1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/OpenCL.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Operator.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 36 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 37 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 38 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 39 CGM.getSanOpts().Alignment | 40 CGM.getSanOpts().ObjectSize | 41 CGM.getSanOpts().Vptr), 42 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 43 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 44 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 45 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 46 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 47 SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 48 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 49 CXXThisValue(0), CXXDefaultInitExprThis(0), 50 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 51 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 52 TerminateHandler(0), TrapBB(0) { 53 if (!suppressNewContext) 54 CGM.getCXXABI().getMangleContext().startNewFunction(); 55 56 llvm::FastMathFlags FMF; 57 if (CGM.getLangOpts().FastMath) 58 FMF.setUnsafeAlgebra(); 59 if (CGM.getLangOpts().FiniteMathOnly) { 60 FMF.setNoNaNs(); 61 FMF.setNoInfs(); 62 } 63 Builder.SetFastMathFlags(FMF); 64 } 65 66 CodeGenFunction::~CodeGenFunction() { 67 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 68 69 // If there are any unclaimed block infos, go ahead and destroy them 70 // now. This can happen if IR-gen gets clever and skips evaluating 71 // something. 72 if (FirstBlockInfo) 73 destroyBlockInfos(FirstBlockInfo); 74 } 75 76 77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 78 return CGM.getTypes().ConvertTypeForMem(T); 79 } 80 81 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 82 return CGM.getTypes().ConvertType(T); 83 } 84 85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 86 type = type.getCanonicalType(); 87 while (true) { 88 switch (type->getTypeClass()) { 89 #define TYPE(name, parent) 90 #define ABSTRACT_TYPE(name, parent) 91 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 92 #define DEPENDENT_TYPE(name, parent) case Type::name: 93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 94 #include "clang/AST/TypeNodes.def" 95 llvm_unreachable("non-canonical or dependent type in IR-generation"); 96 97 case Type::Auto: 98 llvm_unreachable("undeduced auto type in IR-generation"); 99 100 // Various scalar types. 101 case Type::Builtin: 102 case Type::Pointer: 103 case Type::BlockPointer: 104 case Type::LValueReference: 105 case Type::RValueReference: 106 case Type::MemberPointer: 107 case Type::Vector: 108 case Type::ExtVector: 109 case Type::FunctionProto: 110 case Type::FunctionNoProto: 111 case Type::Enum: 112 case Type::ObjCObjectPointer: 113 return TEK_Scalar; 114 115 // Complexes. 116 case Type::Complex: 117 return TEK_Complex; 118 119 // Arrays, records, and Objective-C objects. 120 case Type::ConstantArray: 121 case Type::IncompleteArray: 122 case Type::VariableArray: 123 case Type::Record: 124 case Type::ObjCObject: 125 case Type::ObjCInterface: 126 return TEK_Aggregate; 127 128 // We operate on atomic values according to their underlying type. 129 case Type::Atomic: 130 type = cast<AtomicType>(type)->getValueType(); 131 continue; 132 } 133 llvm_unreachable("unknown type kind!"); 134 } 135 } 136 137 void CodeGenFunction::EmitReturnBlock() { 138 // For cleanliness, we try to avoid emitting the return block for 139 // simple cases. 140 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 141 142 if (CurBB) { 143 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 144 145 // We have a valid insert point, reuse it if it is empty or there are no 146 // explicit jumps to the return block. 147 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 148 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 149 delete ReturnBlock.getBlock(); 150 } else 151 EmitBlock(ReturnBlock.getBlock()); 152 return; 153 } 154 155 // Otherwise, if the return block is the target of a single direct 156 // branch then we can just put the code in that block instead. This 157 // cleans up functions which started with a unified return block. 158 if (ReturnBlock.getBlock()->hasOneUse()) { 159 llvm::BranchInst *BI = 160 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 161 if (BI && BI->isUnconditional() && 162 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 163 // Reset insertion point, including debug location, and delete the 164 // branch. This is really subtle and only works because the next change 165 // in location will hit the caching in CGDebugInfo::EmitLocation and not 166 // override this. 167 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 168 Builder.SetInsertPoint(BI->getParent()); 169 BI->eraseFromParent(); 170 delete ReturnBlock.getBlock(); 171 return; 172 } 173 } 174 175 // FIXME: We are at an unreachable point, there is no reason to emit the block 176 // unless it has uses. However, we still need a place to put the debug 177 // region.end for now. 178 179 EmitBlock(ReturnBlock.getBlock()); 180 } 181 182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 183 if (!BB) return; 184 if (!BB->use_empty()) 185 return CGF.CurFn->getBasicBlockList().push_back(BB); 186 delete BB; 187 } 188 189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 190 assert(BreakContinueStack.empty() && 191 "mismatched push/pop in break/continue stack!"); 192 193 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 194 && NumSimpleReturnExprs == NumReturnExprs 195 && ReturnBlock.getBlock()->use_empty(); 196 // Usually the return expression is evaluated before the cleanup 197 // code. If the function contains only a simple return statement, 198 // such as a constant, the location before the cleanup code becomes 199 // the last useful breakpoint in the function, because the simple 200 // return expression will be evaluated after the cleanup code. To be 201 // safe, set the debug location for cleanup code to the location of 202 // the return statement. Otherwise the cleanup code should be at the 203 // end of the function's lexical scope. 204 // 205 // If there are multiple branches to the return block, the branch 206 // instructions will get the location of the return statements and 207 // all will be fine. 208 if (CGDebugInfo *DI = getDebugInfo()) { 209 if (OnlySimpleReturnStmts) 210 DI->EmitLocation(Builder, LastStopPoint); 211 else 212 DI->EmitLocation(Builder, EndLoc); 213 } 214 215 // Pop any cleanups that might have been associated with the 216 // parameters. Do this in whatever block we're currently in; it's 217 // important to do this before we enter the return block or return 218 // edges will be *really* confused. 219 bool EmitRetDbgLoc = true; 220 if (EHStack.stable_begin() != PrologueCleanupDepth) { 221 PopCleanupBlocks(PrologueCleanupDepth); 222 223 // Make sure the line table doesn't jump back into the body for 224 // the ret after it's been at EndLoc. 225 EmitRetDbgLoc = false; 226 227 if (CGDebugInfo *DI = getDebugInfo()) 228 if (OnlySimpleReturnStmts) 229 DI->EmitLocation(Builder, EndLoc); 230 } 231 232 // Emit function epilog (to return). 233 EmitReturnBlock(); 234 235 if (ShouldInstrumentFunction()) 236 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 237 238 // Emit debug descriptor for function end. 239 if (CGDebugInfo *DI = getDebugInfo()) { 240 DI->EmitFunctionEnd(Builder); 241 } 242 243 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 244 EmitEndEHSpec(CurCodeDecl); 245 246 assert(EHStack.empty() && 247 "did not remove all scopes from cleanup stack!"); 248 249 // If someone did an indirect goto, emit the indirect goto block at the end of 250 // the function. 251 if (IndirectBranch) { 252 EmitBlock(IndirectBranch->getParent()); 253 Builder.ClearInsertionPoint(); 254 } 255 256 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 257 llvm::Instruction *Ptr = AllocaInsertPt; 258 AllocaInsertPt = 0; 259 Ptr->eraseFromParent(); 260 261 // If someone took the address of a label but never did an indirect goto, we 262 // made a zero entry PHI node, which is illegal, zap it now. 263 if (IndirectBranch) { 264 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 265 if (PN->getNumIncomingValues() == 0) { 266 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 267 PN->eraseFromParent(); 268 } 269 } 270 271 EmitIfUsed(*this, EHResumeBlock); 272 EmitIfUsed(*this, TerminateLandingPad); 273 EmitIfUsed(*this, TerminateHandler); 274 EmitIfUsed(*this, UnreachableBlock); 275 276 if (CGM.getCodeGenOpts().EmitDeclMetadata) 277 EmitDeclMetadata(); 278 } 279 280 /// ShouldInstrumentFunction - Return true if the current function should be 281 /// instrumented with __cyg_profile_func_* calls 282 bool CodeGenFunction::ShouldInstrumentFunction() { 283 if (!CGM.getCodeGenOpts().InstrumentFunctions) 284 return false; 285 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 286 return false; 287 return true; 288 } 289 290 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 291 /// instrumentation function with the current function and the call site, if 292 /// function instrumentation is enabled. 293 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 294 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 295 llvm::PointerType *PointerTy = Int8PtrTy; 296 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 297 llvm::FunctionType *FunctionTy = 298 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 299 300 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 301 llvm::CallInst *CallSite = Builder.CreateCall( 302 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 303 llvm::ConstantInt::get(Int32Ty, 0), 304 "callsite"); 305 306 llvm::Value *args[] = { 307 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 308 CallSite 309 }; 310 311 EmitNounwindRuntimeCall(F, args); 312 } 313 314 void CodeGenFunction::EmitMCountInstrumentation() { 315 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 316 317 llvm::Constant *MCountFn = 318 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 319 EmitNounwindRuntimeCall(MCountFn); 320 } 321 322 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 323 // information in the program executable. The argument information stored 324 // includes the argument name, its type, the address and access qualifiers used. 325 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 326 CodeGenModule &CGM,llvm::LLVMContext &Context, 327 SmallVector <llvm::Value*, 5> &kernelMDArgs, 328 CGBuilderTy& Builder, ASTContext &ASTCtx) { 329 // Create MDNodes that represent the kernel arg metadata. 330 // Each MDNode is a list in the form of "key", N number of values which is 331 // the same number of values as their are kernel arguments. 332 333 // MDNode for the kernel argument address space qualifiers. 334 SmallVector<llvm::Value*, 8> addressQuals; 335 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 336 337 // MDNode for the kernel argument access qualifiers (images only). 338 SmallVector<llvm::Value*, 8> accessQuals; 339 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 340 341 // MDNode for the kernel argument type names. 342 SmallVector<llvm::Value*, 8> argTypeNames; 343 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 344 345 // MDNode for the kernel argument type qualifiers. 346 SmallVector<llvm::Value*, 8> argTypeQuals; 347 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 348 349 // MDNode for the kernel argument names. 350 SmallVector<llvm::Value*, 8> argNames; 351 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 352 353 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 354 const ParmVarDecl *parm = FD->getParamDecl(i); 355 QualType ty = parm->getType(); 356 std::string typeQuals; 357 358 if (ty->isPointerType()) { 359 QualType pointeeTy = ty->getPointeeType(); 360 361 // Get address qualifier. 362 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 363 pointeeTy.getAddressSpace()))); 364 365 // Get argument type name. 366 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 367 368 // Turn "unsigned type" to "utype" 369 std::string::size_type pos = typeName.find("unsigned"); 370 if (pos != std::string::npos) 371 typeName.erase(pos+1, 8); 372 373 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 374 375 // Get argument type qualifiers: 376 if (ty.isRestrictQualified()) 377 typeQuals = "restrict"; 378 if (pointeeTy.isConstQualified() || 379 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 380 typeQuals += typeQuals.empty() ? "const" : " const"; 381 if (pointeeTy.isVolatileQualified()) 382 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 383 } else { 384 addressQuals.push_back(Builder.getInt32(0)); 385 386 // Get argument type name. 387 std::string typeName = ty.getUnqualifiedType().getAsString(); 388 389 // Turn "unsigned type" to "utype" 390 std::string::size_type pos = typeName.find("unsigned"); 391 if (pos != std::string::npos) 392 typeName.erase(pos+1, 8); 393 394 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 395 396 // Get argument type qualifiers: 397 if (ty.isConstQualified()) 398 typeQuals = "const"; 399 if (ty.isVolatileQualified()) 400 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 401 } 402 403 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 404 405 // Get image access qualifier: 406 if (ty->isImageType()) { 407 if (parm->hasAttr<OpenCLImageAccessAttr>() && 408 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 409 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 410 else 411 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 412 } else 413 accessQuals.push_back(llvm::MDString::get(Context, "none")); 414 415 // Get argument name. 416 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 417 } 418 419 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 420 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 421 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 422 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 423 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 424 } 425 426 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 427 llvm::Function *Fn) 428 { 429 if (!FD->hasAttr<OpenCLKernelAttr>()) 430 return; 431 432 llvm::LLVMContext &Context = getLLVMContext(); 433 434 SmallVector <llvm::Value*, 5> kernelMDArgs; 435 kernelMDArgs.push_back(Fn); 436 437 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 438 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 439 Builder, getContext()); 440 441 if (FD->hasAttr<VecTypeHintAttr>()) { 442 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 443 QualType hintQTy = attr->getTypeHint(); 444 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 445 bool isSignedInteger = 446 hintQTy->isSignedIntegerType() || 447 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 448 llvm::Value *attrMDArgs[] = { 449 llvm::MDString::get(Context, "vec_type_hint"), 450 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 451 llvm::ConstantInt::get( 452 llvm::IntegerType::get(Context, 32), 453 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 454 }; 455 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 456 } 457 458 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 459 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 460 llvm::Value *attrMDArgs[] = { 461 llvm::MDString::get(Context, "work_group_size_hint"), 462 Builder.getInt32(attr->getXDim()), 463 Builder.getInt32(attr->getYDim()), 464 Builder.getInt32(attr->getZDim()) 465 }; 466 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 467 } 468 469 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 470 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 471 llvm::Value *attrMDArgs[] = { 472 llvm::MDString::get(Context, "reqd_work_group_size"), 473 Builder.getInt32(attr->getXDim()), 474 Builder.getInt32(attr->getYDim()), 475 Builder.getInt32(attr->getZDim()) 476 }; 477 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 478 } 479 480 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 481 llvm::NamedMDNode *OpenCLKernelMetadata = 482 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 483 OpenCLKernelMetadata->addOperand(kernelMDNode); 484 } 485 486 void CodeGenFunction::StartFunction(GlobalDecl GD, 487 QualType RetTy, 488 llvm::Function *Fn, 489 const CGFunctionInfo &FnInfo, 490 const FunctionArgList &Args, 491 SourceLocation StartLoc) { 492 const Decl *D = GD.getDecl(); 493 494 DidCallStackSave = false; 495 CurCodeDecl = D; 496 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 497 FnRetTy = RetTy; 498 CurFn = Fn; 499 CurFnInfo = &FnInfo; 500 assert(CurFn->isDeclaration() && "Function already has body?"); 501 502 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 503 SanOpts = &SanitizerOptions::Disabled; 504 SanitizePerformTypeCheck = false; 505 } 506 507 // Pass inline keyword to optimizer if it appears explicitly on any 508 // declaration. 509 if (!CGM.getCodeGenOpts().NoInline) 510 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 511 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 512 RE = FD->redecls_end(); RI != RE; ++RI) 513 if (RI->isInlineSpecified()) { 514 Fn->addFnAttr(llvm::Attribute::InlineHint); 515 break; 516 } 517 518 if (getLangOpts().OpenCL) { 519 // Add metadata for a kernel function. 520 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 521 EmitOpenCLKernelMetadata(FD, Fn); 522 } 523 524 // If we are checking function types, emit a function type signature as 525 // prefix data. 526 if (getLangOpts().CPlusPlus && SanOpts->Function) { 527 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 528 if (llvm::Constant *PrefixSig = 529 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 530 llvm::Constant *FTRTTIConst = 531 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 532 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 533 llvm::Constant *PrefixStructConst = 534 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 535 Fn->setPrefixData(PrefixStructConst); 536 } 537 } 538 } 539 540 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 541 542 // Create a marker to make it easy to insert allocas into the entryblock 543 // later. Don't create this with the builder, because we don't want it 544 // folded. 545 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 546 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 547 if (Builder.isNamePreserving()) 548 AllocaInsertPt->setName("allocapt"); 549 550 ReturnBlock = getJumpDestInCurrentScope("return"); 551 552 Builder.SetInsertPoint(EntryBB); 553 554 // Emit subprogram debug descriptor. 555 if (CGDebugInfo *DI = getDebugInfo()) { 556 SmallVector<QualType, 16> ArgTypes; 557 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 558 i != e; ++i) { 559 ArgTypes.push_back((*i)->getType()); 560 } 561 562 QualType FnType = 563 getContext().getFunctionType(RetTy, ArgTypes, 564 FunctionProtoType::ExtProtoInfo()); 565 566 DI->setLocation(StartLoc); 567 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 568 } 569 570 if (ShouldInstrumentFunction()) 571 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 572 573 if (CGM.getCodeGenOpts().InstrumentForProfiling) 574 EmitMCountInstrumentation(); 575 576 if (RetTy->isVoidType()) { 577 // Void type; nothing to return. 578 ReturnValue = 0; 579 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 580 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 581 // Indirect aggregate return; emit returned value directly into sret slot. 582 // This reduces code size, and affects correctness in C++. 583 ReturnValue = CurFn->arg_begin(); 584 } else { 585 ReturnValue = CreateIRTemp(RetTy, "retval"); 586 587 // Tell the epilog emitter to autorelease the result. We do this 588 // now so that various specialized functions can suppress it 589 // during their IR-generation. 590 if (getLangOpts().ObjCAutoRefCount && 591 !CurFnInfo->isReturnsRetained() && 592 RetTy->isObjCRetainableType()) 593 AutoreleaseResult = true; 594 } 595 596 EmitStartEHSpec(CurCodeDecl); 597 598 PrologueCleanupDepth = EHStack.stable_begin(); 599 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 600 601 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 602 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 603 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 604 if (MD->getParent()->isLambda() && 605 MD->getOverloadedOperator() == OO_Call) { 606 // We're in a lambda; figure out the captures. 607 MD->getParent()->getCaptureFields(LambdaCaptureFields, 608 LambdaThisCaptureField); 609 if (LambdaThisCaptureField) { 610 // If this lambda captures this, load it. 611 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 612 CXXThisValue = EmitLoadOfLValue(ThisLValue, 613 SourceLocation()).getScalarVal(); 614 } 615 } else { 616 // Not in a lambda; just use 'this' from the method. 617 // FIXME: Should we generate a new load for each use of 'this'? The 618 // fast register allocator would be happier... 619 CXXThisValue = CXXABIThisValue; 620 } 621 } 622 623 // If any of the arguments have a variably modified type, make sure to 624 // emit the type size. 625 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 626 i != e; ++i) { 627 const VarDecl *VD = *i; 628 629 // Dig out the type as written from ParmVarDecls; it's unclear whether 630 // the standard (C99 6.9.1p10) requires this, but we're following the 631 // precedent set by gcc. 632 QualType Ty; 633 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 634 Ty = PVD->getOriginalType(); 635 else 636 Ty = VD->getType(); 637 638 if (Ty->isVariablyModifiedType()) 639 EmitVariablyModifiedType(Ty); 640 } 641 // Emit a location at the end of the prologue. 642 if (CGDebugInfo *DI = getDebugInfo()) 643 DI->EmitLocation(Builder, StartLoc); 644 } 645 646 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 647 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 648 assert(FD->getBody()); 649 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 650 EmitCompoundStmtWithoutScope(*S); 651 else 652 EmitStmt(FD->getBody()); 653 } 654 655 /// Tries to mark the given function nounwind based on the 656 /// non-existence of any throwing calls within it. We believe this is 657 /// lightweight enough to do at -O0. 658 static void TryMarkNoThrow(llvm::Function *F) { 659 // LLVM treats 'nounwind' on a function as part of the type, so we 660 // can't do this on functions that can be overwritten. 661 if (F->mayBeOverridden()) return; 662 663 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 664 for (llvm::BasicBlock::iterator 665 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 666 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 667 if (!Call->doesNotThrow()) 668 return; 669 } else if (isa<llvm::ResumeInst>(&*BI)) { 670 return; 671 } 672 F->setDoesNotThrow(); 673 } 674 675 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 676 const CGFunctionInfo &FnInfo) { 677 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 678 679 // Check if we should generate debug info for this function. 680 if (FD->hasAttr<NoDebugAttr>()) 681 DebugInfo = NULL; // disable debug info indefinitely for this function 682 683 FunctionArgList Args; 684 QualType ResTy = FD->getResultType(); 685 686 CurGD = GD; 687 const CXXMethodDecl *MD; 688 if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) { 689 if (CGM.getCXXABI().HasThisReturn(GD)) 690 ResTy = MD->getThisType(getContext()); 691 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 692 } 693 694 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 695 Args.push_back(FD->getParamDecl(i)); 696 697 SourceRange BodyRange; 698 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 699 CurEHLocation = BodyRange.getEnd(); 700 701 // Emit the standard function prologue. 702 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 703 704 // Generate the body of the function. 705 if (isa<CXXDestructorDecl>(FD)) 706 EmitDestructorBody(Args); 707 else if (isa<CXXConstructorDecl>(FD)) 708 EmitConstructorBody(Args); 709 else if (getLangOpts().CUDA && 710 !CGM.getCodeGenOpts().CUDAIsDevice && 711 FD->hasAttr<CUDAGlobalAttr>()) 712 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 713 else if (isa<CXXConversionDecl>(FD) && 714 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 715 // The lambda conversion to block pointer is special; the semantics can't be 716 // expressed in the AST, so IRGen needs to special-case it. 717 EmitLambdaToBlockPointerBody(Args); 718 } else if (isa<CXXMethodDecl>(FD) && 719 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 720 // The lambda static invoker function is special, because it forwards or 721 // clones the body of the function call operator (but is actually static). 722 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 723 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 724 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 725 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 726 // Implicit copy-assignment gets the same special treatment as implicit 727 // copy-constructors. 728 emitImplicitAssignmentOperatorBody(Args); 729 } 730 else 731 EmitFunctionBody(Args); 732 733 // C++11 [stmt.return]p2: 734 // Flowing off the end of a function [...] results in undefined behavior in 735 // a value-returning function. 736 // C11 6.9.1p12: 737 // If the '}' that terminates a function is reached, and the value of the 738 // function call is used by the caller, the behavior is undefined. 739 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 740 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 741 if (SanOpts->Return) 742 EmitCheck(Builder.getFalse(), "missing_return", 743 EmitCheckSourceLocation(FD->getLocation()), 744 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 745 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 746 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 747 Builder.CreateUnreachable(); 748 Builder.ClearInsertionPoint(); 749 } 750 751 // Emit the standard function epilogue. 752 FinishFunction(BodyRange.getEnd()); 753 754 // If we haven't marked the function nothrow through other means, do 755 // a quick pass now to see if we can. 756 if (!CurFn->doesNotThrow()) 757 TryMarkNoThrow(CurFn); 758 } 759 760 /// ContainsLabel - Return true if the statement contains a label in it. If 761 /// this statement is not executed normally, it not containing a label means 762 /// that we can just remove the code. 763 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 764 // Null statement, not a label! 765 if (S == 0) return false; 766 767 // If this is a label, we have to emit the code, consider something like: 768 // if (0) { ... foo: bar(); } goto foo; 769 // 770 // TODO: If anyone cared, we could track __label__'s, since we know that you 771 // can't jump to one from outside their declared region. 772 if (isa<LabelStmt>(S)) 773 return true; 774 775 // If this is a case/default statement, and we haven't seen a switch, we have 776 // to emit the code. 777 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 778 return true; 779 780 // If this is a switch statement, we want to ignore cases below it. 781 if (isa<SwitchStmt>(S)) 782 IgnoreCaseStmts = true; 783 784 // Scan subexpressions for verboten labels. 785 for (Stmt::const_child_range I = S->children(); I; ++I) 786 if (ContainsLabel(*I, IgnoreCaseStmts)) 787 return true; 788 789 return false; 790 } 791 792 /// containsBreak - Return true if the statement contains a break out of it. 793 /// If the statement (recursively) contains a switch or loop with a break 794 /// inside of it, this is fine. 795 bool CodeGenFunction::containsBreak(const Stmt *S) { 796 // Null statement, not a label! 797 if (S == 0) return false; 798 799 // If this is a switch or loop that defines its own break scope, then we can 800 // include it and anything inside of it. 801 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 802 isa<ForStmt>(S)) 803 return false; 804 805 if (isa<BreakStmt>(S)) 806 return true; 807 808 // Scan subexpressions for verboten breaks. 809 for (Stmt::const_child_range I = S->children(); I; ++I) 810 if (containsBreak(*I)) 811 return true; 812 813 return false; 814 } 815 816 817 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 818 /// to a constant, or if it does but contains a label, return false. If it 819 /// constant folds return true and set the boolean result in Result. 820 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 821 bool &ResultBool) { 822 llvm::APSInt ResultInt; 823 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 824 return false; 825 826 ResultBool = ResultInt.getBoolValue(); 827 return true; 828 } 829 830 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 831 /// to a constant, or if it does but contains a label, return false. If it 832 /// constant folds return true and set the folded value. 833 bool CodeGenFunction:: 834 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 835 // FIXME: Rename and handle conversion of other evaluatable things 836 // to bool. 837 llvm::APSInt Int; 838 if (!Cond->EvaluateAsInt(Int, getContext())) 839 return false; // Not foldable, not integer or not fully evaluatable. 840 841 if (CodeGenFunction::ContainsLabel(Cond)) 842 return false; // Contains a label. 843 844 ResultInt = Int; 845 return true; 846 } 847 848 849 850 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 851 /// statement) to the specified blocks. Based on the condition, this might try 852 /// to simplify the codegen of the conditional based on the branch. 853 /// 854 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 855 llvm::BasicBlock *TrueBlock, 856 llvm::BasicBlock *FalseBlock) { 857 Cond = Cond->IgnoreParens(); 858 859 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 860 // Handle X && Y in a condition. 861 if (CondBOp->getOpcode() == BO_LAnd) { 862 // If we have "1 && X", simplify the code. "0 && X" would have constant 863 // folded if the case was simple enough. 864 bool ConstantBool = false; 865 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 866 ConstantBool) { 867 // br(1 && X) -> br(X). 868 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 869 } 870 871 // If we have "X && 1", simplify the code to use an uncond branch. 872 // "X && 0" would have been constant folded to 0. 873 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 874 ConstantBool) { 875 // br(X && 1) -> br(X). 876 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 877 } 878 879 // Emit the LHS as a conditional. If the LHS conditional is false, we 880 // want to jump to the FalseBlock. 881 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 882 883 ConditionalEvaluation eval(*this); 884 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 885 EmitBlock(LHSTrue); 886 887 // Any temporaries created here are conditional. 888 eval.begin(*this); 889 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 890 eval.end(*this); 891 892 return; 893 } 894 895 if (CondBOp->getOpcode() == BO_LOr) { 896 // If we have "0 || X", simplify the code. "1 || X" would have constant 897 // folded if the case was simple enough. 898 bool ConstantBool = false; 899 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 900 !ConstantBool) { 901 // br(0 || X) -> br(X). 902 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 903 } 904 905 // If we have "X || 0", simplify the code to use an uncond branch. 906 // "X || 1" would have been constant folded to 1. 907 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 908 !ConstantBool) { 909 // br(X || 0) -> br(X). 910 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 911 } 912 913 // Emit the LHS as a conditional. If the LHS conditional is true, we 914 // want to jump to the TrueBlock. 915 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 916 917 ConditionalEvaluation eval(*this); 918 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 919 EmitBlock(LHSFalse); 920 921 // Any temporaries created here are conditional. 922 eval.begin(*this); 923 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 924 eval.end(*this); 925 926 return; 927 } 928 } 929 930 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 931 // br(!x, t, f) -> br(x, f, t) 932 if (CondUOp->getOpcode() == UO_LNot) 933 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 934 } 935 936 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 937 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 938 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 939 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 940 941 ConditionalEvaluation cond(*this); 942 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 943 944 cond.begin(*this); 945 EmitBlock(LHSBlock); 946 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 947 cond.end(*this); 948 949 cond.begin(*this); 950 EmitBlock(RHSBlock); 951 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 952 cond.end(*this); 953 954 return; 955 } 956 957 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 958 // Conditional operator handling can give us a throw expression as a 959 // condition for a case like: 960 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 961 // Fold this to: 962 // br(c, throw x, br(y, t, f)) 963 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 964 return; 965 } 966 967 // Emit the code with the fully general case. 968 llvm::Value *CondV = EvaluateExprAsBool(Cond); 969 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 970 } 971 972 /// ErrorUnsupported - Print out an error that codegen doesn't support the 973 /// specified stmt yet. 974 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 975 CGM.ErrorUnsupported(S, Type); 976 } 977 978 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 979 /// variable-length array whose elements have a non-zero bit-pattern. 980 /// 981 /// \param baseType the inner-most element type of the array 982 /// \param src - a char* pointing to the bit-pattern for a single 983 /// base element of the array 984 /// \param sizeInChars - the total size of the VLA, in chars 985 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 986 llvm::Value *dest, llvm::Value *src, 987 llvm::Value *sizeInChars) { 988 std::pair<CharUnits,CharUnits> baseSizeAndAlign 989 = CGF.getContext().getTypeInfoInChars(baseType); 990 991 CGBuilderTy &Builder = CGF.Builder; 992 993 llvm::Value *baseSizeInChars 994 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 995 996 llvm::Type *i8p = Builder.getInt8PtrTy(); 997 998 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 999 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1000 1001 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1002 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1003 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1004 1005 // Make a loop over the VLA. C99 guarantees that the VLA element 1006 // count must be nonzero. 1007 CGF.EmitBlock(loopBB); 1008 1009 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1010 cur->addIncoming(begin, originBB); 1011 1012 // memcpy the individual element bit-pattern. 1013 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1014 baseSizeAndAlign.second.getQuantity(), 1015 /*volatile*/ false); 1016 1017 // Go to the next element. 1018 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1019 1020 // Leave if that's the end of the VLA. 1021 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1022 Builder.CreateCondBr(done, contBB, loopBB); 1023 cur->addIncoming(next, loopBB); 1024 1025 CGF.EmitBlock(contBB); 1026 } 1027 1028 void 1029 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1030 // Ignore empty classes in C++. 1031 if (getLangOpts().CPlusPlus) { 1032 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1033 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1034 return; 1035 } 1036 } 1037 1038 // Cast the dest ptr to the appropriate i8 pointer type. 1039 unsigned DestAS = 1040 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1041 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1042 if (DestPtr->getType() != BP) 1043 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1044 1045 // Get size and alignment info for this aggregate. 1046 std::pair<CharUnits, CharUnits> TypeInfo = 1047 getContext().getTypeInfoInChars(Ty); 1048 CharUnits Size = TypeInfo.first; 1049 CharUnits Align = TypeInfo.second; 1050 1051 llvm::Value *SizeVal; 1052 const VariableArrayType *vla; 1053 1054 // Don't bother emitting a zero-byte memset. 1055 if (Size.isZero()) { 1056 // But note that getTypeInfo returns 0 for a VLA. 1057 if (const VariableArrayType *vlaType = 1058 dyn_cast_or_null<VariableArrayType>( 1059 getContext().getAsArrayType(Ty))) { 1060 QualType eltType; 1061 llvm::Value *numElts; 1062 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1063 1064 SizeVal = numElts; 1065 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1066 if (!eltSize.isOne()) 1067 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1068 vla = vlaType; 1069 } else { 1070 return; 1071 } 1072 } else { 1073 SizeVal = CGM.getSize(Size); 1074 vla = 0; 1075 } 1076 1077 // If the type contains a pointer to data member we can't memset it to zero. 1078 // Instead, create a null constant and copy it to the destination. 1079 // TODO: there are other patterns besides zero that we can usefully memset, 1080 // like -1, which happens to be the pattern used by member-pointers. 1081 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1082 // For a VLA, emit a single element, then splat that over the VLA. 1083 if (vla) Ty = getContext().getBaseElementType(vla); 1084 1085 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1086 1087 llvm::GlobalVariable *NullVariable = 1088 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1089 /*isConstant=*/true, 1090 llvm::GlobalVariable::PrivateLinkage, 1091 NullConstant, Twine()); 1092 llvm::Value *SrcPtr = 1093 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1094 1095 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1096 1097 // Get and call the appropriate llvm.memcpy overload. 1098 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1099 return; 1100 } 1101 1102 // Otherwise, just memset the whole thing to zero. This is legal 1103 // because in LLVM, all default initializers (other than the ones we just 1104 // handled above) are guaranteed to have a bit pattern of all zeros. 1105 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1106 Align.getQuantity(), false); 1107 } 1108 1109 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1110 // Make sure that there is a block for the indirect goto. 1111 if (IndirectBranch == 0) 1112 GetIndirectGotoBlock(); 1113 1114 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1115 1116 // Make sure the indirect branch includes all of the address-taken blocks. 1117 IndirectBranch->addDestination(BB); 1118 return llvm::BlockAddress::get(CurFn, BB); 1119 } 1120 1121 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1122 // If we already made the indirect branch for indirect goto, return its block. 1123 if (IndirectBranch) return IndirectBranch->getParent(); 1124 1125 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1126 1127 // Create the PHI node that indirect gotos will add entries to. 1128 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1129 "indirect.goto.dest"); 1130 1131 // Create the indirect branch instruction. 1132 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1133 return IndirectBranch->getParent(); 1134 } 1135 1136 /// Computes the length of an array in elements, as well as the base 1137 /// element type and a properly-typed first element pointer. 1138 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1139 QualType &baseType, 1140 llvm::Value *&addr) { 1141 const ArrayType *arrayType = origArrayType; 1142 1143 // If it's a VLA, we have to load the stored size. Note that 1144 // this is the size of the VLA in bytes, not its size in elements. 1145 llvm::Value *numVLAElements = 0; 1146 if (isa<VariableArrayType>(arrayType)) { 1147 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1148 1149 // Walk into all VLAs. This doesn't require changes to addr, 1150 // which has type T* where T is the first non-VLA element type. 1151 do { 1152 QualType elementType = arrayType->getElementType(); 1153 arrayType = getContext().getAsArrayType(elementType); 1154 1155 // If we only have VLA components, 'addr' requires no adjustment. 1156 if (!arrayType) { 1157 baseType = elementType; 1158 return numVLAElements; 1159 } 1160 } while (isa<VariableArrayType>(arrayType)); 1161 1162 // We get out here only if we find a constant array type 1163 // inside the VLA. 1164 } 1165 1166 // We have some number of constant-length arrays, so addr should 1167 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1168 // down to the first element of addr. 1169 SmallVector<llvm::Value*, 8> gepIndices; 1170 1171 // GEP down to the array type. 1172 llvm::ConstantInt *zero = Builder.getInt32(0); 1173 gepIndices.push_back(zero); 1174 1175 uint64_t countFromCLAs = 1; 1176 QualType eltType; 1177 1178 llvm::ArrayType *llvmArrayType = 1179 dyn_cast<llvm::ArrayType>( 1180 cast<llvm::PointerType>(addr->getType())->getElementType()); 1181 while (llvmArrayType) { 1182 assert(isa<ConstantArrayType>(arrayType)); 1183 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1184 == llvmArrayType->getNumElements()); 1185 1186 gepIndices.push_back(zero); 1187 countFromCLAs *= llvmArrayType->getNumElements(); 1188 eltType = arrayType->getElementType(); 1189 1190 llvmArrayType = 1191 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1192 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1193 assert((!llvmArrayType || arrayType) && 1194 "LLVM and Clang types are out-of-synch"); 1195 } 1196 1197 if (arrayType) { 1198 // From this point onwards, the Clang array type has been emitted 1199 // as some other type (probably a packed struct). Compute the array 1200 // size, and just emit the 'begin' expression as a bitcast. 1201 while (arrayType) { 1202 countFromCLAs *= 1203 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1204 eltType = arrayType->getElementType(); 1205 arrayType = getContext().getAsArrayType(eltType); 1206 } 1207 1208 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1209 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1210 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1211 } else { 1212 // Create the actual GEP. 1213 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1214 } 1215 1216 baseType = eltType; 1217 1218 llvm::Value *numElements 1219 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1220 1221 // If we had any VLA dimensions, factor them in. 1222 if (numVLAElements) 1223 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1224 1225 return numElements; 1226 } 1227 1228 std::pair<llvm::Value*, QualType> 1229 CodeGenFunction::getVLASize(QualType type) { 1230 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1231 assert(vla && "type was not a variable array type!"); 1232 return getVLASize(vla); 1233 } 1234 1235 std::pair<llvm::Value*, QualType> 1236 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1237 // The number of elements so far; always size_t. 1238 llvm::Value *numElements = 0; 1239 1240 QualType elementType; 1241 do { 1242 elementType = type->getElementType(); 1243 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1244 assert(vlaSize && "no size for VLA!"); 1245 assert(vlaSize->getType() == SizeTy); 1246 1247 if (!numElements) { 1248 numElements = vlaSize; 1249 } else { 1250 // It's undefined behavior if this wraps around, so mark it that way. 1251 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1252 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1253 } 1254 } while ((type = getContext().getAsVariableArrayType(elementType))); 1255 1256 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1257 } 1258 1259 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1260 assert(type->isVariablyModifiedType() && 1261 "Must pass variably modified type to EmitVLASizes!"); 1262 1263 EnsureInsertPoint(); 1264 1265 // We're going to walk down into the type and look for VLA 1266 // expressions. 1267 do { 1268 assert(type->isVariablyModifiedType()); 1269 1270 const Type *ty = type.getTypePtr(); 1271 switch (ty->getTypeClass()) { 1272 1273 #define TYPE(Class, Base) 1274 #define ABSTRACT_TYPE(Class, Base) 1275 #define NON_CANONICAL_TYPE(Class, Base) 1276 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1277 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1278 #include "clang/AST/TypeNodes.def" 1279 llvm_unreachable("unexpected dependent type!"); 1280 1281 // These types are never variably-modified. 1282 case Type::Builtin: 1283 case Type::Complex: 1284 case Type::Vector: 1285 case Type::ExtVector: 1286 case Type::Record: 1287 case Type::Enum: 1288 case Type::Elaborated: 1289 case Type::TemplateSpecialization: 1290 case Type::ObjCObject: 1291 case Type::ObjCInterface: 1292 case Type::ObjCObjectPointer: 1293 llvm_unreachable("type class is never variably-modified!"); 1294 1295 case Type::Decayed: 1296 type = cast<DecayedType>(ty)->getPointeeType(); 1297 break; 1298 1299 case Type::Pointer: 1300 type = cast<PointerType>(ty)->getPointeeType(); 1301 break; 1302 1303 case Type::BlockPointer: 1304 type = cast<BlockPointerType>(ty)->getPointeeType(); 1305 break; 1306 1307 case Type::LValueReference: 1308 case Type::RValueReference: 1309 type = cast<ReferenceType>(ty)->getPointeeType(); 1310 break; 1311 1312 case Type::MemberPointer: 1313 type = cast<MemberPointerType>(ty)->getPointeeType(); 1314 break; 1315 1316 case Type::ConstantArray: 1317 case Type::IncompleteArray: 1318 // Losing element qualification here is fine. 1319 type = cast<ArrayType>(ty)->getElementType(); 1320 break; 1321 1322 case Type::VariableArray: { 1323 // Losing element qualification here is fine. 1324 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1325 1326 // Unknown size indication requires no size computation. 1327 // Otherwise, evaluate and record it. 1328 if (const Expr *size = vat->getSizeExpr()) { 1329 // It's possible that we might have emitted this already, 1330 // e.g. with a typedef and a pointer to it. 1331 llvm::Value *&entry = VLASizeMap[size]; 1332 if (!entry) { 1333 llvm::Value *Size = EmitScalarExpr(size); 1334 1335 // C11 6.7.6.2p5: 1336 // If the size is an expression that is not an integer constant 1337 // expression [...] each time it is evaluated it shall have a value 1338 // greater than zero. 1339 if (SanOpts->VLABound && 1340 size->getType()->isSignedIntegerType()) { 1341 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1342 llvm::Constant *StaticArgs[] = { 1343 EmitCheckSourceLocation(size->getLocStart()), 1344 EmitCheckTypeDescriptor(size->getType()) 1345 }; 1346 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1347 "vla_bound_not_positive", StaticArgs, Size, 1348 CRK_Recoverable); 1349 } 1350 1351 // Always zexting here would be wrong if it weren't 1352 // undefined behavior to have a negative bound. 1353 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1354 } 1355 } 1356 type = vat->getElementType(); 1357 break; 1358 } 1359 1360 case Type::FunctionProto: 1361 case Type::FunctionNoProto: 1362 type = cast<FunctionType>(ty)->getResultType(); 1363 break; 1364 1365 case Type::Paren: 1366 case Type::TypeOf: 1367 case Type::UnaryTransform: 1368 case Type::Attributed: 1369 case Type::SubstTemplateTypeParm: 1370 case Type::PackExpansion: 1371 // Keep walking after single level desugaring. 1372 type = type.getSingleStepDesugaredType(getContext()); 1373 break; 1374 1375 case Type::Typedef: 1376 case Type::Decltype: 1377 case Type::Auto: 1378 // Stop walking: nothing to do. 1379 return; 1380 1381 case Type::TypeOfExpr: 1382 // Stop walking: emit typeof expression. 1383 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1384 return; 1385 1386 case Type::Atomic: 1387 type = cast<AtomicType>(ty)->getValueType(); 1388 break; 1389 } 1390 } while (type->isVariablyModifiedType()); 1391 } 1392 1393 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1394 if (getContext().getBuiltinVaListType()->isArrayType()) 1395 return EmitScalarExpr(E); 1396 return EmitLValue(E).getAddress(); 1397 } 1398 1399 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1400 llvm::Constant *Init) { 1401 assert (Init && "Invalid DeclRefExpr initializer!"); 1402 if (CGDebugInfo *Dbg = getDebugInfo()) 1403 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1404 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1405 } 1406 1407 CodeGenFunction::PeepholeProtection 1408 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1409 // At the moment, the only aggressive peephole we do in IR gen 1410 // is trunc(zext) folding, but if we add more, we can easily 1411 // extend this protection. 1412 1413 if (!rvalue.isScalar()) return PeepholeProtection(); 1414 llvm::Value *value = rvalue.getScalarVal(); 1415 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1416 1417 // Just make an extra bitcast. 1418 assert(HaveInsertPoint()); 1419 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1420 Builder.GetInsertBlock()); 1421 1422 PeepholeProtection protection; 1423 protection.Inst = inst; 1424 return protection; 1425 } 1426 1427 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1428 if (!protection.Inst) return; 1429 1430 // In theory, we could try to duplicate the peepholes now, but whatever. 1431 protection.Inst->eraseFromParent(); 1432 } 1433 1434 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1435 llvm::Value *AnnotatedVal, 1436 StringRef AnnotationStr, 1437 SourceLocation Location) { 1438 llvm::Value *Args[4] = { 1439 AnnotatedVal, 1440 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1441 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1442 CGM.EmitAnnotationLineNo(Location) 1443 }; 1444 return Builder.CreateCall(AnnotationFn, Args); 1445 } 1446 1447 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1448 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1449 // FIXME We create a new bitcast for every annotation because that's what 1450 // llvm-gcc was doing. 1451 for (specific_attr_iterator<AnnotateAttr> 1452 ai = D->specific_attr_begin<AnnotateAttr>(), 1453 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1454 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1455 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1456 (*ai)->getAnnotation(), D->getLocation()); 1457 } 1458 1459 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1460 llvm::Value *V) { 1461 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1462 llvm::Type *VTy = V->getType(); 1463 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1464 CGM.Int8PtrTy); 1465 1466 for (specific_attr_iterator<AnnotateAttr> 1467 ai = D->specific_attr_begin<AnnotateAttr>(), 1468 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1469 // FIXME Always emit the cast inst so we can differentiate between 1470 // annotation on the first field of a struct and annotation on the struct 1471 // itself. 1472 if (VTy != CGM.Int8PtrTy) 1473 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1474 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1475 V = Builder.CreateBitCast(V, VTy); 1476 } 1477 1478 return V; 1479 } 1480 1481 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1482