1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Asan uses markers for use-after-scope checks. 49 if (CGOpts.SanitizeAddressUseAfterScope) 50 return true; 51 52 // Disable lifetime markers in msan builds. 53 // FIXME: Remove this when msan works with lifetime markers. 54 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 55 return false; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP && CurFn) 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 120 AlignmentSource *Source) { 121 return getNaturalTypeAlignment(T->getPointeeType(), Source, 122 /*forPointee*/ true); 123 } 124 125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 126 AlignmentSource *Source, 127 bool forPointeeType) { 128 // Honor alignment typedef attributes even on incomplete types. 129 // We also honor them straight for C++ class types, even as pointees; 130 // there's an expressivity gap here. 131 if (auto TT = T->getAs<TypedefType>()) { 132 if (auto Align = TT->getDecl()->getMaxAlignment()) { 133 if (Source) *Source = AlignmentSource::AttributedType; 134 return getContext().toCharUnitsFromBits(Align); 135 } 136 } 137 138 if (Source) *Source = AlignmentSource::Type; 139 140 CharUnits Alignment; 141 if (T->isIncompleteType()) { 142 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 143 } else { 144 // For C++ class pointees, we don't know whether we're pointing at a 145 // base or a complete object, so we generally need to use the 146 // non-virtual alignment. 147 const CXXRecordDecl *RD; 148 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 149 Alignment = CGM.getClassPointerAlignment(RD); 150 } else { 151 Alignment = getContext().getTypeAlignInChars(T); 152 } 153 154 // Cap to the global maximum type alignment unless the alignment 155 // was somehow explicit on the type. 156 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 157 if (Alignment.getQuantity() > MaxAlign && 158 !getContext().isAlignmentRequired(T)) 159 Alignment = CharUnits::fromQuantity(MaxAlign); 160 } 161 } 162 return Alignment; 163 } 164 165 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 166 AlignmentSource AlignSource; 167 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 168 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 169 CGM.getTBAAInfo(T)); 170 } 171 172 /// Given a value of type T* that may not be to a complete object, 173 /// construct an l-value with the natural pointee alignment of T. 174 LValue 175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 176 AlignmentSource AlignSource; 177 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 178 return MakeAddrLValue(Address(V, Align), T, AlignSource); 179 } 180 181 182 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 183 return CGM.getTypes().ConvertTypeForMem(T); 184 } 185 186 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 187 return CGM.getTypes().ConvertType(T); 188 } 189 190 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 191 type = type.getCanonicalType(); 192 while (true) { 193 switch (type->getTypeClass()) { 194 #define TYPE(name, parent) 195 #define ABSTRACT_TYPE(name, parent) 196 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 197 #define DEPENDENT_TYPE(name, parent) case Type::name: 198 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 199 #include "clang/AST/TypeNodes.def" 200 llvm_unreachable("non-canonical or dependent type in IR-generation"); 201 202 case Type::Auto: 203 case Type::DeducedTemplateSpecialization: 204 llvm_unreachable("undeduced type in IR-generation"); 205 206 // Various scalar types. 207 case Type::Builtin: 208 case Type::Pointer: 209 case Type::BlockPointer: 210 case Type::LValueReference: 211 case Type::RValueReference: 212 case Type::MemberPointer: 213 case Type::Vector: 214 case Type::ExtVector: 215 case Type::FunctionProto: 216 case Type::FunctionNoProto: 217 case Type::Enum: 218 case Type::ObjCObjectPointer: 219 case Type::Pipe: 220 return TEK_Scalar; 221 222 // Complexes. 223 case Type::Complex: 224 return TEK_Complex; 225 226 // Arrays, records, and Objective-C objects. 227 case Type::ConstantArray: 228 case Type::IncompleteArray: 229 case Type::VariableArray: 230 case Type::Record: 231 case Type::ObjCObject: 232 case Type::ObjCInterface: 233 return TEK_Aggregate; 234 235 // We operate on atomic values according to their underlying type. 236 case Type::Atomic: 237 type = cast<AtomicType>(type)->getValueType(); 238 continue; 239 } 240 llvm_unreachable("unknown type kind!"); 241 } 242 } 243 244 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 245 // For cleanliness, we try to avoid emitting the return block for 246 // simple cases. 247 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 248 249 if (CurBB) { 250 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 251 252 // We have a valid insert point, reuse it if it is empty or there are no 253 // explicit jumps to the return block. 254 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 255 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 256 delete ReturnBlock.getBlock(); 257 } else 258 EmitBlock(ReturnBlock.getBlock()); 259 return llvm::DebugLoc(); 260 } 261 262 // Otherwise, if the return block is the target of a single direct 263 // branch then we can just put the code in that block instead. This 264 // cleans up functions which started with a unified return block. 265 if (ReturnBlock.getBlock()->hasOneUse()) { 266 llvm::BranchInst *BI = 267 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 268 if (BI && BI->isUnconditional() && 269 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 270 // Record/return the DebugLoc of the simple 'return' expression to be used 271 // later by the actual 'ret' instruction. 272 llvm::DebugLoc Loc = BI->getDebugLoc(); 273 Builder.SetInsertPoint(BI->getParent()); 274 BI->eraseFromParent(); 275 delete ReturnBlock.getBlock(); 276 return Loc; 277 } 278 } 279 280 // FIXME: We are at an unreachable point, there is no reason to emit the block 281 // unless it has uses. However, we still need a place to put the debug 282 // region.end for now. 283 284 EmitBlock(ReturnBlock.getBlock()); 285 return llvm::DebugLoc(); 286 } 287 288 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 289 if (!BB) return; 290 if (!BB->use_empty()) 291 return CGF.CurFn->getBasicBlockList().push_back(BB); 292 delete BB; 293 } 294 295 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 296 assert(BreakContinueStack.empty() && 297 "mismatched push/pop in break/continue stack!"); 298 299 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 300 && NumSimpleReturnExprs == NumReturnExprs 301 && ReturnBlock.getBlock()->use_empty(); 302 // Usually the return expression is evaluated before the cleanup 303 // code. If the function contains only a simple return statement, 304 // such as a constant, the location before the cleanup code becomes 305 // the last useful breakpoint in the function, because the simple 306 // return expression will be evaluated after the cleanup code. To be 307 // safe, set the debug location for cleanup code to the location of 308 // the return statement. Otherwise the cleanup code should be at the 309 // end of the function's lexical scope. 310 // 311 // If there are multiple branches to the return block, the branch 312 // instructions will get the location of the return statements and 313 // all will be fine. 314 if (CGDebugInfo *DI = getDebugInfo()) { 315 if (OnlySimpleReturnStmts) 316 DI->EmitLocation(Builder, LastStopPoint); 317 else 318 DI->EmitLocation(Builder, EndLoc); 319 } 320 321 // Pop any cleanups that might have been associated with the 322 // parameters. Do this in whatever block we're currently in; it's 323 // important to do this before we enter the return block or return 324 // edges will be *really* confused. 325 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 326 bool HasOnlyLifetimeMarkers = 327 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 328 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 329 if (HasCleanups) { 330 // Make sure the line table doesn't jump back into the body for 331 // the ret after it's been at EndLoc. 332 if (CGDebugInfo *DI = getDebugInfo()) 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, EndLoc); 335 336 PopCleanupBlocks(PrologueCleanupDepth); 337 } 338 339 // Emit function epilog (to return). 340 llvm::DebugLoc Loc = EmitReturnBlock(); 341 342 if (ShouldInstrumentFunction()) 343 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 344 345 // Emit debug descriptor for function end. 346 if (CGDebugInfo *DI = getDebugInfo()) 347 DI->EmitFunctionEnd(Builder); 348 349 // Reset the debug location to that of the simple 'return' expression, if any 350 // rather than that of the end of the function's scope '}'. 351 ApplyDebugLocation AL(*this, Loc); 352 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 353 EmitEndEHSpec(CurCodeDecl); 354 355 assert(EHStack.empty() && 356 "did not remove all scopes from cleanup stack!"); 357 358 // If someone did an indirect goto, emit the indirect goto block at the end of 359 // the function. 360 if (IndirectBranch) { 361 EmitBlock(IndirectBranch->getParent()); 362 Builder.ClearInsertionPoint(); 363 } 364 365 // If some of our locals escaped, insert a call to llvm.localescape in the 366 // entry block. 367 if (!EscapedLocals.empty()) { 368 // Invert the map from local to index into a simple vector. There should be 369 // no holes. 370 SmallVector<llvm::Value *, 4> EscapeArgs; 371 EscapeArgs.resize(EscapedLocals.size()); 372 for (auto &Pair : EscapedLocals) 373 EscapeArgs[Pair.second] = Pair.first; 374 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 375 &CGM.getModule(), llvm::Intrinsic::localescape); 376 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 377 } 378 379 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 380 llvm::Instruction *Ptr = AllocaInsertPt; 381 AllocaInsertPt = nullptr; 382 Ptr->eraseFromParent(); 383 384 // If someone took the address of a label but never did an indirect goto, we 385 // made a zero entry PHI node, which is illegal, zap it now. 386 if (IndirectBranch) { 387 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 388 if (PN->getNumIncomingValues() == 0) { 389 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 390 PN->eraseFromParent(); 391 } 392 } 393 394 EmitIfUsed(*this, EHResumeBlock); 395 EmitIfUsed(*this, TerminateLandingPad); 396 EmitIfUsed(*this, TerminateHandler); 397 EmitIfUsed(*this, UnreachableBlock); 398 399 if (CGM.getCodeGenOpts().EmitDeclMetadata) 400 EmitDeclMetadata(); 401 402 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 403 I = DeferredReplacements.begin(), 404 E = DeferredReplacements.end(); 405 I != E; ++I) { 406 I->first->replaceAllUsesWith(I->second); 407 I->first->eraseFromParent(); 408 } 409 } 410 411 /// ShouldInstrumentFunction - Return true if the current function should be 412 /// instrumented with __cyg_profile_func_* calls 413 bool CodeGenFunction::ShouldInstrumentFunction() { 414 if (!CGM.getCodeGenOpts().InstrumentFunctions) 415 return false; 416 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 417 return false; 418 return true; 419 } 420 421 /// ShouldXRayInstrument - Return true if the current function should be 422 /// instrumented with XRay nop sleds. 423 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 424 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 425 } 426 427 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 428 /// instrumentation function with the current function and the call site, if 429 /// function instrumentation is enabled. 430 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 431 auto NL = ApplyDebugLocation::CreateArtificial(*this); 432 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 433 llvm::PointerType *PointerTy = Int8PtrTy; 434 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 435 llvm::FunctionType *FunctionTy = 436 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 437 438 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 439 llvm::CallInst *CallSite = Builder.CreateCall( 440 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 441 llvm::ConstantInt::get(Int32Ty, 0), 442 "callsite"); 443 444 llvm::Value *args[] = { 445 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 446 CallSite 447 }; 448 449 EmitNounwindRuntimeCall(F, args); 450 } 451 452 static void removeImageAccessQualifier(std::string& TyName) { 453 std::string ReadOnlyQual("__read_only"); 454 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 455 if (ReadOnlyPos != std::string::npos) 456 // "+ 1" for the space after access qualifier. 457 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 458 else { 459 std::string WriteOnlyQual("__write_only"); 460 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 461 if (WriteOnlyPos != std::string::npos) 462 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 463 else { 464 std::string ReadWriteQual("__read_write"); 465 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 466 if (ReadWritePos != std::string::npos) 467 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 468 } 469 } 470 } 471 472 // Returns the address space id that should be produced to the 473 // kernel_arg_addr_space metadata. This is always fixed to the ids 474 // as specified in the SPIR 2.0 specification in order to differentiate 475 // for example in clGetKernelArgInfo() implementation between the address 476 // spaces with targets without unique mapping to the OpenCL address spaces 477 // (basically all single AS CPUs). 478 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 479 switch (LangAS) { 480 case LangAS::opencl_global: return 1; 481 case LangAS::opencl_constant: return 2; 482 case LangAS::opencl_local: return 3; 483 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 484 default: 485 return 0; // Assume private. 486 } 487 } 488 489 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 490 // information in the program executable. The argument information stored 491 // includes the argument name, its type, the address and access qualifiers used. 492 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 493 CodeGenModule &CGM, llvm::LLVMContext &Context, 494 CGBuilderTy &Builder, ASTContext &ASTCtx) { 495 // Create MDNodes that represent the kernel arg metadata. 496 // Each MDNode is a list in the form of "key", N number of values which is 497 // the same number of values as their are kernel arguments. 498 499 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 500 501 // MDNode for the kernel argument address space qualifiers. 502 SmallVector<llvm::Metadata *, 8> addressQuals; 503 504 // MDNode for the kernel argument access qualifiers (images only). 505 SmallVector<llvm::Metadata *, 8> accessQuals; 506 507 // MDNode for the kernel argument type names. 508 SmallVector<llvm::Metadata *, 8> argTypeNames; 509 510 // MDNode for the kernel argument base type names. 511 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 512 513 // MDNode for the kernel argument type qualifiers. 514 SmallVector<llvm::Metadata *, 8> argTypeQuals; 515 516 // MDNode for the kernel argument names. 517 SmallVector<llvm::Metadata *, 8> argNames; 518 519 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 520 const ParmVarDecl *parm = FD->getParamDecl(i); 521 QualType ty = parm->getType(); 522 std::string typeQuals; 523 524 if (ty->isPointerType()) { 525 QualType pointeeTy = ty->getPointeeType(); 526 527 // Get address qualifier. 528 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 529 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 530 531 // Get argument type name. 532 std::string typeName = 533 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 534 535 // Turn "unsigned type" to "utype" 536 std::string::size_type pos = typeName.find("unsigned"); 537 if (pointeeTy.isCanonical() && pos != std::string::npos) 538 typeName.erase(pos+1, 8); 539 540 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 541 542 std::string baseTypeName = 543 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 544 Policy) + 545 "*"; 546 547 // Turn "unsigned type" to "utype" 548 pos = baseTypeName.find("unsigned"); 549 if (pos != std::string::npos) 550 baseTypeName.erase(pos+1, 8); 551 552 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 553 554 // Get argument type qualifiers: 555 if (ty.isRestrictQualified()) 556 typeQuals = "restrict"; 557 if (pointeeTy.isConstQualified() || 558 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 559 typeQuals += typeQuals.empty() ? "const" : " const"; 560 if (pointeeTy.isVolatileQualified()) 561 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 562 } else { 563 uint32_t AddrSpc = 0; 564 bool isPipe = ty->isPipeType(); 565 if (ty->isImageType() || isPipe) 566 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 567 568 addressQuals.push_back( 569 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 570 571 // Get argument type name. 572 std::string typeName; 573 if (isPipe) 574 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 575 .getAsString(Policy); 576 else 577 typeName = ty.getUnqualifiedType().getAsString(Policy); 578 579 // Turn "unsigned type" to "utype" 580 std::string::size_type pos = typeName.find("unsigned"); 581 if (ty.isCanonical() && pos != std::string::npos) 582 typeName.erase(pos+1, 8); 583 584 std::string baseTypeName; 585 if (isPipe) 586 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 587 ->getElementType().getCanonicalType() 588 .getAsString(Policy); 589 else 590 baseTypeName = 591 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 592 593 // Remove access qualifiers on images 594 // (as they are inseparable from type in clang implementation, 595 // but OpenCL spec provides a special query to get access qualifier 596 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 597 if (ty->isImageType()) { 598 removeImageAccessQualifier(typeName); 599 removeImageAccessQualifier(baseTypeName); 600 } 601 602 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 603 604 // Turn "unsigned type" to "utype" 605 pos = baseTypeName.find("unsigned"); 606 if (pos != std::string::npos) 607 baseTypeName.erase(pos+1, 8); 608 609 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 610 611 // Get argument type qualifiers: 612 if (ty.isConstQualified()) 613 typeQuals = "const"; 614 if (ty.isVolatileQualified()) 615 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 616 if (isPipe) 617 typeQuals = "pipe"; 618 } 619 620 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 621 622 // Get image and pipe access qualifier: 623 if (ty->isImageType()|| ty->isPipeType()) { 624 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 625 if (A && A->isWriteOnly()) 626 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 627 else if (A && A->isReadWrite()) 628 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 629 else 630 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 631 } else 632 accessQuals.push_back(llvm::MDString::get(Context, "none")); 633 634 // Get argument name. 635 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 636 } 637 638 Fn->setMetadata("kernel_arg_addr_space", 639 llvm::MDNode::get(Context, addressQuals)); 640 Fn->setMetadata("kernel_arg_access_qual", 641 llvm::MDNode::get(Context, accessQuals)); 642 Fn->setMetadata("kernel_arg_type", 643 llvm::MDNode::get(Context, argTypeNames)); 644 Fn->setMetadata("kernel_arg_base_type", 645 llvm::MDNode::get(Context, argBaseTypeNames)); 646 Fn->setMetadata("kernel_arg_type_qual", 647 llvm::MDNode::get(Context, argTypeQuals)); 648 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 649 Fn->setMetadata("kernel_arg_name", 650 llvm::MDNode::get(Context, argNames)); 651 } 652 653 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 654 llvm::Function *Fn) 655 { 656 if (!FD->hasAttr<OpenCLKernelAttr>()) 657 return; 658 659 llvm::LLVMContext &Context = getLLVMContext(); 660 661 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 662 663 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 664 QualType hintQTy = A->getTypeHint(); 665 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 666 bool isSignedInteger = 667 hintQTy->isSignedIntegerType() || 668 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 669 llvm::Metadata *attrMDArgs[] = { 670 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 671 CGM.getTypes().ConvertType(A->getTypeHint()))), 672 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 673 llvm::IntegerType::get(Context, 32), 674 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 675 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 676 } 677 678 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 679 llvm::Metadata *attrMDArgs[] = { 680 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 681 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 682 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 683 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 684 } 685 686 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 687 llvm::Metadata *attrMDArgs[] = { 688 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 689 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 690 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 691 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 692 } 693 } 694 695 /// Determine whether the function F ends with a return stmt. 696 static bool endsWithReturn(const Decl* F) { 697 const Stmt *Body = nullptr; 698 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 699 Body = FD->getBody(); 700 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 701 Body = OMD->getBody(); 702 703 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 704 auto LastStmt = CS->body_rbegin(); 705 if (LastStmt != CS->body_rend()) 706 return isa<ReturnStmt>(*LastStmt); 707 } 708 return false; 709 } 710 711 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 712 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 713 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 714 } 715 716 void CodeGenFunction::StartFunction(GlobalDecl GD, 717 QualType RetTy, 718 llvm::Function *Fn, 719 const CGFunctionInfo &FnInfo, 720 const FunctionArgList &Args, 721 SourceLocation Loc, 722 SourceLocation StartLoc) { 723 assert(!CurFn && 724 "Do not use a CodeGenFunction object for more than one function"); 725 726 const Decl *D = GD.getDecl(); 727 728 DidCallStackSave = false; 729 CurCodeDecl = D; 730 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 731 if (FD->usesSEHTry()) 732 CurSEHParent = FD; 733 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 734 FnRetTy = RetTy; 735 CurFn = Fn; 736 CurFnInfo = &FnInfo; 737 assert(CurFn->isDeclaration() && "Function already has body?"); 738 739 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 740 SanOpts.clear(); 741 742 if (D) { 743 // Apply the no_sanitize* attributes to SanOpts. 744 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 745 SanOpts.Mask &= ~Attr->getMask(); 746 } 747 748 // Apply sanitizer attributes to the function. 749 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 750 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 751 if (SanOpts.has(SanitizerKind::Thread)) 752 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 753 if (SanOpts.has(SanitizerKind::Memory)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 755 if (SanOpts.has(SanitizerKind::SafeStack)) 756 Fn->addFnAttr(llvm::Attribute::SafeStack); 757 758 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 759 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 760 if (SanOpts.has(SanitizerKind::Thread)) { 761 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 762 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 763 if (OMD->getMethodFamily() == OMF_dealloc || 764 OMD->getMethodFamily() == OMF_initialize || 765 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 766 markAsIgnoreThreadCheckingAtRuntime(Fn); 767 } 768 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 769 IdentifierInfo *II = FD->getIdentifier(); 770 if (II && II->isStr("__destroy_helper_block_")) 771 markAsIgnoreThreadCheckingAtRuntime(Fn); 772 } 773 } 774 775 // Apply xray attributes to the function (as a string, for now) 776 if (D && ShouldXRayInstrumentFunction()) { 777 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 778 if (XRayAttr->alwaysXRayInstrument()) 779 Fn->addFnAttr("function-instrument", "xray-always"); 780 if (XRayAttr->neverXRayInstrument()) 781 Fn->addFnAttr("function-instrument", "xray-never"); 782 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 783 Fn->addFnAttr("xray-log-args", 784 llvm::utostr(LogArgs->getArgumentCount())); 785 } 786 } else { 787 Fn->addFnAttr( 788 "xray-instruction-threshold", 789 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 790 } 791 } 792 793 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 794 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 795 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 796 797 // Add no-jump-tables value. 798 Fn->addFnAttr("no-jump-tables", 799 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 800 801 if (getLangOpts().OpenCL) { 802 // Add metadata for a kernel function. 803 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 804 EmitOpenCLKernelMetadata(FD, Fn); 805 } 806 807 // If we are checking function types, emit a function type signature as 808 // prologue data. 809 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 810 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 811 if (llvm::Constant *PrologueSig = 812 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 813 llvm::Constant *FTRTTIConst = 814 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 815 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 816 llvm::Constant *PrologueStructConst = 817 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 818 Fn->setPrologueData(PrologueStructConst); 819 } 820 } 821 } 822 823 // If we're in C++ mode and the function name is "main", it is guaranteed 824 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 825 // used within a program"). 826 if (getLangOpts().CPlusPlus) 827 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 828 if (FD->isMain()) 829 Fn->addFnAttr(llvm::Attribute::NoRecurse); 830 831 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 832 833 // Create a marker to make it easy to insert allocas into the entryblock 834 // later. Don't create this with the builder, because we don't want it 835 // folded. 836 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 837 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 838 839 ReturnBlock = getJumpDestInCurrentScope("return"); 840 841 Builder.SetInsertPoint(EntryBB); 842 843 // Emit subprogram debug descriptor. 844 if (CGDebugInfo *DI = getDebugInfo()) { 845 // Reconstruct the type from the argument list so that implicit parameters, 846 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 847 // convention. 848 CallingConv CC = CallingConv::CC_C; 849 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 850 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 851 CC = SrcFnTy->getCallConv(); 852 SmallVector<QualType, 16> ArgTypes; 853 for (const VarDecl *VD : Args) 854 ArgTypes.push_back(VD->getType()); 855 QualType FnType = getContext().getFunctionType( 856 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 857 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 858 } 859 860 if (ShouldInstrumentFunction()) 861 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 862 863 // Since emitting the mcount call here impacts optimizations such as function 864 // inlining, we just add an attribute to insert a mcount call in backend. 865 // The attribute "counting-function" is set to mcount function name which is 866 // architecture dependent. 867 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 868 if (CGM.getCodeGenOpts().CallFEntry) 869 Fn->addFnAttr("fentry-call", "true"); 870 else 871 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 872 } 873 874 if (RetTy->isVoidType()) { 875 // Void type; nothing to return. 876 ReturnValue = Address::invalid(); 877 878 // Count the implicit return. 879 if (!endsWithReturn(D)) 880 ++NumReturnExprs; 881 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 882 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 883 // Indirect aggregate return; emit returned value directly into sret slot. 884 // This reduces code size, and affects correctness in C++. 885 auto AI = CurFn->arg_begin(); 886 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 887 ++AI; 888 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 889 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 890 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 891 // Load the sret pointer from the argument struct and return into that. 892 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 893 llvm::Function::arg_iterator EI = CurFn->arg_end(); 894 --EI; 895 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 896 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 897 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 898 } else { 899 ReturnValue = CreateIRTemp(RetTy, "retval"); 900 901 // Tell the epilog emitter to autorelease the result. We do this 902 // now so that various specialized functions can suppress it 903 // during their IR-generation. 904 if (getLangOpts().ObjCAutoRefCount && 905 !CurFnInfo->isReturnsRetained() && 906 RetTy->isObjCRetainableType()) 907 AutoreleaseResult = true; 908 } 909 910 EmitStartEHSpec(CurCodeDecl); 911 912 PrologueCleanupDepth = EHStack.stable_begin(); 913 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 914 915 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 916 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 917 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 918 if (MD->getParent()->isLambda() && 919 MD->getOverloadedOperator() == OO_Call) { 920 // We're in a lambda; figure out the captures. 921 MD->getParent()->getCaptureFields(LambdaCaptureFields, 922 LambdaThisCaptureField); 923 if (LambdaThisCaptureField) { 924 // If the lambda captures the object referred to by '*this' - either by 925 // value or by reference, make sure CXXThisValue points to the correct 926 // object. 927 928 // Get the lvalue for the field (which is a copy of the enclosing object 929 // or contains the address of the enclosing object). 930 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 931 if (!LambdaThisCaptureField->getType()->isPointerType()) { 932 // If the enclosing object was captured by value, just use its address. 933 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 934 } else { 935 // Load the lvalue pointed to by the field, since '*this' was captured 936 // by reference. 937 CXXThisValue = 938 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 939 } 940 } 941 for (auto *FD : MD->getParent()->fields()) { 942 if (FD->hasCapturedVLAType()) { 943 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 944 SourceLocation()).getScalarVal(); 945 auto VAT = FD->getCapturedVLAType(); 946 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 947 } 948 } 949 } else { 950 // Not in a lambda; just use 'this' from the method. 951 // FIXME: Should we generate a new load for each use of 'this'? The 952 // fast register allocator would be happier... 953 CXXThisValue = CXXABIThisValue; 954 } 955 956 // Null-check the 'this' pointer once per function, if it's available. 957 if (CXXThisValue) { 958 SanitizerSet SkippedChecks; 959 SkippedChecks.set(SanitizerKind::Alignment, true); 960 SkippedChecks.set(SanitizerKind::ObjectSize, true); 961 EmitTypeCheck(TCK_Load, Loc, CXXThisValue, MD->getThisType(getContext()), 962 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 963 } 964 } 965 966 // If any of the arguments have a variably modified type, make sure to 967 // emit the type size. 968 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 969 i != e; ++i) { 970 const VarDecl *VD = *i; 971 972 // Dig out the type as written from ParmVarDecls; it's unclear whether 973 // the standard (C99 6.9.1p10) requires this, but we're following the 974 // precedent set by gcc. 975 QualType Ty; 976 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 977 Ty = PVD->getOriginalType(); 978 else 979 Ty = VD->getType(); 980 981 if (Ty->isVariablyModifiedType()) 982 EmitVariablyModifiedType(Ty); 983 } 984 // Emit a location at the end of the prologue. 985 if (CGDebugInfo *DI = getDebugInfo()) 986 DI->EmitLocation(Builder, StartLoc); 987 } 988 989 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 990 const Stmt *Body) { 991 incrementProfileCounter(Body); 992 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 993 EmitCompoundStmtWithoutScope(*S); 994 else 995 EmitStmt(Body); 996 } 997 998 /// When instrumenting to collect profile data, the counts for some blocks 999 /// such as switch cases need to not include the fall-through counts, so 1000 /// emit a branch around the instrumentation code. When not instrumenting, 1001 /// this just calls EmitBlock(). 1002 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1003 const Stmt *S) { 1004 llvm::BasicBlock *SkipCountBB = nullptr; 1005 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1006 // When instrumenting for profiling, the fallthrough to certain 1007 // statements needs to skip over the instrumentation code so that we 1008 // get an accurate count. 1009 SkipCountBB = createBasicBlock("skipcount"); 1010 EmitBranch(SkipCountBB); 1011 } 1012 EmitBlock(BB); 1013 uint64_t CurrentCount = getCurrentProfileCount(); 1014 incrementProfileCounter(S); 1015 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1016 if (SkipCountBB) 1017 EmitBlock(SkipCountBB); 1018 } 1019 1020 /// Tries to mark the given function nounwind based on the 1021 /// non-existence of any throwing calls within it. We believe this is 1022 /// lightweight enough to do at -O0. 1023 static void TryMarkNoThrow(llvm::Function *F) { 1024 // LLVM treats 'nounwind' on a function as part of the type, so we 1025 // can't do this on functions that can be overwritten. 1026 if (F->isInterposable()) return; 1027 1028 for (llvm::BasicBlock &BB : *F) 1029 for (llvm::Instruction &I : BB) 1030 if (I.mayThrow()) 1031 return; 1032 1033 F->setDoesNotThrow(); 1034 } 1035 1036 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1037 FunctionArgList &Args) { 1038 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1039 QualType ResTy = FD->getReturnType(); 1040 1041 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1042 if (MD && MD->isInstance()) { 1043 if (CGM.getCXXABI().HasThisReturn(GD)) 1044 ResTy = MD->getThisType(getContext()); 1045 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1046 ResTy = CGM.getContext().VoidPtrTy; 1047 CGM.getCXXABI().buildThisParam(*this, Args); 1048 } 1049 1050 // The base version of an inheriting constructor whose constructed base is a 1051 // virtual base is not passed any arguments (because it doesn't actually call 1052 // the inherited constructor). 1053 bool PassedParams = true; 1054 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1055 if (auto Inherited = CD->getInheritedConstructor()) 1056 PassedParams = 1057 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1058 1059 if (PassedParams) { 1060 for (auto *Param : FD->parameters()) { 1061 Args.push_back(Param); 1062 if (!Param->hasAttr<PassObjectSizeAttr>()) 1063 continue; 1064 1065 IdentifierInfo *NoID = nullptr; 1066 auto *Implicit = ImplicitParamDecl::Create( 1067 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1068 getContext().getSizeType()); 1069 SizeArguments[Param] = Implicit; 1070 Args.push_back(Implicit); 1071 } 1072 } 1073 1074 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1075 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1076 1077 return ResTy; 1078 } 1079 1080 static bool 1081 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1082 const ASTContext &Context) { 1083 QualType T = FD->getReturnType(); 1084 // Avoid the optimization for functions that return a record type with a 1085 // trivial destructor or another trivially copyable type. 1086 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1087 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1088 return !ClassDecl->hasTrivialDestructor(); 1089 } 1090 return !T.isTriviallyCopyableType(Context); 1091 } 1092 1093 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1094 const CGFunctionInfo &FnInfo) { 1095 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1096 CurGD = GD; 1097 1098 FunctionArgList Args; 1099 QualType ResTy = BuildFunctionArgList(GD, Args); 1100 1101 // Check if we should generate debug info for this function. 1102 if (FD->hasAttr<NoDebugAttr>()) 1103 DebugInfo = nullptr; // disable debug info indefinitely for this function 1104 1105 // The function might not have a body if we're generating thunks for a 1106 // function declaration. 1107 SourceRange BodyRange; 1108 if (Stmt *Body = FD->getBody()) 1109 BodyRange = Body->getSourceRange(); 1110 else 1111 BodyRange = FD->getLocation(); 1112 CurEHLocation = BodyRange.getEnd(); 1113 1114 // Use the location of the start of the function to determine where 1115 // the function definition is located. By default use the location 1116 // of the declaration as the location for the subprogram. A function 1117 // may lack a declaration in the source code if it is created by code 1118 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1119 SourceLocation Loc = FD->getLocation(); 1120 1121 // If this is a function specialization then use the pattern body 1122 // as the location for the function. 1123 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1124 if (SpecDecl->hasBody(SpecDecl)) 1125 Loc = SpecDecl->getLocation(); 1126 1127 Stmt *Body = FD->getBody(); 1128 1129 // Initialize helper which will detect jumps which can cause invalid lifetime 1130 // markers. 1131 if (Body && ShouldEmitLifetimeMarkers) 1132 Bypasses.Init(Body); 1133 1134 // Emit the standard function prologue. 1135 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1136 1137 // Generate the body of the function. 1138 PGO.assignRegionCounters(GD, CurFn); 1139 if (isa<CXXDestructorDecl>(FD)) 1140 EmitDestructorBody(Args); 1141 else if (isa<CXXConstructorDecl>(FD)) 1142 EmitConstructorBody(Args); 1143 else if (getLangOpts().CUDA && 1144 !getLangOpts().CUDAIsDevice && 1145 FD->hasAttr<CUDAGlobalAttr>()) 1146 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1147 else if (isa<CXXConversionDecl>(FD) && 1148 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1149 // The lambda conversion to block pointer is special; the semantics can't be 1150 // expressed in the AST, so IRGen needs to special-case it. 1151 EmitLambdaToBlockPointerBody(Args); 1152 } else if (isa<CXXMethodDecl>(FD) && 1153 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1154 // The lambda static invoker function is special, because it forwards or 1155 // clones the body of the function call operator (but is actually static). 1156 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1157 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1158 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1159 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1160 // Implicit copy-assignment gets the same special treatment as implicit 1161 // copy-constructors. 1162 emitImplicitAssignmentOperatorBody(Args); 1163 } else if (Body) { 1164 EmitFunctionBody(Args, Body); 1165 } else 1166 llvm_unreachable("no definition for emitted function"); 1167 1168 // C++11 [stmt.return]p2: 1169 // Flowing off the end of a function [...] results in undefined behavior in 1170 // a value-returning function. 1171 // C11 6.9.1p12: 1172 // If the '}' that terminates a function is reached, and the value of the 1173 // function call is used by the caller, the behavior is undefined. 1174 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1175 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1176 bool ShouldEmitUnreachable = 1177 CGM.getCodeGenOpts().StrictReturn || 1178 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1179 if (SanOpts.has(SanitizerKind::Return)) { 1180 SanitizerScope SanScope(this); 1181 llvm::Value *IsFalse = Builder.getFalse(); 1182 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1183 SanitizerHandler::MissingReturn, 1184 EmitCheckSourceLocation(FD->getLocation()), None); 1185 } else if (ShouldEmitUnreachable) { 1186 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1187 EmitTrapCall(llvm::Intrinsic::trap); 1188 } 1189 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1190 Builder.CreateUnreachable(); 1191 Builder.ClearInsertionPoint(); 1192 } 1193 } 1194 1195 // Emit the standard function epilogue. 1196 FinishFunction(BodyRange.getEnd()); 1197 1198 // If we haven't marked the function nothrow through other means, do 1199 // a quick pass now to see if we can. 1200 if (!CurFn->doesNotThrow()) 1201 TryMarkNoThrow(CurFn); 1202 } 1203 1204 /// ContainsLabel - Return true if the statement contains a label in it. If 1205 /// this statement is not executed normally, it not containing a label means 1206 /// that we can just remove the code. 1207 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1208 // Null statement, not a label! 1209 if (!S) return false; 1210 1211 // If this is a label, we have to emit the code, consider something like: 1212 // if (0) { ... foo: bar(); } goto foo; 1213 // 1214 // TODO: If anyone cared, we could track __label__'s, since we know that you 1215 // can't jump to one from outside their declared region. 1216 if (isa<LabelStmt>(S)) 1217 return true; 1218 1219 // If this is a case/default statement, and we haven't seen a switch, we have 1220 // to emit the code. 1221 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1222 return true; 1223 1224 // If this is a switch statement, we want to ignore cases below it. 1225 if (isa<SwitchStmt>(S)) 1226 IgnoreCaseStmts = true; 1227 1228 // Scan subexpressions for verboten labels. 1229 for (const Stmt *SubStmt : S->children()) 1230 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1231 return true; 1232 1233 return false; 1234 } 1235 1236 /// containsBreak - Return true if the statement contains a break out of it. 1237 /// If the statement (recursively) contains a switch or loop with a break 1238 /// inside of it, this is fine. 1239 bool CodeGenFunction::containsBreak(const Stmt *S) { 1240 // Null statement, not a label! 1241 if (!S) return false; 1242 1243 // If this is a switch or loop that defines its own break scope, then we can 1244 // include it and anything inside of it. 1245 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1246 isa<ForStmt>(S)) 1247 return false; 1248 1249 if (isa<BreakStmt>(S)) 1250 return true; 1251 1252 // Scan subexpressions for verboten breaks. 1253 for (const Stmt *SubStmt : S->children()) 1254 if (containsBreak(SubStmt)) 1255 return true; 1256 1257 return false; 1258 } 1259 1260 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1261 if (!S) return false; 1262 1263 // Some statement kinds add a scope and thus never add a decl to the current 1264 // scope. Note, this list is longer than the list of statements that might 1265 // have an unscoped decl nested within them, but this way is conservatively 1266 // correct even if more statement kinds are added. 1267 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1268 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1269 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1270 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1271 return false; 1272 1273 if (isa<DeclStmt>(S)) 1274 return true; 1275 1276 for (const Stmt *SubStmt : S->children()) 1277 if (mightAddDeclToScope(SubStmt)) 1278 return true; 1279 1280 return false; 1281 } 1282 1283 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1284 /// to a constant, or if it does but contains a label, return false. If it 1285 /// constant folds return true and set the boolean result in Result. 1286 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1287 bool &ResultBool, 1288 bool AllowLabels) { 1289 llvm::APSInt ResultInt; 1290 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1291 return false; 1292 1293 ResultBool = ResultInt.getBoolValue(); 1294 return true; 1295 } 1296 1297 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1298 /// to a constant, or if it does but contains a label, return false. If it 1299 /// constant folds return true and set the folded value. 1300 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1301 llvm::APSInt &ResultInt, 1302 bool AllowLabels) { 1303 // FIXME: Rename and handle conversion of other evaluatable things 1304 // to bool. 1305 llvm::APSInt Int; 1306 if (!Cond->EvaluateAsInt(Int, getContext())) 1307 return false; // Not foldable, not integer or not fully evaluatable. 1308 1309 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1310 return false; // Contains a label. 1311 1312 ResultInt = Int; 1313 return true; 1314 } 1315 1316 1317 1318 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1319 /// statement) to the specified blocks. Based on the condition, this might try 1320 /// to simplify the codegen of the conditional based on the branch. 1321 /// 1322 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1323 llvm::BasicBlock *TrueBlock, 1324 llvm::BasicBlock *FalseBlock, 1325 uint64_t TrueCount) { 1326 Cond = Cond->IgnoreParens(); 1327 1328 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1329 1330 // Handle X && Y in a condition. 1331 if (CondBOp->getOpcode() == BO_LAnd) { 1332 // If we have "1 && X", simplify the code. "0 && X" would have constant 1333 // folded if the case was simple enough. 1334 bool ConstantBool = false; 1335 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1336 ConstantBool) { 1337 // br(1 && X) -> br(X). 1338 incrementProfileCounter(CondBOp); 1339 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1340 TrueCount); 1341 } 1342 1343 // If we have "X && 1", simplify the code to use an uncond branch. 1344 // "X && 0" would have been constant folded to 0. 1345 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1346 ConstantBool) { 1347 // br(X && 1) -> br(X). 1348 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1349 TrueCount); 1350 } 1351 1352 // Emit the LHS as a conditional. If the LHS conditional is false, we 1353 // want to jump to the FalseBlock. 1354 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1355 // The counter tells us how often we evaluate RHS, and all of TrueCount 1356 // can be propagated to that branch. 1357 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1358 1359 ConditionalEvaluation eval(*this); 1360 { 1361 ApplyDebugLocation DL(*this, Cond); 1362 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1363 EmitBlock(LHSTrue); 1364 } 1365 1366 incrementProfileCounter(CondBOp); 1367 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1368 1369 // Any temporaries created here are conditional. 1370 eval.begin(*this); 1371 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1372 eval.end(*this); 1373 1374 return; 1375 } 1376 1377 if (CondBOp->getOpcode() == BO_LOr) { 1378 // If we have "0 || X", simplify the code. "1 || X" would have constant 1379 // folded if the case was simple enough. 1380 bool ConstantBool = false; 1381 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1382 !ConstantBool) { 1383 // br(0 || X) -> br(X). 1384 incrementProfileCounter(CondBOp); 1385 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1386 TrueCount); 1387 } 1388 1389 // If we have "X || 0", simplify the code to use an uncond branch. 1390 // "X || 1" would have been constant folded to 1. 1391 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1392 !ConstantBool) { 1393 // br(X || 0) -> br(X). 1394 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1395 TrueCount); 1396 } 1397 1398 // Emit the LHS as a conditional. If the LHS conditional is true, we 1399 // want to jump to the TrueBlock. 1400 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1401 // We have the count for entry to the RHS and for the whole expression 1402 // being true, so we can divy up True count between the short circuit and 1403 // the RHS. 1404 uint64_t LHSCount = 1405 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1406 uint64_t RHSCount = TrueCount - LHSCount; 1407 1408 ConditionalEvaluation eval(*this); 1409 { 1410 ApplyDebugLocation DL(*this, Cond); 1411 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1412 EmitBlock(LHSFalse); 1413 } 1414 1415 incrementProfileCounter(CondBOp); 1416 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1417 1418 // Any temporaries created here are conditional. 1419 eval.begin(*this); 1420 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1421 1422 eval.end(*this); 1423 1424 return; 1425 } 1426 } 1427 1428 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1429 // br(!x, t, f) -> br(x, f, t) 1430 if (CondUOp->getOpcode() == UO_LNot) { 1431 // Negate the count. 1432 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1433 // Negate the condition and swap the destination blocks. 1434 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1435 FalseCount); 1436 } 1437 } 1438 1439 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1440 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1441 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1442 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1443 1444 ConditionalEvaluation cond(*this); 1445 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1446 getProfileCount(CondOp)); 1447 1448 // When computing PGO branch weights, we only know the overall count for 1449 // the true block. This code is essentially doing tail duplication of the 1450 // naive code-gen, introducing new edges for which counts are not 1451 // available. Divide the counts proportionally between the LHS and RHS of 1452 // the conditional operator. 1453 uint64_t LHSScaledTrueCount = 0; 1454 if (TrueCount) { 1455 double LHSRatio = 1456 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1457 LHSScaledTrueCount = TrueCount * LHSRatio; 1458 } 1459 1460 cond.begin(*this); 1461 EmitBlock(LHSBlock); 1462 incrementProfileCounter(CondOp); 1463 { 1464 ApplyDebugLocation DL(*this, Cond); 1465 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1466 LHSScaledTrueCount); 1467 } 1468 cond.end(*this); 1469 1470 cond.begin(*this); 1471 EmitBlock(RHSBlock); 1472 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1473 TrueCount - LHSScaledTrueCount); 1474 cond.end(*this); 1475 1476 return; 1477 } 1478 1479 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1480 // Conditional operator handling can give us a throw expression as a 1481 // condition for a case like: 1482 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1483 // Fold this to: 1484 // br(c, throw x, br(y, t, f)) 1485 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1486 return; 1487 } 1488 1489 // If the branch has a condition wrapped by __builtin_unpredictable, 1490 // create metadata that specifies that the branch is unpredictable. 1491 // Don't bother if not optimizing because that metadata would not be used. 1492 llvm::MDNode *Unpredictable = nullptr; 1493 auto *Call = dyn_cast<CallExpr>(Cond); 1494 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1495 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1496 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1497 llvm::MDBuilder MDHelper(getLLVMContext()); 1498 Unpredictable = MDHelper.createUnpredictable(); 1499 } 1500 } 1501 1502 // Create branch weights based on the number of times we get here and the 1503 // number of times the condition should be true. 1504 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1505 llvm::MDNode *Weights = 1506 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1507 1508 // Emit the code with the fully general case. 1509 llvm::Value *CondV; 1510 { 1511 ApplyDebugLocation DL(*this, Cond); 1512 CondV = EvaluateExprAsBool(Cond); 1513 } 1514 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1515 } 1516 1517 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1518 /// specified stmt yet. 1519 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1520 CGM.ErrorUnsupported(S, Type); 1521 } 1522 1523 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1524 /// variable-length array whose elements have a non-zero bit-pattern. 1525 /// 1526 /// \param baseType the inner-most element type of the array 1527 /// \param src - a char* pointing to the bit-pattern for a single 1528 /// base element of the array 1529 /// \param sizeInChars - the total size of the VLA, in chars 1530 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1531 Address dest, Address src, 1532 llvm::Value *sizeInChars) { 1533 CGBuilderTy &Builder = CGF.Builder; 1534 1535 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1536 llvm::Value *baseSizeInChars 1537 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1538 1539 Address begin = 1540 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1541 llvm::Value *end = 1542 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1543 1544 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1545 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1546 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1547 1548 // Make a loop over the VLA. C99 guarantees that the VLA element 1549 // count must be nonzero. 1550 CGF.EmitBlock(loopBB); 1551 1552 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1553 cur->addIncoming(begin.getPointer(), originBB); 1554 1555 CharUnits curAlign = 1556 dest.getAlignment().alignmentOfArrayElement(baseSize); 1557 1558 // memcpy the individual element bit-pattern. 1559 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1560 /*volatile*/ false); 1561 1562 // Go to the next element. 1563 llvm::Value *next = 1564 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1565 1566 // Leave if that's the end of the VLA. 1567 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1568 Builder.CreateCondBr(done, contBB, loopBB); 1569 cur->addIncoming(next, loopBB); 1570 1571 CGF.EmitBlock(contBB); 1572 } 1573 1574 void 1575 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1576 // Ignore empty classes in C++. 1577 if (getLangOpts().CPlusPlus) { 1578 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1579 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1580 return; 1581 } 1582 } 1583 1584 // Cast the dest ptr to the appropriate i8 pointer type. 1585 if (DestPtr.getElementType() != Int8Ty) 1586 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1587 1588 // Get size and alignment info for this aggregate. 1589 CharUnits size = getContext().getTypeSizeInChars(Ty); 1590 1591 llvm::Value *SizeVal; 1592 const VariableArrayType *vla; 1593 1594 // Don't bother emitting a zero-byte memset. 1595 if (size.isZero()) { 1596 // But note that getTypeInfo returns 0 for a VLA. 1597 if (const VariableArrayType *vlaType = 1598 dyn_cast_or_null<VariableArrayType>( 1599 getContext().getAsArrayType(Ty))) { 1600 QualType eltType; 1601 llvm::Value *numElts; 1602 std::tie(numElts, eltType) = getVLASize(vlaType); 1603 1604 SizeVal = numElts; 1605 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1606 if (!eltSize.isOne()) 1607 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1608 vla = vlaType; 1609 } else { 1610 return; 1611 } 1612 } else { 1613 SizeVal = CGM.getSize(size); 1614 vla = nullptr; 1615 } 1616 1617 // If the type contains a pointer to data member we can't memset it to zero. 1618 // Instead, create a null constant and copy it to the destination. 1619 // TODO: there are other patterns besides zero that we can usefully memset, 1620 // like -1, which happens to be the pattern used by member-pointers. 1621 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1622 // For a VLA, emit a single element, then splat that over the VLA. 1623 if (vla) Ty = getContext().getBaseElementType(vla); 1624 1625 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1626 1627 llvm::GlobalVariable *NullVariable = 1628 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1629 /*isConstant=*/true, 1630 llvm::GlobalVariable::PrivateLinkage, 1631 NullConstant, Twine()); 1632 CharUnits NullAlign = DestPtr.getAlignment(); 1633 NullVariable->setAlignment(NullAlign.getQuantity()); 1634 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1635 NullAlign); 1636 1637 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1638 1639 // Get and call the appropriate llvm.memcpy overload. 1640 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1641 return; 1642 } 1643 1644 // Otherwise, just memset the whole thing to zero. This is legal 1645 // because in LLVM, all default initializers (other than the ones we just 1646 // handled above) are guaranteed to have a bit pattern of all zeros. 1647 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1648 } 1649 1650 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1651 // Make sure that there is a block for the indirect goto. 1652 if (!IndirectBranch) 1653 GetIndirectGotoBlock(); 1654 1655 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1656 1657 // Make sure the indirect branch includes all of the address-taken blocks. 1658 IndirectBranch->addDestination(BB); 1659 return llvm::BlockAddress::get(CurFn, BB); 1660 } 1661 1662 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1663 // If we already made the indirect branch for indirect goto, return its block. 1664 if (IndirectBranch) return IndirectBranch->getParent(); 1665 1666 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1667 1668 // Create the PHI node that indirect gotos will add entries to. 1669 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1670 "indirect.goto.dest"); 1671 1672 // Create the indirect branch instruction. 1673 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1674 return IndirectBranch->getParent(); 1675 } 1676 1677 /// Computes the length of an array in elements, as well as the base 1678 /// element type and a properly-typed first element pointer. 1679 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1680 QualType &baseType, 1681 Address &addr) { 1682 const ArrayType *arrayType = origArrayType; 1683 1684 // If it's a VLA, we have to load the stored size. Note that 1685 // this is the size of the VLA in bytes, not its size in elements. 1686 llvm::Value *numVLAElements = nullptr; 1687 if (isa<VariableArrayType>(arrayType)) { 1688 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1689 1690 // Walk into all VLAs. This doesn't require changes to addr, 1691 // which has type T* where T is the first non-VLA element type. 1692 do { 1693 QualType elementType = arrayType->getElementType(); 1694 arrayType = getContext().getAsArrayType(elementType); 1695 1696 // If we only have VLA components, 'addr' requires no adjustment. 1697 if (!arrayType) { 1698 baseType = elementType; 1699 return numVLAElements; 1700 } 1701 } while (isa<VariableArrayType>(arrayType)); 1702 1703 // We get out here only if we find a constant array type 1704 // inside the VLA. 1705 } 1706 1707 // We have some number of constant-length arrays, so addr should 1708 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1709 // down to the first element of addr. 1710 SmallVector<llvm::Value*, 8> gepIndices; 1711 1712 // GEP down to the array type. 1713 llvm::ConstantInt *zero = Builder.getInt32(0); 1714 gepIndices.push_back(zero); 1715 1716 uint64_t countFromCLAs = 1; 1717 QualType eltType; 1718 1719 llvm::ArrayType *llvmArrayType = 1720 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1721 while (llvmArrayType) { 1722 assert(isa<ConstantArrayType>(arrayType)); 1723 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1724 == llvmArrayType->getNumElements()); 1725 1726 gepIndices.push_back(zero); 1727 countFromCLAs *= llvmArrayType->getNumElements(); 1728 eltType = arrayType->getElementType(); 1729 1730 llvmArrayType = 1731 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1732 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1733 assert((!llvmArrayType || arrayType) && 1734 "LLVM and Clang types are out-of-synch"); 1735 } 1736 1737 if (arrayType) { 1738 // From this point onwards, the Clang array type has been emitted 1739 // as some other type (probably a packed struct). Compute the array 1740 // size, and just emit the 'begin' expression as a bitcast. 1741 while (arrayType) { 1742 countFromCLAs *= 1743 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1744 eltType = arrayType->getElementType(); 1745 arrayType = getContext().getAsArrayType(eltType); 1746 } 1747 1748 llvm::Type *baseType = ConvertType(eltType); 1749 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1750 } else { 1751 // Create the actual GEP. 1752 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1753 gepIndices, "array.begin"), 1754 addr.getAlignment()); 1755 } 1756 1757 baseType = eltType; 1758 1759 llvm::Value *numElements 1760 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1761 1762 // If we had any VLA dimensions, factor them in. 1763 if (numVLAElements) 1764 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1765 1766 return numElements; 1767 } 1768 1769 std::pair<llvm::Value*, QualType> 1770 CodeGenFunction::getVLASize(QualType type) { 1771 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1772 assert(vla && "type was not a variable array type!"); 1773 return getVLASize(vla); 1774 } 1775 1776 std::pair<llvm::Value*, QualType> 1777 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1778 // The number of elements so far; always size_t. 1779 llvm::Value *numElements = nullptr; 1780 1781 QualType elementType; 1782 do { 1783 elementType = type->getElementType(); 1784 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1785 assert(vlaSize && "no size for VLA!"); 1786 assert(vlaSize->getType() == SizeTy); 1787 1788 if (!numElements) { 1789 numElements = vlaSize; 1790 } else { 1791 // It's undefined behavior if this wraps around, so mark it that way. 1792 // FIXME: Teach -fsanitize=undefined to trap this. 1793 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1794 } 1795 } while ((type = getContext().getAsVariableArrayType(elementType))); 1796 1797 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1798 } 1799 1800 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1801 assert(type->isVariablyModifiedType() && 1802 "Must pass variably modified type to EmitVLASizes!"); 1803 1804 EnsureInsertPoint(); 1805 1806 // We're going to walk down into the type and look for VLA 1807 // expressions. 1808 do { 1809 assert(type->isVariablyModifiedType()); 1810 1811 const Type *ty = type.getTypePtr(); 1812 switch (ty->getTypeClass()) { 1813 1814 #define TYPE(Class, Base) 1815 #define ABSTRACT_TYPE(Class, Base) 1816 #define NON_CANONICAL_TYPE(Class, Base) 1817 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1818 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1819 #include "clang/AST/TypeNodes.def" 1820 llvm_unreachable("unexpected dependent type!"); 1821 1822 // These types are never variably-modified. 1823 case Type::Builtin: 1824 case Type::Complex: 1825 case Type::Vector: 1826 case Type::ExtVector: 1827 case Type::Record: 1828 case Type::Enum: 1829 case Type::Elaborated: 1830 case Type::TemplateSpecialization: 1831 case Type::ObjCTypeParam: 1832 case Type::ObjCObject: 1833 case Type::ObjCInterface: 1834 case Type::ObjCObjectPointer: 1835 llvm_unreachable("type class is never variably-modified!"); 1836 1837 case Type::Adjusted: 1838 type = cast<AdjustedType>(ty)->getAdjustedType(); 1839 break; 1840 1841 case Type::Decayed: 1842 type = cast<DecayedType>(ty)->getPointeeType(); 1843 break; 1844 1845 case Type::Pointer: 1846 type = cast<PointerType>(ty)->getPointeeType(); 1847 break; 1848 1849 case Type::BlockPointer: 1850 type = cast<BlockPointerType>(ty)->getPointeeType(); 1851 break; 1852 1853 case Type::LValueReference: 1854 case Type::RValueReference: 1855 type = cast<ReferenceType>(ty)->getPointeeType(); 1856 break; 1857 1858 case Type::MemberPointer: 1859 type = cast<MemberPointerType>(ty)->getPointeeType(); 1860 break; 1861 1862 case Type::ConstantArray: 1863 case Type::IncompleteArray: 1864 // Losing element qualification here is fine. 1865 type = cast<ArrayType>(ty)->getElementType(); 1866 break; 1867 1868 case Type::VariableArray: { 1869 // Losing element qualification here is fine. 1870 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1871 1872 // Unknown size indication requires no size computation. 1873 // Otherwise, evaluate and record it. 1874 if (const Expr *size = vat->getSizeExpr()) { 1875 // It's possible that we might have emitted this already, 1876 // e.g. with a typedef and a pointer to it. 1877 llvm::Value *&entry = VLASizeMap[size]; 1878 if (!entry) { 1879 llvm::Value *Size = EmitScalarExpr(size); 1880 1881 // C11 6.7.6.2p5: 1882 // If the size is an expression that is not an integer constant 1883 // expression [...] each time it is evaluated it shall have a value 1884 // greater than zero. 1885 if (SanOpts.has(SanitizerKind::VLABound) && 1886 size->getType()->isSignedIntegerType()) { 1887 SanitizerScope SanScope(this); 1888 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1889 llvm::Constant *StaticArgs[] = { 1890 EmitCheckSourceLocation(size->getLocStart()), 1891 EmitCheckTypeDescriptor(size->getType()) 1892 }; 1893 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1894 SanitizerKind::VLABound), 1895 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1896 } 1897 1898 // Always zexting here would be wrong if it weren't 1899 // undefined behavior to have a negative bound. 1900 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1901 } 1902 } 1903 type = vat->getElementType(); 1904 break; 1905 } 1906 1907 case Type::FunctionProto: 1908 case Type::FunctionNoProto: 1909 type = cast<FunctionType>(ty)->getReturnType(); 1910 break; 1911 1912 case Type::Paren: 1913 case Type::TypeOf: 1914 case Type::UnaryTransform: 1915 case Type::Attributed: 1916 case Type::SubstTemplateTypeParm: 1917 case Type::PackExpansion: 1918 // Keep walking after single level desugaring. 1919 type = type.getSingleStepDesugaredType(getContext()); 1920 break; 1921 1922 case Type::Typedef: 1923 case Type::Decltype: 1924 case Type::Auto: 1925 case Type::DeducedTemplateSpecialization: 1926 // Stop walking: nothing to do. 1927 return; 1928 1929 case Type::TypeOfExpr: 1930 // Stop walking: emit typeof expression. 1931 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1932 return; 1933 1934 case Type::Atomic: 1935 type = cast<AtomicType>(ty)->getValueType(); 1936 break; 1937 1938 case Type::Pipe: 1939 type = cast<PipeType>(ty)->getElementType(); 1940 break; 1941 } 1942 } while (type->isVariablyModifiedType()); 1943 } 1944 1945 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1946 if (getContext().getBuiltinVaListType()->isArrayType()) 1947 return EmitPointerWithAlignment(E); 1948 return EmitLValue(E).getAddress(); 1949 } 1950 1951 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1952 return EmitLValue(E).getAddress(); 1953 } 1954 1955 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1956 const APValue &Init) { 1957 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1958 if (CGDebugInfo *Dbg = getDebugInfo()) 1959 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1960 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1961 } 1962 1963 CodeGenFunction::PeepholeProtection 1964 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1965 // At the moment, the only aggressive peephole we do in IR gen 1966 // is trunc(zext) folding, but if we add more, we can easily 1967 // extend this protection. 1968 1969 if (!rvalue.isScalar()) return PeepholeProtection(); 1970 llvm::Value *value = rvalue.getScalarVal(); 1971 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1972 1973 // Just make an extra bitcast. 1974 assert(HaveInsertPoint()); 1975 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1976 Builder.GetInsertBlock()); 1977 1978 PeepholeProtection protection; 1979 protection.Inst = inst; 1980 return protection; 1981 } 1982 1983 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1984 if (!protection.Inst) return; 1985 1986 // In theory, we could try to duplicate the peepholes now, but whatever. 1987 protection.Inst->eraseFromParent(); 1988 } 1989 1990 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1991 llvm::Value *AnnotatedVal, 1992 StringRef AnnotationStr, 1993 SourceLocation Location) { 1994 llvm::Value *Args[4] = { 1995 AnnotatedVal, 1996 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1997 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1998 CGM.EmitAnnotationLineNo(Location) 1999 }; 2000 return Builder.CreateCall(AnnotationFn, Args); 2001 } 2002 2003 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2004 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2005 // FIXME We create a new bitcast for every annotation because that's what 2006 // llvm-gcc was doing. 2007 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2008 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2009 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2010 I->getAnnotation(), D->getLocation()); 2011 } 2012 2013 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2014 Address Addr) { 2015 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2016 llvm::Value *V = Addr.getPointer(); 2017 llvm::Type *VTy = V->getType(); 2018 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2019 CGM.Int8PtrTy); 2020 2021 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2022 // FIXME Always emit the cast inst so we can differentiate between 2023 // annotation on the first field of a struct and annotation on the struct 2024 // itself. 2025 if (VTy != CGM.Int8PtrTy) 2026 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2027 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2028 V = Builder.CreateBitCast(V, VTy); 2029 } 2030 2031 return Address(V, Addr.getAlignment()); 2032 } 2033 2034 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2035 2036 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2037 : CGF(CGF) { 2038 assert(!CGF->IsSanitizerScope); 2039 CGF->IsSanitizerScope = true; 2040 } 2041 2042 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2043 CGF->IsSanitizerScope = false; 2044 } 2045 2046 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2047 const llvm::Twine &Name, 2048 llvm::BasicBlock *BB, 2049 llvm::BasicBlock::iterator InsertPt) const { 2050 LoopStack.InsertHelper(I); 2051 if (IsSanitizerScope) 2052 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2053 } 2054 2055 void CGBuilderInserter::InsertHelper( 2056 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2057 llvm::BasicBlock::iterator InsertPt) const { 2058 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2059 if (CGF) 2060 CGF->InsertHelper(I, Name, BB, InsertPt); 2061 } 2062 2063 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2064 CodeGenModule &CGM, const FunctionDecl *FD, 2065 std::string &FirstMissing) { 2066 // If there aren't any required features listed then go ahead and return. 2067 if (ReqFeatures.empty()) 2068 return false; 2069 2070 // Now build up the set of caller features and verify that all the required 2071 // features are there. 2072 llvm::StringMap<bool> CallerFeatureMap; 2073 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2074 2075 // If we have at least one of the features in the feature list return 2076 // true, otherwise return false. 2077 return std::all_of( 2078 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2079 SmallVector<StringRef, 1> OrFeatures; 2080 Feature.split(OrFeatures, "|"); 2081 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2082 [&](StringRef Feature) { 2083 if (!CallerFeatureMap.lookup(Feature)) { 2084 FirstMissing = Feature.str(); 2085 return false; 2086 } 2087 return true; 2088 }); 2089 }); 2090 } 2091 2092 // Emits an error if we don't have a valid set of target features for the 2093 // called function. 2094 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2095 const FunctionDecl *TargetDecl) { 2096 // Early exit if this is an indirect call. 2097 if (!TargetDecl) 2098 return; 2099 2100 // Get the current enclosing function if it exists. If it doesn't 2101 // we can't check the target features anyhow. 2102 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2103 if (!FD) 2104 return; 2105 2106 // Grab the required features for the call. For a builtin this is listed in 2107 // the td file with the default cpu, for an always_inline function this is any 2108 // listed cpu and any listed features. 2109 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2110 std::string MissingFeature; 2111 if (BuiltinID) { 2112 SmallVector<StringRef, 1> ReqFeatures; 2113 const char *FeatureList = 2114 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2115 // Return if the builtin doesn't have any required features. 2116 if (!FeatureList || StringRef(FeatureList) == "") 2117 return; 2118 StringRef(FeatureList).split(ReqFeatures, ","); 2119 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2120 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2121 << TargetDecl->getDeclName() 2122 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2123 2124 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2125 // Get the required features for the callee. 2126 SmallVector<StringRef, 1> ReqFeatures; 2127 llvm::StringMap<bool> CalleeFeatureMap; 2128 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2129 for (const auto &F : CalleeFeatureMap) { 2130 // Only positive features are "required". 2131 if (F.getValue()) 2132 ReqFeatures.push_back(F.getKey()); 2133 } 2134 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2135 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2136 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2137 } 2138 } 2139 2140 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2141 if (!CGM.getCodeGenOpts().SanitizeStats) 2142 return; 2143 2144 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2145 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2146 CGM.getSanStats().create(IRB, SSK); 2147 } 2148 2149 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2150 if (CGDebugInfo *DI = getDebugInfo()) 2151 return DI->SourceLocToDebugLoc(Location); 2152 2153 return llvm::DebugLoc(); 2154 } 2155