1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/Support/MDBuilder.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 32 : CodeGenTypeCache(cgm), CGM(cgm), 33 Target(CGM.getContext().getTargetInfo()), 34 Builder(cgm.getModule().getContext()), 35 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 36 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 37 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 38 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 39 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 40 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0), 41 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0), 42 TerminateHandler(0), TrapBB(0) { 43 44 BoundsChecking = getContext().getLangOpts().BoundsChecking; 45 CatchUndefined = getContext().getLangOpts().CatchUndefined; 46 CGM.getCXXABI().getMangleContext().startNewFunction(); 47 } 48 49 CodeGenFunction::~CodeGenFunction() { 50 // If there are any unclaimed block infos, go ahead and destroy them 51 // now. This can happen if IR-gen gets clever and skips evaluating 52 // something. 53 if (FirstBlockInfo) 54 destroyBlockInfos(FirstBlockInfo); 55 } 56 57 58 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 59 return CGM.getTypes().ConvertTypeForMem(T); 60 } 61 62 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 63 return CGM.getTypes().ConvertType(T); 64 } 65 66 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 67 switch (type.getCanonicalType()->getTypeClass()) { 68 #define TYPE(name, parent) 69 #define ABSTRACT_TYPE(name, parent) 70 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 71 #define DEPENDENT_TYPE(name, parent) case Type::name: 72 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 73 #include "clang/AST/TypeNodes.def" 74 llvm_unreachable("non-canonical or dependent type in IR-generation"); 75 76 case Type::Builtin: 77 case Type::Pointer: 78 case Type::BlockPointer: 79 case Type::LValueReference: 80 case Type::RValueReference: 81 case Type::MemberPointer: 82 case Type::Vector: 83 case Type::ExtVector: 84 case Type::FunctionProto: 85 case Type::FunctionNoProto: 86 case Type::Enum: 87 case Type::ObjCObjectPointer: 88 return false; 89 90 // Complexes, arrays, records, and Objective-C objects. 91 case Type::Complex: 92 case Type::ConstantArray: 93 case Type::IncompleteArray: 94 case Type::VariableArray: 95 case Type::Record: 96 case Type::ObjCObject: 97 case Type::ObjCInterface: 98 return true; 99 100 // In IRGen, atomic types are just the underlying type 101 case Type::Atomic: 102 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 103 } 104 llvm_unreachable("unknown type kind!"); 105 } 106 107 void CodeGenFunction::EmitReturnBlock() { 108 // For cleanliness, we try to avoid emitting the return block for 109 // simple cases. 110 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 111 112 if (CurBB) { 113 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 114 115 // We have a valid insert point, reuse it if it is empty or there are no 116 // explicit jumps to the return block. 117 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 118 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 119 delete ReturnBlock.getBlock(); 120 } else 121 EmitBlock(ReturnBlock.getBlock()); 122 return; 123 } 124 125 // Otherwise, if the return block is the target of a single direct 126 // branch then we can just put the code in that block instead. This 127 // cleans up functions which started with a unified return block. 128 if (ReturnBlock.getBlock()->hasOneUse()) { 129 llvm::BranchInst *BI = 130 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 131 if (BI && BI->isUnconditional() && 132 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 133 // Reset insertion point, including debug location, and delete the branch. 134 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 135 Builder.SetInsertPoint(BI->getParent()); 136 BI->eraseFromParent(); 137 delete ReturnBlock.getBlock(); 138 return; 139 } 140 } 141 142 // FIXME: We are at an unreachable point, there is no reason to emit the block 143 // unless it has uses. However, we still need a place to put the debug 144 // region.end for now. 145 146 EmitBlock(ReturnBlock.getBlock()); 147 } 148 149 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 150 if (!BB) return; 151 if (!BB->use_empty()) 152 return CGF.CurFn->getBasicBlockList().push_back(BB); 153 delete BB; 154 } 155 156 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 157 assert(BreakContinueStack.empty() && 158 "mismatched push/pop in break/continue stack!"); 159 160 // Pop any cleanups that might have been associated with the 161 // parameters. Do this in whatever block we're currently in; it's 162 // important to do this before we enter the return block or return 163 // edges will be *really* confused. 164 if (EHStack.stable_begin() != PrologueCleanupDepth) 165 PopCleanupBlocks(PrologueCleanupDepth); 166 167 // Emit function epilog (to return). 168 EmitReturnBlock(); 169 170 if (ShouldInstrumentFunction()) 171 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 172 173 // Emit debug descriptor for function end. 174 if (CGDebugInfo *DI = getDebugInfo()) { 175 DI->setLocation(EndLoc); 176 DI->EmitFunctionEnd(Builder); 177 } 178 179 EmitFunctionEpilog(*CurFnInfo); 180 EmitEndEHSpec(CurCodeDecl); 181 182 assert(EHStack.empty() && 183 "did not remove all scopes from cleanup stack!"); 184 185 // If someone did an indirect goto, emit the indirect goto block at the end of 186 // the function. 187 if (IndirectBranch) { 188 EmitBlock(IndirectBranch->getParent()); 189 Builder.ClearInsertionPoint(); 190 } 191 192 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 193 llvm::Instruction *Ptr = AllocaInsertPt; 194 AllocaInsertPt = 0; 195 Ptr->eraseFromParent(); 196 197 // If someone took the address of a label but never did an indirect goto, we 198 // made a zero entry PHI node, which is illegal, zap it now. 199 if (IndirectBranch) { 200 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 201 if (PN->getNumIncomingValues() == 0) { 202 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 203 PN->eraseFromParent(); 204 } 205 } 206 207 EmitIfUsed(*this, EHResumeBlock); 208 EmitIfUsed(*this, TerminateLandingPad); 209 EmitIfUsed(*this, TerminateHandler); 210 EmitIfUsed(*this, UnreachableBlock); 211 212 if (CGM.getCodeGenOpts().EmitDeclMetadata) 213 EmitDeclMetadata(); 214 } 215 216 /// ShouldInstrumentFunction - Return true if the current function should be 217 /// instrumented with __cyg_profile_func_* calls 218 bool CodeGenFunction::ShouldInstrumentFunction() { 219 if (!CGM.getCodeGenOpts().InstrumentFunctions) 220 return false; 221 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 222 return false; 223 return true; 224 } 225 226 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 227 /// instrumentation function with the current function and the call site, if 228 /// function instrumentation is enabled. 229 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 230 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 231 llvm::PointerType *PointerTy = Int8PtrTy; 232 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 233 llvm::FunctionType *FunctionTy = 234 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 235 236 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 237 llvm::CallInst *CallSite = Builder.CreateCall( 238 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 239 llvm::ConstantInt::get(Int32Ty, 0), 240 "callsite"); 241 242 Builder.CreateCall2(F, 243 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 244 CallSite); 245 } 246 247 void CodeGenFunction::EmitMCountInstrumentation() { 248 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 249 250 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 251 Target.getMCountName()); 252 Builder.CreateCall(MCountFn); 253 } 254 255 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 256 llvm::Function *Fn, 257 const CGFunctionInfo &FnInfo, 258 const FunctionArgList &Args, 259 SourceLocation StartLoc) { 260 const Decl *D = GD.getDecl(); 261 262 DidCallStackSave = false; 263 CurCodeDecl = CurFuncDecl = D; 264 FnRetTy = RetTy; 265 CurFn = Fn; 266 CurFnInfo = &FnInfo; 267 assert(CurFn->isDeclaration() && "Function already has body?"); 268 269 // Pass inline keyword to optimizer if it appears explicitly on any 270 // declaration. 271 if (!CGM.getCodeGenOpts().NoInline) 272 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 273 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 274 RE = FD->redecls_end(); RI != RE; ++RI) 275 if (RI->isInlineSpecified()) { 276 Fn->addFnAttr(llvm::Attribute::InlineHint); 277 break; 278 } 279 280 if (getContext().getLangOpts().OpenCL) { 281 // Add metadata for a kernel function. 282 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 283 if (FD->hasAttr<OpenCLKernelAttr>()) { 284 llvm::LLVMContext &Context = getLLVMContext(); 285 llvm::NamedMDNode *OpenCLMetadata = 286 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 287 288 llvm::Value *Op = Fn; 289 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op)); 290 } 291 } 292 293 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 294 295 // Create a marker to make it easy to insert allocas into the entryblock 296 // later. Don't create this with the builder, because we don't want it 297 // folded. 298 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 299 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 300 if (Builder.isNamePreserving()) 301 AllocaInsertPt->setName("allocapt"); 302 303 ReturnBlock = getJumpDestInCurrentScope("return"); 304 305 Builder.SetInsertPoint(EntryBB); 306 307 // Emit subprogram debug descriptor. 308 if (CGDebugInfo *DI = getDebugInfo()) { 309 unsigned NumArgs = 0; 310 QualType *ArgsArray = new QualType[Args.size()]; 311 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 312 i != e; ++i) { 313 ArgsArray[NumArgs++] = (*i)->getType(); 314 } 315 316 QualType FnType = 317 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 318 FunctionProtoType::ExtProtoInfo()); 319 320 delete[] ArgsArray; 321 322 DI->setLocation(StartLoc); 323 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 324 } 325 326 if (ShouldInstrumentFunction()) 327 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 328 329 if (CGM.getCodeGenOpts().InstrumentForProfiling) 330 EmitMCountInstrumentation(); 331 332 if (RetTy->isVoidType()) { 333 // Void type; nothing to return. 334 ReturnValue = 0; 335 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 336 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 337 // Indirect aggregate return; emit returned value directly into sret slot. 338 // This reduces code size, and affects correctness in C++. 339 ReturnValue = CurFn->arg_begin(); 340 } else { 341 ReturnValue = CreateIRTemp(RetTy, "retval"); 342 343 // Tell the epilog emitter to autorelease the result. We do this 344 // now so that various specialized functions can suppress it 345 // during their IR-generation. 346 if (getLangOpts().ObjCAutoRefCount && 347 !CurFnInfo->isReturnsRetained() && 348 RetTy->isObjCRetainableType()) 349 AutoreleaseResult = true; 350 } 351 352 EmitStartEHSpec(CurCodeDecl); 353 354 PrologueCleanupDepth = EHStack.stable_begin(); 355 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 356 357 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 358 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 359 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 360 if (MD->getParent()->isLambda() && 361 MD->getOverloadedOperator() == OO_Call) { 362 // We're in a lambda; figure out the captures. 363 MD->getParent()->getCaptureFields(LambdaCaptureFields, 364 LambdaThisCaptureField); 365 if (LambdaThisCaptureField) { 366 // If this lambda captures this, load it. 367 QualType LambdaTagType = 368 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 369 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 370 LambdaTagType); 371 LValue ThisLValue = EmitLValueForField(LambdaLV, 372 LambdaThisCaptureField); 373 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 374 } 375 } else { 376 // Not in a lambda; just use 'this' from the method. 377 // FIXME: Should we generate a new load for each use of 'this'? The 378 // fast register allocator would be happier... 379 CXXThisValue = CXXABIThisValue; 380 } 381 } 382 383 // If any of the arguments have a variably modified type, make sure to 384 // emit the type size. 385 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 386 i != e; ++i) { 387 QualType Ty = (*i)->getType(); 388 389 if (Ty->isVariablyModifiedType()) 390 EmitVariablyModifiedType(Ty); 391 } 392 // Emit a location at the end of the prologue. 393 if (CGDebugInfo *DI = getDebugInfo()) 394 DI->EmitLocation(Builder, StartLoc); 395 } 396 397 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 398 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 399 assert(FD->getBody()); 400 EmitStmt(FD->getBody()); 401 } 402 403 /// Tries to mark the given function nounwind based on the 404 /// non-existence of any throwing calls within it. We believe this is 405 /// lightweight enough to do at -O0. 406 static void TryMarkNoThrow(llvm::Function *F) { 407 // LLVM treats 'nounwind' on a function as part of the type, so we 408 // can't do this on functions that can be overwritten. 409 if (F->mayBeOverridden()) return; 410 411 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 412 for (llvm::BasicBlock::iterator 413 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 414 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 415 if (!Call->doesNotThrow()) 416 return; 417 } else if (isa<llvm::ResumeInst>(&*BI)) { 418 return; 419 } 420 F->setDoesNotThrow(true); 421 } 422 423 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 424 const CGFunctionInfo &FnInfo) { 425 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 426 427 // Check if we should generate debug info for this function. 428 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 429 DebugInfo = CGM.getModuleDebugInfo(); 430 431 FunctionArgList Args; 432 QualType ResTy = FD->getResultType(); 433 434 CurGD = GD; 435 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 436 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 437 438 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 439 Args.push_back(FD->getParamDecl(i)); 440 441 SourceRange BodyRange; 442 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 443 444 // Emit the standard function prologue. 445 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 446 447 // Generate the body of the function. 448 if (isa<CXXDestructorDecl>(FD)) 449 EmitDestructorBody(Args); 450 else if (isa<CXXConstructorDecl>(FD)) 451 EmitConstructorBody(Args); 452 else if (getContext().getLangOpts().CUDA && 453 !CGM.getCodeGenOpts().CUDAIsDevice && 454 FD->hasAttr<CUDAGlobalAttr>()) 455 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 456 else if (isa<CXXConversionDecl>(FD) && 457 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 458 // The lambda conversion to block pointer is special; the semantics can't be 459 // expressed in the AST, so IRGen needs to special-case it. 460 EmitLambdaToBlockPointerBody(Args); 461 } else if (isa<CXXMethodDecl>(FD) && 462 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 463 // The lambda "__invoke" function is special, because it forwards or 464 // clones the body of the function call operator (but is actually static). 465 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 466 } 467 else 468 EmitFunctionBody(Args); 469 470 // Emit the standard function epilogue. 471 FinishFunction(BodyRange.getEnd()); 472 473 // If we haven't marked the function nothrow through other means, do 474 // a quick pass now to see if we can. 475 if (!CurFn->doesNotThrow()) 476 TryMarkNoThrow(CurFn); 477 } 478 479 /// ContainsLabel - Return true if the statement contains a label in it. If 480 /// this statement is not executed normally, it not containing a label means 481 /// that we can just remove the code. 482 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 483 // Null statement, not a label! 484 if (S == 0) return false; 485 486 // If this is a label, we have to emit the code, consider something like: 487 // if (0) { ... foo: bar(); } goto foo; 488 // 489 // TODO: If anyone cared, we could track __label__'s, since we know that you 490 // can't jump to one from outside their declared region. 491 if (isa<LabelStmt>(S)) 492 return true; 493 494 // If this is a case/default statement, and we haven't seen a switch, we have 495 // to emit the code. 496 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 497 return true; 498 499 // If this is a switch statement, we want to ignore cases below it. 500 if (isa<SwitchStmt>(S)) 501 IgnoreCaseStmts = true; 502 503 // Scan subexpressions for verboten labels. 504 for (Stmt::const_child_range I = S->children(); I; ++I) 505 if (ContainsLabel(*I, IgnoreCaseStmts)) 506 return true; 507 508 return false; 509 } 510 511 /// containsBreak - Return true if the statement contains a break out of it. 512 /// If the statement (recursively) contains a switch or loop with a break 513 /// inside of it, this is fine. 514 bool CodeGenFunction::containsBreak(const Stmt *S) { 515 // Null statement, not a label! 516 if (S == 0) return false; 517 518 // If this is a switch or loop that defines its own break scope, then we can 519 // include it and anything inside of it. 520 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 521 isa<ForStmt>(S)) 522 return false; 523 524 if (isa<BreakStmt>(S)) 525 return true; 526 527 // Scan subexpressions for verboten breaks. 528 for (Stmt::const_child_range I = S->children(); I; ++I) 529 if (containsBreak(*I)) 530 return true; 531 532 return false; 533 } 534 535 536 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 537 /// to a constant, or if it does but contains a label, return false. If it 538 /// constant folds return true and set the boolean result in Result. 539 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 540 bool &ResultBool) { 541 llvm::APInt ResultInt; 542 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 543 return false; 544 545 ResultBool = ResultInt.getBoolValue(); 546 return true; 547 } 548 549 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 550 /// to a constant, or if it does but contains a label, return false. If it 551 /// constant folds return true and set the folded value. 552 bool CodeGenFunction:: 553 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 554 // FIXME: Rename and handle conversion of other evaluatable things 555 // to bool. 556 llvm::APSInt Int; 557 if (!Cond->EvaluateAsInt(Int, getContext())) 558 return false; // Not foldable, not integer or not fully evaluatable. 559 560 if (CodeGenFunction::ContainsLabel(Cond)) 561 return false; // Contains a label. 562 563 ResultInt = Int; 564 return true; 565 } 566 567 568 569 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 570 /// statement) to the specified blocks. Based on the condition, this might try 571 /// to simplify the codegen of the conditional based on the branch. 572 /// 573 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 574 llvm::BasicBlock *TrueBlock, 575 llvm::BasicBlock *FalseBlock) { 576 Cond = Cond->IgnoreParens(); 577 578 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 579 // Handle X && Y in a condition. 580 if (CondBOp->getOpcode() == BO_LAnd) { 581 // If we have "1 && X", simplify the code. "0 && X" would have constant 582 // folded if the case was simple enough. 583 bool ConstantBool = false; 584 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 585 ConstantBool) { 586 // br(1 && X) -> br(X). 587 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 588 } 589 590 // If we have "X && 1", simplify the code to use an uncond branch. 591 // "X && 0" would have been constant folded to 0. 592 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 593 ConstantBool) { 594 // br(X && 1) -> br(X). 595 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 596 } 597 598 // Emit the LHS as a conditional. If the LHS conditional is false, we 599 // want to jump to the FalseBlock. 600 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 601 602 ConditionalEvaluation eval(*this); 603 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 604 EmitBlock(LHSTrue); 605 606 // Any temporaries created here are conditional. 607 eval.begin(*this); 608 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 609 eval.end(*this); 610 611 return; 612 } 613 614 if (CondBOp->getOpcode() == BO_LOr) { 615 // If we have "0 || X", simplify the code. "1 || X" would have constant 616 // folded if the case was simple enough. 617 bool ConstantBool = false; 618 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 619 !ConstantBool) { 620 // br(0 || X) -> br(X). 621 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 622 } 623 624 // If we have "X || 0", simplify the code to use an uncond branch. 625 // "X || 1" would have been constant folded to 1. 626 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 627 !ConstantBool) { 628 // br(X || 0) -> br(X). 629 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 630 } 631 632 // Emit the LHS as a conditional. If the LHS conditional is true, we 633 // want to jump to the TrueBlock. 634 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 635 636 ConditionalEvaluation eval(*this); 637 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 638 EmitBlock(LHSFalse); 639 640 // Any temporaries created here are conditional. 641 eval.begin(*this); 642 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 643 eval.end(*this); 644 645 return; 646 } 647 } 648 649 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 650 // br(!x, t, f) -> br(x, f, t) 651 if (CondUOp->getOpcode() == UO_LNot) 652 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 653 } 654 655 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 656 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 657 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 658 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 659 660 ConditionalEvaluation cond(*this); 661 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 662 663 cond.begin(*this); 664 EmitBlock(LHSBlock); 665 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 666 cond.end(*this); 667 668 cond.begin(*this); 669 EmitBlock(RHSBlock); 670 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 671 cond.end(*this); 672 673 return; 674 } 675 676 // Emit the code with the fully general case. 677 llvm::Value *CondV = EvaluateExprAsBool(Cond); 678 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 679 } 680 681 /// ErrorUnsupported - Print out an error that codegen doesn't support the 682 /// specified stmt yet. 683 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 684 bool OmitOnError) { 685 CGM.ErrorUnsupported(S, Type, OmitOnError); 686 } 687 688 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 689 /// variable-length array whose elements have a non-zero bit-pattern. 690 /// 691 /// \param src - a char* pointing to the bit-pattern for a single 692 /// base element of the array 693 /// \param sizeInChars - the total size of the VLA, in chars 694 /// \param align - the total alignment of the VLA 695 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 696 llvm::Value *dest, llvm::Value *src, 697 llvm::Value *sizeInChars) { 698 std::pair<CharUnits,CharUnits> baseSizeAndAlign 699 = CGF.getContext().getTypeInfoInChars(baseType); 700 701 CGBuilderTy &Builder = CGF.Builder; 702 703 llvm::Value *baseSizeInChars 704 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 705 706 llvm::Type *i8p = Builder.getInt8PtrTy(); 707 708 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 709 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 710 711 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 712 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 713 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 714 715 // Make a loop over the VLA. C99 guarantees that the VLA element 716 // count must be nonzero. 717 CGF.EmitBlock(loopBB); 718 719 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 720 cur->addIncoming(begin, originBB); 721 722 // memcpy the individual element bit-pattern. 723 Builder.CreateMemCpy(cur, src, baseSizeInChars, 724 baseSizeAndAlign.second.getQuantity(), 725 /*volatile*/ false); 726 727 // Go to the next element. 728 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 729 730 // Leave if that's the end of the VLA. 731 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 732 Builder.CreateCondBr(done, contBB, loopBB); 733 cur->addIncoming(next, loopBB); 734 735 CGF.EmitBlock(contBB); 736 } 737 738 void 739 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 740 // Ignore empty classes in C++. 741 if (getContext().getLangOpts().CPlusPlus) { 742 if (const RecordType *RT = Ty->getAs<RecordType>()) { 743 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 744 return; 745 } 746 } 747 748 // Cast the dest ptr to the appropriate i8 pointer type. 749 unsigned DestAS = 750 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 751 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 752 if (DestPtr->getType() != BP) 753 DestPtr = Builder.CreateBitCast(DestPtr, BP); 754 755 // Get size and alignment info for this aggregate. 756 std::pair<CharUnits, CharUnits> TypeInfo = 757 getContext().getTypeInfoInChars(Ty); 758 CharUnits Size = TypeInfo.first; 759 CharUnits Align = TypeInfo.second; 760 761 llvm::Value *SizeVal; 762 const VariableArrayType *vla; 763 764 // Don't bother emitting a zero-byte memset. 765 if (Size.isZero()) { 766 // But note that getTypeInfo returns 0 for a VLA. 767 if (const VariableArrayType *vlaType = 768 dyn_cast_or_null<VariableArrayType>( 769 getContext().getAsArrayType(Ty))) { 770 QualType eltType; 771 llvm::Value *numElts; 772 llvm::tie(numElts, eltType) = getVLASize(vlaType); 773 774 SizeVal = numElts; 775 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 776 if (!eltSize.isOne()) 777 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 778 vla = vlaType; 779 } else { 780 return; 781 } 782 } else { 783 SizeVal = CGM.getSize(Size); 784 vla = 0; 785 } 786 787 // If the type contains a pointer to data member we can't memset it to zero. 788 // Instead, create a null constant and copy it to the destination. 789 // TODO: there are other patterns besides zero that we can usefully memset, 790 // like -1, which happens to be the pattern used by member-pointers. 791 if (!CGM.getTypes().isZeroInitializable(Ty)) { 792 // For a VLA, emit a single element, then splat that over the VLA. 793 if (vla) Ty = getContext().getBaseElementType(vla); 794 795 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 796 797 llvm::GlobalVariable *NullVariable = 798 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 799 /*isConstant=*/true, 800 llvm::GlobalVariable::PrivateLinkage, 801 NullConstant, Twine()); 802 llvm::Value *SrcPtr = 803 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 804 805 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 806 807 // Get and call the appropriate llvm.memcpy overload. 808 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 809 return; 810 } 811 812 // Otherwise, just memset the whole thing to zero. This is legal 813 // because in LLVM, all default initializers (other than the ones we just 814 // handled above) are guaranteed to have a bit pattern of all zeros. 815 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 816 Align.getQuantity(), false); 817 } 818 819 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 820 // Make sure that there is a block for the indirect goto. 821 if (IndirectBranch == 0) 822 GetIndirectGotoBlock(); 823 824 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 825 826 // Make sure the indirect branch includes all of the address-taken blocks. 827 IndirectBranch->addDestination(BB); 828 return llvm::BlockAddress::get(CurFn, BB); 829 } 830 831 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 832 // If we already made the indirect branch for indirect goto, return its block. 833 if (IndirectBranch) return IndirectBranch->getParent(); 834 835 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 836 837 // Create the PHI node that indirect gotos will add entries to. 838 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 839 "indirect.goto.dest"); 840 841 // Create the indirect branch instruction. 842 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 843 return IndirectBranch->getParent(); 844 } 845 846 /// Computes the length of an array in elements, as well as the base 847 /// element type and a properly-typed first element pointer. 848 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 849 QualType &baseType, 850 llvm::Value *&addr) { 851 const ArrayType *arrayType = origArrayType; 852 853 // If it's a VLA, we have to load the stored size. Note that 854 // this is the size of the VLA in bytes, not its size in elements. 855 llvm::Value *numVLAElements = 0; 856 if (isa<VariableArrayType>(arrayType)) { 857 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 858 859 // Walk into all VLAs. This doesn't require changes to addr, 860 // which has type T* where T is the first non-VLA element type. 861 do { 862 QualType elementType = arrayType->getElementType(); 863 arrayType = getContext().getAsArrayType(elementType); 864 865 // If we only have VLA components, 'addr' requires no adjustment. 866 if (!arrayType) { 867 baseType = elementType; 868 return numVLAElements; 869 } 870 } while (isa<VariableArrayType>(arrayType)); 871 872 // We get out here only if we find a constant array type 873 // inside the VLA. 874 } 875 876 // We have some number of constant-length arrays, so addr should 877 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 878 // down to the first element of addr. 879 SmallVector<llvm::Value*, 8> gepIndices; 880 881 // GEP down to the array type. 882 llvm::ConstantInt *zero = Builder.getInt32(0); 883 gepIndices.push_back(zero); 884 885 uint64_t countFromCLAs = 1; 886 QualType eltType; 887 888 llvm::ArrayType *llvmArrayType = 889 dyn_cast<llvm::ArrayType>( 890 cast<llvm::PointerType>(addr->getType())->getElementType()); 891 while (llvmArrayType) { 892 assert(isa<ConstantArrayType>(arrayType)); 893 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 894 == llvmArrayType->getNumElements()); 895 896 gepIndices.push_back(zero); 897 countFromCLAs *= llvmArrayType->getNumElements(); 898 eltType = arrayType->getElementType(); 899 900 llvmArrayType = 901 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 902 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 903 assert((!llvmArrayType || arrayType) && 904 "LLVM and Clang types are out-of-synch"); 905 } 906 907 if (arrayType) { 908 // From this point onwards, the Clang array type has been emitted 909 // as some other type (probably a packed struct). Compute the array 910 // size, and just emit the 'begin' expression as a bitcast. 911 while (arrayType) { 912 countFromCLAs *= 913 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 914 eltType = arrayType->getElementType(); 915 arrayType = getContext().getAsArrayType(eltType); 916 } 917 918 unsigned AddressSpace = 919 cast<llvm::PointerType>(addr->getType())->getAddressSpace(); 920 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 921 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 922 } else { 923 // Create the actual GEP. 924 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 925 } 926 927 baseType = eltType; 928 929 llvm::Value *numElements 930 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 931 932 // If we had any VLA dimensions, factor them in. 933 if (numVLAElements) 934 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 935 936 return numElements; 937 } 938 939 std::pair<llvm::Value*, QualType> 940 CodeGenFunction::getVLASize(QualType type) { 941 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 942 assert(vla && "type was not a variable array type!"); 943 return getVLASize(vla); 944 } 945 946 std::pair<llvm::Value*, QualType> 947 CodeGenFunction::getVLASize(const VariableArrayType *type) { 948 // The number of elements so far; always size_t. 949 llvm::Value *numElements = 0; 950 951 QualType elementType; 952 do { 953 elementType = type->getElementType(); 954 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 955 assert(vlaSize && "no size for VLA!"); 956 assert(vlaSize->getType() == SizeTy); 957 958 if (!numElements) { 959 numElements = vlaSize; 960 } else { 961 // It's undefined behavior if this wraps around, so mark it that way. 962 numElements = Builder.CreateNUWMul(numElements, vlaSize); 963 } 964 } while ((type = getContext().getAsVariableArrayType(elementType))); 965 966 return std::pair<llvm::Value*,QualType>(numElements, elementType); 967 } 968 969 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 970 assert(type->isVariablyModifiedType() && 971 "Must pass variably modified type to EmitVLASizes!"); 972 973 EnsureInsertPoint(); 974 975 // We're going to walk down into the type and look for VLA 976 // expressions. 977 do { 978 assert(type->isVariablyModifiedType()); 979 980 const Type *ty = type.getTypePtr(); 981 switch (ty->getTypeClass()) { 982 983 #define TYPE(Class, Base) 984 #define ABSTRACT_TYPE(Class, Base) 985 #define NON_CANONICAL_TYPE(Class, Base) 986 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 987 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 988 #include "clang/AST/TypeNodes.def" 989 llvm_unreachable("unexpected dependent type!"); 990 991 // These types are never variably-modified. 992 case Type::Builtin: 993 case Type::Complex: 994 case Type::Vector: 995 case Type::ExtVector: 996 case Type::Record: 997 case Type::Enum: 998 case Type::Elaborated: 999 case Type::TemplateSpecialization: 1000 case Type::ObjCObject: 1001 case Type::ObjCInterface: 1002 case Type::ObjCObjectPointer: 1003 llvm_unreachable("type class is never variably-modified!"); 1004 1005 case Type::Pointer: 1006 type = cast<PointerType>(ty)->getPointeeType(); 1007 break; 1008 1009 case Type::BlockPointer: 1010 type = cast<BlockPointerType>(ty)->getPointeeType(); 1011 break; 1012 1013 case Type::LValueReference: 1014 case Type::RValueReference: 1015 type = cast<ReferenceType>(ty)->getPointeeType(); 1016 break; 1017 1018 case Type::MemberPointer: 1019 type = cast<MemberPointerType>(ty)->getPointeeType(); 1020 break; 1021 1022 case Type::ConstantArray: 1023 case Type::IncompleteArray: 1024 // Losing element qualification here is fine. 1025 type = cast<ArrayType>(ty)->getElementType(); 1026 break; 1027 1028 case Type::VariableArray: { 1029 // Losing element qualification here is fine. 1030 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1031 1032 // Unknown size indication requires no size computation. 1033 // Otherwise, evaluate and record it. 1034 if (const Expr *size = vat->getSizeExpr()) { 1035 // It's possible that we might have emitted this already, 1036 // e.g. with a typedef and a pointer to it. 1037 llvm::Value *&entry = VLASizeMap[size]; 1038 if (!entry) { 1039 // Always zexting here would be wrong if it weren't 1040 // undefined behavior to have a negative bound. 1041 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 1042 /*signed*/ false); 1043 } 1044 } 1045 type = vat->getElementType(); 1046 break; 1047 } 1048 1049 case Type::FunctionProto: 1050 case Type::FunctionNoProto: 1051 type = cast<FunctionType>(ty)->getResultType(); 1052 break; 1053 1054 case Type::Paren: 1055 case Type::TypeOf: 1056 case Type::UnaryTransform: 1057 case Type::Attributed: 1058 case Type::SubstTemplateTypeParm: 1059 // Keep walking after single level desugaring. 1060 type = type.getSingleStepDesugaredType(getContext()); 1061 break; 1062 1063 case Type::Typedef: 1064 case Type::Decltype: 1065 case Type::Auto: 1066 // Stop walking: nothing to do. 1067 return; 1068 1069 case Type::TypeOfExpr: 1070 // Stop walking: emit typeof expression. 1071 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1072 return; 1073 1074 case Type::Atomic: 1075 type = cast<AtomicType>(ty)->getValueType(); 1076 break; 1077 } 1078 } while (type->isVariablyModifiedType()); 1079 } 1080 1081 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1082 if (getContext().getBuiltinVaListType()->isArrayType()) 1083 return EmitScalarExpr(E); 1084 return EmitLValue(E).getAddress(); 1085 } 1086 1087 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1088 llvm::Constant *Init) { 1089 assert (Init && "Invalid DeclRefExpr initializer!"); 1090 if (CGDebugInfo *Dbg = getDebugInfo()) 1091 if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1092 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1093 } 1094 1095 CodeGenFunction::PeepholeProtection 1096 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1097 // At the moment, the only aggressive peephole we do in IR gen 1098 // is trunc(zext) folding, but if we add more, we can easily 1099 // extend this protection. 1100 1101 if (!rvalue.isScalar()) return PeepholeProtection(); 1102 llvm::Value *value = rvalue.getScalarVal(); 1103 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1104 1105 // Just make an extra bitcast. 1106 assert(HaveInsertPoint()); 1107 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1108 Builder.GetInsertBlock()); 1109 1110 PeepholeProtection protection; 1111 protection.Inst = inst; 1112 return protection; 1113 } 1114 1115 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1116 if (!protection.Inst) return; 1117 1118 // In theory, we could try to duplicate the peepholes now, but whatever. 1119 protection.Inst->eraseFromParent(); 1120 } 1121 1122 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1123 llvm::Value *AnnotatedVal, 1124 llvm::StringRef AnnotationStr, 1125 SourceLocation Location) { 1126 llvm::Value *Args[4] = { 1127 AnnotatedVal, 1128 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1129 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1130 CGM.EmitAnnotationLineNo(Location) 1131 }; 1132 return Builder.CreateCall(AnnotationFn, Args); 1133 } 1134 1135 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1136 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1137 // FIXME We create a new bitcast for every annotation because that's what 1138 // llvm-gcc was doing. 1139 for (specific_attr_iterator<AnnotateAttr> 1140 ai = D->specific_attr_begin<AnnotateAttr>(), 1141 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1142 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1143 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1144 (*ai)->getAnnotation(), D->getLocation()); 1145 } 1146 1147 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1148 llvm::Value *V) { 1149 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1150 llvm::Type *VTy = V->getType(); 1151 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1152 CGM.Int8PtrTy); 1153 1154 for (specific_attr_iterator<AnnotateAttr> 1155 ai = D->specific_attr_begin<AnnotateAttr>(), 1156 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1157 // FIXME Always emit the cast inst so we can differentiate between 1158 // annotation on the first field of a struct and annotation on the struct 1159 // itself. 1160 if (VTy != CGM.Int8PtrTy) 1161 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1162 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1163 V = Builder.CreateBitCast(V, VTy); 1164 } 1165 1166 return V; 1167 } 1168