1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/OpenCL.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Operator.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
36     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
37       Builder(cgm.getModule().getContext()), CapturedStmtInfo(0),
38       SanitizePerformTypeCheck(CGM.getSanOpts().Null |
39                                CGM.getSanOpts().Alignment |
40                                CGM.getSanOpts().ObjectSize |
41                                CGM.getSanOpts().Vptr),
42       SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0),
43       BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0),
44       NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0),
45       ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()),
46       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0),
47       SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0),
48       NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0),
49       CXXThisValue(0), CXXDefaultInitExprThis(0),
50       CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
51       OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
52       TerminateHandler(0), TrapBB(0) {
53   if (!suppressNewContext)
54     CGM.getCXXABI().getMangleContext().startNewFunction();
55 
56   llvm::FastMathFlags FMF;
57   if (CGM.getLangOpts().FastMath)
58     FMF.setUnsafeAlgebra();
59   if (CGM.getLangOpts().FiniteMathOnly) {
60     FMF.setNoNaNs();
61     FMF.setNoInfs();
62   }
63   Builder.SetFastMathFlags(FMF);
64 }
65 
66 CodeGenFunction::~CodeGenFunction() {
67   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
68 
69   // If there are any unclaimed block infos, go ahead and destroy them
70   // now.  This can happen if IR-gen gets clever and skips evaluating
71   // something.
72   if (FirstBlockInfo)
73     destroyBlockInfos(FirstBlockInfo);
74 }
75 
76 
77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
78   return CGM.getTypes().ConvertTypeForMem(T);
79 }
80 
81 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
82   return CGM.getTypes().ConvertType(T);
83 }
84 
85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
86   type = type.getCanonicalType();
87   while (true) {
88     switch (type->getTypeClass()) {
89 #define TYPE(name, parent)
90 #define ABSTRACT_TYPE(name, parent)
91 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
92 #define DEPENDENT_TYPE(name, parent) case Type::name:
93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
94 #include "clang/AST/TypeNodes.def"
95       llvm_unreachable("non-canonical or dependent type in IR-generation");
96 
97     case Type::Auto:
98       llvm_unreachable("undeduced auto type in IR-generation");
99 
100     // Various scalar types.
101     case Type::Builtin:
102     case Type::Pointer:
103     case Type::BlockPointer:
104     case Type::LValueReference:
105     case Type::RValueReference:
106     case Type::MemberPointer:
107     case Type::Vector:
108     case Type::ExtVector:
109     case Type::FunctionProto:
110     case Type::FunctionNoProto:
111     case Type::Enum:
112     case Type::ObjCObjectPointer:
113       return TEK_Scalar;
114 
115     // Complexes.
116     case Type::Complex:
117       return TEK_Complex;
118 
119     // Arrays, records, and Objective-C objects.
120     case Type::ConstantArray:
121     case Type::IncompleteArray:
122     case Type::VariableArray:
123     case Type::Record:
124     case Type::ObjCObject:
125     case Type::ObjCInterface:
126       return TEK_Aggregate;
127 
128     // We operate on atomic values according to their underlying type.
129     case Type::Atomic:
130       type = cast<AtomicType>(type)->getValueType();
131       continue;
132     }
133     llvm_unreachable("unknown type kind!");
134   }
135 }
136 
137 void CodeGenFunction::EmitReturnBlock() {
138   // For cleanliness, we try to avoid emitting the return block for
139   // simple cases.
140   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
141 
142   if (CurBB) {
143     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
144 
145     // We have a valid insert point, reuse it if it is empty or there are no
146     // explicit jumps to the return block.
147     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
148       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
149       delete ReturnBlock.getBlock();
150     } else
151       EmitBlock(ReturnBlock.getBlock());
152     return;
153   }
154 
155   // Otherwise, if the return block is the target of a single direct
156   // branch then we can just put the code in that block instead. This
157   // cleans up functions which started with a unified return block.
158   if (ReturnBlock.getBlock()->hasOneUse()) {
159     llvm::BranchInst *BI =
160       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
161     if (BI && BI->isUnconditional() &&
162         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
163       // Reset insertion point, including debug location, and delete the
164       // branch.  This is really subtle and only works because the next change
165       // in location will hit the caching in CGDebugInfo::EmitLocation and not
166       // override this.
167       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
168       Builder.SetInsertPoint(BI->getParent());
169       BI->eraseFromParent();
170       delete ReturnBlock.getBlock();
171       return;
172     }
173   }
174 
175   // FIXME: We are at an unreachable point, there is no reason to emit the block
176   // unless it has uses. However, we still need a place to put the debug
177   // region.end for now.
178 
179   EmitBlock(ReturnBlock.getBlock());
180 }
181 
182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
183   if (!BB) return;
184   if (!BB->use_empty())
185     return CGF.CurFn->getBasicBlockList().push_back(BB);
186   delete BB;
187 }
188 
189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
190   assert(BreakContinueStack.empty() &&
191          "mismatched push/pop in break/continue stack!");
192 
193   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
194     && NumSimpleReturnExprs == NumReturnExprs
195     && ReturnBlock.getBlock()->use_empty();
196   // Usually the return expression is evaluated before the cleanup
197   // code.  If the function contains only a simple return statement,
198   // such as a constant, the location before the cleanup code becomes
199   // the last useful breakpoint in the function, because the simple
200   // return expression will be evaluated after the cleanup code. To be
201   // safe, set the debug location for cleanup code to the location of
202   // the return statement.  Otherwise the cleanup code should be at the
203   // end of the function's lexical scope.
204   //
205   // If there are multiple branches to the return block, the branch
206   // instructions will get the location of the return statements and
207   // all will be fine.
208   if (CGDebugInfo *DI = getDebugInfo()) {
209     if (OnlySimpleReturnStmts)
210       DI->EmitLocation(Builder, LastStopPoint);
211     else
212       DI->EmitLocation(Builder, EndLoc);
213   }
214 
215   // Pop any cleanups that might have been associated with the
216   // parameters.  Do this in whatever block we're currently in; it's
217   // important to do this before we enter the return block or return
218   // edges will be *really* confused.
219   bool EmitRetDbgLoc = true;
220   if (EHStack.stable_begin() != PrologueCleanupDepth) {
221     PopCleanupBlocks(PrologueCleanupDepth);
222 
223     // Make sure the line table doesn't jump back into the body for
224     // the ret after it's been at EndLoc.
225     EmitRetDbgLoc = false;
226 
227     if (CGDebugInfo *DI = getDebugInfo())
228       if (OnlySimpleReturnStmts)
229         DI->EmitLocation(Builder, EndLoc);
230   }
231 
232   // Emit function epilog (to return).
233   EmitReturnBlock();
234 
235   if (ShouldInstrumentFunction())
236     EmitFunctionInstrumentation("__cyg_profile_func_exit");
237 
238   // Emit debug descriptor for function end.
239   if (CGDebugInfo *DI = getDebugInfo()) {
240     DI->EmitFunctionEnd(Builder);
241   }
242 
243   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
244   EmitEndEHSpec(CurCodeDecl);
245 
246   assert(EHStack.empty() &&
247          "did not remove all scopes from cleanup stack!");
248 
249   // If someone did an indirect goto, emit the indirect goto block at the end of
250   // the function.
251   if (IndirectBranch) {
252     EmitBlock(IndirectBranch->getParent());
253     Builder.ClearInsertionPoint();
254   }
255 
256   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
257   llvm::Instruction *Ptr = AllocaInsertPt;
258   AllocaInsertPt = 0;
259   Ptr->eraseFromParent();
260 
261   // If someone took the address of a label but never did an indirect goto, we
262   // made a zero entry PHI node, which is illegal, zap it now.
263   if (IndirectBranch) {
264     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
265     if (PN->getNumIncomingValues() == 0) {
266       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
267       PN->eraseFromParent();
268     }
269   }
270 
271   EmitIfUsed(*this, EHResumeBlock);
272   EmitIfUsed(*this, TerminateLandingPad);
273   EmitIfUsed(*this, TerminateHandler);
274   EmitIfUsed(*this, UnreachableBlock);
275 
276   if (CGM.getCodeGenOpts().EmitDeclMetadata)
277     EmitDeclMetadata();
278 }
279 
280 /// ShouldInstrumentFunction - Return true if the current function should be
281 /// instrumented with __cyg_profile_func_* calls
282 bool CodeGenFunction::ShouldInstrumentFunction() {
283   if (!CGM.getCodeGenOpts().InstrumentFunctions)
284     return false;
285   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
286     return false;
287   return true;
288 }
289 
290 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
291 /// instrumentation function with the current function and the call site, if
292 /// function instrumentation is enabled.
293 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
294   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
295   llvm::PointerType *PointerTy = Int8PtrTy;
296   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
297   llvm::FunctionType *FunctionTy =
298     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
299 
300   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
301   llvm::CallInst *CallSite = Builder.CreateCall(
302     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
303     llvm::ConstantInt::get(Int32Ty, 0),
304     "callsite");
305 
306   llvm::Value *args[] = {
307     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
308     CallSite
309   };
310 
311   EmitNounwindRuntimeCall(F, args);
312 }
313 
314 void CodeGenFunction::EmitMCountInstrumentation() {
315   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
316 
317   llvm::Constant *MCountFn =
318     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
319   EmitNounwindRuntimeCall(MCountFn);
320 }
321 
322 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
323 // information in the program executable. The argument information stored
324 // includes the argument name, its type, the address and access qualifiers used.
325 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
326                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
327                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
328                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
329   // Create MDNodes that represent the kernel arg metadata.
330   // Each MDNode is a list in the form of "key", N number of values which is
331   // the same number of values as their are kernel arguments.
332 
333   // MDNode for the kernel argument address space qualifiers.
334   SmallVector<llvm::Value*, 8> addressQuals;
335   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
336 
337   // MDNode for the kernel argument access qualifiers (images only).
338   SmallVector<llvm::Value*, 8> accessQuals;
339   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
340 
341   // MDNode for the kernel argument type names.
342   SmallVector<llvm::Value*, 8> argTypeNames;
343   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
344 
345   // MDNode for the kernel argument type qualifiers.
346   SmallVector<llvm::Value*, 8> argTypeQuals;
347   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
348 
349   // MDNode for the kernel argument names.
350   SmallVector<llvm::Value*, 8> argNames;
351   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
352 
353   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
354     const ParmVarDecl *parm = FD->getParamDecl(i);
355     QualType ty = parm->getType();
356     std::string typeQuals;
357 
358     if (ty->isPointerType()) {
359       QualType pointeeTy = ty->getPointeeType();
360 
361       // Get address qualifier.
362       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
363         pointeeTy.getAddressSpace())));
364 
365       // Get argument type name.
366       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
367 
368       // Turn "unsigned type" to "utype"
369       std::string::size_type pos = typeName.find("unsigned");
370       if (pos != std::string::npos)
371         typeName.erase(pos+1, 8);
372 
373       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
374 
375       // Get argument type qualifiers:
376       if (ty.isRestrictQualified())
377         typeQuals = "restrict";
378       if (pointeeTy.isConstQualified() ||
379           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
380         typeQuals += typeQuals.empty() ? "const" : " const";
381       if (pointeeTy.isVolatileQualified())
382         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
383     } else {
384       addressQuals.push_back(Builder.getInt32(0));
385 
386       // Get argument type name.
387       std::string typeName = ty.getUnqualifiedType().getAsString();
388 
389       // Turn "unsigned type" to "utype"
390       std::string::size_type pos = typeName.find("unsigned");
391       if (pos != std::string::npos)
392         typeName.erase(pos+1, 8);
393 
394       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
395 
396       // Get argument type qualifiers:
397       if (ty.isConstQualified())
398         typeQuals = "const";
399       if (ty.isVolatileQualified())
400         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
401     }
402 
403     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
404 
405     // Get image access qualifier:
406     if (ty->isImageType()) {
407       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
408           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
409         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
410       else
411         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
412     } else
413       accessQuals.push_back(llvm::MDString::get(Context, "none"));
414 
415     // Get argument name.
416     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
417   }
418 
419   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
420   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
421   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
422   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
423   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
424 }
425 
426 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
427                                                llvm::Function *Fn)
428 {
429   if (!FD->hasAttr<OpenCLKernelAttr>())
430     return;
431 
432   llvm::LLVMContext &Context = getLLVMContext();
433 
434   SmallVector <llvm::Value*, 5> kernelMDArgs;
435   kernelMDArgs.push_back(Fn);
436 
437   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
438     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
439                          Builder, getContext());
440 
441   if (FD->hasAttr<VecTypeHintAttr>()) {
442     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
443     QualType hintQTy = attr->getTypeHint();
444     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
445     bool isSignedInteger =
446         hintQTy->isSignedIntegerType() ||
447         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
448     llvm::Value *attrMDArgs[] = {
449       llvm::MDString::get(Context, "vec_type_hint"),
450       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
451       llvm::ConstantInt::get(
452           llvm::IntegerType::get(Context, 32),
453           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
454     };
455     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
456   }
457 
458   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
459     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
460     llvm::Value *attrMDArgs[] = {
461       llvm::MDString::get(Context, "work_group_size_hint"),
462       Builder.getInt32(attr->getXDim()),
463       Builder.getInt32(attr->getYDim()),
464       Builder.getInt32(attr->getZDim())
465     };
466     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
467   }
468 
469   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
470     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
471     llvm::Value *attrMDArgs[] = {
472       llvm::MDString::get(Context, "reqd_work_group_size"),
473       Builder.getInt32(attr->getXDim()),
474       Builder.getInt32(attr->getYDim()),
475       Builder.getInt32(attr->getZDim())
476     };
477     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
478   }
479 
480   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
481   llvm::NamedMDNode *OpenCLKernelMetadata =
482     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
483   OpenCLKernelMetadata->addOperand(kernelMDNode);
484 }
485 
486 void CodeGenFunction::StartFunction(GlobalDecl GD,
487                                     QualType RetTy,
488                                     llvm::Function *Fn,
489                                     const CGFunctionInfo &FnInfo,
490                                     const FunctionArgList &Args,
491                                     SourceLocation StartLoc) {
492   const Decl *D = GD.getDecl();
493 
494   DidCallStackSave = false;
495   CurCodeDecl = D;
496   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
497   FnRetTy = RetTy;
498   CurFn = Fn;
499   CurFnInfo = &FnInfo;
500   assert(CurFn->isDeclaration() && "Function already has body?");
501 
502   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
503     SanOpts = &SanitizerOptions::Disabled;
504     SanitizePerformTypeCheck = false;
505   }
506 
507   // Pass inline keyword to optimizer if it appears explicitly on any
508   // declaration.
509   if (!CGM.getCodeGenOpts().NoInline)
510     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
511       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
512              RE = FD->redecls_end(); RI != RE; ++RI)
513         if (RI->isInlineSpecified()) {
514           Fn->addFnAttr(llvm::Attribute::InlineHint);
515           break;
516         }
517 
518   if (getLangOpts().OpenCL) {
519     // Add metadata for a kernel function.
520     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
521       EmitOpenCLKernelMetadata(FD, Fn);
522   }
523 
524   // If we are checking function types, emit a function type signature as
525   // prefix data.
526   if (getLangOpts().CPlusPlus && SanOpts->Function) {
527     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
528       if (llvm::Constant *PrefixSig =
529               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
530         llvm::Constant *FTRTTIConst =
531             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
532         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
533         llvm::Constant *PrefixStructConst =
534             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
535         Fn->setPrefixData(PrefixStructConst);
536       }
537     }
538   }
539 
540   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
541 
542   // Create a marker to make it easy to insert allocas into the entryblock
543   // later.  Don't create this with the builder, because we don't want it
544   // folded.
545   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
546   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
547   if (Builder.isNamePreserving())
548     AllocaInsertPt->setName("allocapt");
549 
550   ReturnBlock = getJumpDestInCurrentScope("return");
551 
552   Builder.SetInsertPoint(EntryBB);
553 
554   // Emit subprogram debug descriptor.
555   if (CGDebugInfo *DI = getDebugInfo()) {
556     SmallVector<QualType, 16> ArgTypes;
557     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
558 	 i != e; ++i) {
559       ArgTypes.push_back((*i)->getType());
560     }
561 
562     QualType FnType =
563       getContext().getFunctionType(RetTy, ArgTypes,
564                                    FunctionProtoType::ExtProtoInfo());
565 
566     DI->setLocation(StartLoc);
567     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
568   }
569 
570   if (ShouldInstrumentFunction())
571     EmitFunctionInstrumentation("__cyg_profile_func_enter");
572 
573   if (CGM.getCodeGenOpts().InstrumentForProfiling)
574     EmitMCountInstrumentation();
575 
576   if (RetTy->isVoidType()) {
577     // Void type; nothing to return.
578     ReturnValue = 0;
579   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
580              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
581     // Indirect aggregate return; emit returned value directly into sret slot.
582     // This reduces code size, and affects correctness in C++.
583     ReturnValue = CurFn->arg_begin();
584   } else {
585     ReturnValue = CreateIRTemp(RetTy, "retval");
586 
587     // Tell the epilog emitter to autorelease the result.  We do this
588     // now so that various specialized functions can suppress it
589     // during their IR-generation.
590     if (getLangOpts().ObjCAutoRefCount &&
591         !CurFnInfo->isReturnsRetained() &&
592         RetTy->isObjCRetainableType())
593       AutoreleaseResult = true;
594   }
595 
596   EmitStartEHSpec(CurCodeDecl);
597 
598   PrologueCleanupDepth = EHStack.stable_begin();
599   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
600 
601   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
602     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
603     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
604     if (MD->getParent()->isLambda() &&
605         MD->getOverloadedOperator() == OO_Call) {
606       // We're in a lambda; figure out the captures.
607       MD->getParent()->getCaptureFields(LambdaCaptureFields,
608                                         LambdaThisCaptureField);
609       if (LambdaThisCaptureField) {
610         // If this lambda captures this, load it.
611         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
612         CXXThisValue = EmitLoadOfLValue(ThisLValue,
613                                         SourceLocation()).getScalarVal();
614       }
615     } else {
616       // Not in a lambda; just use 'this' from the method.
617       // FIXME: Should we generate a new load for each use of 'this'?  The
618       // fast register allocator would be happier...
619       CXXThisValue = CXXABIThisValue;
620     }
621   }
622 
623   // If any of the arguments have a variably modified type, make sure to
624   // emit the type size.
625   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
626        i != e; ++i) {
627     const VarDecl *VD = *i;
628 
629     // Dig out the type as written from ParmVarDecls; it's unclear whether
630     // the standard (C99 6.9.1p10) requires this, but we're following the
631     // precedent set by gcc.
632     QualType Ty;
633     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
634       Ty = PVD->getOriginalType();
635     else
636       Ty = VD->getType();
637 
638     if (Ty->isVariablyModifiedType())
639       EmitVariablyModifiedType(Ty);
640   }
641   // Emit a location at the end of the prologue.
642   if (CGDebugInfo *DI = getDebugInfo())
643     DI->EmitLocation(Builder, StartLoc);
644 }
645 
646 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
647   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
648   assert(FD->getBody());
649   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
650     EmitCompoundStmtWithoutScope(*S);
651   else
652     EmitStmt(FD->getBody());
653 }
654 
655 /// Tries to mark the given function nounwind based on the
656 /// non-existence of any throwing calls within it.  We believe this is
657 /// lightweight enough to do at -O0.
658 static void TryMarkNoThrow(llvm::Function *F) {
659   // LLVM treats 'nounwind' on a function as part of the type, so we
660   // can't do this on functions that can be overwritten.
661   if (F->mayBeOverridden()) return;
662 
663   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
664     for (llvm::BasicBlock::iterator
665            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
666       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
667         if (!Call->doesNotThrow())
668           return;
669       } else if (isa<llvm::ResumeInst>(&*BI)) {
670         return;
671       }
672   F->setDoesNotThrow();
673 }
674 
675 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
676                                    const CGFunctionInfo &FnInfo) {
677   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
678 
679   // Check if we should generate debug info for this function.
680   if (FD->hasAttr<NoDebugAttr>())
681     DebugInfo = NULL; // disable debug info indefinitely for this function
682 
683   FunctionArgList Args;
684   QualType ResTy = FD->getResultType();
685 
686   CurGD = GD;
687   const CXXMethodDecl *MD;
688   if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) {
689     if (CGM.getCXXABI().HasThisReturn(GD))
690       ResTy = MD->getThisType(getContext());
691     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
692   }
693 
694   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
695     Args.push_back(FD->getParamDecl(i));
696 
697   SourceRange BodyRange;
698   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
699   CurEHLocation = BodyRange.getEnd();
700 
701   // Emit the standard function prologue.
702   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
703 
704   // Generate the body of the function.
705   if (isa<CXXDestructorDecl>(FD))
706     EmitDestructorBody(Args);
707   else if (isa<CXXConstructorDecl>(FD))
708     EmitConstructorBody(Args);
709   else if (getLangOpts().CUDA &&
710            !CGM.getCodeGenOpts().CUDAIsDevice &&
711            FD->hasAttr<CUDAGlobalAttr>())
712     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
713   else if (isa<CXXConversionDecl>(FD) &&
714            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
715     // The lambda conversion to block pointer is special; the semantics can't be
716     // expressed in the AST, so IRGen needs to special-case it.
717     EmitLambdaToBlockPointerBody(Args);
718   } else if (isa<CXXMethodDecl>(FD) &&
719              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
720     // The lambda static invoker function is special, because it forwards or
721     // clones the body of the function call operator (but is actually static).
722     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
723   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
724              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
725               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
726     // Implicit copy-assignment gets the same special treatment as implicit
727     // copy-constructors.
728     emitImplicitAssignmentOperatorBody(Args);
729   }
730   else
731     EmitFunctionBody(Args);
732 
733   // C++11 [stmt.return]p2:
734   //   Flowing off the end of a function [...] results in undefined behavior in
735   //   a value-returning function.
736   // C11 6.9.1p12:
737   //   If the '}' that terminates a function is reached, and the value of the
738   //   function call is used by the caller, the behavior is undefined.
739   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
740       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
741     if (SanOpts->Return)
742       EmitCheck(Builder.getFalse(), "missing_return",
743                 EmitCheckSourceLocation(FD->getLocation()),
744                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
745     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
746       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
747     Builder.CreateUnreachable();
748     Builder.ClearInsertionPoint();
749   }
750 
751   // Emit the standard function epilogue.
752   FinishFunction(BodyRange.getEnd());
753 
754   // If we haven't marked the function nothrow through other means, do
755   // a quick pass now to see if we can.
756   if (!CurFn->doesNotThrow())
757     TryMarkNoThrow(CurFn);
758 }
759 
760 /// ContainsLabel - Return true if the statement contains a label in it.  If
761 /// this statement is not executed normally, it not containing a label means
762 /// that we can just remove the code.
763 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
764   // Null statement, not a label!
765   if (S == 0) return false;
766 
767   // If this is a label, we have to emit the code, consider something like:
768   // if (0) {  ...  foo:  bar(); }  goto foo;
769   //
770   // TODO: If anyone cared, we could track __label__'s, since we know that you
771   // can't jump to one from outside their declared region.
772   if (isa<LabelStmt>(S))
773     return true;
774 
775   // If this is a case/default statement, and we haven't seen a switch, we have
776   // to emit the code.
777   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
778     return true;
779 
780   // If this is a switch statement, we want to ignore cases below it.
781   if (isa<SwitchStmt>(S))
782     IgnoreCaseStmts = true;
783 
784   // Scan subexpressions for verboten labels.
785   for (Stmt::const_child_range I = S->children(); I; ++I)
786     if (ContainsLabel(*I, IgnoreCaseStmts))
787       return true;
788 
789   return false;
790 }
791 
792 /// containsBreak - Return true if the statement contains a break out of it.
793 /// If the statement (recursively) contains a switch or loop with a break
794 /// inside of it, this is fine.
795 bool CodeGenFunction::containsBreak(const Stmt *S) {
796   // Null statement, not a label!
797   if (S == 0) return false;
798 
799   // If this is a switch or loop that defines its own break scope, then we can
800   // include it and anything inside of it.
801   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
802       isa<ForStmt>(S))
803     return false;
804 
805   if (isa<BreakStmt>(S))
806     return true;
807 
808   // Scan subexpressions for verboten breaks.
809   for (Stmt::const_child_range I = S->children(); I; ++I)
810     if (containsBreak(*I))
811       return true;
812 
813   return false;
814 }
815 
816 
817 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
818 /// to a constant, or if it does but contains a label, return false.  If it
819 /// constant folds return true and set the boolean result in Result.
820 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
821                                                    bool &ResultBool) {
822   llvm::APSInt ResultInt;
823   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
824     return false;
825 
826   ResultBool = ResultInt.getBoolValue();
827   return true;
828 }
829 
830 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
831 /// to a constant, or if it does but contains a label, return false.  If it
832 /// constant folds return true and set the folded value.
833 bool CodeGenFunction::
834 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
835   // FIXME: Rename and handle conversion of other evaluatable things
836   // to bool.
837   llvm::APSInt Int;
838   if (!Cond->EvaluateAsInt(Int, getContext()))
839     return false;  // Not foldable, not integer or not fully evaluatable.
840 
841   if (CodeGenFunction::ContainsLabel(Cond))
842     return false;  // Contains a label.
843 
844   ResultInt = Int;
845   return true;
846 }
847 
848 
849 
850 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
851 /// statement) to the specified blocks.  Based on the condition, this might try
852 /// to simplify the codegen of the conditional based on the branch.
853 ///
854 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
855                                            llvm::BasicBlock *TrueBlock,
856                                            llvm::BasicBlock *FalseBlock) {
857   Cond = Cond->IgnoreParens();
858 
859   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
860     // Handle X && Y in a condition.
861     if (CondBOp->getOpcode() == BO_LAnd) {
862       // If we have "1 && X", simplify the code.  "0 && X" would have constant
863       // folded if the case was simple enough.
864       bool ConstantBool = false;
865       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
866           ConstantBool) {
867         // br(1 && X) -> br(X).
868         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
869       }
870 
871       // If we have "X && 1", simplify the code to use an uncond branch.
872       // "X && 0" would have been constant folded to 0.
873       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
874           ConstantBool) {
875         // br(X && 1) -> br(X).
876         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
877       }
878 
879       // Emit the LHS as a conditional.  If the LHS conditional is false, we
880       // want to jump to the FalseBlock.
881       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
882 
883       ConditionalEvaluation eval(*this);
884       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
885       EmitBlock(LHSTrue);
886 
887       // Any temporaries created here are conditional.
888       eval.begin(*this);
889       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
890       eval.end(*this);
891 
892       return;
893     }
894 
895     if (CondBOp->getOpcode() == BO_LOr) {
896       // If we have "0 || X", simplify the code.  "1 || X" would have constant
897       // folded if the case was simple enough.
898       bool ConstantBool = false;
899       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
900           !ConstantBool) {
901         // br(0 || X) -> br(X).
902         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
903       }
904 
905       // If we have "X || 0", simplify the code to use an uncond branch.
906       // "X || 1" would have been constant folded to 1.
907       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
908           !ConstantBool) {
909         // br(X || 0) -> br(X).
910         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
911       }
912 
913       // Emit the LHS as a conditional.  If the LHS conditional is true, we
914       // want to jump to the TrueBlock.
915       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
916 
917       ConditionalEvaluation eval(*this);
918       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
919       EmitBlock(LHSFalse);
920 
921       // Any temporaries created here are conditional.
922       eval.begin(*this);
923       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
924       eval.end(*this);
925 
926       return;
927     }
928   }
929 
930   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
931     // br(!x, t, f) -> br(x, f, t)
932     if (CondUOp->getOpcode() == UO_LNot)
933       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
934   }
935 
936   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
937     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
938     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
939     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
940 
941     ConditionalEvaluation cond(*this);
942     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
943 
944     cond.begin(*this);
945     EmitBlock(LHSBlock);
946     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
947     cond.end(*this);
948 
949     cond.begin(*this);
950     EmitBlock(RHSBlock);
951     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
952     cond.end(*this);
953 
954     return;
955   }
956 
957   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
958     // Conditional operator handling can give us a throw expression as a
959     // condition for a case like:
960     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
961     // Fold this to:
962     //   br(c, throw x, br(y, t, f))
963     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
964     return;
965   }
966 
967   // Emit the code with the fully general case.
968   llvm::Value *CondV = EvaluateExprAsBool(Cond);
969   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
970 }
971 
972 /// ErrorUnsupported - Print out an error that codegen doesn't support the
973 /// specified stmt yet.
974 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
975   CGM.ErrorUnsupported(S, Type);
976 }
977 
978 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
979 /// variable-length array whose elements have a non-zero bit-pattern.
980 ///
981 /// \param baseType the inner-most element type of the array
982 /// \param src - a char* pointing to the bit-pattern for a single
983 /// base element of the array
984 /// \param sizeInChars - the total size of the VLA, in chars
985 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
986                                llvm::Value *dest, llvm::Value *src,
987                                llvm::Value *sizeInChars) {
988   std::pair<CharUnits,CharUnits> baseSizeAndAlign
989     = CGF.getContext().getTypeInfoInChars(baseType);
990 
991   CGBuilderTy &Builder = CGF.Builder;
992 
993   llvm::Value *baseSizeInChars
994     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
995 
996   llvm::Type *i8p = Builder.getInt8PtrTy();
997 
998   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
999   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1000 
1001   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1002   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1003   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1004 
1005   // Make a loop over the VLA.  C99 guarantees that the VLA element
1006   // count must be nonzero.
1007   CGF.EmitBlock(loopBB);
1008 
1009   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1010   cur->addIncoming(begin, originBB);
1011 
1012   // memcpy the individual element bit-pattern.
1013   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1014                        baseSizeAndAlign.second.getQuantity(),
1015                        /*volatile*/ false);
1016 
1017   // Go to the next element.
1018   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1019 
1020   // Leave if that's the end of the VLA.
1021   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1022   Builder.CreateCondBr(done, contBB, loopBB);
1023   cur->addIncoming(next, loopBB);
1024 
1025   CGF.EmitBlock(contBB);
1026 }
1027 
1028 void
1029 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1030   // Ignore empty classes in C++.
1031   if (getLangOpts().CPlusPlus) {
1032     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1033       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1034         return;
1035     }
1036   }
1037 
1038   // Cast the dest ptr to the appropriate i8 pointer type.
1039   unsigned DestAS =
1040     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1041   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1042   if (DestPtr->getType() != BP)
1043     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1044 
1045   // Get size and alignment info for this aggregate.
1046   std::pair<CharUnits, CharUnits> TypeInfo =
1047     getContext().getTypeInfoInChars(Ty);
1048   CharUnits Size = TypeInfo.first;
1049   CharUnits Align = TypeInfo.second;
1050 
1051   llvm::Value *SizeVal;
1052   const VariableArrayType *vla;
1053 
1054   // Don't bother emitting a zero-byte memset.
1055   if (Size.isZero()) {
1056     // But note that getTypeInfo returns 0 for a VLA.
1057     if (const VariableArrayType *vlaType =
1058           dyn_cast_or_null<VariableArrayType>(
1059                                           getContext().getAsArrayType(Ty))) {
1060       QualType eltType;
1061       llvm::Value *numElts;
1062       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1063 
1064       SizeVal = numElts;
1065       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1066       if (!eltSize.isOne())
1067         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1068       vla = vlaType;
1069     } else {
1070       return;
1071     }
1072   } else {
1073     SizeVal = CGM.getSize(Size);
1074     vla = 0;
1075   }
1076 
1077   // If the type contains a pointer to data member we can't memset it to zero.
1078   // Instead, create a null constant and copy it to the destination.
1079   // TODO: there are other patterns besides zero that we can usefully memset,
1080   // like -1, which happens to be the pattern used by member-pointers.
1081   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1082     // For a VLA, emit a single element, then splat that over the VLA.
1083     if (vla) Ty = getContext().getBaseElementType(vla);
1084 
1085     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1086 
1087     llvm::GlobalVariable *NullVariable =
1088       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1089                                /*isConstant=*/true,
1090                                llvm::GlobalVariable::PrivateLinkage,
1091                                NullConstant, Twine());
1092     llvm::Value *SrcPtr =
1093       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1094 
1095     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1096 
1097     // Get and call the appropriate llvm.memcpy overload.
1098     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1099     return;
1100   }
1101 
1102   // Otherwise, just memset the whole thing to zero.  This is legal
1103   // because in LLVM, all default initializers (other than the ones we just
1104   // handled above) are guaranteed to have a bit pattern of all zeros.
1105   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1106                        Align.getQuantity(), false);
1107 }
1108 
1109 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1110   // Make sure that there is a block for the indirect goto.
1111   if (IndirectBranch == 0)
1112     GetIndirectGotoBlock();
1113 
1114   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1115 
1116   // Make sure the indirect branch includes all of the address-taken blocks.
1117   IndirectBranch->addDestination(BB);
1118   return llvm::BlockAddress::get(CurFn, BB);
1119 }
1120 
1121 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1122   // If we already made the indirect branch for indirect goto, return its block.
1123   if (IndirectBranch) return IndirectBranch->getParent();
1124 
1125   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1126 
1127   // Create the PHI node that indirect gotos will add entries to.
1128   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1129                                               "indirect.goto.dest");
1130 
1131   // Create the indirect branch instruction.
1132   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1133   return IndirectBranch->getParent();
1134 }
1135 
1136 /// Computes the length of an array in elements, as well as the base
1137 /// element type and a properly-typed first element pointer.
1138 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1139                                               QualType &baseType,
1140                                               llvm::Value *&addr) {
1141   const ArrayType *arrayType = origArrayType;
1142 
1143   // If it's a VLA, we have to load the stored size.  Note that
1144   // this is the size of the VLA in bytes, not its size in elements.
1145   llvm::Value *numVLAElements = 0;
1146   if (isa<VariableArrayType>(arrayType)) {
1147     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1148 
1149     // Walk into all VLAs.  This doesn't require changes to addr,
1150     // which has type T* where T is the first non-VLA element type.
1151     do {
1152       QualType elementType = arrayType->getElementType();
1153       arrayType = getContext().getAsArrayType(elementType);
1154 
1155       // If we only have VLA components, 'addr' requires no adjustment.
1156       if (!arrayType) {
1157         baseType = elementType;
1158         return numVLAElements;
1159       }
1160     } while (isa<VariableArrayType>(arrayType));
1161 
1162     // We get out here only if we find a constant array type
1163     // inside the VLA.
1164   }
1165 
1166   // We have some number of constant-length arrays, so addr should
1167   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1168   // down to the first element of addr.
1169   SmallVector<llvm::Value*, 8> gepIndices;
1170 
1171   // GEP down to the array type.
1172   llvm::ConstantInt *zero = Builder.getInt32(0);
1173   gepIndices.push_back(zero);
1174 
1175   uint64_t countFromCLAs = 1;
1176   QualType eltType;
1177 
1178   llvm::ArrayType *llvmArrayType =
1179     dyn_cast<llvm::ArrayType>(
1180       cast<llvm::PointerType>(addr->getType())->getElementType());
1181   while (llvmArrayType) {
1182     assert(isa<ConstantArrayType>(arrayType));
1183     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1184              == llvmArrayType->getNumElements());
1185 
1186     gepIndices.push_back(zero);
1187     countFromCLAs *= llvmArrayType->getNumElements();
1188     eltType = arrayType->getElementType();
1189 
1190     llvmArrayType =
1191       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1192     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1193     assert((!llvmArrayType || arrayType) &&
1194            "LLVM and Clang types are out-of-synch");
1195   }
1196 
1197   if (arrayType) {
1198     // From this point onwards, the Clang array type has been emitted
1199     // as some other type (probably a packed struct). Compute the array
1200     // size, and just emit the 'begin' expression as a bitcast.
1201     while (arrayType) {
1202       countFromCLAs *=
1203           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1204       eltType = arrayType->getElementType();
1205       arrayType = getContext().getAsArrayType(eltType);
1206     }
1207 
1208     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1209     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1210     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1211   } else {
1212     // Create the actual GEP.
1213     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1214   }
1215 
1216   baseType = eltType;
1217 
1218   llvm::Value *numElements
1219     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1220 
1221   // If we had any VLA dimensions, factor them in.
1222   if (numVLAElements)
1223     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1224 
1225   return numElements;
1226 }
1227 
1228 std::pair<llvm::Value*, QualType>
1229 CodeGenFunction::getVLASize(QualType type) {
1230   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1231   assert(vla && "type was not a variable array type!");
1232   return getVLASize(vla);
1233 }
1234 
1235 std::pair<llvm::Value*, QualType>
1236 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1237   // The number of elements so far; always size_t.
1238   llvm::Value *numElements = 0;
1239 
1240   QualType elementType;
1241   do {
1242     elementType = type->getElementType();
1243     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1244     assert(vlaSize && "no size for VLA!");
1245     assert(vlaSize->getType() == SizeTy);
1246 
1247     if (!numElements) {
1248       numElements = vlaSize;
1249     } else {
1250       // It's undefined behavior if this wraps around, so mark it that way.
1251       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1252       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1253     }
1254   } while ((type = getContext().getAsVariableArrayType(elementType)));
1255 
1256   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1257 }
1258 
1259 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1260   assert(type->isVariablyModifiedType() &&
1261          "Must pass variably modified type to EmitVLASizes!");
1262 
1263   EnsureInsertPoint();
1264 
1265   // We're going to walk down into the type and look for VLA
1266   // expressions.
1267   do {
1268     assert(type->isVariablyModifiedType());
1269 
1270     const Type *ty = type.getTypePtr();
1271     switch (ty->getTypeClass()) {
1272 
1273 #define TYPE(Class, Base)
1274 #define ABSTRACT_TYPE(Class, Base)
1275 #define NON_CANONICAL_TYPE(Class, Base)
1276 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1277 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1278 #include "clang/AST/TypeNodes.def"
1279       llvm_unreachable("unexpected dependent type!");
1280 
1281     // These types are never variably-modified.
1282     case Type::Builtin:
1283     case Type::Complex:
1284     case Type::Vector:
1285     case Type::ExtVector:
1286     case Type::Record:
1287     case Type::Enum:
1288     case Type::Elaborated:
1289     case Type::TemplateSpecialization:
1290     case Type::ObjCObject:
1291     case Type::ObjCInterface:
1292     case Type::ObjCObjectPointer:
1293       llvm_unreachable("type class is never variably-modified!");
1294 
1295     case Type::Decayed:
1296       type = cast<DecayedType>(ty)->getPointeeType();
1297       break;
1298 
1299     case Type::Pointer:
1300       type = cast<PointerType>(ty)->getPointeeType();
1301       break;
1302 
1303     case Type::BlockPointer:
1304       type = cast<BlockPointerType>(ty)->getPointeeType();
1305       break;
1306 
1307     case Type::LValueReference:
1308     case Type::RValueReference:
1309       type = cast<ReferenceType>(ty)->getPointeeType();
1310       break;
1311 
1312     case Type::MemberPointer:
1313       type = cast<MemberPointerType>(ty)->getPointeeType();
1314       break;
1315 
1316     case Type::ConstantArray:
1317     case Type::IncompleteArray:
1318       // Losing element qualification here is fine.
1319       type = cast<ArrayType>(ty)->getElementType();
1320       break;
1321 
1322     case Type::VariableArray: {
1323       // Losing element qualification here is fine.
1324       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1325 
1326       // Unknown size indication requires no size computation.
1327       // Otherwise, evaluate and record it.
1328       if (const Expr *size = vat->getSizeExpr()) {
1329         // It's possible that we might have emitted this already,
1330         // e.g. with a typedef and a pointer to it.
1331         llvm::Value *&entry = VLASizeMap[size];
1332         if (!entry) {
1333           llvm::Value *Size = EmitScalarExpr(size);
1334 
1335           // C11 6.7.6.2p5:
1336           //   If the size is an expression that is not an integer constant
1337           //   expression [...] each time it is evaluated it shall have a value
1338           //   greater than zero.
1339           if (SanOpts->VLABound &&
1340               size->getType()->isSignedIntegerType()) {
1341             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1342             llvm::Constant *StaticArgs[] = {
1343               EmitCheckSourceLocation(size->getLocStart()),
1344               EmitCheckTypeDescriptor(size->getType())
1345             };
1346             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1347                       "vla_bound_not_positive", StaticArgs, Size,
1348                       CRK_Recoverable);
1349           }
1350 
1351           // Always zexting here would be wrong if it weren't
1352           // undefined behavior to have a negative bound.
1353           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1354         }
1355       }
1356       type = vat->getElementType();
1357       break;
1358     }
1359 
1360     case Type::FunctionProto:
1361     case Type::FunctionNoProto:
1362       type = cast<FunctionType>(ty)->getResultType();
1363       break;
1364 
1365     case Type::Paren:
1366     case Type::TypeOf:
1367     case Type::UnaryTransform:
1368     case Type::Attributed:
1369     case Type::SubstTemplateTypeParm:
1370     case Type::PackExpansion:
1371       // Keep walking after single level desugaring.
1372       type = type.getSingleStepDesugaredType(getContext());
1373       break;
1374 
1375     case Type::Typedef:
1376     case Type::Decltype:
1377     case Type::Auto:
1378       // Stop walking: nothing to do.
1379       return;
1380 
1381     case Type::TypeOfExpr:
1382       // Stop walking: emit typeof expression.
1383       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1384       return;
1385 
1386     case Type::Atomic:
1387       type = cast<AtomicType>(ty)->getValueType();
1388       break;
1389     }
1390   } while (type->isVariablyModifiedType());
1391 }
1392 
1393 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1394   if (getContext().getBuiltinVaListType()->isArrayType())
1395     return EmitScalarExpr(E);
1396   return EmitLValue(E).getAddress();
1397 }
1398 
1399 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1400                                               llvm::Constant *Init) {
1401   assert (Init && "Invalid DeclRefExpr initializer!");
1402   if (CGDebugInfo *Dbg = getDebugInfo())
1403     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1404       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1405 }
1406 
1407 CodeGenFunction::PeepholeProtection
1408 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1409   // At the moment, the only aggressive peephole we do in IR gen
1410   // is trunc(zext) folding, but if we add more, we can easily
1411   // extend this protection.
1412 
1413   if (!rvalue.isScalar()) return PeepholeProtection();
1414   llvm::Value *value = rvalue.getScalarVal();
1415   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1416 
1417   // Just make an extra bitcast.
1418   assert(HaveInsertPoint());
1419   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1420                                                   Builder.GetInsertBlock());
1421 
1422   PeepholeProtection protection;
1423   protection.Inst = inst;
1424   return protection;
1425 }
1426 
1427 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1428   if (!protection.Inst) return;
1429 
1430   // In theory, we could try to duplicate the peepholes now, but whatever.
1431   protection.Inst->eraseFromParent();
1432 }
1433 
1434 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1435                                                  llvm::Value *AnnotatedVal,
1436                                                  StringRef AnnotationStr,
1437                                                  SourceLocation Location) {
1438   llvm::Value *Args[4] = {
1439     AnnotatedVal,
1440     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1441     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1442     CGM.EmitAnnotationLineNo(Location)
1443   };
1444   return Builder.CreateCall(AnnotationFn, Args);
1445 }
1446 
1447 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1448   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1449   // FIXME We create a new bitcast for every annotation because that's what
1450   // llvm-gcc was doing.
1451   for (specific_attr_iterator<AnnotateAttr>
1452        ai = D->specific_attr_begin<AnnotateAttr>(),
1453        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1454     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1455                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1456                        (*ai)->getAnnotation(), D->getLocation());
1457 }
1458 
1459 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1460                                                    llvm::Value *V) {
1461   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1462   llvm::Type *VTy = V->getType();
1463   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1464                                     CGM.Int8PtrTy);
1465 
1466   for (specific_attr_iterator<AnnotateAttr>
1467        ai = D->specific_attr_begin<AnnotateAttr>(),
1468        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1469     // FIXME Always emit the cast inst so we can differentiate between
1470     // annotation on the first field of a struct and annotation on the struct
1471     // itself.
1472     if (VTy != CGM.Int8PtrTy)
1473       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1474     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1475     V = Builder.CreateBitCast(V, VTy);
1476   }
1477 
1478   return V;
1479 }
1480 
1481 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1482