298 if (CGM.getCodeGenOpts().EmitDeclMetadata) 299 EmitDeclMetadata(); 300 301 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 302 I = DeferredReplacements.begin(), 303 E = DeferredReplacements.end(); 304 I != E; ++I) { 305 I->first->replaceAllUsesWith(I->second); 306 I->first->eraseFromParent(); 307 } 308 } 309 310 /// ShouldInstrumentFunction - Return true if the current function should be 311 /// instrumented with __cyg_profile_func_* calls 312 bool CodeGenFunction::ShouldInstrumentFunction() { 313 if (!CGM.getCodeGenOpts().InstrumentFunctions) 314 return false; 315 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 316 return false; 317 return true; 318 } 319 320 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 321 /// instrumentation function with the current function and the call site, if 322 /// function instrumentation is enabled. 323 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 324 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 325 llvm::PointerType *PointerTy = Int8PtrTy; 326 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 327 llvm::FunctionType *FunctionTy = 328 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 329 330 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 331 llvm::CallInst *CallSite = Builder.CreateCall( 332 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 333 llvm::ConstantInt::get(Int32Ty, 0), 334 "callsite"); 335 336 llvm::Value *args[] = { 337 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 338 CallSite 339 }; 340 341 EmitNounwindRuntimeCall(F, args); 342 } 343 344 void CodeGenFunction::EmitMCountInstrumentation() { 345 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 346 347 llvm::Constant *MCountFn = 348 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 349 EmitNounwindRuntimeCall(MCountFn); 350 } 351 352 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 353 // information in the program executable. The argument information stored 354 // includes the argument name, its type, the address and access qualifiers used. 355 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 356 CodeGenModule &CGM,llvm::LLVMContext &Context, 357 SmallVector <llvm::Value*, 5> &kernelMDArgs, 358 CGBuilderTy& Builder, ASTContext &ASTCtx) { 359 // Create MDNodes that represent the kernel arg metadata. 360 // Each MDNode is a list in the form of "key", N number of values which is 361 // the same number of values as their are kernel arguments. 362 363 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 364 365 // MDNode for the kernel argument address space qualifiers. 366 SmallVector<llvm::Value*, 8> addressQuals; 367 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 368 369 // MDNode for the kernel argument access qualifiers (images only). 370 SmallVector<llvm::Value*, 8> accessQuals; 371 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 372 373 // MDNode for the kernel argument type names. 374 SmallVector<llvm::Value*, 8> argTypeNames; 375 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 376 377 // MDNode for the kernel argument base type names. 378 SmallVector<llvm::Value*, 8> argBaseTypeNames; 379 argBaseTypeNames.push_back( 380 llvm::MDString::get(Context, "kernel_arg_base_type")); 381 382 // MDNode for the kernel argument type qualifiers. 383 SmallVector<llvm::Value*, 8> argTypeQuals; 384 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 385 386 // MDNode for the kernel argument names. 387 SmallVector<llvm::Value*, 8> argNames; 388 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 389 390 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 391 const ParmVarDecl *parm = FD->getParamDecl(i); 392 QualType ty = parm->getType(); 393 std::string typeQuals; 394 395 if (ty->isPointerType()) { 396 QualType pointeeTy = ty->getPointeeType(); 397 398 // Get address qualifier. 399 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 400 pointeeTy.getAddressSpace()))); 401 402 // Get argument type name. 403 std::string typeName = 404 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 405 406 // Turn "unsigned type" to "utype" 407 std::string::size_type pos = typeName.find("unsigned"); 408 if (pointeeTy.isCanonical() && pos != std::string::npos) 409 typeName.erase(pos+1, 8); 410 411 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 412 413 std::string baseTypeName = 414 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 415 Policy) + 416 "*"; 417 418 // Turn "unsigned type" to "utype" 419 pos = baseTypeName.find("unsigned"); 420 if (pos != std::string::npos) 421 baseTypeName.erase(pos+1, 8); 422 423 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 424 425 // Get argument type qualifiers: 426 if (ty.isRestrictQualified()) 427 typeQuals = "restrict"; 428 if (pointeeTy.isConstQualified() || 429 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 430 typeQuals += typeQuals.empty() ? "const" : " const"; 431 if (pointeeTy.isVolatileQualified()) 432 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 433 } else { 434 uint32_t AddrSpc = 0; 435 if (ty->isImageType()) 436 AddrSpc = 437 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 438 439 addressQuals.push_back(Builder.getInt32(AddrSpc)); 440 441 // Get argument type name. 442 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 443 444 // Turn "unsigned type" to "utype" 445 std::string::size_type pos = typeName.find("unsigned"); 446 if (ty.isCanonical() && pos != std::string::npos) 447 typeName.erase(pos+1, 8); 448 449 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 450 451 std::string baseTypeName = 452 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 453 454 // Turn "unsigned type" to "utype" 455 pos = baseTypeName.find("unsigned"); 456 if (pos != std::string::npos) 457 baseTypeName.erase(pos+1, 8); 458 459 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 460 461 // Get argument type qualifiers: 462 if (ty.isConstQualified()) 463 typeQuals = "const"; 464 if (ty.isVolatileQualified()) 465 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 466 } 467 468 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 469 470 // Get image access qualifier: 471 if (ty->isImageType()) { 472 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 473 if (A && A->isWriteOnly()) 474 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 475 else 476 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 477 // FIXME: what about read_write? 478 } else 479 accessQuals.push_back(llvm::MDString::get(Context, "none")); 480 481 // Get argument name. 482 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 483 } 484 485 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 486 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 487 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 488 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 489 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 490 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 491 } 492 493 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 494 llvm::Function *Fn) 495 { 496 if (!FD->hasAttr<OpenCLKernelAttr>()) 497 return; 498 499 llvm::LLVMContext &Context = getLLVMContext(); 500 501 SmallVector <llvm::Value*, 5> kernelMDArgs; 502 kernelMDArgs.push_back(Fn); 503 504 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 505 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 506 Builder, getContext()); 507 508 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 509 QualType hintQTy = A->getTypeHint(); 510 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 511 bool isSignedInteger = 512 hintQTy->isSignedIntegerType() || 513 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 514 llvm::Value *attrMDArgs[] = { 515 llvm::MDString::get(Context, "vec_type_hint"), 516 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 517 llvm::ConstantInt::get( 518 llvm::IntegerType::get(Context, 32), 519 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 520 }; 521 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 522 } 523 524 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 525 llvm::Value *attrMDArgs[] = { 526 llvm::MDString::get(Context, "work_group_size_hint"), 527 Builder.getInt32(A->getXDim()), 528 Builder.getInt32(A->getYDim()), 529 Builder.getInt32(A->getZDim()) 530 }; 531 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 532 } 533 534 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 535 llvm::Value *attrMDArgs[] = { 536 llvm::MDString::get(Context, "reqd_work_group_size"), 537 Builder.getInt32(A->getXDim()), 538 Builder.getInt32(A->getYDim()), 539 Builder.getInt32(A->getZDim()) 540 }; 541 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 542 } 543 544 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 545 llvm::NamedMDNode *OpenCLKernelMetadata = 546 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 547 OpenCLKernelMetadata->addOperand(kernelMDNode); 548 } 549 550 /// Determine whether the function F ends with a return stmt. 551 static bool endsWithReturn(const Decl* F) { 552 const Stmt *Body = nullptr; 553 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 554 Body = FD->getBody(); 555 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 556 Body = OMD->getBody(); 557 558 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 559 auto LastStmt = CS->body_rbegin(); 560 if (LastStmt != CS->body_rend()) 561 return isa<ReturnStmt>(*LastStmt); 562 } 563 return false; 564 } 565 566 void CodeGenFunction::StartFunction(GlobalDecl GD, 567 QualType RetTy, 568 llvm::Function *Fn, 569 const CGFunctionInfo &FnInfo, 570 const FunctionArgList &Args, 571 SourceLocation Loc, 572 SourceLocation StartLoc) { 573 const Decl *D = GD.getDecl(); 574 575 DidCallStackSave = false; 576 CurCodeDecl = D; 577 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 578 FnRetTy = RetTy; 579 CurFn = Fn; 580 CurFnInfo = &FnInfo; 581 assert(CurFn->isDeclaration() && "Function already has body?"); 582 583 if (CGM.getSanitizerBlacklist().isIn(*Fn)) 584 SanOpts = &SanitizerOptions::Disabled; 585 586 // Pass inline keyword to optimizer if it appears explicitly on any 587 // declaration. Also, in the case of -fno-inline attach NoInline 588 // attribute to all function that are not marked AlwaysInline. 589 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 590 if (!CGM.getCodeGenOpts().NoInline) { 591 for (auto RI : FD->redecls()) 592 if (RI->isInlineSpecified()) { 593 Fn->addFnAttr(llvm::Attribute::InlineHint); 594 break; 595 } 596 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 597 Fn->addFnAttr(llvm::Attribute::NoInline); 598 } 599 600 if (getLangOpts().OpenCL) { 601 // Add metadata for a kernel function. 602 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 603 EmitOpenCLKernelMetadata(FD, Fn); 604 } 605 606 // If we are checking function types, emit a function type signature as 607 // prefix data. 608 if (getLangOpts().CPlusPlus && SanOpts->Function) { 609 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 610 if (llvm::Constant *PrefixSig = 611 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 612 llvm::Constant *FTRTTIConst = 613 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 614 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 615 llvm::Constant *PrefixStructConst = 616 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 617 Fn->setPrefixData(PrefixStructConst); 618 } 619 } 620 } 621 622 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 623 624 // Create a marker to make it easy to insert allocas into the entryblock 625 // later. Don't create this with the builder, because we don't want it 626 // folded. 627 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 628 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 629 if (Builder.isNamePreserving()) 630 AllocaInsertPt->setName("allocapt"); 631 632 ReturnBlock = getJumpDestInCurrentScope("return"); 633 634 Builder.SetInsertPoint(EntryBB); 635 636 // Emit subprogram debug descriptor. 637 if (CGDebugInfo *DI = getDebugInfo()) { 638 SmallVector<QualType, 16> ArgTypes; 639 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 640 i != e; ++i) { 641 ArgTypes.push_back((*i)->getType()); 642 } 643 644 QualType FnType = 645 getContext().getFunctionType(RetTy, ArgTypes, 646 FunctionProtoType::ExtProtoInfo()); 647 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 648 } 649 650 if (ShouldInstrumentFunction()) 651 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 652 653 if (CGM.getCodeGenOpts().InstrumentForProfiling) 654 EmitMCountInstrumentation(); 655 656 if (RetTy->isVoidType()) { 657 // Void type; nothing to return. 658 ReturnValue = nullptr; 659 660 // Count the implicit return. 661 if (!endsWithReturn(D)) 662 ++NumReturnExprs; 663 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 664 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 665 // Indirect aggregate return; emit returned value directly into sret slot. 666 // This reduces code size, and affects correctness in C++. 667 auto AI = CurFn->arg_begin(); 668 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 669 ++AI; 670 ReturnValue = AI; 671 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 672 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 673 // Load the sret pointer from the argument struct and return into that. 674 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 675 llvm::Function::arg_iterator EI = CurFn->arg_end(); 676 --EI; 677 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 678 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 679 } else { 680 ReturnValue = CreateIRTemp(RetTy, "retval"); 681 682 // Tell the epilog emitter to autorelease the result. We do this 683 // now so that various specialized functions can suppress it 684 // during their IR-generation. 685 if (getLangOpts().ObjCAutoRefCount && 686 !CurFnInfo->isReturnsRetained() && 687 RetTy->isObjCRetainableType()) 688 AutoreleaseResult = true; 689 } 690 691 EmitStartEHSpec(CurCodeDecl); 692 693 PrologueCleanupDepth = EHStack.stable_begin(); 694 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 695 696 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 697 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 698 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 699 if (MD->getParent()->isLambda() && 700 MD->getOverloadedOperator() == OO_Call) { 701 // We're in a lambda; figure out the captures. 702 MD->getParent()->getCaptureFields(LambdaCaptureFields, 703 LambdaThisCaptureField); 704 if (LambdaThisCaptureField) { 705 // If this lambda captures this, load it. 706 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 707 CXXThisValue = EmitLoadOfLValue(ThisLValue, 708 SourceLocation()).getScalarVal(); 709 } 710 for (auto *FD : MD->getParent()->fields()) { 711 if (FD->hasCapturedVLAType()) { 712 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 713 SourceLocation()).getScalarVal(); 714 auto VAT = FD->getCapturedVLAType(); 715 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 716 } 717 } 718 } else { 719 // Not in a lambda; just use 'this' from the method. 720 // FIXME: Should we generate a new load for each use of 'this'? The 721 // fast register allocator would be happier... 722 CXXThisValue = CXXABIThisValue; 723 } 724 } 725 726 // If any of the arguments have a variably modified type, make sure to 727 // emit the type size. 728 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 729 i != e; ++i) { 730 const VarDecl *VD = *i; 731 732 // Dig out the type as written from ParmVarDecls; it's unclear whether 733 // the standard (C99 6.9.1p10) requires this, but we're following the 734 // precedent set by gcc. 735 QualType Ty; 736 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 737 Ty = PVD->getOriginalType(); 738 else 739 Ty = VD->getType(); 740 741 if (Ty->isVariablyModifiedType()) 742 EmitVariablyModifiedType(Ty); 743 } 744 // Emit a location at the end of the prologue. 745 if (CGDebugInfo *DI = getDebugInfo()) 746 DI->EmitLocation(Builder, StartLoc); 747 } 748 749 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 750 const Stmt *Body) { 751 RegionCounter Cnt = getPGORegionCounter(Body); 752 Cnt.beginRegion(Builder); 753 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 754 EmitCompoundStmtWithoutScope(*S); 755 else 756 EmitStmt(Body); 757 } 758 759 /// When instrumenting to collect profile data, the counts for some blocks 760 /// such as switch cases need to not include the fall-through counts, so 761 /// emit a branch around the instrumentation code. When not instrumenting, 762 /// this just calls EmitBlock(). 763 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 764 RegionCounter &Cnt) { 765 llvm::BasicBlock *SkipCountBB = nullptr; 766 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 767 // When instrumenting for profiling, the fallthrough to certain 768 // statements needs to skip over the instrumentation code so that we 769 // get an accurate count. 770 SkipCountBB = createBasicBlock("skipcount"); 771 EmitBranch(SkipCountBB); 772 } 773 EmitBlock(BB); 774 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 775 if (SkipCountBB) 776 EmitBlock(SkipCountBB); 777 } 778 779 /// Tries to mark the given function nounwind based on the 780 /// non-existence of any throwing calls within it. We believe this is 781 /// lightweight enough to do at -O0. 782 static void TryMarkNoThrow(llvm::Function *F) { 783 // LLVM treats 'nounwind' on a function as part of the type, so we 784 // can't do this on functions that can be overwritten. 785 if (F->mayBeOverridden()) return; 786 787 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 788 for (llvm::BasicBlock::iterator 789 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 790 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 791 if (!Call->doesNotThrow()) 792 return; 793 } else if (isa<llvm::ResumeInst>(&*BI)) { 794 return; 795 } 796 F->setDoesNotThrow(); 797 } 798 799 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 800 const FunctionDecl *UnsizedDealloc) { 801 // This is a weak discardable definition of the sized deallocation function. 802 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 803 804 // Call the unsized deallocation function and forward the first argument 805 // unchanged. 806 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 807 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 808 } 809 810 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 811 const CGFunctionInfo &FnInfo) { 812 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 813 814 // Check if we should generate debug info for this function. 815 if (FD->hasAttr<NoDebugAttr>()) 816 DebugInfo = nullptr; // disable debug info indefinitely for this function 817 818 FunctionArgList Args; 819 QualType ResTy = FD->getReturnType(); 820 821 CurGD = GD; 822 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 823 if (MD && MD->isInstance()) { 824 if (CGM.getCXXABI().HasThisReturn(GD)) 825 ResTy = MD->getThisType(getContext()); 826 CGM.getCXXABI().buildThisParam(*this, Args); 827 } 828 829 Args.append(FD->param_begin(), FD->param_end()); 830 831 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 832 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 833 834 SourceRange BodyRange; 835 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 836 CurEHLocation = BodyRange.getEnd(); 837 838 // Use the location of the start of the function to determine where 839 // the function definition is located. By default use the location 840 // of the declaration as the location for the subprogram. A function 841 // may lack a declaration in the source code if it is created by code 842 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 843 SourceLocation Loc = FD->getLocation(); 844 845 // If this is a function specialization then use the pattern body 846 // as the location for the function. 847 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 848 if (SpecDecl->hasBody(SpecDecl)) 849 Loc = SpecDecl->getLocation(); 850 851 // Emit the standard function prologue. 852 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 853 854 // Generate the body of the function. 855 PGO.checkGlobalDecl(GD); 856 PGO.assignRegionCounters(GD.getDecl(), CurFn); 857 if (isa<CXXDestructorDecl>(FD)) 858 EmitDestructorBody(Args); 859 else if (isa<CXXConstructorDecl>(FD)) 860 EmitConstructorBody(Args); 861 else if (getLangOpts().CUDA && 862 !CGM.getCodeGenOpts().CUDAIsDevice && 863 FD->hasAttr<CUDAGlobalAttr>()) 864 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 865 else if (isa<CXXConversionDecl>(FD) && 866 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 867 // The lambda conversion to block pointer is special; the semantics can't be 868 // expressed in the AST, so IRGen needs to special-case it. 869 EmitLambdaToBlockPointerBody(Args); 870 } else if (isa<CXXMethodDecl>(FD) && 871 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 872 // The lambda static invoker function is special, because it forwards or 873 // clones the body of the function call operator (but is actually static). 874 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 875 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 876 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 877 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 878 // Implicit copy-assignment gets the same special treatment as implicit 879 // copy-constructors. 880 emitImplicitAssignmentOperatorBody(Args); 881 } else if (Stmt *Body = FD->getBody()) { 882 EmitFunctionBody(Args, Body); 883 } else if (FunctionDecl *UnsizedDealloc = 884 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 885 // Global sized deallocation functions get an implicit weak definition if 886 // they don't have an explicit definition. 887 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 888 } else 889 llvm_unreachable("no definition for emitted function"); 890 891 // C++11 [stmt.return]p2: 892 // Flowing off the end of a function [...] results in undefined behavior in 893 // a value-returning function. 894 // C11 6.9.1p12: 895 // If the '}' that terminates a function is reached, and the value of the 896 // function call is used by the caller, the behavior is undefined. 897 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 898 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 899 if (SanOpts->Return) { 900 SanitizerScope SanScope(this); 901 EmitCheck(Builder.getFalse(), "missing_return", 902 EmitCheckSourceLocation(FD->getLocation()), 903 None, CRK_Unrecoverable); 904 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 905 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 906 Builder.CreateUnreachable(); 907 Builder.ClearInsertionPoint(); 908 } 909 910 // Emit the standard function epilogue. 911 FinishFunction(BodyRange.getEnd()); 912 913 // If we haven't marked the function nothrow through other means, do 914 // a quick pass now to see if we can. 915 if (!CurFn->doesNotThrow()) 916 TryMarkNoThrow(CurFn); 917 918 PGO.emitInstrumentationData(); 919 PGO.destroyRegionCounters(); 920 } 921 922 /// ContainsLabel - Return true if the statement contains a label in it. If 923 /// this statement is not executed normally, it not containing a label means 924 /// that we can just remove the code. 925 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 926 // Null statement, not a label! 927 if (!S) return false; 928 929 // If this is a label, we have to emit the code, consider something like: 930 // if (0) { ... foo: bar(); } goto foo; 931 // 932 // TODO: If anyone cared, we could track __label__'s, since we know that you 933 // can't jump to one from outside their declared region. 934 if (isa<LabelStmt>(S)) 935 return true; 936 937 // If this is a case/default statement, and we haven't seen a switch, we have 938 // to emit the code. 939 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 940 return true; 941 942 // If this is a switch statement, we want to ignore cases below it. 943 if (isa<SwitchStmt>(S)) 944 IgnoreCaseStmts = true; 945 946 // Scan subexpressions for verboten labels. 947 for (Stmt::const_child_range I = S->children(); I; ++I) 948 if (ContainsLabel(*I, IgnoreCaseStmts)) 949 return true; 950 951 return false; 952 } 953 954 /// containsBreak - Return true if the statement contains a break out of it. 955 /// If the statement (recursively) contains a switch or loop with a break 956 /// inside of it, this is fine. 957 bool CodeGenFunction::containsBreak(const Stmt *S) { 958 // Null statement, not a label! 959 if (!S) return false; 960 961 // If this is a switch or loop that defines its own break scope, then we can 962 // include it and anything inside of it. 963 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 964 isa<ForStmt>(S)) 965 return false; 966 967 if (isa<BreakStmt>(S)) 968 return true; 969 970 // Scan subexpressions for verboten breaks. 971 for (Stmt::const_child_range I = S->children(); I; ++I) 972 if (containsBreak(*I)) 973 return true; 974 975 return false; 976 } 977 978 979 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 980 /// to a constant, or if it does but contains a label, return false. If it 981 /// constant folds return true and set the boolean result in Result. 982 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 983 bool &ResultBool) { 984 llvm::APSInt ResultInt; 985 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 986 return false; 987 988 ResultBool = ResultInt.getBoolValue(); 989 return true; 990 } 991 992 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 993 /// to a constant, or if it does but contains a label, return false. If it 994 /// constant folds return true and set the folded value. 995 bool CodeGenFunction:: 996 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 997 // FIXME: Rename and handle conversion of other evaluatable things 998 // to bool. 999 llvm::APSInt Int; 1000 if (!Cond->EvaluateAsInt(Int, getContext())) 1001 return false; // Not foldable, not integer or not fully evaluatable. 1002 1003 if (CodeGenFunction::ContainsLabel(Cond)) 1004 return false; // Contains a label. 1005 1006 ResultInt = Int; 1007 return true; 1008 } 1009 1010 1011 1012 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1013 /// statement) to the specified blocks. Based on the condition, this might try 1014 /// to simplify the codegen of the conditional based on the branch. 1015 /// 1016 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1017 llvm::BasicBlock *TrueBlock, 1018 llvm::BasicBlock *FalseBlock, 1019 uint64_t TrueCount) { 1020 Cond = Cond->IgnoreParens(); 1021 1022 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1023 1024 // Handle X && Y in a condition. 1025 if (CondBOp->getOpcode() == BO_LAnd) { 1026 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1027 1028 // If we have "1 && X", simplify the code. "0 && X" would have constant 1029 // folded if the case was simple enough. 1030 bool ConstantBool = false; 1031 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1032 ConstantBool) { 1033 // br(1 && X) -> br(X). 1034 Cnt.beginRegion(Builder); 1035 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1036 TrueCount); 1037 } 1038 1039 // If we have "X && 1", simplify the code to use an uncond branch. 1040 // "X && 0" would have been constant folded to 0. 1041 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1042 ConstantBool) { 1043 // br(X && 1) -> br(X). 1044 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1045 TrueCount); 1046 } 1047 1048 // Emit the LHS as a conditional. If the LHS conditional is false, we 1049 // want to jump to the FalseBlock. 1050 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1051 // The counter tells us how often we evaluate RHS, and all of TrueCount 1052 // can be propagated to that branch. 1053 uint64_t RHSCount = Cnt.getCount(); 1054 1055 ConditionalEvaluation eval(*this); 1056 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1057 EmitBlock(LHSTrue); 1058 1059 // Any temporaries created here are conditional. 1060 Cnt.beginRegion(Builder); 1061 eval.begin(*this); 1062 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1063 eval.end(*this); 1064 1065 return; 1066 } 1067 1068 if (CondBOp->getOpcode() == BO_LOr) { 1069 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1070 1071 // If we have "0 || X", simplify the code. "1 || X" would have constant 1072 // folded if the case was simple enough. 1073 bool ConstantBool = false; 1074 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1075 !ConstantBool) { 1076 // br(0 || X) -> br(X). 1077 Cnt.beginRegion(Builder); 1078 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1079 TrueCount); 1080 } 1081 1082 // If we have "X || 0", simplify the code to use an uncond branch. 1083 // "X || 1" would have been constant folded to 1. 1084 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1085 !ConstantBool) { 1086 // br(X || 0) -> br(X). 1087 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1088 TrueCount); 1089 } 1090 1091 // Emit the LHS as a conditional. If the LHS conditional is true, we 1092 // want to jump to the TrueBlock. 1093 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1094 // We have the count for entry to the RHS and for the whole expression 1095 // being true, so we can divy up True count between the short circuit and 1096 // the RHS. 1097 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1098 uint64_t RHSCount = TrueCount - LHSCount; 1099 1100 ConditionalEvaluation eval(*this); 1101 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1102 EmitBlock(LHSFalse); 1103 1104 // Any temporaries created here are conditional. 1105 Cnt.beginRegion(Builder); 1106 eval.begin(*this); 1107 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1108 1109 eval.end(*this); 1110 1111 return; 1112 } 1113 } 1114 1115 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1116 // br(!x, t, f) -> br(x, f, t) 1117 if (CondUOp->getOpcode() == UO_LNot) { 1118 // Negate the count. 1119 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1120 // Negate the condition and swap the destination blocks. 1121 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1122 FalseCount); 1123 } 1124 } 1125 1126 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1127 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1128 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1129 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1130 1131 RegionCounter Cnt = getPGORegionCounter(CondOp); 1132 ConditionalEvaluation cond(*this); 1133 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1134 1135 // When computing PGO branch weights, we only know the overall count for 1136 // the true block. This code is essentially doing tail duplication of the 1137 // naive code-gen, introducing new edges for which counts are not 1138 // available. Divide the counts proportionally between the LHS and RHS of 1139 // the conditional operator. 1140 uint64_t LHSScaledTrueCount = 0; 1141 if (TrueCount) { 1142 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1143 LHSScaledTrueCount = TrueCount * LHSRatio; 1144 } 1145 1146 cond.begin(*this); 1147 EmitBlock(LHSBlock); 1148 Cnt.beginRegion(Builder); 1149 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1150 LHSScaledTrueCount); 1151 cond.end(*this); 1152 1153 cond.begin(*this); 1154 EmitBlock(RHSBlock); 1155 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1156 TrueCount - LHSScaledTrueCount); 1157 cond.end(*this); 1158 1159 return; 1160 } 1161 1162 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1163 // Conditional operator handling can give us a throw expression as a 1164 // condition for a case like: 1165 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1166 // Fold this to: 1167 // br(c, throw x, br(y, t, f)) 1168 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1169 return; 1170 } 1171 1172 // Create branch weights based on the number of times we get here and the 1173 // number of times the condition should be true. 1174 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1175 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1176 CurrentCount - TrueCount); 1177 1178 // Emit the code with the fully general case. 1179 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1180 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1181 } 1182 1183 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1184 /// specified stmt yet. 1185 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1186 CGM.ErrorUnsupported(S, Type); 1187 } 1188 1189 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1190 /// variable-length array whose elements have a non-zero bit-pattern. 1191 /// 1192 /// \param baseType the inner-most element type of the array 1193 /// \param src - a char* pointing to the bit-pattern for a single 1194 /// base element of the array 1195 /// \param sizeInChars - the total size of the VLA, in chars 1196 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1197 llvm::Value *dest, llvm::Value *src, 1198 llvm::Value *sizeInChars) { 1199 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1200 = CGF.getContext().getTypeInfoInChars(baseType); 1201 1202 CGBuilderTy &Builder = CGF.Builder; 1203 1204 llvm::Value *baseSizeInChars 1205 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1206 1207 llvm::Type *i8p = Builder.getInt8PtrTy(); 1208 1209 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1210 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1211 1212 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1213 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1214 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1215 1216 // Make a loop over the VLA. C99 guarantees that the VLA element 1217 // count must be nonzero. 1218 CGF.EmitBlock(loopBB); 1219 1220 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1221 cur->addIncoming(begin, originBB); 1222 1223 // memcpy the individual element bit-pattern. 1224 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1225 baseSizeAndAlign.second.getQuantity(), 1226 /*volatile*/ false); 1227 1228 // Go to the next element. 1229 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1230 1231 // Leave if that's the end of the VLA. 1232 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1233 Builder.CreateCondBr(done, contBB, loopBB); 1234 cur->addIncoming(next, loopBB); 1235 1236 CGF.EmitBlock(contBB); 1237 } 1238 1239 void 1240 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1241 // Ignore empty classes in C++. 1242 if (getLangOpts().CPlusPlus) { 1243 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1244 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1245 return; 1246 } 1247 } 1248 1249 // Cast the dest ptr to the appropriate i8 pointer type. 1250 unsigned DestAS = 1251 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1252 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1253 if (DestPtr->getType() != BP) 1254 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1255 1256 // Get size and alignment info for this aggregate. 1257 std::pair<CharUnits, CharUnits> TypeInfo = 1258 getContext().getTypeInfoInChars(Ty); 1259 CharUnits Size = TypeInfo.first; 1260 CharUnits Align = TypeInfo.second; 1261 1262 llvm::Value *SizeVal; 1263 const VariableArrayType *vla; 1264 1265 // Don't bother emitting a zero-byte memset. 1266 if (Size.isZero()) { 1267 // But note that getTypeInfo returns 0 for a VLA. 1268 if (const VariableArrayType *vlaType = 1269 dyn_cast_or_null<VariableArrayType>( 1270 getContext().getAsArrayType(Ty))) { 1271 QualType eltType; 1272 llvm::Value *numElts; 1273 std::tie(numElts, eltType) = getVLASize(vlaType); 1274 1275 SizeVal = numElts; 1276 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1277 if (!eltSize.isOne()) 1278 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1279 vla = vlaType; 1280 } else { 1281 return; 1282 } 1283 } else { 1284 SizeVal = CGM.getSize(Size); 1285 vla = nullptr; 1286 } 1287 1288 // If the type contains a pointer to data member we can't memset it to zero. 1289 // Instead, create a null constant and copy it to the destination. 1290 // TODO: there are other patterns besides zero that we can usefully memset, 1291 // like -1, which happens to be the pattern used by member-pointers. 1292 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1293 // For a VLA, emit a single element, then splat that over the VLA. 1294 if (vla) Ty = getContext().getBaseElementType(vla); 1295 1296 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1297 1298 llvm::GlobalVariable *NullVariable = 1299 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1300 /*isConstant=*/true, 1301 llvm::GlobalVariable::PrivateLinkage, 1302 NullConstant, Twine()); 1303 llvm::Value *SrcPtr = 1304 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1305 1306 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1307 1308 // Get and call the appropriate llvm.memcpy overload. 1309 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1310 return; 1311 } 1312 1313 // Otherwise, just memset the whole thing to zero. This is legal 1314 // because in LLVM, all default initializers (other than the ones we just 1315 // handled above) are guaranteed to have a bit pattern of all zeros. 1316 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1317 Align.getQuantity(), false); 1318 } 1319 1320 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1321 // Make sure that there is a block for the indirect goto. 1322 if (!IndirectBranch) 1323 GetIndirectGotoBlock(); 1324 1325 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1326 1327 // Make sure the indirect branch includes all of the address-taken blocks. 1328 IndirectBranch->addDestination(BB); 1329 return llvm::BlockAddress::get(CurFn, BB); 1330 } 1331 1332 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1333 // If we already made the indirect branch for indirect goto, return its block. 1334 if (IndirectBranch) return IndirectBranch->getParent(); 1335 1336 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1337 1338 // Create the PHI node that indirect gotos will add entries to. 1339 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1340 "indirect.goto.dest"); 1341 1342 // Create the indirect branch instruction. 1343 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1344 return IndirectBranch->getParent(); 1345 } 1346 1347 /// Computes the length of an array in elements, as well as the base 1348 /// element type and a properly-typed first element pointer. 1349 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1350 QualType &baseType, 1351 llvm::Value *&addr) { 1352 const ArrayType *arrayType = origArrayType; 1353 1354 // If it's a VLA, we have to load the stored size. Note that 1355 // this is the size of the VLA in bytes, not its size in elements. 1356 llvm::Value *numVLAElements = nullptr; 1357 if (isa<VariableArrayType>(arrayType)) { 1358 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1359 1360 // Walk into all VLAs. This doesn't require changes to addr, 1361 // which has type T* where T is the first non-VLA element type. 1362 do { 1363 QualType elementType = arrayType->getElementType(); 1364 arrayType = getContext().getAsArrayType(elementType); 1365 1366 // If we only have VLA components, 'addr' requires no adjustment. 1367 if (!arrayType) { 1368 baseType = elementType; 1369 return numVLAElements; 1370 } 1371 } while (isa<VariableArrayType>(arrayType)); 1372 1373 // We get out here only if we find a constant array type 1374 // inside the VLA. 1375 } 1376 1377 // We have some number of constant-length arrays, so addr should 1378 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1379 // down to the first element of addr. 1380 SmallVector<llvm::Value*, 8> gepIndices; 1381 1382 // GEP down to the array type. 1383 llvm::ConstantInt *zero = Builder.getInt32(0); 1384 gepIndices.push_back(zero); 1385 1386 uint64_t countFromCLAs = 1; 1387 QualType eltType; 1388 1389 llvm::ArrayType *llvmArrayType = 1390 dyn_cast<llvm::ArrayType>( 1391 cast<llvm::PointerType>(addr->getType())->getElementType()); 1392 while (llvmArrayType) { 1393 assert(isa<ConstantArrayType>(arrayType)); 1394 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1395 == llvmArrayType->getNumElements()); 1396 1397 gepIndices.push_back(zero); 1398 countFromCLAs *= llvmArrayType->getNumElements(); 1399 eltType = arrayType->getElementType(); 1400 1401 llvmArrayType = 1402 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1403 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1404 assert((!llvmArrayType || arrayType) && 1405 "LLVM and Clang types are out-of-synch"); 1406 } 1407 1408 if (arrayType) { 1409 // From this point onwards, the Clang array type has been emitted 1410 // as some other type (probably a packed struct). Compute the array 1411 // size, and just emit the 'begin' expression as a bitcast. 1412 while (arrayType) { 1413 countFromCLAs *= 1414 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1415 eltType = arrayType->getElementType(); 1416 arrayType = getContext().getAsArrayType(eltType); 1417 } 1418 1419 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1420 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1421 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1422 } else { 1423 // Create the actual GEP. 1424 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1425 } 1426 1427 baseType = eltType; 1428 1429 llvm::Value *numElements 1430 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1431 1432 // If we had any VLA dimensions, factor them in. 1433 if (numVLAElements) 1434 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1435 1436 return numElements; 1437 } 1438 1439 std::pair<llvm::Value*, QualType> 1440 CodeGenFunction::getVLASize(QualType type) { 1441 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1442 assert(vla && "type was not a variable array type!"); 1443 return getVLASize(vla); 1444 } 1445 1446 std::pair<llvm::Value*, QualType> 1447 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1448 // The number of elements so far; always size_t. 1449 llvm::Value *numElements = nullptr; 1450 1451 QualType elementType; 1452 do { 1453 elementType = type->getElementType(); 1454 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1455 assert(vlaSize && "no size for VLA!"); 1456 assert(vlaSize->getType() == SizeTy); 1457 1458 if (!numElements) { 1459 numElements = vlaSize; 1460 } else { 1461 // It's undefined behavior if this wraps around, so mark it that way. 1462 // FIXME: Teach -fsanitize=undefined to trap this. 1463 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1464 } 1465 } while ((type = getContext().getAsVariableArrayType(elementType))); 1466 1467 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1468 } 1469 1470 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1471 assert(type->isVariablyModifiedType() && 1472 "Must pass variably modified type to EmitVLASizes!"); 1473 1474 EnsureInsertPoint(); 1475 1476 // We're going to walk down into the type and look for VLA 1477 // expressions. 1478 do { 1479 assert(type->isVariablyModifiedType()); 1480 1481 const Type *ty = type.getTypePtr(); 1482 switch (ty->getTypeClass()) { 1483 1484 #define TYPE(Class, Base) 1485 #define ABSTRACT_TYPE(Class, Base) 1486 #define NON_CANONICAL_TYPE(Class, Base) 1487 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1488 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1489 #include "clang/AST/TypeNodes.def" 1490 llvm_unreachable("unexpected dependent type!"); 1491 1492 // These types are never variably-modified. 1493 case Type::Builtin: 1494 case Type::Complex: 1495 case Type::Vector: 1496 case Type::ExtVector: 1497 case Type::Record: 1498 case Type::Enum: 1499 case Type::Elaborated: 1500 case Type::TemplateSpecialization: 1501 case Type::ObjCObject: 1502 case Type::ObjCInterface: 1503 case Type::ObjCObjectPointer: 1504 llvm_unreachable("type class is never variably-modified!"); 1505 1506 case Type::Adjusted: 1507 type = cast<AdjustedType>(ty)->getAdjustedType(); 1508 break; 1509 1510 case Type::Decayed: 1511 type = cast<DecayedType>(ty)->getPointeeType(); 1512 break; 1513 1514 case Type::Pointer: 1515 type = cast<PointerType>(ty)->getPointeeType(); 1516 break; 1517 1518 case Type::BlockPointer: 1519 type = cast<BlockPointerType>(ty)->getPointeeType(); 1520 break; 1521 1522 case Type::LValueReference: 1523 case Type::RValueReference: 1524 type = cast<ReferenceType>(ty)->getPointeeType(); 1525 break; 1526 1527 case Type::MemberPointer: 1528 type = cast<MemberPointerType>(ty)->getPointeeType(); 1529 break; 1530 1531 case Type::ConstantArray: 1532 case Type::IncompleteArray: 1533 // Losing element qualification here is fine. 1534 type = cast<ArrayType>(ty)->getElementType(); 1535 break; 1536 1537 case Type::VariableArray: { 1538 // Losing element qualification here is fine. 1539 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1540 1541 // Unknown size indication requires no size computation. 1542 // Otherwise, evaluate and record it. 1543 if (const Expr *size = vat->getSizeExpr()) { 1544 // It's possible that we might have emitted this already, 1545 // e.g. with a typedef and a pointer to it. 1546 llvm::Value *&entry = VLASizeMap[size]; 1547 if (!entry) { 1548 llvm::Value *Size = EmitScalarExpr(size); 1549 1550 // C11 6.7.6.2p5: 1551 // If the size is an expression that is not an integer constant 1552 // expression [...] each time it is evaluated it shall have a value 1553 // greater than zero. 1554 if (SanOpts->VLABound && 1555 size->getType()->isSignedIntegerType()) { 1556 SanitizerScope SanScope(this); 1557 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1558 llvm::Constant *StaticArgs[] = { 1559 EmitCheckSourceLocation(size->getLocStart()), 1560 EmitCheckTypeDescriptor(size->getType()) 1561 }; 1562 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1563 "vla_bound_not_positive", StaticArgs, Size, 1564 CRK_Recoverable); 1565 } 1566 1567 // Always zexting here would be wrong if it weren't 1568 // undefined behavior to have a negative bound. 1569 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1570 } 1571 } 1572 type = vat->getElementType(); 1573 break; 1574 } 1575 1576 case Type::FunctionProto: 1577 case Type::FunctionNoProto: 1578 type = cast<FunctionType>(ty)->getReturnType(); 1579 break; 1580 1581 case Type::Paren: 1582 case Type::TypeOf: 1583 case Type::UnaryTransform: 1584 case Type::Attributed: 1585 case Type::SubstTemplateTypeParm: 1586 case Type::PackExpansion: 1587 // Keep walking after single level desugaring. 1588 type = type.getSingleStepDesugaredType(getContext()); 1589 break; 1590 1591 case Type::Typedef: 1592 case Type::Decltype: 1593 case Type::Auto: 1594 // Stop walking: nothing to do. 1595 return; 1596 1597 case Type::TypeOfExpr: 1598 // Stop walking: emit typeof expression. 1599 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1600 return; 1601 1602 case Type::Atomic: 1603 type = cast<AtomicType>(ty)->getValueType(); 1604 break; 1605 } 1606 } while (type->isVariablyModifiedType()); 1607 } 1608 1609 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1610 if (getContext().getBuiltinVaListType()->isArrayType()) 1611 return EmitScalarExpr(E); 1612 return EmitLValue(E).getAddress(); 1613 } 1614 1615 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1616 llvm::Constant *Init) { 1617 assert (Init && "Invalid DeclRefExpr initializer!"); 1618 if (CGDebugInfo *Dbg = getDebugInfo()) 1619 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1620 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1621 } 1622 1623 CodeGenFunction::PeepholeProtection 1624 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1625 // At the moment, the only aggressive peephole we do in IR gen 1626 // is trunc(zext) folding, but if we add more, we can easily 1627 // extend this protection. 1628 1629 if (!rvalue.isScalar()) return PeepholeProtection(); 1630 llvm::Value *value = rvalue.getScalarVal(); 1631 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1632 1633 // Just make an extra bitcast. 1634 assert(HaveInsertPoint()); 1635 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1636 Builder.GetInsertBlock()); 1637 1638 PeepholeProtection protection; 1639 protection.Inst = inst; 1640 return protection; 1641 } 1642 1643 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1644 if (!protection.Inst) return; 1645 1646 // In theory, we could try to duplicate the peepholes now, but whatever. 1647 protection.Inst->eraseFromParent(); 1648 } 1649 1650 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1651 llvm::Value *AnnotatedVal, 1652 StringRef AnnotationStr, 1653 SourceLocation Location) { 1654 llvm::Value *Args[4] = { 1655 AnnotatedVal, 1656 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1657 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1658 CGM.EmitAnnotationLineNo(Location) 1659 }; 1660 return Builder.CreateCall(AnnotationFn, Args); 1661 } 1662 1663 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1664 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1665 // FIXME We create a new bitcast for every annotation because that's what 1666 // llvm-gcc was doing. 1667 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1668 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1669 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1670 I->getAnnotation(), D->getLocation()); 1671 } 1672 1673 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1674 llvm::Value *V) { 1675 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1676 llvm::Type *VTy = V->getType(); 1677 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1678 CGM.Int8PtrTy); 1679 1680 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1681 // FIXME Always emit the cast inst so we can differentiate between 1682 // annotation on the first field of a struct and annotation on the struct 1683 // itself. 1684 if (VTy != CGM.Int8PtrTy) 1685 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1686 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1687 V = Builder.CreateBitCast(V, VTy); 1688 } 1689 1690 return V; 1691 } 1692 1693 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1694 1695 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1696 : CGF(CGF) { 1697 assert(!CGF->IsSanitizerScope); 1698 CGF->IsSanitizerScope = true; 1699 } 1700 1701 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1702 CGF->IsSanitizerScope = false; 1703 } 1704 1705 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1706 const llvm::Twine &Name, 1707 llvm::BasicBlock *BB, 1708 llvm::BasicBlock::iterator InsertPt) const { 1709 LoopStack.InsertHelper(I); 1710 if (IsSanitizerScope) 1711 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1712 } 1713 1714 template <bool PreserveNames> 1715 void CGBuilderInserter<PreserveNames>::InsertHelper( 1716 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1717 llvm::BasicBlock::iterator InsertPt) const { 1718 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1719 InsertPt); 1720 if (CGF) 1721 CGF->InsertHelper(I, Name, BB, InsertPt); 1722 } 1723 1724 #ifdef NDEBUG 1725 #define PreserveNames false 1726 #else 1727 #define PreserveNames true 1728 #endif 1729 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1730 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1731 llvm::BasicBlock::iterator InsertPt) const; 1732 #undef PreserveNames 1733