1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/OpenCL.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Operator.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 35 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 36 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 37 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 38 CGM.getSanOpts().Alignment | 39 CGM.getSanOpts().ObjectSize | 40 CGM.getSanOpts().Vptr), 41 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 42 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 43 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 44 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 45 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 46 SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 47 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 48 CXXThisValue(0), CXXDefaultInitExprThis(0), 49 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 50 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 51 TerminateHandler(0), TrapBB(0) { 52 if (!suppressNewContext) 53 CGM.getCXXABI().getMangleContext().startNewFunction(); 54 55 llvm::FastMathFlags FMF; 56 if (CGM.getLangOpts().FastMath) 57 FMF.setUnsafeAlgebra(); 58 if (CGM.getLangOpts().FiniteMathOnly) { 59 FMF.setNoNaNs(); 60 FMF.setNoInfs(); 61 } 62 Builder.SetFastMathFlags(FMF); 63 } 64 65 CodeGenFunction::~CodeGenFunction() { 66 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 67 68 // If there are any unclaimed block infos, go ahead and destroy them 69 // now. This can happen if IR-gen gets clever and skips evaluating 70 // something. 71 if (FirstBlockInfo) 72 destroyBlockInfos(FirstBlockInfo); 73 } 74 75 76 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 77 return CGM.getTypes().ConvertTypeForMem(T); 78 } 79 80 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 81 return CGM.getTypes().ConvertType(T); 82 } 83 84 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 85 type = type.getCanonicalType(); 86 while (true) { 87 switch (type->getTypeClass()) { 88 #define TYPE(name, parent) 89 #define ABSTRACT_TYPE(name, parent) 90 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 91 #define DEPENDENT_TYPE(name, parent) case Type::name: 92 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 93 #include "clang/AST/TypeNodes.def" 94 llvm_unreachable("non-canonical or dependent type in IR-generation"); 95 96 case Type::Auto: 97 llvm_unreachable("undeduced auto type in IR-generation"); 98 99 // Various scalar types. 100 case Type::Builtin: 101 case Type::Pointer: 102 case Type::BlockPointer: 103 case Type::LValueReference: 104 case Type::RValueReference: 105 case Type::MemberPointer: 106 case Type::Vector: 107 case Type::ExtVector: 108 case Type::FunctionProto: 109 case Type::FunctionNoProto: 110 case Type::Enum: 111 case Type::ObjCObjectPointer: 112 return TEK_Scalar; 113 114 // Complexes. 115 case Type::Complex: 116 return TEK_Complex; 117 118 // Arrays, records, and Objective-C objects. 119 case Type::ConstantArray: 120 case Type::IncompleteArray: 121 case Type::VariableArray: 122 case Type::Record: 123 case Type::ObjCObject: 124 case Type::ObjCInterface: 125 return TEK_Aggregate; 126 127 // We operate on atomic values according to their underlying type. 128 case Type::Atomic: 129 type = cast<AtomicType>(type)->getValueType(); 130 continue; 131 } 132 llvm_unreachable("unknown type kind!"); 133 } 134 } 135 136 void CodeGenFunction::EmitReturnBlock() { 137 // For cleanliness, we try to avoid emitting the return block for 138 // simple cases. 139 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 140 141 if (CurBB) { 142 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 143 144 // We have a valid insert point, reuse it if it is empty or there are no 145 // explicit jumps to the return block. 146 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 147 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 148 delete ReturnBlock.getBlock(); 149 } else 150 EmitBlock(ReturnBlock.getBlock()); 151 return; 152 } 153 154 // Otherwise, if the return block is the target of a single direct 155 // branch then we can just put the code in that block instead. This 156 // cleans up functions which started with a unified return block. 157 if (ReturnBlock.getBlock()->hasOneUse()) { 158 llvm::BranchInst *BI = 159 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 160 if (BI && BI->isUnconditional() && 161 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 162 // Reset insertion point, including debug location, and delete the 163 // branch. This is really subtle and only works because the next change 164 // in location will hit the caching in CGDebugInfo::EmitLocation and not 165 // override this. 166 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 167 Builder.SetInsertPoint(BI->getParent()); 168 BI->eraseFromParent(); 169 delete ReturnBlock.getBlock(); 170 return; 171 } 172 } 173 174 // FIXME: We are at an unreachable point, there is no reason to emit the block 175 // unless it has uses. However, we still need a place to put the debug 176 // region.end for now. 177 178 EmitBlock(ReturnBlock.getBlock()); 179 } 180 181 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 182 if (!BB) return; 183 if (!BB->use_empty()) 184 return CGF.CurFn->getBasicBlockList().push_back(BB); 185 delete BB; 186 } 187 188 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 189 assert(BreakContinueStack.empty() && 190 "mismatched push/pop in break/continue stack!"); 191 192 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 193 && NumSimpleReturnExprs == NumReturnExprs 194 && ReturnBlock.getBlock()->use_empty(); 195 // Usually the return expression is evaluated before the cleanup 196 // code. If the function contains only a simple return statement, 197 // such as a constant, the location before the cleanup code becomes 198 // the last useful breakpoint in the function, because the simple 199 // return expression will be evaluated after the cleanup code. To be 200 // safe, set the debug location for cleanup code to the location of 201 // the return statement. Otherwise the cleanup code should be at the 202 // end of the function's lexical scope. 203 // 204 // If there are multiple branches to the return block, the branch 205 // instructions will get the location of the return statements and 206 // all will be fine. 207 if (CGDebugInfo *DI = getDebugInfo()) { 208 if (OnlySimpleReturnStmts) 209 DI->EmitLocation(Builder, LastStopPoint); 210 else 211 DI->EmitLocation(Builder, EndLoc); 212 } 213 214 // Pop any cleanups that might have been associated with the 215 // parameters. Do this in whatever block we're currently in; it's 216 // important to do this before we enter the return block or return 217 // edges will be *really* confused. 218 bool EmitRetDbgLoc = true; 219 if (EHStack.stable_begin() != PrologueCleanupDepth) { 220 PopCleanupBlocks(PrologueCleanupDepth); 221 222 // Make sure the line table doesn't jump back into the body for 223 // the ret after it's been at EndLoc. 224 EmitRetDbgLoc = false; 225 226 if (CGDebugInfo *DI = getDebugInfo()) 227 if (OnlySimpleReturnStmts) 228 DI->EmitLocation(Builder, EndLoc); 229 } 230 231 // Emit function epilog (to return). 232 EmitReturnBlock(); 233 234 if (ShouldInstrumentFunction()) 235 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 236 237 // Emit debug descriptor for function end. 238 if (CGDebugInfo *DI = getDebugInfo()) { 239 DI->EmitFunctionEnd(Builder); 240 } 241 242 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 243 EmitEndEHSpec(CurCodeDecl); 244 245 assert(EHStack.empty() && 246 "did not remove all scopes from cleanup stack!"); 247 248 // If someone did an indirect goto, emit the indirect goto block at the end of 249 // the function. 250 if (IndirectBranch) { 251 EmitBlock(IndirectBranch->getParent()); 252 Builder.ClearInsertionPoint(); 253 } 254 255 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 256 llvm::Instruction *Ptr = AllocaInsertPt; 257 AllocaInsertPt = 0; 258 Ptr->eraseFromParent(); 259 260 // If someone took the address of a label but never did an indirect goto, we 261 // made a zero entry PHI node, which is illegal, zap it now. 262 if (IndirectBranch) { 263 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 264 if (PN->getNumIncomingValues() == 0) { 265 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 266 PN->eraseFromParent(); 267 } 268 } 269 270 EmitIfUsed(*this, EHResumeBlock); 271 EmitIfUsed(*this, TerminateLandingPad); 272 EmitIfUsed(*this, TerminateHandler); 273 EmitIfUsed(*this, UnreachableBlock); 274 275 if (CGM.getCodeGenOpts().EmitDeclMetadata) 276 EmitDeclMetadata(); 277 } 278 279 /// ShouldInstrumentFunction - Return true if the current function should be 280 /// instrumented with __cyg_profile_func_* calls 281 bool CodeGenFunction::ShouldInstrumentFunction() { 282 if (!CGM.getCodeGenOpts().InstrumentFunctions) 283 return false; 284 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 285 return false; 286 return true; 287 } 288 289 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 290 /// instrumentation function with the current function and the call site, if 291 /// function instrumentation is enabled. 292 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 293 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 294 llvm::PointerType *PointerTy = Int8PtrTy; 295 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 296 llvm::FunctionType *FunctionTy = 297 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 298 299 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 300 llvm::CallInst *CallSite = Builder.CreateCall( 301 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 302 llvm::ConstantInt::get(Int32Ty, 0), 303 "callsite"); 304 305 llvm::Value *args[] = { 306 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 307 CallSite 308 }; 309 310 EmitNounwindRuntimeCall(F, args); 311 } 312 313 void CodeGenFunction::EmitMCountInstrumentation() { 314 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 315 316 llvm::Constant *MCountFn = 317 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 318 EmitNounwindRuntimeCall(MCountFn); 319 } 320 321 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 322 // information in the program executable. The argument information stored 323 // includes the argument name, its type, the address and access qualifiers used. 324 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 325 CodeGenModule &CGM,llvm::LLVMContext &Context, 326 SmallVector <llvm::Value*, 5> &kernelMDArgs, 327 CGBuilderTy& Builder, ASTContext &ASTCtx) { 328 // Create MDNodes that represent the kernel arg metadata. 329 // Each MDNode is a list in the form of "key", N number of values which is 330 // the same number of values as their are kernel arguments. 331 332 // MDNode for the kernel argument address space qualifiers. 333 SmallVector<llvm::Value*, 8> addressQuals; 334 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 335 336 // MDNode for the kernel argument access qualifiers (images only). 337 SmallVector<llvm::Value*, 8> accessQuals; 338 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 339 340 // MDNode for the kernel argument type names. 341 SmallVector<llvm::Value*, 8> argTypeNames; 342 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 343 344 // MDNode for the kernel argument type qualifiers. 345 SmallVector<llvm::Value*, 8> argTypeQuals; 346 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 347 348 // MDNode for the kernel argument names. 349 SmallVector<llvm::Value*, 8> argNames; 350 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 351 352 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 353 const ParmVarDecl *parm = FD->getParamDecl(i); 354 QualType ty = parm->getType(); 355 std::string typeQuals; 356 357 if (ty->isPointerType()) { 358 QualType pointeeTy = ty->getPointeeType(); 359 360 // Get address qualifier. 361 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 362 pointeeTy.getAddressSpace()))); 363 364 // Get argument type name. 365 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 366 367 // Turn "unsigned type" to "utype" 368 std::string::size_type pos = typeName.find("unsigned"); 369 if (pos != std::string::npos) 370 typeName.erase(pos+1, 8); 371 372 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 373 374 // Get argument type qualifiers: 375 if (ty.isRestrictQualified()) 376 typeQuals = "restrict"; 377 if (pointeeTy.isConstQualified() || 378 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 379 typeQuals += typeQuals.empty() ? "const" : " const"; 380 if (pointeeTy.isVolatileQualified()) 381 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 382 } else { 383 addressQuals.push_back(Builder.getInt32(0)); 384 385 // Get argument type name. 386 std::string typeName = ty.getUnqualifiedType().getAsString(); 387 388 // Turn "unsigned type" to "utype" 389 std::string::size_type pos = typeName.find("unsigned"); 390 if (pos != std::string::npos) 391 typeName.erase(pos+1, 8); 392 393 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 394 395 // Get argument type qualifiers: 396 if (ty.isConstQualified()) 397 typeQuals = "const"; 398 if (ty.isVolatileQualified()) 399 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 400 } 401 402 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 403 404 // Get image access qualifier: 405 if (ty->isImageType()) { 406 if (parm->hasAttr<OpenCLImageAccessAttr>() && 407 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 408 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 409 else 410 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 411 } else 412 accessQuals.push_back(llvm::MDString::get(Context, "none")); 413 414 // Get argument name. 415 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 416 } 417 418 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 419 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 420 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 421 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 422 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 423 } 424 425 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 426 llvm::Function *Fn) 427 { 428 if (!FD->hasAttr<OpenCLKernelAttr>()) 429 return; 430 431 llvm::LLVMContext &Context = getLLVMContext(); 432 433 SmallVector <llvm::Value*, 5> kernelMDArgs; 434 kernelMDArgs.push_back(Fn); 435 436 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 437 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 438 Builder, getContext()); 439 440 if (FD->hasAttr<VecTypeHintAttr>()) { 441 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 442 QualType hintQTy = attr->getTypeHint(); 443 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 444 bool isSignedInteger = 445 hintQTy->isSignedIntegerType() || 446 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 447 llvm::Value *attrMDArgs[] = { 448 llvm::MDString::get(Context, "vec_type_hint"), 449 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 450 llvm::ConstantInt::get( 451 llvm::IntegerType::get(Context, 32), 452 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 453 }; 454 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 455 } 456 457 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 458 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 459 llvm::Value *attrMDArgs[] = { 460 llvm::MDString::get(Context, "work_group_size_hint"), 461 Builder.getInt32(attr->getXDim()), 462 Builder.getInt32(attr->getYDim()), 463 Builder.getInt32(attr->getZDim()) 464 }; 465 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 466 } 467 468 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 469 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 470 llvm::Value *attrMDArgs[] = { 471 llvm::MDString::get(Context, "reqd_work_group_size"), 472 Builder.getInt32(attr->getXDim()), 473 Builder.getInt32(attr->getYDim()), 474 Builder.getInt32(attr->getZDim()) 475 }; 476 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 477 } 478 479 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 480 llvm::NamedMDNode *OpenCLKernelMetadata = 481 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 482 OpenCLKernelMetadata->addOperand(kernelMDNode); 483 } 484 485 void CodeGenFunction::StartFunction(GlobalDecl GD, 486 QualType RetTy, 487 llvm::Function *Fn, 488 const CGFunctionInfo &FnInfo, 489 const FunctionArgList &Args, 490 SourceLocation StartLoc) { 491 const Decl *D = GD.getDecl(); 492 493 DidCallStackSave = false; 494 CurCodeDecl = D; 495 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 496 FnRetTy = RetTy; 497 CurFn = Fn; 498 CurFnInfo = &FnInfo; 499 assert(CurFn->isDeclaration() && "Function already has body?"); 500 501 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 502 SanOpts = &SanitizerOptions::Disabled; 503 SanitizePerformTypeCheck = false; 504 } 505 506 // Pass inline keyword to optimizer if it appears explicitly on any 507 // declaration. 508 if (!CGM.getCodeGenOpts().NoInline) 509 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 510 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 511 RE = FD->redecls_end(); RI != RE; ++RI) 512 if (RI->isInlineSpecified()) { 513 Fn->addFnAttr(llvm::Attribute::InlineHint); 514 break; 515 } 516 517 if (getLangOpts().OpenCL) { 518 // Add metadata for a kernel function. 519 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 520 EmitOpenCLKernelMetadata(FD, Fn); 521 } 522 523 // If we are checking function types, emit a function type signature as 524 // prefix data. 525 if (getLangOpts().CPlusPlus && SanOpts->Function) { 526 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 527 if (llvm::Constant *PrefixSig = 528 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 529 llvm::Constant *FTRTTIConst = 530 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 531 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 532 llvm::Constant *PrefixStructConst = 533 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 534 Fn->setPrefixData(PrefixStructConst); 535 } 536 } 537 } 538 539 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 540 541 // Create a marker to make it easy to insert allocas into the entryblock 542 // later. Don't create this with the builder, because we don't want it 543 // folded. 544 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 545 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 546 if (Builder.isNamePreserving()) 547 AllocaInsertPt->setName("allocapt"); 548 549 ReturnBlock = getJumpDestInCurrentScope("return"); 550 551 Builder.SetInsertPoint(EntryBB); 552 553 // Emit subprogram debug descriptor. 554 if (CGDebugInfo *DI = getDebugInfo()) { 555 SmallVector<QualType, 16> ArgTypes; 556 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 557 i != e; ++i) { 558 ArgTypes.push_back((*i)->getType()); 559 } 560 561 QualType FnType = 562 getContext().getFunctionType(RetTy, ArgTypes, 563 FunctionProtoType::ExtProtoInfo()); 564 565 DI->setLocation(StartLoc); 566 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 567 } 568 569 if (ShouldInstrumentFunction()) 570 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 571 572 if (CGM.getCodeGenOpts().InstrumentForProfiling) 573 EmitMCountInstrumentation(); 574 575 if (RetTy->isVoidType()) { 576 // Void type; nothing to return. 577 ReturnValue = 0; 578 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 579 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 580 // Indirect aggregate return; emit returned value directly into sret slot. 581 // This reduces code size, and affects correctness in C++. 582 ReturnValue = CurFn->arg_begin(); 583 } else { 584 ReturnValue = CreateIRTemp(RetTy, "retval"); 585 586 // Tell the epilog emitter to autorelease the result. We do this 587 // now so that various specialized functions can suppress it 588 // during their IR-generation. 589 if (getLangOpts().ObjCAutoRefCount && 590 !CurFnInfo->isReturnsRetained() && 591 RetTy->isObjCRetainableType()) 592 AutoreleaseResult = true; 593 } 594 595 EmitStartEHSpec(CurCodeDecl); 596 597 PrologueCleanupDepth = EHStack.stable_begin(); 598 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 599 600 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 601 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 602 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 603 if (MD->getParent()->isLambda() && 604 MD->getOverloadedOperator() == OO_Call) { 605 // We're in a lambda; figure out the captures. 606 MD->getParent()->getCaptureFields(LambdaCaptureFields, 607 LambdaThisCaptureField); 608 if (LambdaThisCaptureField) { 609 // If this lambda captures this, load it. 610 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 611 CXXThisValue = EmitLoadOfLValue(ThisLValue, 612 SourceLocation()).getScalarVal(); 613 } 614 } else { 615 // Not in a lambda; just use 'this' from the method. 616 // FIXME: Should we generate a new load for each use of 'this'? The 617 // fast register allocator would be happier... 618 CXXThisValue = CXXABIThisValue; 619 } 620 } 621 622 // If any of the arguments have a variably modified type, make sure to 623 // emit the type size. 624 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 625 i != e; ++i) { 626 const VarDecl *VD = *i; 627 628 // Dig out the type as written from ParmVarDecls; it's unclear whether 629 // the standard (C99 6.9.1p10) requires this, but we're following the 630 // precedent set by gcc. 631 QualType Ty; 632 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 633 Ty = PVD->getOriginalType(); 634 else 635 Ty = VD->getType(); 636 637 if (Ty->isVariablyModifiedType()) 638 EmitVariablyModifiedType(Ty); 639 } 640 // Emit a location at the end of the prologue. 641 if (CGDebugInfo *DI = getDebugInfo()) 642 DI->EmitLocation(Builder, StartLoc); 643 } 644 645 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 646 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 647 assert(FD->getBody()); 648 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 649 EmitCompoundStmtWithoutScope(*S); 650 else 651 EmitStmt(FD->getBody()); 652 } 653 654 /// Tries to mark the given function nounwind based on the 655 /// non-existence of any throwing calls within it. We believe this is 656 /// lightweight enough to do at -O0. 657 static void TryMarkNoThrow(llvm::Function *F) { 658 // LLVM treats 'nounwind' on a function as part of the type, so we 659 // can't do this on functions that can be overwritten. 660 if (F->mayBeOverridden()) return; 661 662 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 663 for (llvm::BasicBlock::iterator 664 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 665 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 666 if (!Call->doesNotThrow()) 667 return; 668 } else if (isa<llvm::ResumeInst>(&*BI)) { 669 return; 670 } 671 F->setDoesNotThrow(); 672 } 673 674 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 675 const CGFunctionInfo &FnInfo) { 676 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 677 678 // Check if we should generate debug info for this function. 679 if (FD->hasAttr<NoDebugAttr>()) 680 DebugInfo = NULL; // disable debug info indefinitely for this function 681 682 FunctionArgList Args; 683 QualType ResTy = FD->getResultType(); 684 685 CurGD = GD; 686 const CXXMethodDecl *MD; 687 if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) { 688 if (CGM.getCXXABI().HasThisReturn(GD)) 689 ResTy = MD->getThisType(getContext()); 690 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 691 } 692 693 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 694 Args.push_back(FD->getParamDecl(i)); 695 696 SourceRange BodyRange; 697 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 698 CurEHLocation = BodyRange.getEnd(); 699 700 // Emit the standard function prologue. 701 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 702 703 // Generate the body of the function. 704 if (isa<CXXDestructorDecl>(FD)) 705 EmitDestructorBody(Args); 706 else if (isa<CXXConstructorDecl>(FD)) 707 EmitConstructorBody(Args); 708 else if (getLangOpts().CUDA && 709 !CGM.getCodeGenOpts().CUDAIsDevice && 710 FD->hasAttr<CUDAGlobalAttr>()) 711 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 712 else if (isa<CXXConversionDecl>(FD) && 713 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 714 // The lambda conversion to block pointer is special; the semantics can't be 715 // expressed in the AST, so IRGen needs to special-case it. 716 EmitLambdaToBlockPointerBody(Args); 717 } else if (isa<CXXMethodDecl>(FD) && 718 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 719 // The lambda static invoker function is special, because it forwards or 720 // clones the body of the function call operator (but is actually static). 721 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 722 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 723 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 724 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 725 // Implicit copy-assignment gets the same special treatment as implicit 726 // copy-constructors. 727 emitImplicitAssignmentOperatorBody(Args); 728 } 729 else 730 EmitFunctionBody(Args); 731 732 // C++11 [stmt.return]p2: 733 // Flowing off the end of a function [...] results in undefined behavior in 734 // a value-returning function. 735 // C11 6.9.1p12: 736 // If the '}' that terminates a function is reached, and the value of the 737 // function call is used by the caller, the behavior is undefined. 738 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 739 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 740 if (SanOpts->Return) 741 EmitCheck(Builder.getFalse(), "missing_return", 742 EmitCheckSourceLocation(FD->getLocation()), 743 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 744 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 745 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 746 Builder.CreateUnreachable(); 747 Builder.ClearInsertionPoint(); 748 } 749 750 // Emit the standard function epilogue. 751 FinishFunction(BodyRange.getEnd()); 752 753 // If we haven't marked the function nothrow through other means, do 754 // a quick pass now to see if we can. 755 if (!CurFn->doesNotThrow()) 756 TryMarkNoThrow(CurFn); 757 } 758 759 /// ContainsLabel - Return true if the statement contains a label in it. If 760 /// this statement is not executed normally, it not containing a label means 761 /// that we can just remove the code. 762 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 763 // Null statement, not a label! 764 if (S == 0) return false; 765 766 // If this is a label, we have to emit the code, consider something like: 767 // if (0) { ... foo: bar(); } goto foo; 768 // 769 // TODO: If anyone cared, we could track __label__'s, since we know that you 770 // can't jump to one from outside their declared region. 771 if (isa<LabelStmt>(S)) 772 return true; 773 774 // If this is a case/default statement, and we haven't seen a switch, we have 775 // to emit the code. 776 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 777 return true; 778 779 // If this is a switch statement, we want to ignore cases below it. 780 if (isa<SwitchStmt>(S)) 781 IgnoreCaseStmts = true; 782 783 // Scan subexpressions for verboten labels. 784 for (Stmt::const_child_range I = S->children(); I; ++I) 785 if (ContainsLabel(*I, IgnoreCaseStmts)) 786 return true; 787 788 return false; 789 } 790 791 /// containsBreak - Return true if the statement contains a break out of it. 792 /// If the statement (recursively) contains a switch or loop with a break 793 /// inside of it, this is fine. 794 bool CodeGenFunction::containsBreak(const Stmt *S) { 795 // Null statement, not a label! 796 if (S == 0) return false; 797 798 // If this is a switch or loop that defines its own break scope, then we can 799 // include it and anything inside of it. 800 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 801 isa<ForStmt>(S)) 802 return false; 803 804 if (isa<BreakStmt>(S)) 805 return true; 806 807 // Scan subexpressions for verboten breaks. 808 for (Stmt::const_child_range I = S->children(); I; ++I) 809 if (containsBreak(*I)) 810 return true; 811 812 return false; 813 } 814 815 816 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 817 /// to a constant, or if it does but contains a label, return false. If it 818 /// constant folds return true and set the boolean result in Result. 819 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 820 bool &ResultBool) { 821 llvm::APSInt ResultInt; 822 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 823 return false; 824 825 ResultBool = ResultInt.getBoolValue(); 826 return true; 827 } 828 829 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 830 /// to a constant, or if it does but contains a label, return false. If it 831 /// constant folds return true and set the folded value. 832 bool CodeGenFunction:: 833 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 834 // FIXME: Rename and handle conversion of other evaluatable things 835 // to bool. 836 llvm::APSInt Int; 837 if (!Cond->EvaluateAsInt(Int, getContext())) 838 return false; // Not foldable, not integer or not fully evaluatable. 839 840 if (CodeGenFunction::ContainsLabel(Cond)) 841 return false; // Contains a label. 842 843 ResultInt = Int; 844 return true; 845 } 846 847 848 849 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 850 /// statement) to the specified blocks. Based on the condition, this might try 851 /// to simplify the codegen of the conditional based on the branch. 852 /// 853 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 854 llvm::BasicBlock *TrueBlock, 855 llvm::BasicBlock *FalseBlock) { 856 Cond = Cond->IgnoreParens(); 857 858 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 859 // Handle X && Y in a condition. 860 if (CondBOp->getOpcode() == BO_LAnd) { 861 // If we have "1 && X", simplify the code. "0 && X" would have constant 862 // folded if the case was simple enough. 863 bool ConstantBool = false; 864 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 865 ConstantBool) { 866 // br(1 && X) -> br(X). 867 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 868 } 869 870 // If we have "X && 1", simplify the code to use an uncond branch. 871 // "X && 0" would have been constant folded to 0. 872 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 873 ConstantBool) { 874 // br(X && 1) -> br(X). 875 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 876 } 877 878 // Emit the LHS as a conditional. If the LHS conditional is false, we 879 // want to jump to the FalseBlock. 880 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 881 882 ConditionalEvaluation eval(*this); 883 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 884 EmitBlock(LHSTrue); 885 886 // Any temporaries created here are conditional. 887 eval.begin(*this); 888 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 889 eval.end(*this); 890 891 return; 892 } 893 894 if (CondBOp->getOpcode() == BO_LOr) { 895 // If we have "0 || X", simplify the code. "1 || X" would have constant 896 // folded if the case was simple enough. 897 bool ConstantBool = false; 898 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 899 !ConstantBool) { 900 // br(0 || X) -> br(X). 901 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 902 } 903 904 // If we have "X || 0", simplify the code to use an uncond branch. 905 // "X || 1" would have been constant folded to 1. 906 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 907 !ConstantBool) { 908 // br(X || 0) -> br(X). 909 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 910 } 911 912 // Emit the LHS as a conditional. If the LHS conditional is true, we 913 // want to jump to the TrueBlock. 914 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 915 916 ConditionalEvaluation eval(*this); 917 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 918 EmitBlock(LHSFalse); 919 920 // Any temporaries created here are conditional. 921 eval.begin(*this); 922 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 923 eval.end(*this); 924 925 return; 926 } 927 } 928 929 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 930 // br(!x, t, f) -> br(x, f, t) 931 if (CondUOp->getOpcode() == UO_LNot) 932 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 933 } 934 935 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 936 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 937 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 938 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 939 940 ConditionalEvaluation cond(*this); 941 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 942 943 cond.begin(*this); 944 EmitBlock(LHSBlock); 945 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 946 cond.end(*this); 947 948 cond.begin(*this); 949 EmitBlock(RHSBlock); 950 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 951 cond.end(*this); 952 953 return; 954 } 955 956 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 957 // Conditional operator handling can give us a throw expression as a 958 // condition for a case like: 959 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 960 // Fold this to: 961 // br(c, throw x, br(y, t, f)) 962 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 963 return; 964 } 965 966 // Emit the code with the fully general case. 967 llvm::Value *CondV = EvaluateExprAsBool(Cond); 968 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 969 } 970 971 /// ErrorUnsupported - Print out an error that codegen doesn't support the 972 /// specified stmt yet. 973 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 974 CGM.ErrorUnsupported(S, Type); 975 } 976 977 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 978 /// variable-length array whose elements have a non-zero bit-pattern. 979 /// 980 /// \param baseType the inner-most element type of the array 981 /// \param src - a char* pointing to the bit-pattern for a single 982 /// base element of the array 983 /// \param sizeInChars - the total size of the VLA, in chars 984 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 985 llvm::Value *dest, llvm::Value *src, 986 llvm::Value *sizeInChars) { 987 std::pair<CharUnits,CharUnits> baseSizeAndAlign 988 = CGF.getContext().getTypeInfoInChars(baseType); 989 990 CGBuilderTy &Builder = CGF.Builder; 991 992 llvm::Value *baseSizeInChars 993 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 994 995 llvm::Type *i8p = Builder.getInt8PtrTy(); 996 997 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 998 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 999 1000 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1001 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1002 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1003 1004 // Make a loop over the VLA. C99 guarantees that the VLA element 1005 // count must be nonzero. 1006 CGF.EmitBlock(loopBB); 1007 1008 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1009 cur->addIncoming(begin, originBB); 1010 1011 // memcpy the individual element bit-pattern. 1012 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1013 baseSizeAndAlign.second.getQuantity(), 1014 /*volatile*/ false); 1015 1016 // Go to the next element. 1017 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1018 1019 // Leave if that's the end of the VLA. 1020 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1021 Builder.CreateCondBr(done, contBB, loopBB); 1022 cur->addIncoming(next, loopBB); 1023 1024 CGF.EmitBlock(contBB); 1025 } 1026 1027 void 1028 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1029 // Ignore empty classes in C++. 1030 if (getLangOpts().CPlusPlus) { 1031 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1032 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1033 return; 1034 } 1035 } 1036 1037 // Cast the dest ptr to the appropriate i8 pointer type. 1038 unsigned DestAS = 1039 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1040 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1041 if (DestPtr->getType() != BP) 1042 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1043 1044 // Get size and alignment info for this aggregate. 1045 std::pair<CharUnits, CharUnits> TypeInfo = 1046 getContext().getTypeInfoInChars(Ty); 1047 CharUnits Size = TypeInfo.first; 1048 CharUnits Align = TypeInfo.second; 1049 1050 llvm::Value *SizeVal; 1051 const VariableArrayType *vla; 1052 1053 // Don't bother emitting a zero-byte memset. 1054 if (Size.isZero()) { 1055 // But note that getTypeInfo returns 0 for a VLA. 1056 if (const VariableArrayType *vlaType = 1057 dyn_cast_or_null<VariableArrayType>( 1058 getContext().getAsArrayType(Ty))) { 1059 QualType eltType; 1060 llvm::Value *numElts; 1061 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1062 1063 SizeVal = numElts; 1064 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1065 if (!eltSize.isOne()) 1066 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1067 vla = vlaType; 1068 } else { 1069 return; 1070 } 1071 } else { 1072 SizeVal = CGM.getSize(Size); 1073 vla = 0; 1074 } 1075 1076 // If the type contains a pointer to data member we can't memset it to zero. 1077 // Instead, create a null constant and copy it to the destination. 1078 // TODO: there are other patterns besides zero that we can usefully memset, 1079 // like -1, which happens to be the pattern used by member-pointers. 1080 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1081 // For a VLA, emit a single element, then splat that over the VLA. 1082 if (vla) Ty = getContext().getBaseElementType(vla); 1083 1084 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1085 1086 llvm::GlobalVariable *NullVariable = 1087 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1088 /*isConstant=*/true, 1089 llvm::GlobalVariable::PrivateLinkage, 1090 NullConstant, Twine()); 1091 llvm::Value *SrcPtr = 1092 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1093 1094 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1095 1096 // Get and call the appropriate llvm.memcpy overload. 1097 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1098 return; 1099 } 1100 1101 // Otherwise, just memset the whole thing to zero. This is legal 1102 // because in LLVM, all default initializers (other than the ones we just 1103 // handled above) are guaranteed to have a bit pattern of all zeros. 1104 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1105 Align.getQuantity(), false); 1106 } 1107 1108 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1109 // Make sure that there is a block for the indirect goto. 1110 if (IndirectBranch == 0) 1111 GetIndirectGotoBlock(); 1112 1113 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1114 1115 // Make sure the indirect branch includes all of the address-taken blocks. 1116 IndirectBranch->addDestination(BB); 1117 return llvm::BlockAddress::get(CurFn, BB); 1118 } 1119 1120 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1121 // If we already made the indirect branch for indirect goto, return its block. 1122 if (IndirectBranch) return IndirectBranch->getParent(); 1123 1124 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1125 1126 // Create the PHI node that indirect gotos will add entries to. 1127 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1128 "indirect.goto.dest"); 1129 1130 // Create the indirect branch instruction. 1131 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1132 return IndirectBranch->getParent(); 1133 } 1134 1135 /// Computes the length of an array in elements, as well as the base 1136 /// element type and a properly-typed first element pointer. 1137 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1138 QualType &baseType, 1139 llvm::Value *&addr) { 1140 const ArrayType *arrayType = origArrayType; 1141 1142 // If it's a VLA, we have to load the stored size. Note that 1143 // this is the size of the VLA in bytes, not its size in elements. 1144 llvm::Value *numVLAElements = 0; 1145 if (isa<VariableArrayType>(arrayType)) { 1146 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1147 1148 // Walk into all VLAs. This doesn't require changes to addr, 1149 // which has type T* where T is the first non-VLA element type. 1150 do { 1151 QualType elementType = arrayType->getElementType(); 1152 arrayType = getContext().getAsArrayType(elementType); 1153 1154 // If we only have VLA components, 'addr' requires no adjustment. 1155 if (!arrayType) { 1156 baseType = elementType; 1157 return numVLAElements; 1158 } 1159 } while (isa<VariableArrayType>(arrayType)); 1160 1161 // We get out here only if we find a constant array type 1162 // inside the VLA. 1163 } 1164 1165 // We have some number of constant-length arrays, so addr should 1166 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1167 // down to the first element of addr. 1168 SmallVector<llvm::Value*, 8> gepIndices; 1169 1170 // GEP down to the array type. 1171 llvm::ConstantInt *zero = Builder.getInt32(0); 1172 gepIndices.push_back(zero); 1173 1174 uint64_t countFromCLAs = 1; 1175 QualType eltType; 1176 1177 llvm::ArrayType *llvmArrayType = 1178 dyn_cast<llvm::ArrayType>( 1179 cast<llvm::PointerType>(addr->getType())->getElementType()); 1180 while (llvmArrayType) { 1181 assert(isa<ConstantArrayType>(arrayType)); 1182 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1183 == llvmArrayType->getNumElements()); 1184 1185 gepIndices.push_back(zero); 1186 countFromCLAs *= llvmArrayType->getNumElements(); 1187 eltType = arrayType->getElementType(); 1188 1189 llvmArrayType = 1190 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1191 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1192 assert((!llvmArrayType || arrayType) && 1193 "LLVM and Clang types are out-of-synch"); 1194 } 1195 1196 if (arrayType) { 1197 // From this point onwards, the Clang array type has been emitted 1198 // as some other type (probably a packed struct). Compute the array 1199 // size, and just emit the 'begin' expression as a bitcast. 1200 while (arrayType) { 1201 countFromCLAs *= 1202 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1203 eltType = arrayType->getElementType(); 1204 arrayType = getContext().getAsArrayType(eltType); 1205 } 1206 1207 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1208 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1209 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1210 } else { 1211 // Create the actual GEP. 1212 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1213 } 1214 1215 baseType = eltType; 1216 1217 llvm::Value *numElements 1218 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1219 1220 // If we had any VLA dimensions, factor them in. 1221 if (numVLAElements) 1222 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1223 1224 return numElements; 1225 } 1226 1227 std::pair<llvm::Value*, QualType> 1228 CodeGenFunction::getVLASize(QualType type) { 1229 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1230 assert(vla && "type was not a variable array type!"); 1231 return getVLASize(vla); 1232 } 1233 1234 std::pair<llvm::Value*, QualType> 1235 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1236 // The number of elements so far; always size_t. 1237 llvm::Value *numElements = 0; 1238 1239 QualType elementType; 1240 do { 1241 elementType = type->getElementType(); 1242 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1243 assert(vlaSize && "no size for VLA!"); 1244 assert(vlaSize->getType() == SizeTy); 1245 1246 if (!numElements) { 1247 numElements = vlaSize; 1248 } else { 1249 // It's undefined behavior if this wraps around, so mark it that way. 1250 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1251 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1252 } 1253 } while ((type = getContext().getAsVariableArrayType(elementType))); 1254 1255 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1256 } 1257 1258 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1259 assert(type->isVariablyModifiedType() && 1260 "Must pass variably modified type to EmitVLASizes!"); 1261 1262 EnsureInsertPoint(); 1263 1264 // We're going to walk down into the type and look for VLA 1265 // expressions. 1266 do { 1267 assert(type->isVariablyModifiedType()); 1268 1269 const Type *ty = type.getTypePtr(); 1270 switch (ty->getTypeClass()) { 1271 1272 #define TYPE(Class, Base) 1273 #define ABSTRACT_TYPE(Class, Base) 1274 #define NON_CANONICAL_TYPE(Class, Base) 1275 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1276 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1277 #include "clang/AST/TypeNodes.def" 1278 llvm_unreachable("unexpected dependent type!"); 1279 1280 // These types are never variably-modified. 1281 case Type::Builtin: 1282 case Type::Complex: 1283 case Type::Vector: 1284 case Type::ExtVector: 1285 case Type::Record: 1286 case Type::Enum: 1287 case Type::Elaborated: 1288 case Type::TemplateSpecialization: 1289 case Type::ObjCObject: 1290 case Type::ObjCInterface: 1291 case Type::ObjCObjectPointer: 1292 llvm_unreachable("type class is never variably-modified!"); 1293 1294 case Type::Decayed: 1295 type = cast<DecayedType>(ty)->getPointeeType(); 1296 break; 1297 1298 case Type::Pointer: 1299 type = cast<PointerType>(ty)->getPointeeType(); 1300 break; 1301 1302 case Type::BlockPointer: 1303 type = cast<BlockPointerType>(ty)->getPointeeType(); 1304 break; 1305 1306 case Type::LValueReference: 1307 case Type::RValueReference: 1308 type = cast<ReferenceType>(ty)->getPointeeType(); 1309 break; 1310 1311 case Type::MemberPointer: 1312 type = cast<MemberPointerType>(ty)->getPointeeType(); 1313 break; 1314 1315 case Type::ConstantArray: 1316 case Type::IncompleteArray: 1317 // Losing element qualification here is fine. 1318 type = cast<ArrayType>(ty)->getElementType(); 1319 break; 1320 1321 case Type::VariableArray: { 1322 // Losing element qualification here is fine. 1323 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1324 1325 // Unknown size indication requires no size computation. 1326 // Otherwise, evaluate and record it. 1327 if (const Expr *size = vat->getSizeExpr()) { 1328 // It's possible that we might have emitted this already, 1329 // e.g. with a typedef and a pointer to it. 1330 llvm::Value *&entry = VLASizeMap[size]; 1331 if (!entry) { 1332 llvm::Value *Size = EmitScalarExpr(size); 1333 1334 // C11 6.7.6.2p5: 1335 // If the size is an expression that is not an integer constant 1336 // expression [...] each time it is evaluated it shall have a value 1337 // greater than zero. 1338 if (SanOpts->VLABound && 1339 size->getType()->isSignedIntegerType()) { 1340 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1341 llvm::Constant *StaticArgs[] = { 1342 EmitCheckSourceLocation(size->getLocStart()), 1343 EmitCheckTypeDescriptor(size->getType()) 1344 }; 1345 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1346 "vla_bound_not_positive", StaticArgs, Size, 1347 CRK_Recoverable); 1348 } 1349 1350 // Always zexting here would be wrong if it weren't 1351 // undefined behavior to have a negative bound. 1352 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1353 } 1354 } 1355 type = vat->getElementType(); 1356 break; 1357 } 1358 1359 case Type::FunctionProto: 1360 case Type::FunctionNoProto: 1361 type = cast<FunctionType>(ty)->getResultType(); 1362 break; 1363 1364 case Type::Paren: 1365 case Type::TypeOf: 1366 case Type::UnaryTransform: 1367 case Type::Attributed: 1368 case Type::SubstTemplateTypeParm: 1369 case Type::PackExpansion: 1370 // Keep walking after single level desugaring. 1371 type = type.getSingleStepDesugaredType(getContext()); 1372 break; 1373 1374 case Type::Typedef: 1375 case Type::Decltype: 1376 case Type::Auto: 1377 // Stop walking: nothing to do. 1378 return; 1379 1380 case Type::TypeOfExpr: 1381 // Stop walking: emit typeof expression. 1382 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1383 return; 1384 1385 case Type::Atomic: 1386 type = cast<AtomicType>(ty)->getValueType(); 1387 break; 1388 } 1389 } while (type->isVariablyModifiedType()); 1390 } 1391 1392 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1393 if (getContext().getBuiltinVaListType()->isArrayType()) 1394 return EmitScalarExpr(E); 1395 return EmitLValue(E).getAddress(); 1396 } 1397 1398 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1399 llvm::Constant *Init) { 1400 assert (Init && "Invalid DeclRefExpr initializer!"); 1401 if (CGDebugInfo *Dbg = getDebugInfo()) 1402 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1403 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1404 } 1405 1406 CodeGenFunction::PeepholeProtection 1407 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1408 // At the moment, the only aggressive peephole we do in IR gen 1409 // is trunc(zext) folding, but if we add more, we can easily 1410 // extend this protection. 1411 1412 if (!rvalue.isScalar()) return PeepholeProtection(); 1413 llvm::Value *value = rvalue.getScalarVal(); 1414 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1415 1416 // Just make an extra bitcast. 1417 assert(HaveInsertPoint()); 1418 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1419 Builder.GetInsertBlock()); 1420 1421 PeepholeProtection protection; 1422 protection.Inst = inst; 1423 return protection; 1424 } 1425 1426 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1427 if (!protection.Inst) return; 1428 1429 // In theory, we could try to duplicate the peepholes now, but whatever. 1430 protection.Inst->eraseFromParent(); 1431 } 1432 1433 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1434 llvm::Value *AnnotatedVal, 1435 StringRef AnnotationStr, 1436 SourceLocation Location) { 1437 llvm::Value *Args[4] = { 1438 AnnotatedVal, 1439 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1440 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1441 CGM.EmitAnnotationLineNo(Location) 1442 }; 1443 return Builder.CreateCall(AnnotationFn, Args); 1444 } 1445 1446 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1447 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1448 // FIXME We create a new bitcast for every annotation because that's what 1449 // llvm-gcc was doing. 1450 for (specific_attr_iterator<AnnotateAttr> 1451 ai = D->specific_attr_begin<AnnotateAttr>(), 1452 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1453 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1454 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1455 (*ai)->getAnnotation(), D->getLocation()); 1456 } 1457 1458 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1459 llvm::Value *V) { 1460 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1461 llvm::Type *VTy = V->getType(); 1462 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1463 CGM.Int8PtrTy); 1464 1465 for (specific_attr_iterator<AnnotateAttr> 1466 ai = D->specific_attr_begin<AnnotateAttr>(), 1467 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1468 // FIXME Always emit the cast inst so we can differentiate between 1469 // annotation on the first field of a struct and annotation on the struct 1470 // itself. 1471 if (VTy != CGM.Int8PtrTy) 1472 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1473 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1474 V = Builder.CreateBitCast(V, VTy); 1475 } 1476 1477 return V; 1478 } 1479 1480 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1481