1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Operator.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
34   : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
35     Builder(cgm.getModule().getContext()),
36     CapturedStmtInfo(0),
37     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
38                              CGM.getSanOpts().Alignment |
39                              CGM.getSanOpts().ObjectSize |
40                              CGM.getSanOpts().Vptr),
41     SanOpts(&CGM.getSanOpts()),
42     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
43     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
44     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
45     DebugInfo(0), DisableDebugInfo(false), CalleeWithThisReturn(0),
46     DidCallStackSave(false),
47     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
48     NumReturnExprs(0), NumSimpleReturnExprs(0),
49     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
50     CXXDefaultInitExprThis(0),
51     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
52     OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
53     TerminateHandler(0), TrapBB(0) {
54   if (!suppressNewContext)
55     CGM.getCXXABI().getMangleContext().startNewFunction();
56 
57   llvm::FastMathFlags FMF;
58   if (CGM.getLangOpts().FastMath)
59     FMF.setUnsafeAlgebra();
60   if (CGM.getLangOpts().FiniteMathOnly) {
61     FMF.setNoNaNs();
62     FMF.setNoInfs();
63   }
64   Builder.SetFastMathFlags(FMF);
65 }
66 
67 CodeGenFunction::~CodeGenFunction() {
68   // If there are any unclaimed block infos, go ahead and destroy them
69   // now.  This can happen if IR-gen gets clever and skips evaluating
70   // something.
71   if (FirstBlockInfo)
72     destroyBlockInfos(FirstBlockInfo);
73 }
74 
75 
76 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
77   return CGM.getTypes().ConvertTypeForMem(T);
78 }
79 
80 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
81   return CGM.getTypes().ConvertType(T);
82 }
83 
84 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
85   type = type.getCanonicalType();
86   while (true) {
87     switch (type->getTypeClass()) {
88 #define TYPE(name, parent)
89 #define ABSTRACT_TYPE(name, parent)
90 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
91 #define DEPENDENT_TYPE(name, parent) case Type::name:
92 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
93 #include "clang/AST/TypeNodes.def"
94       llvm_unreachable("non-canonical or dependent type in IR-generation");
95 
96     case Type::Auto:
97       llvm_unreachable("undeduced auto type in IR-generation");
98 
99     // Various scalar types.
100     case Type::Builtin:
101     case Type::Pointer:
102     case Type::BlockPointer:
103     case Type::LValueReference:
104     case Type::RValueReference:
105     case Type::MemberPointer:
106     case Type::Vector:
107     case Type::ExtVector:
108     case Type::FunctionProto:
109     case Type::FunctionNoProto:
110     case Type::Enum:
111     case Type::ObjCObjectPointer:
112       return TEK_Scalar;
113 
114     // Complexes.
115     case Type::Complex:
116       return TEK_Complex;
117 
118     // Arrays, records, and Objective-C objects.
119     case Type::ConstantArray:
120     case Type::IncompleteArray:
121     case Type::VariableArray:
122     case Type::Record:
123     case Type::ObjCObject:
124     case Type::ObjCInterface:
125       return TEK_Aggregate;
126 
127     // We operate on atomic values according to their underlying type.
128     case Type::Atomic:
129       type = cast<AtomicType>(type)->getValueType();
130       continue;
131     }
132     llvm_unreachable("unknown type kind!");
133   }
134 }
135 
136 void CodeGenFunction::EmitReturnBlock() {
137   // For cleanliness, we try to avoid emitting the return block for
138   // simple cases.
139   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
140 
141   if (CurBB) {
142     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
143 
144     // We have a valid insert point, reuse it if it is empty or there are no
145     // explicit jumps to the return block.
146     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
147       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
148       delete ReturnBlock.getBlock();
149     } else
150       EmitBlock(ReturnBlock.getBlock());
151     return;
152   }
153 
154   // Otherwise, if the return block is the target of a single direct
155   // branch then we can just put the code in that block instead. This
156   // cleans up functions which started with a unified return block.
157   if (ReturnBlock.getBlock()->hasOneUse()) {
158     llvm::BranchInst *BI =
159       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
160     if (BI && BI->isUnconditional() &&
161         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
162       // Reset insertion point, including debug location, and delete the
163       // branch.  This is really subtle and only works because the next change
164       // in location will hit the caching in CGDebugInfo::EmitLocation and not
165       // override this.
166       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
167       Builder.SetInsertPoint(BI->getParent());
168       BI->eraseFromParent();
169       delete ReturnBlock.getBlock();
170       return;
171     }
172   }
173 
174   // FIXME: We are at an unreachable point, there is no reason to emit the block
175   // unless it has uses. However, we still need a place to put the debug
176   // region.end for now.
177 
178   EmitBlock(ReturnBlock.getBlock());
179 }
180 
181 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
182   if (!BB) return;
183   if (!BB->use_empty())
184     return CGF.CurFn->getBasicBlockList().push_back(BB);
185   delete BB;
186 }
187 
188 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
189   assert(BreakContinueStack.empty() &&
190          "mismatched push/pop in break/continue stack!");
191 
192   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
193     && NumSimpleReturnExprs == NumReturnExprs;
194   // If the function contains only a simple return statement, the
195   // cleanup code may become the first breakpoint in the function. To
196   // be safe, set the debug location for it to the location of the
197   // return statement.  Otherwise point it to end of the function's
198   // lexical scope.
199   if (CGDebugInfo *DI = getDebugInfo()) {
200     if (OnlySimpleReturnStmts)
201        DI->EmitLocation(Builder, LastStopPoint);
202     else
203       DI->EmitLocation(Builder, EndLoc);
204   }
205 
206   // Pop any cleanups that might have been associated with the
207   // parameters.  Do this in whatever block we're currently in; it's
208   // important to do this before we enter the return block or return
209   // edges will be *really* confused.
210   bool EmitRetDbgLoc = true;
211   if (EHStack.stable_begin() != PrologueCleanupDepth) {
212     PopCleanupBlocks(PrologueCleanupDepth, EndLoc);
213 
214     // Make sure the line table doesn't jump back into the body for
215     // the ret after it's been at EndLoc.
216     EmitRetDbgLoc = false;
217 
218     if (CGDebugInfo *DI = getDebugInfo())
219       if (OnlySimpleReturnStmts)
220         DI->EmitLocation(Builder, EndLoc);
221   }
222 
223   // Emit function epilog (to return).
224   EmitReturnBlock();
225 
226   if (ShouldInstrumentFunction())
227     EmitFunctionInstrumentation("__cyg_profile_func_exit");
228 
229   // Emit debug descriptor for function end.
230   if (CGDebugInfo *DI = getDebugInfo()) {
231     DI->EmitFunctionEnd(Builder);
232   }
233 
234   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc);
235   EmitEndEHSpec(CurCodeDecl);
236 
237   assert(EHStack.empty() &&
238          "did not remove all scopes from cleanup stack!");
239 
240   // If someone did an indirect goto, emit the indirect goto block at the end of
241   // the function.
242   if (IndirectBranch) {
243     EmitBlock(IndirectBranch->getParent());
244     Builder.ClearInsertionPoint();
245   }
246 
247   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
248   llvm::Instruction *Ptr = AllocaInsertPt;
249   AllocaInsertPt = 0;
250   Ptr->eraseFromParent();
251 
252   // If someone took the address of a label but never did an indirect goto, we
253   // made a zero entry PHI node, which is illegal, zap it now.
254   if (IndirectBranch) {
255     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
256     if (PN->getNumIncomingValues() == 0) {
257       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
258       PN->eraseFromParent();
259     }
260   }
261 
262   EmitIfUsed(*this, EHResumeBlock);
263   EmitIfUsed(*this, TerminateLandingPad);
264   EmitIfUsed(*this, TerminateHandler);
265   EmitIfUsed(*this, UnreachableBlock);
266 
267   if (CGM.getCodeGenOpts().EmitDeclMetadata)
268     EmitDeclMetadata();
269 }
270 
271 /// ShouldInstrumentFunction - Return true if the current function should be
272 /// instrumented with __cyg_profile_func_* calls
273 bool CodeGenFunction::ShouldInstrumentFunction() {
274   if (!CGM.getCodeGenOpts().InstrumentFunctions)
275     return false;
276   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
277     return false;
278   return true;
279 }
280 
281 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
282 /// instrumentation function with the current function and the call site, if
283 /// function instrumentation is enabled.
284 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
285   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
286   llvm::PointerType *PointerTy = Int8PtrTy;
287   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
288   llvm::FunctionType *FunctionTy =
289     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
290 
291   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
292   llvm::CallInst *CallSite = Builder.CreateCall(
293     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
294     llvm::ConstantInt::get(Int32Ty, 0),
295     "callsite");
296 
297   llvm::Value *args[] = {
298     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
299     CallSite
300   };
301 
302   EmitNounwindRuntimeCall(F, args);
303 }
304 
305 void CodeGenFunction::EmitMCountInstrumentation() {
306   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
307 
308   llvm::Constant *MCountFn =
309     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
310   EmitNounwindRuntimeCall(MCountFn);
311 }
312 
313 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
314 // information in the program executable. The argument information stored
315 // includes the argument name, its type, the address and access qualifiers used.
316 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
317                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
318                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
319                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
320   // Create MDNodes that represent the kernel arg metadata.
321   // Each MDNode is a list in the form of "key", N number of values which is
322   // the same number of values as their are kernel arguments.
323 
324   // MDNode for the kernel argument address space qualifiers.
325   SmallVector<llvm::Value*, 8> addressQuals;
326   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
327 
328   // MDNode for the kernel argument access qualifiers (images only).
329   SmallVector<llvm::Value*, 8> accessQuals;
330   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
331 
332   // MDNode for the kernel argument type names.
333   SmallVector<llvm::Value*, 8> argTypeNames;
334   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
335 
336   // MDNode for the kernel argument type qualifiers.
337   SmallVector<llvm::Value*, 8> argTypeQuals;
338   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
339 
340   // MDNode for the kernel argument names.
341   SmallVector<llvm::Value*, 8> argNames;
342   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
343 
344   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
345     const ParmVarDecl *parm = FD->getParamDecl(i);
346     QualType ty = parm->getType();
347     std::string typeQuals;
348 
349     if (ty->isPointerType()) {
350       QualType pointeeTy = ty->getPointeeType();
351 
352       // Get address qualifier.
353       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
354         pointeeTy.getAddressSpace())));
355 
356       // Get argument type name.
357       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
358 
359       // Turn "unsigned type" to "utype"
360       std::string::size_type pos = typeName.find("unsigned");
361       if (pos != std::string::npos)
362         typeName.erase(pos+1, 8);
363 
364       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
365 
366       // Get argument type qualifiers:
367       if (ty.isRestrictQualified())
368         typeQuals = "restrict";
369       if (pointeeTy.isConstQualified() ||
370           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
371         typeQuals += typeQuals.empty() ? "const" : " const";
372       if (pointeeTy.isVolatileQualified())
373         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
374     } else {
375       addressQuals.push_back(Builder.getInt32(0));
376 
377       // Get argument type name.
378       std::string typeName = ty.getUnqualifiedType().getAsString();
379 
380       // Turn "unsigned type" to "utype"
381       std::string::size_type pos = typeName.find("unsigned");
382       if (pos != std::string::npos)
383         typeName.erase(pos+1, 8);
384 
385       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
386 
387       // Get argument type qualifiers:
388       if (ty.isConstQualified())
389         typeQuals = "const";
390       if (ty.isVolatileQualified())
391         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
392     }
393 
394     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
395 
396     // Get image access qualifier:
397     if (ty->isImageType()) {
398       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
399           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
400         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
401       else
402         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
403     } else
404       accessQuals.push_back(llvm::MDString::get(Context, "none"));
405 
406     // Get argument name.
407     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
408   }
409 
410   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
411   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
412   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
413   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
414   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
415 }
416 
417 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
418                                                llvm::Function *Fn)
419 {
420   if (!FD->hasAttr<OpenCLKernelAttr>())
421     return;
422 
423   llvm::LLVMContext &Context = getLLVMContext();
424 
425   SmallVector <llvm::Value*, 5> kernelMDArgs;
426   kernelMDArgs.push_back(Fn);
427 
428   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
429     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
430                          Builder, getContext());
431 
432   if (FD->hasAttr<VecTypeHintAttr>()) {
433     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
434     QualType hintQTy = attr->getTypeHint();
435     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
436     bool isSignedInteger =
437         hintQTy->isSignedIntegerType() ||
438         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
439     llvm::Value *attrMDArgs[] = {
440       llvm::MDString::get(Context, "vec_type_hint"),
441       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
442       llvm::ConstantInt::get(
443           llvm::IntegerType::get(Context, 32),
444           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
445     };
446     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
447   }
448 
449   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
450     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
451     llvm::Value *attrMDArgs[] = {
452       llvm::MDString::get(Context, "work_group_size_hint"),
453       Builder.getInt32(attr->getXDim()),
454       Builder.getInt32(attr->getYDim()),
455       Builder.getInt32(attr->getZDim())
456     };
457     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
458   }
459 
460   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
461     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
462     llvm::Value *attrMDArgs[] = {
463       llvm::MDString::get(Context, "reqd_work_group_size"),
464       Builder.getInt32(attr->getXDim()),
465       Builder.getInt32(attr->getYDim()),
466       Builder.getInt32(attr->getZDim())
467     };
468     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
469   }
470 
471   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
472   llvm::NamedMDNode *OpenCLKernelMetadata =
473     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
474   OpenCLKernelMetadata->addOperand(kernelMDNode);
475 }
476 
477 void CodeGenFunction::StartFunction(GlobalDecl GD,
478                                     QualType RetTy,
479                                     llvm::Function *Fn,
480                                     const CGFunctionInfo &FnInfo,
481                                     const FunctionArgList &Args,
482                                     SourceLocation StartLoc) {
483   const Decl *D = GD.getDecl();
484 
485   DidCallStackSave = false;
486   CurCodeDecl = D;
487   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
488   FnRetTy = RetTy;
489   CurFn = Fn;
490   CurFnInfo = &FnInfo;
491   assert(CurFn->isDeclaration() && "Function already has body?");
492 
493   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
494     SanOpts = &SanitizerOptions::Disabled;
495     SanitizePerformTypeCheck = false;
496   }
497 
498   // Pass inline keyword to optimizer if it appears explicitly on any
499   // declaration.
500   if (!CGM.getCodeGenOpts().NoInline)
501     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
502       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
503              RE = FD->redecls_end(); RI != RE; ++RI)
504         if (RI->isInlineSpecified()) {
505           Fn->addFnAttr(llvm::Attribute::InlineHint);
506           break;
507         }
508 
509   if (getLangOpts().OpenCL) {
510     // Add metadata for a kernel function.
511     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
512       EmitOpenCLKernelMetadata(FD, Fn);
513   }
514 
515   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
516 
517   // Create a marker to make it easy to insert allocas into the entryblock
518   // later.  Don't create this with the builder, because we don't want it
519   // folded.
520   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
521   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
522   if (Builder.isNamePreserving())
523     AllocaInsertPt->setName("allocapt");
524 
525   ReturnBlock = getJumpDestInCurrentScope("return");
526 
527   Builder.SetInsertPoint(EntryBB);
528 
529   // Emit subprogram debug descriptor.
530   if (CGDebugInfo *DI = getDebugInfo()) {
531     SmallVector<QualType, 16> ArgTypes;
532     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
533 	 i != e; ++i) {
534       ArgTypes.push_back((*i)->getType());
535     }
536 
537     QualType FnType =
538       getContext().getFunctionType(RetTy, ArgTypes,
539                                    FunctionProtoType::ExtProtoInfo());
540 
541     DI->setLocation(StartLoc);
542     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
543   }
544 
545   if (ShouldInstrumentFunction())
546     EmitFunctionInstrumentation("__cyg_profile_func_enter");
547 
548   if (CGM.getCodeGenOpts().InstrumentForProfiling)
549     EmitMCountInstrumentation();
550 
551   if (RetTy->isVoidType()) {
552     // Void type; nothing to return.
553     ReturnValue = 0;
554   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
555              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
556     // Indirect aggregate return; emit returned value directly into sret slot.
557     // This reduces code size, and affects correctness in C++.
558     ReturnValue = CurFn->arg_begin();
559   } else {
560     ReturnValue = CreateIRTemp(RetTy, "retval");
561 
562     // Tell the epilog emitter to autorelease the result.  We do this
563     // now so that various specialized functions can suppress it
564     // during their IR-generation.
565     if (getLangOpts().ObjCAutoRefCount &&
566         !CurFnInfo->isReturnsRetained() &&
567         RetTy->isObjCRetainableType())
568       AutoreleaseResult = true;
569   }
570 
571   EmitStartEHSpec(CurCodeDecl);
572 
573   PrologueCleanupDepth = EHStack.stable_begin();
574   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
575 
576   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
577     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
578     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
579     if (MD->getParent()->isLambda() &&
580         MD->getOverloadedOperator() == OO_Call) {
581       // We're in a lambda; figure out the captures.
582       MD->getParent()->getCaptureFields(LambdaCaptureFields,
583                                         LambdaThisCaptureField);
584       if (LambdaThisCaptureField) {
585         // If this lambda captures this, load it.
586         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
587         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
588       }
589     } else {
590       // Not in a lambda; just use 'this' from the method.
591       // FIXME: Should we generate a new load for each use of 'this'?  The
592       // fast register allocator would be happier...
593       CXXThisValue = CXXABIThisValue;
594     }
595   }
596 
597   // If any of the arguments have a variably modified type, make sure to
598   // emit the type size.
599   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
600        i != e; ++i) {
601     const VarDecl *VD = *i;
602 
603     // Dig out the type as written from ParmVarDecls; it's unclear whether
604     // the standard (C99 6.9.1p10) requires this, but we're following the
605     // precedent set by gcc.
606     QualType Ty;
607     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
608       Ty = PVD->getOriginalType();
609     else
610       Ty = VD->getType();
611 
612     if (Ty->isVariablyModifiedType())
613       EmitVariablyModifiedType(Ty);
614   }
615   // Emit a location at the end of the prologue.
616   if (CGDebugInfo *DI = getDebugInfo())
617     DI->EmitLocation(Builder, StartLoc);
618 }
619 
620 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
621   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
622   assert(FD->getBody());
623   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
624     EmitCompoundStmtWithoutScope(*S);
625   else
626     EmitStmt(FD->getBody());
627 }
628 
629 /// Tries to mark the given function nounwind based on the
630 /// non-existence of any throwing calls within it.  We believe this is
631 /// lightweight enough to do at -O0.
632 static void TryMarkNoThrow(llvm::Function *F) {
633   // LLVM treats 'nounwind' on a function as part of the type, so we
634   // can't do this on functions that can be overwritten.
635   if (F->mayBeOverridden()) return;
636 
637   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
638     for (llvm::BasicBlock::iterator
639            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
640       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
641         if (!Call->doesNotThrow())
642           return;
643       } else if (isa<llvm::ResumeInst>(&*BI)) {
644         return;
645       }
646   F->setDoesNotThrow();
647 }
648 
649 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
650                                    const CGFunctionInfo &FnInfo) {
651   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
652 
653   // Check if we should generate debug info for this function.
654   if (!FD->hasAttr<NoDebugAttr>())
655     maybeInitializeDebugInfo();
656 
657   FunctionArgList Args;
658   QualType ResTy = FD->getResultType();
659 
660   CurGD = GD;
661   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
662     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
663 
664   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
665     Args.push_back(FD->getParamDecl(i));
666 
667   SourceRange BodyRange;
668   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
669 
670   // CalleeWithThisReturn keeps track of the last callee inside this function
671   // that returns 'this'. Before starting the function, we set it to null.
672   CalleeWithThisReturn = 0;
673 
674   // Emit the standard function prologue.
675   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
676 
677   // Generate the body of the function.
678   if (isa<CXXDestructorDecl>(FD))
679     EmitDestructorBody(Args);
680   else if (isa<CXXConstructorDecl>(FD))
681     EmitConstructorBody(Args);
682   else if (getLangOpts().CUDA &&
683            !CGM.getCodeGenOpts().CUDAIsDevice &&
684            FD->hasAttr<CUDAGlobalAttr>())
685     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
686   else if (isa<CXXConversionDecl>(FD) &&
687            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
688     // The lambda conversion to block pointer is special; the semantics can't be
689     // expressed in the AST, so IRGen needs to special-case it.
690     EmitLambdaToBlockPointerBody(Args);
691   } else if (isa<CXXMethodDecl>(FD) &&
692              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
693     // The lambda "__invoke" function is special, because it forwards or
694     // clones the body of the function call operator (but is actually static).
695     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
696   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
697              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
698     // Implicit copy-assignment gets the same special treatment as implicit
699     // copy-constructors.
700     emitImplicitAssignmentOperatorBody(Args);
701   }
702   else
703     EmitFunctionBody(Args);
704 
705   // C++11 [stmt.return]p2:
706   //   Flowing off the end of a function [...] results in undefined behavior in
707   //   a value-returning function.
708   // C11 6.9.1p12:
709   //   If the '}' that terminates a function is reached, and the value of the
710   //   function call is used by the caller, the behavior is undefined.
711   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
712       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
713     if (SanOpts->Return)
714       EmitCheck(Builder.getFalse(), "missing_return",
715                 EmitCheckSourceLocation(FD->getLocation()),
716                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
717     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
718       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
719     Builder.CreateUnreachable();
720     Builder.ClearInsertionPoint();
721   }
722 
723   // Emit the standard function epilogue.
724   FinishFunction(BodyRange.getEnd());
725   // CalleeWithThisReturn keeps track of the last callee inside this function
726   // that returns 'this'. After finishing the function, we set it to null.
727   CalleeWithThisReturn = 0;
728 
729   // If we haven't marked the function nothrow through other means, do
730   // a quick pass now to see if we can.
731   if (!CurFn->doesNotThrow())
732     TryMarkNoThrow(CurFn);
733 }
734 
735 /// ContainsLabel - Return true if the statement contains a label in it.  If
736 /// this statement is not executed normally, it not containing a label means
737 /// that we can just remove the code.
738 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
739   // Null statement, not a label!
740   if (S == 0) return false;
741 
742   // If this is a label, we have to emit the code, consider something like:
743   // if (0) {  ...  foo:  bar(); }  goto foo;
744   //
745   // TODO: If anyone cared, we could track __label__'s, since we know that you
746   // can't jump to one from outside their declared region.
747   if (isa<LabelStmt>(S))
748     return true;
749 
750   // If this is a case/default statement, and we haven't seen a switch, we have
751   // to emit the code.
752   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
753     return true;
754 
755   // If this is a switch statement, we want to ignore cases below it.
756   if (isa<SwitchStmt>(S))
757     IgnoreCaseStmts = true;
758 
759   // Scan subexpressions for verboten labels.
760   for (Stmt::const_child_range I = S->children(); I; ++I)
761     if (ContainsLabel(*I, IgnoreCaseStmts))
762       return true;
763 
764   return false;
765 }
766 
767 /// containsBreak - Return true if the statement contains a break out of it.
768 /// If the statement (recursively) contains a switch or loop with a break
769 /// inside of it, this is fine.
770 bool CodeGenFunction::containsBreak(const Stmt *S) {
771   // Null statement, not a label!
772   if (S == 0) return false;
773 
774   // If this is a switch or loop that defines its own break scope, then we can
775   // include it and anything inside of it.
776   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
777       isa<ForStmt>(S))
778     return false;
779 
780   if (isa<BreakStmt>(S))
781     return true;
782 
783   // Scan subexpressions for verboten breaks.
784   for (Stmt::const_child_range I = S->children(); I; ++I)
785     if (containsBreak(*I))
786       return true;
787 
788   return false;
789 }
790 
791 
792 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
793 /// to a constant, or if it does but contains a label, return false.  If it
794 /// constant folds return true and set the boolean result in Result.
795 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
796                                                    bool &ResultBool) {
797   llvm::APSInt ResultInt;
798   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
799     return false;
800 
801   ResultBool = ResultInt.getBoolValue();
802   return true;
803 }
804 
805 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
806 /// to a constant, or if it does but contains a label, return false.  If it
807 /// constant folds return true and set the folded value.
808 bool CodeGenFunction::
809 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
810   // FIXME: Rename and handle conversion of other evaluatable things
811   // to bool.
812   llvm::APSInt Int;
813   if (!Cond->EvaluateAsInt(Int, getContext()))
814     return false;  // Not foldable, not integer or not fully evaluatable.
815 
816   if (CodeGenFunction::ContainsLabel(Cond))
817     return false;  // Contains a label.
818 
819   ResultInt = Int;
820   return true;
821 }
822 
823 
824 
825 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
826 /// statement) to the specified blocks.  Based on the condition, this might try
827 /// to simplify the codegen of the conditional based on the branch.
828 ///
829 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
830                                            llvm::BasicBlock *TrueBlock,
831                                            llvm::BasicBlock *FalseBlock) {
832   Cond = Cond->IgnoreParens();
833 
834   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
835     // Handle X && Y in a condition.
836     if (CondBOp->getOpcode() == BO_LAnd) {
837       // If we have "1 && X", simplify the code.  "0 && X" would have constant
838       // folded if the case was simple enough.
839       bool ConstantBool = false;
840       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
841           ConstantBool) {
842         // br(1 && X) -> br(X).
843         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
844       }
845 
846       // If we have "X && 1", simplify the code to use an uncond branch.
847       // "X && 0" would have been constant folded to 0.
848       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
849           ConstantBool) {
850         // br(X && 1) -> br(X).
851         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
852       }
853 
854       // Emit the LHS as a conditional.  If the LHS conditional is false, we
855       // want to jump to the FalseBlock.
856       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
857 
858       ConditionalEvaluation eval(*this);
859       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
860       EmitBlock(LHSTrue);
861 
862       // Any temporaries created here are conditional.
863       eval.begin(*this);
864       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
865       eval.end(*this);
866 
867       return;
868     }
869 
870     if (CondBOp->getOpcode() == BO_LOr) {
871       // If we have "0 || X", simplify the code.  "1 || X" would have constant
872       // folded if the case was simple enough.
873       bool ConstantBool = false;
874       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
875           !ConstantBool) {
876         // br(0 || X) -> br(X).
877         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
878       }
879 
880       // If we have "X || 0", simplify the code to use an uncond branch.
881       // "X || 1" would have been constant folded to 1.
882       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
883           !ConstantBool) {
884         // br(X || 0) -> br(X).
885         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
886       }
887 
888       // Emit the LHS as a conditional.  If the LHS conditional is true, we
889       // want to jump to the TrueBlock.
890       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
891 
892       ConditionalEvaluation eval(*this);
893       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
894       EmitBlock(LHSFalse);
895 
896       // Any temporaries created here are conditional.
897       eval.begin(*this);
898       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
899       eval.end(*this);
900 
901       return;
902     }
903   }
904 
905   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
906     // br(!x, t, f) -> br(x, f, t)
907     if (CondUOp->getOpcode() == UO_LNot)
908       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
909   }
910 
911   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
912     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
913     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
914     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
915 
916     ConditionalEvaluation cond(*this);
917     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
918 
919     cond.begin(*this);
920     EmitBlock(LHSBlock);
921     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
922     cond.end(*this);
923 
924     cond.begin(*this);
925     EmitBlock(RHSBlock);
926     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
927     cond.end(*this);
928 
929     return;
930   }
931 
932   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
933     // Conditional operator handling can give us a throw expression as a
934     // condition for a case like:
935     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
936     // Fold this to:
937     //   br(c, throw x, br(y, t, f))
938     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
939     return;
940   }
941 
942   // Emit the code with the fully general case.
943   llvm::Value *CondV = EvaluateExprAsBool(Cond);
944   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
945 }
946 
947 /// ErrorUnsupported - Print out an error that codegen doesn't support the
948 /// specified stmt yet.
949 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
950                                        bool OmitOnError) {
951   CGM.ErrorUnsupported(S, Type, OmitOnError);
952 }
953 
954 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
955 /// variable-length array whose elements have a non-zero bit-pattern.
956 ///
957 /// \param baseType the inner-most element type of the array
958 /// \param src - a char* pointing to the bit-pattern for a single
959 /// base element of the array
960 /// \param sizeInChars - the total size of the VLA, in chars
961 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
962                                llvm::Value *dest, llvm::Value *src,
963                                llvm::Value *sizeInChars) {
964   std::pair<CharUnits,CharUnits> baseSizeAndAlign
965     = CGF.getContext().getTypeInfoInChars(baseType);
966 
967   CGBuilderTy &Builder = CGF.Builder;
968 
969   llvm::Value *baseSizeInChars
970     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
971 
972   llvm::Type *i8p = Builder.getInt8PtrTy();
973 
974   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
975   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
976 
977   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
978   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
979   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
980 
981   // Make a loop over the VLA.  C99 guarantees that the VLA element
982   // count must be nonzero.
983   CGF.EmitBlock(loopBB);
984 
985   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
986   cur->addIncoming(begin, originBB);
987 
988   // memcpy the individual element bit-pattern.
989   Builder.CreateMemCpy(cur, src, baseSizeInChars,
990                        baseSizeAndAlign.second.getQuantity(),
991                        /*volatile*/ false);
992 
993   // Go to the next element.
994   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
995 
996   // Leave if that's the end of the VLA.
997   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
998   Builder.CreateCondBr(done, contBB, loopBB);
999   cur->addIncoming(next, loopBB);
1000 
1001   CGF.EmitBlock(contBB);
1002 }
1003 
1004 void
1005 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1006   // Ignore empty classes in C++.
1007   if (getLangOpts().CPlusPlus) {
1008     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1009       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1010         return;
1011     }
1012   }
1013 
1014   // Cast the dest ptr to the appropriate i8 pointer type.
1015   unsigned DestAS =
1016     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1017   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1018   if (DestPtr->getType() != BP)
1019     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1020 
1021   // Get size and alignment info for this aggregate.
1022   std::pair<CharUnits, CharUnits> TypeInfo =
1023     getContext().getTypeInfoInChars(Ty);
1024   CharUnits Size = TypeInfo.first;
1025   CharUnits Align = TypeInfo.second;
1026 
1027   llvm::Value *SizeVal;
1028   const VariableArrayType *vla;
1029 
1030   // Don't bother emitting a zero-byte memset.
1031   if (Size.isZero()) {
1032     // But note that getTypeInfo returns 0 for a VLA.
1033     if (const VariableArrayType *vlaType =
1034           dyn_cast_or_null<VariableArrayType>(
1035                                           getContext().getAsArrayType(Ty))) {
1036       QualType eltType;
1037       llvm::Value *numElts;
1038       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1039 
1040       SizeVal = numElts;
1041       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1042       if (!eltSize.isOne())
1043         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1044       vla = vlaType;
1045     } else {
1046       return;
1047     }
1048   } else {
1049     SizeVal = CGM.getSize(Size);
1050     vla = 0;
1051   }
1052 
1053   // If the type contains a pointer to data member we can't memset it to zero.
1054   // Instead, create a null constant and copy it to the destination.
1055   // TODO: there are other patterns besides zero that we can usefully memset,
1056   // like -1, which happens to be the pattern used by member-pointers.
1057   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1058     // For a VLA, emit a single element, then splat that over the VLA.
1059     if (vla) Ty = getContext().getBaseElementType(vla);
1060 
1061     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1062 
1063     llvm::GlobalVariable *NullVariable =
1064       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1065                                /*isConstant=*/true,
1066                                llvm::GlobalVariable::PrivateLinkage,
1067                                NullConstant, Twine());
1068     llvm::Value *SrcPtr =
1069       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1070 
1071     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1072 
1073     // Get and call the appropriate llvm.memcpy overload.
1074     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1075     return;
1076   }
1077 
1078   // Otherwise, just memset the whole thing to zero.  This is legal
1079   // because in LLVM, all default initializers (other than the ones we just
1080   // handled above) are guaranteed to have a bit pattern of all zeros.
1081   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1082                        Align.getQuantity(), false);
1083 }
1084 
1085 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1086   // Make sure that there is a block for the indirect goto.
1087   if (IndirectBranch == 0)
1088     GetIndirectGotoBlock();
1089 
1090   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1091 
1092   // Make sure the indirect branch includes all of the address-taken blocks.
1093   IndirectBranch->addDestination(BB);
1094   return llvm::BlockAddress::get(CurFn, BB);
1095 }
1096 
1097 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1098   // If we already made the indirect branch for indirect goto, return its block.
1099   if (IndirectBranch) return IndirectBranch->getParent();
1100 
1101   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1102 
1103   // Create the PHI node that indirect gotos will add entries to.
1104   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1105                                               "indirect.goto.dest");
1106 
1107   // Create the indirect branch instruction.
1108   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1109   return IndirectBranch->getParent();
1110 }
1111 
1112 /// Computes the length of an array in elements, as well as the base
1113 /// element type and a properly-typed first element pointer.
1114 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1115                                               QualType &baseType,
1116                                               llvm::Value *&addr) {
1117   const ArrayType *arrayType = origArrayType;
1118 
1119   // If it's a VLA, we have to load the stored size.  Note that
1120   // this is the size of the VLA in bytes, not its size in elements.
1121   llvm::Value *numVLAElements = 0;
1122   if (isa<VariableArrayType>(arrayType)) {
1123     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1124 
1125     // Walk into all VLAs.  This doesn't require changes to addr,
1126     // which has type T* where T is the first non-VLA element type.
1127     do {
1128       QualType elementType = arrayType->getElementType();
1129       arrayType = getContext().getAsArrayType(elementType);
1130 
1131       // If we only have VLA components, 'addr' requires no adjustment.
1132       if (!arrayType) {
1133         baseType = elementType;
1134         return numVLAElements;
1135       }
1136     } while (isa<VariableArrayType>(arrayType));
1137 
1138     // We get out here only if we find a constant array type
1139     // inside the VLA.
1140   }
1141 
1142   // We have some number of constant-length arrays, so addr should
1143   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1144   // down to the first element of addr.
1145   SmallVector<llvm::Value*, 8> gepIndices;
1146 
1147   // GEP down to the array type.
1148   llvm::ConstantInt *zero = Builder.getInt32(0);
1149   gepIndices.push_back(zero);
1150 
1151   uint64_t countFromCLAs = 1;
1152   QualType eltType;
1153 
1154   llvm::ArrayType *llvmArrayType =
1155     dyn_cast<llvm::ArrayType>(
1156       cast<llvm::PointerType>(addr->getType())->getElementType());
1157   while (llvmArrayType) {
1158     assert(isa<ConstantArrayType>(arrayType));
1159     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1160              == llvmArrayType->getNumElements());
1161 
1162     gepIndices.push_back(zero);
1163     countFromCLAs *= llvmArrayType->getNumElements();
1164     eltType = arrayType->getElementType();
1165 
1166     llvmArrayType =
1167       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1168     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1169     assert((!llvmArrayType || arrayType) &&
1170            "LLVM and Clang types are out-of-synch");
1171   }
1172 
1173   if (arrayType) {
1174     // From this point onwards, the Clang array type has been emitted
1175     // as some other type (probably a packed struct). Compute the array
1176     // size, and just emit the 'begin' expression as a bitcast.
1177     while (arrayType) {
1178       countFromCLAs *=
1179           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1180       eltType = arrayType->getElementType();
1181       arrayType = getContext().getAsArrayType(eltType);
1182     }
1183 
1184     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1185     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1186     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1187   } else {
1188     // Create the actual GEP.
1189     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1190   }
1191 
1192   baseType = eltType;
1193 
1194   llvm::Value *numElements
1195     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1196 
1197   // If we had any VLA dimensions, factor them in.
1198   if (numVLAElements)
1199     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1200 
1201   return numElements;
1202 }
1203 
1204 std::pair<llvm::Value*, QualType>
1205 CodeGenFunction::getVLASize(QualType type) {
1206   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1207   assert(vla && "type was not a variable array type!");
1208   return getVLASize(vla);
1209 }
1210 
1211 std::pair<llvm::Value*, QualType>
1212 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1213   // The number of elements so far; always size_t.
1214   llvm::Value *numElements = 0;
1215 
1216   QualType elementType;
1217   do {
1218     elementType = type->getElementType();
1219     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1220     assert(vlaSize && "no size for VLA!");
1221     assert(vlaSize->getType() == SizeTy);
1222 
1223     if (!numElements) {
1224       numElements = vlaSize;
1225     } else {
1226       // It's undefined behavior if this wraps around, so mark it that way.
1227       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1228       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1229     }
1230   } while ((type = getContext().getAsVariableArrayType(elementType)));
1231 
1232   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1233 }
1234 
1235 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1236   assert(type->isVariablyModifiedType() &&
1237          "Must pass variably modified type to EmitVLASizes!");
1238 
1239   EnsureInsertPoint();
1240 
1241   // We're going to walk down into the type and look for VLA
1242   // expressions.
1243   do {
1244     assert(type->isVariablyModifiedType());
1245 
1246     const Type *ty = type.getTypePtr();
1247     switch (ty->getTypeClass()) {
1248 
1249 #define TYPE(Class, Base)
1250 #define ABSTRACT_TYPE(Class, Base)
1251 #define NON_CANONICAL_TYPE(Class, Base)
1252 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1253 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1254 #include "clang/AST/TypeNodes.def"
1255       llvm_unreachable("unexpected dependent type!");
1256 
1257     // These types are never variably-modified.
1258     case Type::Builtin:
1259     case Type::Complex:
1260     case Type::Vector:
1261     case Type::ExtVector:
1262     case Type::Record:
1263     case Type::Enum:
1264     case Type::Elaborated:
1265     case Type::TemplateSpecialization:
1266     case Type::ObjCObject:
1267     case Type::ObjCInterface:
1268     case Type::ObjCObjectPointer:
1269       llvm_unreachable("type class is never variably-modified!");
1270 
1271     case Type::Pointer:
1272       type = cast<PointerType>(ty)->getPointeeType();
1273       break;
1274 
1275     case Type::BlockPointer:
1276       type = cast<BlockPointerType>(ty)->getPointeeType();
1277       break;
1278 
1279     case Type::LValueReference:
1280     case Type::RValueReference:
1281       type = cast<ReferenceType>(ty)->getPointeeType();
1282       break;
1283 
1284     case Type::MemberPointer:
1285       type = cast<MemberPointerType>(ty)->getPointeeType();
1286       break;
1287 
1288     case Type::ConstantArray:
1289     case Type::IncompleteArray:
1290       // Losing element qualification here is fine.
1291       type = cast<ArrayType>(ty)->getElementType();
1292       break;
1293 
1294     case Type::VariableArray: {
1295       // Losing element qualification here is fine.
1296       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1297 
1298       // Unknown size indication requires no size computation.
1299       // Otherwise, evaluate and record it.
1300       if (const Expr *size = vat->getSizeExpr()) {
1301         // It's possible that we might have emitted this already,
1302         // e.g. with a typedef and a pointer to it.
1303         llvm::Value *&entry = VLASizeMap[size];
1304         if (!entry) {
1305           llvm::Value *Size = EmitScalarExpr(size);
1306 
1307           // C11 6.7.6.2p5:
1308           //   If the size is an expression that is not an integer constant
1309           //   expression [...] each time it is evaluated it shall have a value
1310           //   greater than zero.
1311           if (SanOpts->VLABound &&
1312               size->getType()->isSignedIntegerType()) {
1313             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1314             llvm::Constant *StaticArgs[] = {
1315               EmitCheckSourceLocation(size->getLocStart()),
1316               EmitCheckTypeDescriptor(size->getType())
1317             };
1318             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1319                       "vla_bound_not_positive", StaticArgs, Size,
1320                       CRK_Recoverable);
1321           }
1322 
1323           // Always zexting here would be wrong if it weren't
1324           // undefined behavior to have a negative bound.
1325           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1326         }
1327       }
1328       type = vat->getElementType();
1329       break;
1330     }
1331 
1332     case Type::FunctionProto:
1333     case Type::FunctionNoProto:
1334       type = cast<FunctionType>(ty)->getResultType();
1335       break;
1336 
1337     case Type::Paren:
1338     case Type::TypeOf:
1339     case Type::UnaryTransform:
1340     case Type::Attributed:
1341     case Type::SubstTemplateTypeParm:
1342       // Keep walking after single level desugaring.
1343       type = type.getSingleStepDesugaredType(getContext());
1344       break;
1345 
1346     case Type::Typedef:
1347     case Type::Decltype:
1348     case Type::Auto:
1349       // Stop walking: nothing to do.
1350       return;
1351 
1352     case Type::TypeOfExpr:
1353       // Stop walking: emit typeof expression.
1354       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1355       return;
1356 
1357     case Type::Atomic:
1358       type = cast<AtomicType>(ty)->getValueType();
1359       break;
1360     }
1361   } while (type->isVariablyModifiedType());
1362 }
1363 
1364 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1365   if (getContext().getBuiltinVaListType()->isArrayType())
1366     return EmitScalarExpr(E);
1367   return EmitLValue(E).getAddress();
1368 }
1369 
1370 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1371                                               llvm::Constant *Init) {
1372   assert (Init && "Invalid DeclRefExpr initializer!");
1373   if (CGDebugInfo *Dbg = getDebugInfo())
1374     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1375       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1376 }
1377 
1378 CodeGenFunction::PeepholeProtection
1379 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1380   // At the moment, the only aggressive peephole we do in IR gen
1381   // is trunc(zext) folding, but if we add more, we can easily
1382   // extend this protection.
1383 
1384   if (!rvalue.isScalar()) return PeepholeProtection();
1385   llvm::Value *value = rvalue.getScalarVal();
1386   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1387 
1388   // Just make an extra bitcast.
1389   assert(HaveInsertPoint());
1390   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1391                                                   Builder.GetInsertBlock());
1392 
1393   PeepholeProtection protection;
1394   protection.Inst = inst;
1395   return protection;
1396 }
1397 
1398 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1399   if (!protection.Inst) return;
1400 
1401   // In theory, we could try to duplicate the peepholes now, but whatever.
1402   protection.Inst->eraseFromParent();
1403 }
1404 
1405 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1406                                                  llvm::Value *AnnotatedVal,
1407                                                  StringRef AnnotationStr,
1408                                                  SourceLocation Location) {
1409   llvm::Value *Args[4] = {
1410     AnnotatedVal,
1411     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1412     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1413     CGM.EmitAnnotationLineNo(Location)
1414   };
1415   return Builder.CreateCall(AnnotationFn, Args);
1416 }
1417 
1418 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1419   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1420   // FIXME We create a new bitcast for every annotation because that's what
1421   // llvm-gcc was doing.
1422   for (specific_attr_iterator<AnnotateAttr>
1423        ai = D->specific_attr_begin<AnnotateAttr>(),
1424        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1425     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1426                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1427                        (*ai)->getAnnotation(), D->getLocation());
1428 }
1429 
1430 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1431                                                    llvm::Value *V) {
1432   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1433   llvm::Type *VTy = V->getType();
1434   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1435                                     CGM.Int8PtrTy);
1436 
1437   for (specific_attr_iterator<AnnotateAttr>
1438        ai = D->specific_attr_begin<AnnotateAttr>(),
1439        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1440     // FIXME Always emit the cast inst so we can differentiate between
1441     // annotation on the first field of a struct and annotation on the struct
1442     // itself.
1443     if (VTy != CGM.Int8PtrTy)
1444       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1445     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1446     V = Builder.CreateBitCast(V, VTy);
1447   }
1448 
1449   return V;
1450 }
1451 
1452 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1453