1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Support/MDBuilder.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
32   : CodeGenTypeCache(cgm), CGM(cgm),
33     Target(CGM.getContext().getTargetInfo()),
34     Builder(cgm.getModule().getContext()),
35     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
36     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
37     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
38     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
39     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
40     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
41     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
42     TerminateHandler(0), TrapBB(0) {
43 
44   BoundsChecking = getContext().getLangOpts().BoundsChecking;
45   CatchUndefined = getContext().getLangOpts().CatchUndefined;
46   CGM.getCXXABI().getMangleContext().startNewFunction();
47 }
48 
49 CodeGenFunction::~CodeGenFunction() {
50   // If there are any unclaimed block infos, go ahead and destroy them
51   // now.  This can happen if IR-gen gets clever and skips evaluating
52   // something.
53   if (FirstBlockInfo)
54     destroyBlockInfos(FirstBlockInfo);
55 }
56 
57 
58 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
59   return CGM.getTypes().ConvertTypeForMem(T);
60 }
61 
62 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
63   return CGM.getTypes().ConvertType(T);
64 }
65 
66 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
67   switch (type.getCanonicalType()->getTypeClass()) {
68 #define TYPE(name, parent)
69 #define ABSTRACT_TYPE(name, parent)
70 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
71 #define DEPENDENT_TYPE(name, parent) case Type::name:
72 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
73 #include "clang/AST/TypeNodes.def"
74     llvm_unreachable("non-canonical or dependent type in IR-generation");
75 
76   case Type::Builtin:
77   case Type::Pointer:
78   case Type::BlockPointer:
79   case Type::LValueReference:
80   case Type::RValueReference:
81   case Type::MemberPointer:
82   case Type::Vector:
83   case Type::ExtVector:
84   case Type::FunctionProto:
85   case Type::FunctionNoProto:
86   case Type::Enum:
87   case Type::ObjCObjectPointer:
88     return false;
89 
90   // Complexes, arrays, records, and Objective-C objects.
91   case Type::Complex:
92   case Type::ConstantArray:
93   case Type::IncompleteArray:
94   case Type::VariableArray:
95   case Type::Record:
96   case Type::ObjCObject:
97   case Type::ObjCInterface:
98     return true;
99 
100   // In IRGen, atomic types are just the underlying type
101   case Type::Atomic:
102     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
103   }
104   llvm_unreachable("unknown type kind!");
105 }
106 
107 void CodeGenFunction::EmitReturnBlock() {
108   // For cleanliness, we try to avoid emitting the return block for
109   // simple cases.
110   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
111 
112   if (CurBB) {
113     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
114 
115     // We have a valid insert point, reuse it if it is empty or there are no
116     // explicit jumps to the return block.
117     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
118       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
119       delete ReturnBlock.getBlock();
120     } else
121       EmitBlock(ReturnBlock.getBlock());
122     return;
123   }
124 
125   // Otherwise, if the return block is the target of a single direct
126   // branch then we can just put the code in that block instead. This
127   // cleans up functions which started with a unified return block.
128   if (ReturnBlock.getBlock()->hasOneUse()) {
129     llvm::BranchInst *BI =
130       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
131     if (BI && BI->isUnconditional() &&
132         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
133       // Reset insertion point, including debug location, and delete the branch.
134       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
135       Builder.SetInsertPoint(BI->getParent());
136       BI->eraseFromParent();
137       delete ReturnBlock.getBlock();
138       return;
139     }
140   }
141 
142   // FIXME: We are at an unreachable point, there is no reason to emit the block
143   // unless it has uses. However, we still need a place to put the debug
144   // region.end for now.
145 
146   EmitBlock(ReturnBlock.getBlock());
147 }
148 
149 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
150   if (!BB) return;
151   if (!BB->use_empty())
152     return CGF.CurFn->getBasicBlockList().push_back(BB);
153   delete BB;
154 }
155 
156 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
157   assert(BreakContinueStack.empty() &&
158          "mismatched push/pop in break/continue stack!");
159 
160   // Pop any cleanups that might have been associated with the
161   // parameters.  Do this in whatever block we're currently in; it's
162   // important to do this before we enter the return block or return
163   // edges will be *really* confused.
164   if (EHStack.stable_begin() != PrologueCleanupDepth)
165     PopCleanupBlocks(PrologueCleanupDepth);
166 
167   // Emit function epilog (to return).
168   EmitReturnBlock();
169 
170   if (ShouldInstrumentFunction())
171     EmitFunctionInstrumentation("__cyg_profile_func_exit");
172 
173   // Emit debug descriptor for function end.
174   if (CGDebugInfo *DI = getDebugInfo()) {
175     DI->setLocation(EndLoc);
176     DI->EmitFunctionEnd(Builder);
177   }
178 
179   EmitFunctionEpilog(*CurFnInfo);
180   EmitEndEHSpec(CurCodeDecl);
181 
182   assert(EHStack.empty() &&
183          "did not remove all scopes from cleanup stack!");
184 
185   // If someone did an indirect goto, emit the indirect goto block at the end of
186   // the function.
187   if (IndirectBranch) {
188     EmitBlock(IndirectBranch->getParent());
189     Builder.ClearInsertionPoint();
190   }
191 
192   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
193   llvm::Instruction *Ptr = AllocaInsertPt;
194   AllocaInsertPt = 0;
195   Ptr->eraseFromParent();
196 
197   // If someone took the address of a label but never did an indirect goto, we
198   // made a zero entry PHI node, which is illegal, zap it now.
199   if (IndirectBranch) {
200     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
201     if (PN->getNumIncomingValues() == 0) {
202       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
203       PN->eraseFromParent();
204     }
205   }
206 
207   EmitIfUsed(*this, EHResumeBlock);
208   EmitIfUsed(*this, TerminateLandingPad);
209   EmitIfUsed(*this, TerminateHandler);
210   EmitIfUsed(*this, UnreachableBlock);
211 
212   if (CGM.getCodeGenOpts().EmitDeclMetadata)
213     EmitDeclMetadata();
214 }
215 
216 /// ShouldInstrumentFunction - Return true if the current function should be
217 /// instrumented with __cyg_profile_func_* calls
218 bool CodeGenFunction::ShouldInstrumentFunction() {
219   if (!CGM.getCodeGenOpts().InstrumentFunctions)
220     return false;
221   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
222     return false;
223   return true;
224 }
225 
226 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
227 /// instrumentation function with the current function and the call site, if
228 /// function instrumentation is enabled.
229 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
230   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
231   llvm::PointerType *PointerTy = Int8PtrTy;
232   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
233   llvm::FunctionType *FunctionTy =
234     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
235 
236   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
237   llvm::CallInst *CallSite = Builder.CreateCall(
238     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
239     llvm::ConstantInt::get(Int32Ty, 0),
240     "callsite");
241 
242   Builder.CreateCall2(F,
243                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
244                       CallSite);
245 }
246 
247 void CodeGenFunction::EmitMCountInstrumentation() {
248   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
249 
250   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
251                                                        Target.getMCountName());
252   Builder.CreateCall(MCountFn);
253 }
254 
255 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
256                                     llvm::Function *Fn,
257                                     const CGFunctionInfo &FnInfo,
258                                     const FunctionArgList &Args,
259                                     SourceLocation StartLoc) {
260   const Decl *D = GD.getDecl();
261 
262   DidCallStackSave = false;
263   CurCodeDecl = CurFuncDecl = D;
264   FnRetTy = RetTy;
265   CurFn = Fn;
266   CurFnInfo = &FnInfo;
267   assert(CurFn->isDeclaration() && "Function already has body?");
268 
269   // Pass inline keyword to optimizer if it appears explicitly on any
270   // declaration.
271   if (!CGM.getCodeGenOpts().NoInline)
272     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
273       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
274              RE = FD->redecls_end(); RI != RE; ++RI)
275         if (RI->isInlineSpecified()) {
276           Fn->addFnAttr(llvm::Attribute::InlineHint);
277           break;
278         }
279 
280   if (getContext().getLangOpts().OpenCL) {
281     // Add metadata for a kernel function.
282     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
283       if (FD->hasAttr<OpenCLKernelAttr>()) {
284         llvm::LLVMContext &Context = getLLVMContext();
285         llvm::NamedMDNode *OpenCLMetadata =
286           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
287 
288         llvm::Value *Op = Fn;
289         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
290       }
291   }
292 
293   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
294 
295   // Create a marker to make it easy to insert allocas into the entryblock
296   // later.  Don't create this with the builder, because we don't want it
297   // folded.
298   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
299   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
300   if (Builder.isNamePreserving())
301     AllocaInsertPt->setName("allocapt");
302 
303   ReturnBlock = getJumpDestInCurrentScope("return");
304 
305   Builder.SetInsertPoint(EntryBB);
306 
307   // Emit subprogram debug descriptor.
308   if (CGDebugInfo *DI = getDebugInfo()) {
309     unsigned NumArgs = 0;
310     QualType *ArgsArray = new QualType[Args.size()];
311     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
312 	 i != e; ++i) {
313       ArgsArray[NumArgs++] = (*i)->getType();
314     }
315 
316     QualType FnType =
317       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
318                                    FunctionProtoType::ExtProtoInfo());
319 
320     delete[] ArgsArray;
321 
322     DI->setLocation(StartLoc);
323     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
324   }
325 
326   if (ShouldInstrumentFunction())
327     EmitFunctionInstrumentation("__cyg_profile_func_enter");
328 
329   if (CGM.getCodeGenOpts().InstrumentForProfiling)
330     EmitMCountInstrumentation();
331 
332   if (RetTy->isVoidType()) {
333     // Void type; nothing to return.
334     ReturnValue = 0;
335   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
336              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
337     // Indirect aggregate return; emit returned value directly into sret slot.
338     // This reduces code size, and affects correctness in C++.
339     ReturnValue = CurFn->arg_begin();
340   } else {
341     ReturnValue = CreateIRTemp(RetTy, "retval");
342 
343     // Tell the epilog emitter to autorelease the result.  We do this
344     // now so that various specialized functions can suppress it
345     // during their IR-generation.
346     if (getLangOpts().ObjCAutoRefCount &&
347         !CurFnInfo->isReturnsRetained() &&
348         RetTy->isObjCRetainableType())
349       AutoreleaseResult = true;
350   }
351 
352   EmitStartEHSpec(CurCodeDecl);
353 
354   PrologueCleanupDepth = EHStack.stable_begin();
355   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
356 
357   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
358     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
359     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
360     if (MD->getParent()->isLambda() &&
361         MD->getOverloadedOperator() == OO_Call) {
362       // We're in a lambda; figure out the captures.
363       MD->getParent()->getCaptureFields(LambdaCaptureFields,
364                                         LambdaThisCaptureField);
365       if (LambdaThisCaptureField) {
366         // If this lambda captures this, load it.
367         QualType LambdaTagType =
368             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
369         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
370                                                      LambdaTagType);
371         LValue ThisLValue = EmitLValueForField(LambdaLV,
372                                                LambdaThisCaptureField);
373         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
374       }
375     } else {
376       // Not in a lambda; just use 'this' from the method.
377       // FIXME: Should we generate a new load for each use of 'this'?  The
378       // fast register allocator would be happier...
379       CXXThisValue = CXXABIThisValue;
380     }
381   }
382 
383   // If any of the arguments have a variably modified type, make sure to
384   // emit the type size.
385   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
386        i != e; ++i) {
387     QualType Ty = (*i)->getType();
388 
389     if (Ty->isVariablyModifiedType())
390       EmitVariablyModifiedType(Ty);
391   }
392   // Emit a location at the end of the prologue.
393   if (CGDebugInfo *DI = getDebugInfo())
394     DI->EmitLocation(Builder, StartLoc);
395 }
396 
397 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
398   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
399   assert(FD->getBody());
400   EmitStmt(FD->getBody());
401 }
402 
403 /// Tries to mark the given function nounwind based on the
404 /// non-existence of any throwing calls within it.  We believe this is
405 /// lightweight enough to do at -O0.
406 static void TryMarkNoThrow(llvm::Function *F) {
407   // LLVM treats 'nounwind' on a function as part of the type, so we
408   // can't do this on functions that can be overwritten.
409   if (F->mayBeOverridden()) return;
410 
411   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
412     for (llvm::BasicBlock::iterator
413            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
414       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
415         if (!Call->doesNotThrow())
416           return;
417       } else if (isa<llvm::ResumeInst>(&*BI)) {
418         return;
419       }
420   F->setDoesNotThrow(true);
421 }
422 
423 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
424                                    const CGFunctionInfo &FnInfo) {
425   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
426 
427   // Check if we should generate debug info for this function.
428   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
429     DebugInfo = CGM.getModuleDebugInfo();
430 
431   FunctionArgList Args;
432   QualType ResTy = FD->getResultType();
433 
434   CurGD = GD;
435   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
436     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
437 
438   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
439     Args.push_back(FD->getParamDecl(i));
440 
441   SourceRange BodyRange;
442   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
443 
444   // Emit the standard function prologue.
445   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
446 
447   // Generate the body of the function.
448   if (isa<CXXDestructorDecl>(FD))
449     EmitDestructorBody(Args);
450   else if (isa<CXXConstructorDecl>(FD))
451     EmitConstructorBody(Args);
452   else if (getContext().getLangOpts().CUDA &&
453            !CGM.getCodeGenOpts().CUDAIsDevice &&
454            FD->hasAttr<CUDAGlobalAttr>())
455     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
456   else if (isa<CXXConversionDecl>(FD) &&
457            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
458     // The lambda conversion to block pointer is special; the semantics can't be
459     // expressed in the AST, so IRGen needs to special-case it.
460     EmitLambdaToBlockPointerBody(Args);
461   } else if (isa<CXXMethodDecl>(FD) &&
462              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
463     // The lambda "__invoke" function is special, because it forwards or
464     // clones the body of the function call operator (but is actually static).
465     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
466   }
467   else
468     EmitFunctionBody(Args);
469 
470   // Emit the standard function epilogue.
471   FinishFunction(BodyRange.getEnd());
472 
473   // If we haven't marked the function nothrow through other means, do
474   // a quick pass now to see if we can.
475   if (!CurFn->doesNotThrow())
476     TryMarkNoThrow(CurFn);
477 }
478 
479 /// ContainsLabel - Return true if the statement contains a label in it.  If
480 /// this statement is not executed normally, it not containing a label means
481 /// that we can just remove the code.
482 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
483   // Null statement, not a label!
484   if (S == 0) return false;
485 
486   // If this is a label, we have to emit the code, consider something like:
487   // if (0) {  ...  foo:  bar(); }  goto foo;
488   //
489   // TODO: If anyone cared, we could track __label__'s, since we know that you
490   // can't jump to one from outside their declared region.
491   if (isa<LabelStmt>(S))
492     return true;
493 
494   // If this is a case/default statement, and we haven't seen a switch, we have
495   // to emit the code.
496   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
497     return true;
498 
499   // If this is a switch statement, we want to ignore cases below it.
500   if (isa<SwitchStmt>(S))
501     IgnoreCaseStmts = true;
502 
503   // Scan subexpressions for verboten labels.
504   for (Stmt::const_child_range I = S->children(); I; ++I)
505     if (ContainsLabel(*I, IgnoreCaseStmts))
506       return true;
507 
508   return false;
509 }
510 
511 /// containsBreak - Return true if the statement contains a break out of it.
512 /// If the statement (recursively) contains a switch or loop with a break
513 /// inside of it, this is fine.
514 bool CodeGenFunction::containsBreak(const Stmt *S) {
515   // Null statement, not a label!
516   if (S == 0) return false;
517 
518   // If this is a switch or loop that defines its own break scope, then we can
519   // include it and anything inside of it.
520   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
521       isa<ForStmt>(S))
522     return false;
523 
524   if (isa<BreakStmt>(S))
525     return true;
526 
527   // Scan subexpressions for verboten breaks.
528   for (Stmt::const_child_range I = S->children(); I; ++I)
529     if (containsBreak(*I))
530       return true;
531 
532   return false;
533 }
534 
535 
536 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
537 /// to a constant, or if it does but contains a label, return false.  If it
538 /// constant folds return true and set the boolean result in Result.
539 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
540                                                    bool &ResultBool) {
541   llvm::APInt ResultInt;
542   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
543     return false;
544 
545   ResultBool = ResultInt.getBoolValue();
546   return true;
547 }
548 
549 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
550 /// to a constant, or if it does but contains a label, return false.  If it
551 /// constant folds return true and set the folded value.
552 bool CodeGenFunction::
553 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
554   // FIXME: Rename and handle conversion of other evaluatable things
555   // to bool.
556   llvm::APSInt Int;
557   if (!Cond->EvaluateAsInt(Int, getContext()))
558     return false;  // Not foldable, not integer or not fully evaluatable.
559 
560   if (CodeGenFunction::ContainsLabel(Cond))
561     return false;  // Contains a label.
562 
563   ResultInt = Int;
564   return true;
565 }
566 
567 
568 
569 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
570 /// statement) to the specified blocks.  Based on the condition, this might try
571 /// to simplify the codegen of the conditional based on the branch.
572 ///
573 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
574                                            llvm::BasicBlock *TrueBlock,
575                                            llvm::BasicBlock *FalseBlock) {
576   Cond = Cond->IgnoreParens();
577 
578   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
579     // Handle X && Y in a condition.
580     if (CondBOp->getOpcode() == BO_LAnd) {
581       // If we have "1 && X", simplify the code.  "0 && X" would have constant
582       // folded if the case was simple enough.
583       bool ConstantBool = false;
584       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
585           ConstantBool) {
586         // br(1 && X) -> br(X).
587         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
588       }
589 
590       // If we have "X && 1", simplify the code to use an uncond branch.
591       // "X && 0" would have been constant folded to 0.
592       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
593           ConstantBool) {
594         // br(X && 1) -> br(X).
595         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
596       }
597 
598       // Emit the LHS as a conditional.  If the LHS conditional is false, we
599       // want to jump to the FalseBlock.
600       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
601 
602       ConditionalEvaluation eval(*this);
603       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
604       EmitBlock(LHSTrue);
605 
606       // Any temporaries created here are conditional.
607       eval.begin(*this);
608       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
609       eval.end(*this);
610 
611       return;
612     }
613 
614     if (CondBOp->getOpcode() == BO_LOr) {
615       // If we have "0 || X", simplify the code.  "1 || X" would have constant
616       // folded if the case was simple enough.
617       bool ConstantBool = false;
618       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
619           !ConstantBool) {
620         // br(0 || X) -> br(X).
621         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
622       }
623 
624       // If we have "X || 0", simplify the code to use an uncond branch.
625       // "X || 1" would have been constant folded to 1.
626       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
627           !ConstantBool) {
628         // br(X || 0) -> br(X).
629         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
630       }
631 
632       // Emit the LHS as a conditional.  If the LHS conditional is true, we
633       // want to jump to the TrueBlock.
634       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
635 
636       ConditionalEvaluation eval(*this);
637       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
638       EmitBlock(LHSFalse);
639 
640       // Any temporaries created here are conditional.
641       eval.begin(*this);
642       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
643       eval.end(*this);
644 
645       return;
646     }
647   }
648 
649   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
650     // br(!x, t, f) -> br(x, f, t)
651     if (CondUOp->getOpcode() == UO_LNot)
652       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
653   }
654 
655   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
656     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
657     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
658     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
659 
660     ConditionalEvaluation cond(*this);
661     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
662 
663     cond.begin(*this);
664     EmitBlock(LHSBlock);
665     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
666     cond.end(*this);
667 
668     cond.begin(*this);
669     EmitBlock(RHSBlock);
670     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
671     cond.end(*this);
672 
673     return;
674   }
675 
676   // Emit the code with the fully general case.
677   llvm::Value *CondV = EvaluateExprAsBool(Cond);
678   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
679 }
680 
681 /// ErrorUnsupported - Print out an error that codegen doesn't support the
682 /// specified stmt yet.
683 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
684                                        bool OmitOnError) {
685   CGM.ErrorUnsupported(S, Type, OmitOnError);
686 }
687 
688 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
689 /// variable-length array whose elements have a non-zero bit-pattern.
690 ///
691 /// \param src - a char* pointing to the bit-pattern for a single
692 /// base element of the array
693 /// \param sizeInChars - the total size of the VLA, in chars
694 /// \param align - the total alignment of the VLA
695 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
696                                llvm::Value *dest, llvm::Value *src,
697                                llvm::Value *sizeInChars) {
698   std::pair<CharUnits,CharUnits> baseSizeAndAlign
699     = CGF.getContext().getTypeInfoInChars(baseType);
700 
701   CGBuilderTy &Builder = CGF.Builder;
702 
703   llvm::Value *baseSizeInChars
704     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
705 
706   llvm::Type *i8p = Builder.getInt8PtrTy();
707 
708   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
709   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
710 
711   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
712   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
713   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
714 
715   // Make a loop over the VLA.  C99 guarantees that the VLA element
716   // count must be nonzero.
717   CGF.EmitBlock(loopBB);
718 
719   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
720   cur->addIncoming(begin, originBB);
721 
722   // memcpy the individual element bit-pattern.
723   Builder.CreateMemCpy(cur, src, baseSizeInChars,
724                        baseSizeAndAlign.second.getQuantity(),
725                        /*volatile*/ false);
726 
727   // Go to the next element.
728   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
729 
730   // Leave if that's the end of the VLA.
731   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
732   Builder.CreateCondBr(done, contBB, loopBB);
733   cur->addIncoming(next, loopBB);
734 
735   CGF.EmitBlock(contBB);
736 }
737 
738 void
739 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
740   // Ignore empty classes in C++.
741   if (getContext().getLangOpts().CPlusPlus) {
742     if (const RecordType *RT = Ty->getAs<RecordType>()) {
743       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
744         return;
745     }
746   }
747 
748   // Cast the dest ptr to the appropriate i8 pointer type.
749   unsigned DestAS =
750     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
751   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
752   if (DestPtr->getType() != BP)
753     DestPtr = Builder.CreateBitCast(DestPtr, BP);
754 
755   // Get size and alignment info for this aggregate.
756   std::pair<CharUnits, CharUnits> TypeInfo =
757     getContext().getTypeInfoInChars(Ty);
758   CharUnits Size = TypeInfo.first;
759   CharUnits Align = TypeInfo.second;
760 
761   llvm::Value *SizeVal;
762   const VariableArrayType *vla;
763 
764   // Don't bother emitting a zero-byte memset.
765   if (Size.isZero()) {
766     // But note that getTypeInfo returns 0 for a VLA.
767     if (const VariableArrayType *vlaType =
768           dyn_cast_or_null<VariableArrayType>(
769                                           getContext().getAsArrayType(Ty))) {
770       QualType eltType;
771       llvm::Value *numElts;
772       llvm::tie(numElts, eltType) = getVLASize(vlaType);
773 
774       SizeVal = numElts;
775       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
776       if (!eltSize.isOne())
777         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
778       vla = vlaType;
779     } else {
780       return;
781     }
782   } else {
783     SizeVal = CGM.getSize(Size);
784     vla = 0;
785   }
786 
787   // If the type contains a pointer to data member we can't memset it to zero.
788   // Instead, create a null constant and copy it to the destination.
789   // TODO: there are other patterns besides zero that we can usefully memset,
790   // like -1, which happens to be the pattern used by member-pointers.
791   if (!CGM.getTypes().isZeroInitializable(Ty)) {
792     // For a VLA, emit a single element, then splat that over the VLA.
793     if (vla) Ty = getContext().getBaseElementType(vla);
794 
795     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
796 
797     llvm::GlobalVariable *NullVariable =
798       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
799                                /*isConstant=*/true,
800                                llvm::GlobalVariable::PrivateLinkage,
801                                NullConstant, Twine());
802     llvm::Value *SrcPtr =
803       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
804 
805     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
806 
807     // Get and call the appropriate llvm.memcpy overload.
808     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
809     return;
810   }
811 
812   // Otherwise, just memset the whole thing to zero.  This is legal
813   // because in LLVM, all default initializers (other than the ones we just
814   // handled above) are guaranteed to have a bit pattern of all zeros.
815   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
816                        Align.getQuantity(), false);
817 }
818 
819 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
820   // Make sure that there is a block for the indirect goto.
821   if (IndirectBranch == 0)
822     GetIndirectGotoBlock();
823 
824   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
825 
826   // Make sure the indirect branch includes all of the address-taken blocks.
827   IndirectBranch->addDestination(BB);
828   return llvm::BlockAddress::get(CurFn, BB);
829 }
830 
831 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
832   // If we already made the indirect branch for indirect goto, return its block.
833   if (IndirectBranch) return IndirectBranch->getParent();
834 
835   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
836 
837   // Create the PHI node that indirect gotos will add entries to.
838   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
839                                               "indirect.goto.dest");
840 
841   // Create the indirect branch instruction.
842   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
843   return IndirectBranch->getParent();
844 }
845 
846 /// Computes the length of an array in elements, as well as the base
847 /// element type and a properly-typed first element pointer.
848 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
849                                               QualType &baseType,
850                                               llvm::Value *&addr) {
851   const ArrayType *arrayType = origArrayType;
852 
853   // If it's a VLA, we have to load the stored size.  Note that
854   // this is the size of the VLA in bytes, not its size in elements.
855   llvm::Value *numVLAElements = 0;
856   if (isa<VariableArrayType>(arrayType)) {
857     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
858 
859     // Walk into all VLAs.  This doesn't require changes to addr,
860     // which has type T* where T is the first non-VLA element type.
861     do {
862       QualType elementType = arrayType->getElementType();
863       arrayType = getContext().getAsArrayType(elementType);
864 
865       // If we only have VLA components, 'addr' requires no adjustment.
866       if (!arrayType) {
867         baseType = elementType;
868         return numVLAElements;
869       }
870     } while (isa<VariableArrayType>(arrayType));
871 
872     // We get out here only if we find a constant array type
873     // inside the VLA.
874   }
875 
876   // We have some number of constant-length arrays, so addr should
877   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
878   // down to the first element of addr.
879   SmallVector<llvm::Value*, 8> gepIndices;
880 
881   // GEP down to the array type.
882   llvm::ConstantInt *zero = Builder.getInt32(0);
883   gepIndices.push_back(zero);
884 
885   uint64_t countFromCLAs = 1;
886   QualType eltType;
887 
888   llvm::ArrayType *llvmArrayType =
889     dyn_cast<llvm::ArrayType>(
890       cast<llvm::PointerType>(addr->getType())->getElementType());
891   while (llvmArrayType) {
892     assert(isa<ConstantArrayType>(arrayType));
893     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
894              == llvmArrayType->getNumElements());
895 
896     gepIndices.push_back(zero);
897     countFromCLAs *= llvmArrayType->getNumElements();
898     eltType = arrayType->getElementType();
899 
900     llvmArrayType =
901       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
902     arrayType = getContext().getAsArrayType(arrayType->getElementType());
903     assert((!llvmArrayType || arrayType) &&
904            "LLVM and Clang types are out-of-synch");
905   }
906 
907   if (arrayType) {
908     // From this point onwards, the Clang array type has been emitted
909     // as some other type (probably a packed struct). Compute the array
910     // size, and just emit the 'begin' expression as a bitcast.
911     while (arrayType) {
912       countFromCLAs *=
913           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
914       eltType = arrayType->getElementType();
915       arrayType = getContext().getAsArrayType(eltType);
916     }
917 
918     unsigned AddressSpace =
919         cast<llvm::PointerType>(addr->getType())->getAddressSpace();
920     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
921     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
922   } else {
923     // Create the actual GEP.
924     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
925   }
926 
927   baseType = eltType;
928 
929   llvm::Value *numElements
930     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
931 
932   // If we had any VLA dimensions, factor them in.
933   if (numVLAElements)
934     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
935 
936   return numElements;
937 }
938 
939 std::pair<llvm::Value*, QualType>
940 CodeGenFunction::getVLASize(QualType type) {
941   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
942   assert(vla && "type was not a variable array type!");
943   return getVLASize(vla);
944 }
945 
946 std::pair<llvm::Value*, QualType>
947 CodeGenFunction::getVLASize(const VariableArrayType *type) {
948   // The number of elements so far; always size_t.
949   llvm::Value *numElements = 0;
950 
951   QualType elementType;
952   do {
953     elementType = type->getElementType();
954     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
955     assert(vlaSize && "no size for VLA!");
956     assert(vlaSize->getType() == SizeTy);
957 
958     if (!numElements) {
959       numElements = vlaSize;
960     } else {
961       // It's undefined behavior if this wraps around, so mark it that way.
962       numElements = Builder.CreateNUWMul(numElements, vlaSize);
963     }
964   } while ((type = getContext().getAsVariableArrayType(elementType)));
965 
966   return std::pair<llvm::Value*,QualType>(numElements, elementType);
967 }
968 
969 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
970   assert(type->isVariablyModifiedType() &&
971          "Must pass variably modified type to EmitVLASizes!");
972 
973   EnsureInsertPoint();
974 
975   // We're going to walk down into the type and look for VLA
976   // expressions.
977   do {
978     assert(type->isVariablyModifiedType());
979 
980     const Type *ty = type.getTypePtr();
981     switch (ty->getTypeClass()) {
982 
983 #define TYPE(Class, Base)
984 #define ABSTRACT_TYPE(Class, Base)
985 #define NON_CANONICAL_TYPE(Class, Base)
986 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
987 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
988 #include "clang/AST/TypeNodes.def"
989       llvm_unreachable("unexpected dependent type!");
990 
991     // These types are never variably-modified.
992     case Type::Builtin:
993     case Type::Complex:
994     case Type::Vector:
995     case Type::ExtVector:
996     case Type::Record:
997     case Type::Enum:
998     case Type::Elaborated:
999     case Type::TemplateSpecialization:
1000     case Type::ObjCObject:
1001     case Type::ObjCInterface:
1002     case Type::ObjCObjectPointer:
1003       llvm_unreachable("type class is never variably-modified!");
1004 
1005     case Type::Pointer:
1006       type = cast<PointerType>(ty)->getPointeeType();
1007       break;
1008 
1009     case Type::BlockPointer:
1010       type = cast<BlockPointerType>(ty)->getPointeeType();
1011       break;
1012 
1013     case Type::LValueReference:
1014     case Type::RValueReference:
1015       type = cast<ReferenceType>(ty)->getPointeeType();
1016       break;
1017 
1018     case Type::MemberPointer:
1019       type = cast<MemberPointerType>(ty)->getPointeeType();
1020       break;
1021 
1022     case Type::ConstantArray:
1023     case Type::IncompleteArray:
1024       // Losing element qualification here is fine.
1025       type = cast<ArrayType>(ty)->getElementType();
1026       break;
1027 
1028     case Type::VariableArray: {
1029       // Losing element qualification here is fine.
1030       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1031 
1032       // Unknown size indication requires no size computation.
1033       // Otherwise, evaluate and record it.
1034       if (const Expr *size = vat->getSizeExpr()) {
1035         // It's possible that we might have emitted this already,
1036         // e.g. with a typedef and a pointer to it.
1037         llvm::Value *&entry = VLASizeMap[size];
1038         if (!entry) {
1039           // Always zexting here would be wrong if it weren't
1040           // undefined behavior to have a negative bound.
1041           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
1042                                         /*signed*/ false);
1043         }
1044       }
1045       type = vat->getElementType();
1046       break;
1047     }
1048 
1049     case Type::FunctionProto:
1050     case Type::FunctionNoProto:
1051       type = cast<FunctionType>(ty)->getResultType();
1052       break;
1053 
1054     case Type::Paren:
1055     case Type::TypeOf:
1056     case Type::UnaryTransform:
1057     case Type::Attributed:
1058     case Type::SubstTemplateTypeParm:
1059       // Keep walking after single level desugaring.
1060       type = type.getSingleStepDesugaredType(getContext());
1061       break;
1062 
1063     case Type::Typedef:
1064     case Type::Decltype:
1065     case Type::Auto:
1066       // Stop walking: nothing to do.
1067       return;
1068 
1069     case Type::TypeOfExpr:
1070       // Stop walking: emit typeof expression.
1071       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1072       return;
1073 
1074     case Type::Atomic:
1075       type = cast<AtomicType>(ty)->getValueType();
1076       break;
1077     }
1078   } while (type->isVariablyModifiedType());
1079 }
1080 
1081 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1082   if (getContext().getBuiltinVaListType()->isArrayType())
1083     return EmitScalarExpr(E);
1084   return EmitLValue(E).getAddress();
1085 }
1086 
1087 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1088                                               llvm::Constant *Init) {
1089   assert (Init && "Invalid DeclRefExpr initializer!");
1090   if (CGDebugInfo *Dbg = getDebugInfo())
1091     if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1092       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1093 }
1094 
1095 CodeGenFunction::PeepholeProtection
1096 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1097   // At the moment, the only aggressive peephole we do in IR gen
1098   // is trunc(zext) folding, but if we add more, we can easily
1099   // extend this protection.
1100 
1101   if (!rvalue.isScalar()) return PeepholeProtection();
1102   llvm::Value *value = rvalue.getScalarVal();
1103   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1104 
1105   // Just make an extra bitcast.
1106   assert(HaveInsertPoint());
1107   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1108                                                   Builder.GetInsertBlock());
1109 
1110   PeepholeProtection protection;
1111   protection.Inst = inst;
1112   return protection;
1113 }
1114 
1115 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1116   if (!protection.Inst) return;
1117 
1118   // In theory, we could try to duplicate the peepholes now, but whatever.
1119   protection.Inst->eraseFromParent();
1120 }
1121 
1122 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1123                                                  llvm::Value *AnnotatedVal,
1124                                                  llvm::StringRef AnnotationStr,
1125                                                  SourceLocation Location) {
1126   llvm::Value *Args[4] = {
1127     AnnotatedVal,
1128     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1129     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1130     CGM.EmitAnnotationLineNo(Location)
1131   };
1132   return Builder.CreateCall(AnnotationFn, Args);
1133 }
1134 
1135 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1136   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1137   // FIXME We create a new bitcast for every annotation because that's what
1138   // llvm-gcc was doing.
1139   for (specific_attr_iterator<AnnotateAttr>
1140        ai = D->specific_attr_begin<AnnotateAttr>(),
1141        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1142     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1143                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1144                        (*ai)->getAnnotation(), D->getLocation());
1145 }
1146 
1147 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1148                                                    llvm::Value *V) {
1149   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1150   llvm::Type *VTy = V->getType();
1151   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1152                                     CGM.Int8PtrTy);
1153 
1154   for (specific_attr_iterator<AnnotateAttr>
1155        ai = D->specific_attr_begin<AnnotateAttr>(),
1156        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1157     // FIXME Always emit the cast inst so we can differentiate between
1158     // annotation on the first field of a struct and annotation on the struct
1159     // itself.
1160     if (VTy != CGM.Int8PtrTy)
1161       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1162     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1163     V = Builder.CreateBitCast(V, VTy);
1164   }
1165 
1166   return V;
1167 }
1168