1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenPGO.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38       Builder(cgm.getModule().getContext()), CapturedStmtInfo(0),
39       SanitizePerformTypeCheck(CGM.getSanOpts().Null |
40                                CGM.getSanOpts().Alignment |
41                                CGM.getSanOpts().ObjectSize |
42                                CGM.getSanOpts().Vptr),
43       SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0),
44       BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0),
45       NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0),
46       ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()),
47       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0),
48       PGO(cgm), SwitchInsn(0), SwitchWeights(0),
49       CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0),
50       NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0),
51       CXXThisValue(0), CXXDefaultInitExprThis(0),
52       CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
53       OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
54       TerminateHandler(0), TrapBB(0) {
55   if (!suppressNewContext)
56     CGM.getCXXABI().getMangleContext().startNewFunction();
57 
58   llvm::FastMathFlags FMF;
59   if (CGM.getLangOpts().FastMath)
60     FMF.setUnsafeAlgebra();
61   if (CGM.getLangOpts().FiniteMathOnly) {
62     FMF.setNoNaNs();
63     FMF.setNoInfs();
64   }
65   Builder.SetFastMathFlags(FMF);
66 }
67 
68 CodeGenFunction::~CodeGenFunction() {
69   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
70 
71   // If there are any unclaimed block infos, go ahead and destroy them
72   // now.  This can happen if IR-gen gets clever and skips evaluating
73   // something.
74   if (FirstBlockInfo)
75     destroyBlockInfos(FirstBlockInfo);
76 
77   if (getLangOpts().OpenMP) {
78     CGM.getOpenMPRuntime().FunctionFinished(*this);
79   }
80 }
81 
82 
83 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
84   return CGM.getTypes().ConvertTypeForMem(T);
85 }
86 
87 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
88   return CGM.getTypes().ConvertType(T);
89 }
90 
91 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
92   type = type.getCanonicalType();
93   while (true) {
94     switch (type->getTypeClass()) {
95 #define TYPE(name, parent)
96 #define ABSTRACT_TYPE(name, parent)
97 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
98 #define DEPENDENT_TYPE(name, parent) case Type::name:
99 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
100 #include "clang/AST/TypeNodes.def"
101       llvm_unreachable("non-canonical or dependent type in IR-generation");
102 
103     case Type::Auto:
104       llvm_unreachable("undeduced auto type in IR-generation");
105 
106     // Various scalar types.
107     case Type::Builtin:
108     case Type::Pointer:
109     case Type::BlockPointer:
110     case Type::LValueReference:
111     case Type::RValueReference:
112     case Type::MemberPointer:
113     case Type::Vector:
114     case Type::ExtVector:
115     case Type::FunctionProto:
116     case Type::FunctionNoProto:
117     case Type::Enum:
118     case Type::ObjCObjectPointer:
119       return TEK_Scalar;
120 
121     // Complexes.
122     case Type::Complex:
123       return TEK_Complex;
124 
125     // Arrays, records, and Objective-C objects.
126     case Type::ConstantArray:
127     case Type::IncompleteArray:
128     case Type::VariableArray:
129     case Type::Record:
130     case Type::ObjCObject:
131     case Type::ObjCInterface:
132       return TEK_Aggregate;
133 
134     // We operate on atomic values according to their underlying type.
135     case Type::Atomic:
136       type = cast<AtomicType>(type)->getValueType();
137       continue;
138     }
139     llvm_unreachable("unknown type kind!");
140   }
141 }
142 
143 void CodeGenFunction::EmitReturnBlock() {
144   // For cleanliness, we try to avoid emitting the return block for
145   // simple cases.
146   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
147 
148   if (CurBB) {
149     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
150 
151     // We have a valid insert point, reuse it if it is empty or there are no
152     // explicit jumps to the return block.
153     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
154       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
155       delete ReturnBlock.getBlock();
156     } else
157       EmitBlock(ReturnBlock.getBlock());
158     return;
159   }
160 
161   // Otherwise, if the return block is the target of a single direct
162   // branch then we can just put the code in that block instead. This
163   // cleans up functions which started with a unified return block.
164   if (ReturnBlock.getBlock()->hasOneUse()) {
165     llvm::BranchInst *BI =
166       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
167     if (BI && BI->isUnconditional() &&
168         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
169       // Reset insertion point, including debug location, and delete the
170       // branch.  This is really subtle and only works because the next change
171       // in location will hit the caching in CGDebugInfo::EmitLocation and not
172       // override this.
173       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
174       Builder.SetInsertPoint(BI->getParent());
175       BI->eraseFromParent();
176       delete ReturnBlock.getBlock();
177       return;
178     }
179   }
180 
181   // FIXME: We are at an unreachable point, there is no reason to emit the block
182   // unless it has uses. However, we still need a place to put the debug
183   // region.end for now.
184 
185   EmitBlock(ReturnBlock.getBlock());
186 }
187 
188 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
189   if (!BB) return;
190   if (!BB->use_empty())
191     return CGF.CurFn->getBasicBlockList().push_back(BB);
192   delete BB;
193 }
194 
195 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
196   assert(BreakContinueStack.empty() &&
197          "mismatched push/pop in break/continue stack!");
198 
199   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
200     && NumSimpleReturnExprs == NumReturnExprs
201     && ReturnBlock.getBlock()->use_empty();
202   // Usually the return expression is evaluated before the cleanup
203   // code.  If the function contains only a simple return statement,
204   // such as a constant, the location before the cleanup code becomes
205   // the last useful breakpoint in the function, because the simple
206   // return expression will be evaluated after the cleanup code. To be
207   // safe, set the debug location for cleanup code to the location of
208   // the return statement.  Otherwise the cleanup code should be at the
209   // end of the function's lexical scope.
210   //
211   // If there are multiple branches to the return block, the branch
212   // instructions will get the location of the return statements and
213   // all will be fine.
214   if (CGDebugInfo *DI = getDebugInfo()) {
215     if (OnlySimpleReturnStmts)
216       DI->EmitLocation(Builder, LastStopPoint);
217     else
218       DI->EmitLocation(Builder, EndLoc);
219   }
220 
221   // Pop any cleanups that might have been associated with the
222   // parameters.  Do this in whatever block we're currently in; it's
223   // important to do this before we enter the return block or return
224   // edges will be *really* confused.
225   bool EmitRetDbgLoc = true;
226   if (EHStack.stable_begin() != PrologueCleanupDepth) {
227     PopCleanupBlocks(PrologueCleanupDepth);
228 
229     // Make sure the line table doesn't jump back into the body for
230     // the ret after it's been at EndLoc.
231     EmitRetDbgLoc = false;
232 
233     if (CGDebugInfo *DI = getDebugInfo())
234       if (OnlySimpleReturnStmts)
235         DI->EmitLocation(Builder, EndLoc);
236   }
237 
238   // Emit function epilog (to return).
239   EmitReturnBlock();
240 
241   if (ShouldInstrumentFunction())
242     EmitFunctionInstrumentation("__cyg_profile_func_exit");
243 
244   // Emit debug descriptor for function end.
245   if (CGDebugInfo *DI = getDebugInfo()) {
246     DI->EmitFunctionEnd(Builder);
247   }
248 
249   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
250   EmitEndEHSpec(CurCodeDecl);
251 
252   assert(EHStack.empty() &&
253          "did not remove all scopes from cleanup stack!");
254 
255   // If someone did an indirect goto, emit the indirect goto block at the end of
256   // the function.
257   if (IndirectBranch) {
258     EmitBlock(IndirectBranch->getParent());
259     Builder.ClearInsertionPoint();
260   }
261 
262   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
263   llvm::Instruction *Ptr = AllocaInsertPt;
264   AllocaInsertPt = 0;
265   Ptr->eraseFromParent();
266 
267   // If someone took the address of a label but never did an indirect goto, we
268   // made a zero entry PHI node, which is illegal, zap it now.
269   if (IndirectBranch) {
270     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
271     if (PN->getNumIncomingValues() == 0) {
272       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
273       PN->eraseFromParent();
274     }
275   }
276 
277   EmitIfUsed(*this, EHResumeBlock);
278   EmitIfUsed(*this, TerminateLandingPad);
279   EmitIfUsed(*this, TerminateHandler);
280   EmitIfUsed(*this, UnreachableBlock);
281 
282   if (CGM.getCodeGenOpts().EmitDeclMetadata)
283     EmitDeclMetadata();
284 
285   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
286            I = DeferredReplacements.begin(),
287            E = DeferredReplacements.end();
288        I != E; ++I) {
289     I->first->replaceAllUsesWith(I->second);
290     I->first->eraseFromParent();
291   }
292 }
293 
294 /// ShouldInstrumentFunction - Return true if the current function should be
295 /// instrumented with __cyg_profile_func_* calls
296 bool CodeGenFunction::ShouldInstrumentFunction() {
297   if (!CGM.getCodeGenOpts().InstrumentFunctions)
298     return false;
299   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
300     return false;
301   return true;
302 }
303 
304 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
305 /// instrumentation function with the current function and the call site, if
306 /// function instrumentation is enabled.
307 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
308   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
309   llvm::PointerType *PointerTy = Int8PtrTy;
310   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
311   llvm::FunctionType *FunctionTy =
312     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
313 
314   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
315   llvm::CallInst *CallSite = Builder.CreateCall(
316     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
317     llvm::ConstantInt::get(Int32Ty, 0),
318     "callsite");
319 
320   llvm::Value *args[] = {
321     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
322     CallSite
323   };
324 
325   EmitNounwindRuntimeCall(F, args);
326 }
327 
328 void CodeGenFunction::EmitMCountInstrumentation() {
329   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
330 
331   llvm::Constant *MCountFn =
332     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
333   EmitNounwindRuntimeCall(MCountFn);
334 }
335 
336 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
337 // information in the program executable. The argument information stored
338 // includes the argument name, its type, the address and access qualifiers used.
339 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
340                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
341                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
342                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
343   // Create MDNodes that represent the kernel arg metadata.
344   // Each MDNode is a list in the form of "key", N number of values which is
345   // the same number of values as their are kernel arguments.
346 
347   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
348 
349   // MDNode for the kernel argument address space qualifiers.
350   SmallVector<llvm::Value*, 8> addressQuals;
351   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
352 
353   // MDNode for the kernel argument access qualifiers (images only).
354   SmallVector<llvm::Value*, 8> accessQuals;
355   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
356 
357   // MDNode for the kernel argument type names.
358   SmallVector<llvm::Value*, 8> argTypeNames;
359   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
360 
361   // MDNode for the kernel argument type qualifiers.
362   SmallVector<llvm::Value*, 8> argTypeQuals;
363   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
364 
365   // MDNode for the kernel argument names.
366   SmallVector<llvm::Value*, 8> argNames;
367   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
368 
369   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
370     const ParmVarDecl *parm = FD->getParamDecl(i);
371     QualType ty = parm->getType();
372     std::string typeQuals;
373 
374     if (ty->isPointerType()) {
375       QualType pointeeTy = ty->getPointeeType();
376 
377       // Get address qualifier.
378       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
379         pointeeTy.getAddressSpace())));
380 
381       // Get argument type name.
382       std::string typeName =
383           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
384 
385       // Turn "unsigned type" to "utype"
386       std::string::size_type pos = typeName.find("unsigned");
387       if (pos != std::string::npos)
388         typeName.erase(pos+1, 8);
389 
390       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
391 
392       // Get argument type qualifiers:
393       if (ty.isRestrictQualified())
394         typeQuals = "restrict";
395       if (pointeeTy.isConstQualified() ||
396           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
397         typeQuals += typeQuals.empty() ? "const" : " const";
398       if (pointeeTy.isVolatileQualified())
399         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
400     } else {
401       uint32_t AddrSpc = 0;
402       if (ty->isImageType())
403         AddrSpc =
404           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
405 
406       addressQuals.push_back(Builder.getInt32(AddrSpc));
407 
408       // Get argument type name.
409       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
410 
411       // Turn "unsigned type" to "utype"
412       std::string::size_type pos = typeName.find("unsigned");
413       if (pos != std::string::npos)
414         typeName.erase(pos+1, 8);
415 
416       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
417 
418       // Get argument type qualifiers:
419       if (ty.isConstQualified())
420         typeQuals = "const";
421       if (ty.isVolatileQualified())
422         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
423     }
424 
425     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
426 
427     // Get image access qualifier:
428     if (ty->isImageType()) {
429       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
430       if (A && A->isWriteOnly())
431         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
432       else
433         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
434       // FIXME: what about read_write?
435     } else
436       accessQuals.push_back(llvm::MDString::get(Context, "none"));
437 
438     // Get argument name.
439     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
440   }
441 
442   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
443   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
444   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
445   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
446   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
447 }
448 
449 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
450                                                llvm::Function *Fn)
451 {
452   if (!FD->hasAttr<OpenCLKernelAttr>())
453     return;
454 
455   llvm::LLVMContext &Context = getLLVMContext();
456 
457   SmallVector <llvm::Value*, 5> kernelMDArgs;
458   kernelMDArgs.push_back(Fn);
459 
460   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
461     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
462                          Builder, getContext());
463 
464   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
465     QualType hintQTy = A->getTypeHint();
466     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
467     bool isSignedInteger =
468         hintQTy->isSignedIntegerType() ||
469         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
470     llvm::Value *attrMDArgs[] = {
471       llvm::MDString::get(Context, "vec_type_hint"),
472       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
473       llvm::ConstantInt::get(
474           llvm::IntegerType::get(Context, 32),
475           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
476     };
477     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
478   }
479 
480   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
481     llvm::Value *attrMDArgs[] = {
482       llvm::MDString::get(Context, "work_group_size_hint"),
483       Builder.getInt32(A->getXDim()),
484       Builder.getInt32(A->getYDim()),
485       Builder.getInt32(A->getZDim())
486     };
487     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
488   }
489 
490   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
491     llvm::Value *attrMDArgs[] = {
492       llvm::MDString::get(Context, "reqd_work_group_size"),
493       Builder.getInt32(A->getXDim()),
494       Builder.getInt32(A->getYDim()),
495       Builder.getInt32(A->getZDim())
496     };
497     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
498   }
499 
500   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
501   llvm::NamedMDNode *OpenCLKernelMetadata =
502     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
503   OpenCLKernelMetadata->addOperand(kernelMDNode);
504 }
505 
506 /// Determine whether the function F ends with a return stmt.
507 static bool endsWithReturn(const Decl* F) {
508   const Stmt *Body = nullptr;
509   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
510     Body = FD->getBody();
511   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
512     Body = OMD->getBody();
513 
514   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
515     auto LastStmt = CS->body_rbegin();
516     if (LastStmt != CS->body_rend())
517       return isa<ReturnStmt>(*LastStmt);
518   }
519   return false;
520 }
521 
522 void CodeGenFunction::StartFunction(GlobalDecl GD,
523                                     QualType RetTy,
524                                     llvm::Function *Fn,
525                                     const CGFunctionInfo &FnInfo,
526                                     const FunctionArgList &Args,
527                                     SourceLocation Loc,
528                                     SourceLocation StartLoc) {
529   const Decl *D = GD.getDecl();
530 
531   DidCallStackSave = false;
532   CurCodeDecl = D;
533   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
534   FnRetTy = RetTy;
535   CurFn = Fn;
536   CurFnInfo = &FnInfo;
537   assert(CurFn->isDeclaration() && "Function already has body?");
538 
539   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
540     SanOpts = &SanitizerOptions::Disabled;
541     SanitizePerformTypeCheck = false;
542   }
543 
544   // Pass inline keyword to optimizer if it appears explicitly on any
545   // declaration. Also, in the case of -fno-inline attach NoInline
546   // attribute to all function that are not marked AlwaysInline.
547   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
548     if (!CGM.getCodeGenOpts().NoInline) {
549       for (auto RI : FD->redecls())
550         if (RI->isInlineSpecified()) {
551           Fn->addFnAttr(llvm::Attribute::InlineHint);
552           break;
553         }
554     } else if (!FD->hasAttr<AlwaysInlineAttr>())
555       Fn->addFnAttr(llvm::Attribute::NoInline);
556   }
557 
558   if (getLangOpts().OpenCL) {
559     // Add metadata for a kernel function.
560     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
561       EmitOpenCLKernelMetadata(FD, Fn);
562   }
563 
564   // If we are checking function types, emit a function type signature as
565   // prefix data.
566   if (getLangOpts().CPlusPlus && SanOpts->Function) {
567     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
568       if (llvm::Constant *PrefixSig =
569               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
570         llvm::Constant *FTRTTIConst =
571             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
572         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
573         llvm::Constant *PrefixStructConst =
574             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
575         Fn->setPrefixData(PrefixStructConst);
576       }
577     }
578   }
579 
580   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
581 
582   // Create a marker to make it easy to insert allocas into the entryblock
583   // later.  Don't create this with the builder, because we don't want it
584   // folded.
585   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
586   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
587   if (Builder.isNamePreserving())
588     AllocaInsertPt->setName("allocapt");
589 
590   ReturnBlock = getJumpDestInCurrentScope("return");
591 
592   Builder.SetInsertPoint(EntryBB);
593 
594   // Emit subprogram debug descriptor.
595   if (CGDebugInfo *DI = getDebugInfo()) {
596     SmallVector<QualType, 16> ArgTypes;
597     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
598 	 i != e; ++i) {
599       ArgTypes.push_back((*i)->getType());
600     }
601 
602     QualType FnType =
603       getContext().getFunctionType(RetTy, ArgTypes,
604                                    FunctionProtoType::ExtProtoInfo());
605     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
606   }
607 
608   if (ShouldInstrumentFunction())
609     EmitFunctionInstrumentation("__cyg_profile_func_enter");
610 
611   if (CGM.getCodeGenOpts().InstrumentForProfiling)
612     EmitMCountInstrumentation();
613 
614   if (RetTy->isVoidType()) {
615     // Void type; nothing to return.
616     ReturnValue = 0;
617 
618     // Count the implicit return.
619     if (!endsWithReturn(D))
620       ++NumReturnExprs;
621   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
622              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
623     // Indirect aggregate return; emit returned value directly into sret slot.
624     // This reduces code size, and affects correctness in C++.
625     auto AI = CurFn->arg_begin();
626     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
627       ++AI;
628     ReturnValue = AI;
629   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
630              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
631     // Load the sret pointer from the argument struct and return into that.
632     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
633     llvm::Function::arg_iterator EI = CurFn->arg_end();
634     --EI;
635     llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
636     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
637   } else {
638     ReturnValue = CreateIRTemp(RetTy, "retval");
639 
640     // Tell the epilog emitter to autorelease the result.  We do this
641     // now so that various specialized functions can suppress it
642     // during their IR-generation.
643     if (getLangOpts().ObjCAutoRefCount &&
644         !CurFnInfo->isReturnsRetained() &&
645         RetTy->isObjCRetainableType())
646       AutoreleaseResult = true;
647   }
648 
649   EmitStartEHSpec(CurCodeDecl);
650 
651   PrologueCleanupDepth = EHStack.stable_begin();
652   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
653 
654   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
655     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
656     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
657     if (MD->getParent()->isLambda() &&
658         MD->getOverloadedOperator() == OO_Call) {
659       // We're in a lambda; figure out the captures.
660       MD->getParent()->getCaptureFields(LambdaCaptureFields,
661                                         LambdaThisCaptureField);
662       if (LambdaThisCaptureField) {
663         // If this lambda captures this, load it.
664         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
665         CXXThisValue = EmitLoadOfLValue(ThisLValue,
666                                         SourceLocation()).getScalarVal();
667       }
668     } else {
669       // Not in a lambda; just use 'this' from the method.
670       // FIXME: Should we generate a new load for each use of 'this'?  The
671       // fast register allocator would be happier...
672       CXXThisValue = CXXABIThisValue;
673     }
674   }
675 
676   // If any of the arguments have a variably modified type, make sure to
677   // emit the type size.
678   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
679        i != e; ++i) {
680     const VarDecl *VD = *i;
681 
682     // Dig out the type as written from ParmVarDecls; it's unclear whether
683     // the standard (C99 6.9.1p10) requires this, but we're following the
684     // precedent set by gcc.
685     QualType Ty;
686     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
687       Ty = PVD->getOriginalType();
688     else
689       Ty = VD->getType();
690 
691     if (Ty->isVariablyModifiedType())
692       EmitVariablyModifiedType(Ty);
693   }
694   // Emit a location at the end of the prologue.
695   if (CGDebugInfo *DI = getDebugInfo())
696     DI->EmitLocation(Builder, StartLoc);
697 }
698 
699 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
700                                        const Stmt *Body) {
701   RegionCounter Cnt = getPGORegionCounter(Body);
702   Cnt.beginRegion(Builder);
703   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
704     EmitCompoundStmtWithoutScope(*S);
705   else
706     EmitStmt(Body);
707 }
708 
709 /// When instrumenting to collect profile data, the counts for some blocks
710 /// such as switch cases need to not include the fall-through counts, so
711 /// emit a branch around the instrumentation code. When not instrumenting,
712 /// this just calls EmitBlock().
713 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
714                                                RegionCounter &Cnt) {
715   llvm::BasicBlock *SkipCountBB = 0;
716   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
717     // When instrumenting for profiling, the fallthrough to certain
718     // statements needs to skip over the instrumentation code so that we
719     // get an accurate count.
720     SkipCountBB = createBasicBlock("skipcount");
721     EmitBranch(SkipCountBB);
722   }
723   EmitBlock(BB);
724   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
725   if (SkipCountBB)
726     EmitBlock(SkipCountBB);
727 }
728 
729 /// Tries to mark the given function nounwind based on the
730 /// non-existence of any throwing calls within it.  We believe this is
731 /// lightweight enough to do at -O0.
732 static void TryMarkNoThrow(llvm::Function *F) {
733   // LLVM treats 'nounwind' on a function as part of the type, so we
734   // can't do this on functions that can be overwritten.
735   if (F->mayBeOverridden()) return;
736 
737   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
738     for (llvm::BasicBlock::iterator
739            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
740       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
741         if (!Call->doesNotThrow())
742           return;
743       } else if (isa<llvm::ResumeInst>(&*BI)) {
744         return;
745       }
746   F->setDoesNotThrow();
747 }
748 
749 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
750                                           const FunctionDecl *UnsizedDealloc) {
751   // This is a weak discardable definition of the sized deallocation function.
752   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
753 
754   // Call the unsized deallocation function and forward the first argument
755   // unchanged.
756   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
757   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
758 }
759 
760 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
761                                    const CGFunctionInfo &FnInfo) {
762   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
763 
764   // Check if we should generate debug info for this function.
765   if (FD->hasAttr<NoDebugAttr>())
766     DebugInfo = NULL; // disable debug info indefinitely for this function
767 
768   FunctionArgList Args;
769   QualType ResTy = FD->getReturnType();
770 
771   CurGD = GD;
772   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
773   if (MD && MD->isInstance()) {
774     if (CGM.getCXXABI().HasThisReturn(GD))
775       ResTy = MD->getThisType(getContext());
776     CGM.getCXXABI().buildThisParam(*this, Args);
777   }
778 
779   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
780     Args.push_back(FD->getParamDecl(i));
781 
782   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
783     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
784 
785   SourceRange BodyRange;
786   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
787   CurEHLocation = BodyRange.getEnd();
788 
789   // Use the location of the start of the function to determine where
790   // the function definition is located. By default use the location
791   // of the declaration as the location for the subprogram. A function
792   // may lack a declaration in the source code if it is created by code
793   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
794   SourceLocation Loc;
795   if (FD) {
796     Loc = FD->getLocation();
797 
798     // If this is a function specialization then use the pattern body
799     // as the location for the function.
800     if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
801       if (SpecDecl->hasBody(SpecDecl))
802         Loc = SpecDecl->getLocation();
803   }
804 
805   // Emit the standard function prologue.
806   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
807 
808   // Generate the body of the function.
809   PGO.assignRegionCounters(GD.getDecl(), CurFn);
810   if (isa<CXXDestructorDecl>(FD))
811     EmitDestructorBody(Args);
812   else if (isa<CXXConstructorDecl>(FD))
813     EmitConstructorBody(Args);
814   else if (getLangOpts().CUDA &&
815            !CGM.getCodeGenOpts().CUDAIsDevice &&
816            FD->hasAttr<CUDAGlobalAttr>())
817     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
818   else if (isa<CXXConversionDecl>(FD) &&
819            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
820     // The lambda conversion to block pointer is special; the semantics can't be
821     // expressed in the AST, so IRGen needs to special-case it.
822     EmitLambdaToBlockPointerBody(Args);
823   } else if (isa<CXXMethodDecl>(FD) &&
824              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
825     // The lambda static invoker function is special, because it forwards or
826     // clones the body of the function call operator (but is actually static).
827     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
828   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
829              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
830               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
831     // Implicit copy-assignment gets the same special treatment as implicit
832     // copy-constructors.
833     emitImplicitAssignmentOperatorBody(Args);
834   } else if (Stmt *Body = FD->getBody()) {
835     EmitFunctionBody(Args, Body);
836   } else if (FunctionDecl *UnsizedDealloc =
837                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
838     // Global sized deallocation functions get an implicit weak definition if
839     // they don't have an explicit definition.
840     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
841   } else
842     llvm_unreachable("no definition for emitted function");
843 
844   // C++11 [stmt.return]p2:
845   //   Flowing off the end of a function [...] results in undefined behavior in
846   //   a value-returning function.
847   // C11 6.9.1p12:
848   //   If the '}' that terminates a function is reached, and the value of the
849   //   function call is used by the caller, the behavior is undefined.
850   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
851       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
852     if (SanOpts->Return)
853       EmitCheck(Builder.getFalse(), "missing_return",
854                 EmitCheckSourceLocation(FD->getLocation()),
855                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
856     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
857       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
858     Builder.CreateUnreachable();
859     Builder.ClearInsertionPoint();
860   }
861 
862   // Emit the standard function epilogue.
863   FinishFunction(BodyRange.getEnd());
864 
865   // If we haven't marked the function nothrow through other means, do
866   // a quick pass now to see if we can.
867   if (!CurFn->doesNotThrow())
868     TryMarkNoThrow(CurFn);
869 
870   PGO.emitInstrumentationData();
871   PGO.destroyRegionCounters();
872 }
873 
874 /// ContainsLabel - Return true if the statement contains a label in it.  If
875 /// this statement is not executed normally, it not containing a label means
876 /// that we can just remove the code.
877 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
878   // Null statement, not a label!
879   if (S == 0) return false;
880 
881   // If this is a label, we have to emit the code, consider something like:
882   // if (0) {  ...  foo:  bar(); }  goto foo;
883   //
884   // TODO: If anyone cared, we could track __label__'s, since we know that you
885   // can't jump to one from outside their declared region.
886   if (isa<LabelStmt>(S))
887     return true;
888 
889   // If this is a case/default statement, and we haven't seen a switch, we have
890   // to emit the code.
891   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
892     return true;
893 
894   // If this is a switch statement, we want to ignore cases below it.
895   if (isa<SwitchStmt>(S))
896     IgnoreCaseStmts = true;
897 
898   // Scan subexpressions for verboten labels.
899   for (Stmt::const_child_range I = S->children(); I; ++I)
900     if (ContainsLabel(*I, IgnoreCaseStmts))
901       return true;
902 
903   return false;
904 }
905 
906 /// containsBreak - Return true if the statement contains a break out of it.
907 /// If the statement (recursively) contains a switch or loop with a break
908 /// inside of it, this is fine.
909 bool CodeGenFunction::containsBreak(const Stmt *S) {
910   // Null statement, not a label!
911   if (S == 0) return false;
912 
913   // If this is a switch or loop that defines its own break scope, then we can
914   // include it and anything inside of it.
915   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
916       isa<ForStmt>(S))
917     return false;
918 
919   if (isa<BreakStmt>(S))
920     return true;
921 
922   // Scan subexpressions for verboten breaks.
923   for (Stmt::const_child_range I = S->children(); I; ++I)
924     if (containsBreak(*I))
925       return true;
926 
927   return false;
928 }
929 
930 
931 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
932 /// to a constant, or if it does but contains a label, return false.  If it
933 /// constant folds return true and set the boolean result in Result.
934 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
935                                                    bool &ResultBool) {
936   llvm::APSInt ResultInt;
937   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
938     return false;
939 
940   ResultBool = ResultInt.getBoolValue();
941   return true;
942 }
943 
944 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
945 /// to a constant, or if it does but contains a label, return false.  If it
946 /// constant folds return true and set the folded value.
947 bool CodeGenFunction::
948 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
949   // FIXME: Rename and handle conversion of other evaluatable things
950   // to bool.
951   llvm::APSInt Int;
952   if (!Cond->EvaluateAsInt(Int, getContext()))
953     return false;  // Not foldable, not integer or not fully evaluatable.
954 
955   if (CodeGenFunction::ContainsLabel(Cond))
956     return false;  // Contains a label.
957 
958   ResultInt = Int;
959   return true;
960 }
961 
962 
963 
964 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
965 /// statement) to the specified blocks.  Based on the condition, this might try
966 /// to simplify the codegen of the conditional based on the branch.
967 ///
968 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
969                                            llvm::BasicBlock *TrueBlock,
970                                            llvm::BasicBlock *FalseBlock,
971                                            uint64_t TrueCount) {
972   Cond = Cond->IgnoreParens();
973 
974   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
975 
976     // Handle X && Y in a condition.
977     if (CondBOp->getOpcode() == BO_LAnd) {
978       RegionCounter Cnt = getPGORegionCounter(CondBOp);
979 
980       // If we have "1 && X", simplify the code.  "0 && X" would have constant
981       // folded if the case was simple enough.
982       bool ConstantBool = false;
983       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
984           ConstantBool) {
985         // br(1 && X) -> br(X).
986         Cnt.beginRegion(Builder);
987         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
988                                     TrueCount);
989       }
990 
991       // If we have "X && 1", simplify the code to use an uncond branch.
992       // "X && 0" would have been constant folded to 0.
993       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
994           ConstantBool) {
995         // br(X && 1) -> br(X).
996         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
997                                     TrueCount);
998       }
999 
1000       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1001       // want to jump to the FalseBlock.
1002       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1003       // The counter tells us how often we evaluate RHS, and all of TrueCount
1004       // can be propagated to that branch.
1005       uint64_t RHSCount = Cnt.getCount();
1006 
1007       ConditionalEvaluation eval(*this);
1008       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1009       EmitBlock(LHSTrue);
1010 
1011       // Any temporaries created here are conditional.
1012       Cnt.beginRegion(Builder);
1013       eval.begin(*this);
1014       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1015       eval.end(*this);
1016 
1017       return;
1018     }
1019 
1020     if (CondBOp->getOpcode() == BO_LOr) {
1021       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1022 
1023       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1024       // folded if the case was simple enough.
1025       bool ConstantBool = false;
1026       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1027           !ConstantBool) {
1028         // br(0 || X) -> br(X).
1029         Cnt.beginRegion(Builder);
1030         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1031                                     TrueCount);
1032       }
1033 
1034       // If we have "X || 0", simplify the code to use an uncond branch.
1035       // "X || 1" would have been constant folded to 1.
1036       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1037           !ConstantBool) {
1038         // br(X || 0) -> br(X).
1039         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1040                                     TrueCount);
1041       }
1042 
1043       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1044       // want to jump to the TrueBlock.
1045       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1046       // We have the count for entry to the RHS and for the whole expression
1047       // being true, so we can divy up True count between the short circuit and
1048       // the RHS.
1049       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1050       uint64_t RHSCount = TrueCount - LHSCount;
1051 
1052       ConditionalEvaluation eval(*this);
1053       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1054       EmitBlock(LHSFalse);
1055 
1056       // Any temporaries created here are conditional.
1057       Cnt.beginRegion(Builder);
1058       eval.begin(*this);
1059       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1060 
1061       eval.end(*this);
1062 
1063       return;
1064     }
1065   }
1066 
1067   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1068     // br(!x, t, f) -> br(x, f, t)
1069     if (CondUOp->getOpcode() == UO_LNot) {
1070       // Negate the count.
1071       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1072       // Negate the condition and swap the destination blocks.
1073       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1074                                   FalseCount);
1075     }
1076   }
1077 
1078   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1079     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1080     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1081     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1082 
1083     RegionCounter Cnt = getPGORegionCounter(CondOp);
1084     ConditionalEvaluation cond(*this);
1085     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1086 
1087     // When computing PGO branch weights, we only know the overall count for
1088     // the true block. This code is essentially doing tail duplication of the
1089     // naive code-gen, introducing new edges for which counts are not
1090     // available. Divide the counts proportionally between the LHS and RHS of
1091     // the conditional operator.
1092     uint64_t LHSScaledTrueCount = 0;
1093     if (TrueCount) {
1094       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1095       LHSScaledTrueCount = TrueCount * LHSRatio;
1096     }
1097 
1098     cond.begin(*this);
1099     EmitBlock(LHSBlock);
1100     Cnt.beginRegion(Builder);
1101     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1102                          LHSScaledTrueCount);
1103     cond.end(*this);
1104 
1105     cond.begin(*this);
1106     EmitBlock(RHSBlock);
1107     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1108                          TrueCount - LHSScaledTrueCount);
1109     cond.end(*this);
1110 
1111     return;
1112   }
1113 
1114   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1115     // Conditional operator handling can give us a throw expression as a
1116     // condition for a case like:
1117     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1118     // Fold this to:
1119     //   br(c, throw x, br(y, t, f))
1120     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1121     return;
1122   }
1123 
1124   // Create branch weights based on the number of times we get here and the
1125   // number of times the condition should be true.
1126   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1127   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1128                                                   CurrentCount - TrueCount);
1129 
1130   // Emit the code with the fully general case.
1131   llvm::Value *CondV = EvaluateExprAsBool(Cond);
1132   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1133 }
1134 
1135 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1136 /// specified stmt yet.
1137 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1138   CGM.ErrorUnsupported(S, Type);
1139 }
1140 
1141 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1142 /// variable-length array whose elements have a non-zero bit-pattern.
1143 ///
1144 /// \param baseType the inner-most element type of the array
1145 /// \param src - a char* pointing to the bit-pattern for a single
1146 /// base element of the array
1147 /// \param sizeInChars - the total size of the VLA, in chars
1148 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1149                                llvm::Value *dest, llvm::Value *src,
1150                                llvm::Value *sizeInChars) {
1151   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1152     = CGF.getContext().getTypeInfoInChars(baseType);
1153 
1154   CGBuilderTy &Builder = CGF.Builder;
1155 
1156   llvm::Value *baseSizeInChars
1157     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1158 
1159   llvm::Type *i8p = Builder.getInt8PtrTy();
1160 
1161   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1162   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1163 
1164   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1165   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1166   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1167 
1168   // Make a loop over the VLA.  C99 guarantees that the VLA element
1169   // count must be nonzero.
1170   CGF.EmitBlock(loopBB);
1171 
1172   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1173   cur->addIncoming(begin, originBB);
1174 
1175   // memcpy the individual element bit-pattern.
1176   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1177                        baseSizeAndAlign.second.getQuantity(),
1178                        /*volatile*/ false);
1179 
1180   // Go to the next element.
1181   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1182 
1183   // Leave if that's the end of the VLA.
1184   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1185   Builder.CreateCondBr(done, contBB, loopBB);
1186   cur->addIncoming(next, loopBB);
1187 
1188   CGF.EmitBlock(contBB);
1189 }
1190 
1191 void
1192 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1193   // Ignore empty classes in C++.
1194   if (getLangOpts().CPlusPlus) {
1195     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1196       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1197         return;
1198     }
1199   }
1200 
1201   // Cast the dest ptr to the appropriate i8 pointer type.
1202   unsigned DestAS =
1203     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1204   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1205   if (DestPtr->getType() != BP)
1206     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1207 
1208   // Get size and alignment info for this aggregate.
1209   std::pair<CharUnits, CharUnits> TypeInfo =
1210     getContext().getTypeInfoInChars(Ty);
1211   CharUnits Size = TypeInfo.first;
1212   CharUnits Align = TypeInfo.second;
1213 
1214   llvm::Value *SizeVal;
1215   const VariableArrayType *vla;
1216 
1217   // Don't bother emitting a zero-byte memset.
1218   if (Size.isZero()) {
1219     // But note that getTypeInfo returns 0 for a VLA.
1220     if (const VariableArrayType *vlaType =
1221           dyn_cast_or_null<VariableArrayType>(
1222                                           getContext().getAsArrayType(Ty))) {
1223       QualType eltType;
1224       llvm::Value *numElts;
1225       std::tie(numElts, eltType) = getVLASize(vlaType);
1226 
1227       SizeVal = numElts;
1228       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1229       if (!eltSize.isOne())
1230         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1231       vla = vlaType;
1232     } else {
1233       return;
1234     }
1235   } else {
1236     SizeVal = CGM.getSize(Size);
1237     vla = 0;
1238   }
1239 
1240   // If the type contains a pointer to data member we can't memset it to zero.
1241   // Instead, create a null constant and copy it to the destination.
1242   // TODO: there are other patterns besides zero that we can usefully memset,
1243   // like -1, which happens to be the pattern used by member-pointers.
1244   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1245     // For a VLA, emit a single element, then splat that over the VLA.
1246     if (vla) Ty = getContext().getBaseElementType(vla);
1247 
1248     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1249 
1250     llvm::GlobalVariable *NullVariable =
1251       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1252                                /*isConstant=*/true,
1253                                llvm::GlobalVariable::PrivateLinkage,
1254                                NullConstant, Twine());
1255     llvm::Value *SrcPtr =
1256       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1257 
1258     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1259 
1260     // Get and call the appropriate llvm.memcpy overload.
1261     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1262     return;
1263   }
1264 
1265   // Otherwise, just memset the whole thing to zero.  This is legal
1266   // because in LLVM, all default initializers (other than the ones we just
1267   // handled above) are guaranteed to have a bit pattern of all zeros.
1268   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1269                        Align.getQuantity(), false);
1270 }
1271 
1272 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1273   // Make sure that there is a block for the indirect goto.
1274   if (IndirectBranch == 0)
1275     GetIndirectGotoBlock();
1276 
1277   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1278 
1279   // Make sure the indirect branch includes all of the address-taken blocks.
1280   IndirectBranch->addDestination(BB);
1281   return llvm::BlockAddress::get(CurFn, BB);
1282 }
1283 
1284 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1285   // If we already made the indirect branch for indirect goto, return its block.
1286   if (IndirectBranch) return IndirectBranch->getParent();
1287 
1288   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1289 
1290   // Create the PHI node that indirect gotos will add entries to.
1291   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1292                                               "indirect.goto.dest");
1293 
1294   // Create the indirect branch instruction.
1295   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1296   return IndirectBranch->getParent();
1297 }
1298 
1299 /// Computes the length of an array in elements, as well as the base
1300 /// element type and a properly-typed first element pointer.
1301 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1302                                               QualType &baseType,
1303                                               llvm::Value *&addr) {
1304   const ArrayType *arrayType = origArrayType;
1305 
1306   // If it's a VLA, we have to load the stored size.  Note that
1307   // this is the size of the VLA in bytes, not its size in elements.
1308   llvm::Value *numVLAElements = 0;
1309   if (isa<VariableArrayType>(arrayType)) {
1310     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1311 
1312     // Walk into all VLAs.  This doesn't require changes to addr,
1313     // which has type T* where T is the first non-VLA element type.
1314     do {
1315       QualType elementType = arrayType->getElementType();
1316       arrayType = getContext().getAsArrayType(elementType);
1317 
1318       // If we only have VLA components, 'addr' requires no adjustment.
1319       if (!arrayType) {
1320         baseType = elementType;
1321         return numVLAElements;
1322       }
1323     } while (isa<VariableArrayType>(arrayType));
1324 
1325     // We get out here only if we find a constant array type
1326     // inside the VLA.
1327   }
1328 
1329   // We have some number of constant-length arrays, so addr should
1330   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1331   // down to the first element of addr.
1332   SmallVector<llvm::Value*, 8> gepIndices;
1333 
1334   // GEP down to the array type.
1335   llvm::ConstantInt *zero = Builder.getInt32(0);
1336   gepIndices.push_back(zero);
1337 
1338   uint64_t countFromCLAs = 1;
1339   QualType eltType;
1340 
1341   llvm::ArrayType *llvmArrayType =
1342     dyn_cast<llvm::ArrayType>(
1343       cast<llvm::PointerType>(addr->getType())->getElementType());
1344   while (llvmArrayType) {
1345     assert(isa<ConstantArrayType>(arrayType));
1346     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1347              == llvmArrayType->getNumElements());
1348 
1349     gepIndices.push_back(zero);
1350     countFromCLAs *= llvmArrayType->getNumElements();
1351     eltType = arrayType->getElementType();
1352 
1353     llvmArrayType =
1354       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1355     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1356     assert((!llvmArrayType || arrayType) &&
1357            "LLVM and Clang types are out-of-synch");
1358   }
1359 
1360   if (arrayType) {
1361     // From this point onwards, the Clang array type has been emitted
1362     // as some other type (probably a packed struct). Compute the array
1363     // size, and just emit the 'begin' expression as a bitcast.
1364     while (arrayType) {
1365       countFromCLAs *=
1366           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1367       eltType = arrayType->getElementType();
1368       arrayType = getContext().getAsArrayType(eltType);
1369     }
1370 
1371     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1372     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1373     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1374   } else {
1375     // Create the actual GEP.
1376     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1377   }
1378 
1379   baseType = eltType;
1380 
1381   llvm::Value *numElements
1382     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1383 
1384   // If we had any VLA dimensions, factor them in.
1385   if (numVLAElements)
1386     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1387 
1388   return numElements;
1389 }
1390 
1391 std::pair<llvm::Value*, QualType>
1392 CodeGenFunction::getVLASize(QualType type) {
1393   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1394   assert(vla && "type was not a variable array type!");
1395   return getVLASize(vla);
1396 }
1397 
1398 std::pair<llvm::Value*, QualType>
1399 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1400   // The number of elements so far; always size_t.
1401   llvm::Value *numElements = 0;
1402 
1403   QualType elementType;
1404   do {
1405     elementType = type->getElementType();
1406     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1407     assert(vlaSize && "no size for VLA!");
1408     assert(vlaSize->getType() == SizeTy);
1409 
1410     if (!numElements) {
1411       numElements = vlaSize;
1412     } else {
1413       // It's undefined behavior if this wraps around, so mark it that way.
1414       // FIXME: Teach -fsanitize=undefined to trap this.
1415       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1416     }
1417   } while ((type = getContext().getAsVariableArrayType(elementType)));
1418 
1419   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1420 }
1421 
1422 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1423   assert(type->isVariablyModifiedType() &&
1424          "Must pass variably modified type to EmitVLASizes!");
1425 
1426   EnsureInsertPoint();
1427 
1428   // We're going to walk down into the type and look for VLA
1429   // expressions.
1430   do {
1431     assert(type->isVariablyModifiedType());
1432 
1433     const Type *ty = type.getTypePtr();
1434     switch (ty->getTypeClass()) {
1435 
1436 #define TYPE(Class, Base)
1437 #define ABSTRACT_TYPE(Class, Base)
1438 #define NON_CANONICAL_TYPE(Class, Base)
1439 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1440 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1441 #include "clang/AST/TypeNodes.def"
1442       llvm_unreachable("unexpected dependent type!");
1443 
1444     // These types are never variably-modified.
1445     case Type::Builtin:
1446     case Type::Complex:
1447     case Type::Vector:
1448     case Type::ExtVector:
1449     case Type::Record:
1450     case Type::Enum:
1451     case Type::Elaborated:
1452     case Type::TemplateSpecialization:
1453     case Type::ObjCObject:
1454     case Type::ObjCInterface:
1455     case Type::ObjCObjectPointer:
1456       llvm_unreachable("type class is never variably-modified!");
1457 
1458     case Type::Adjusted:
1459       type = cast<AdjustedType>(ty)->getAdjustedType();
1460       break;
1461 
1462     case Type::Decayed:
1463       type = cast<DecayedType>(ty)->getPointeeType();
1464       break;
1465 
1466     case Type::Pointer:
1467       type = cast<PointerType>(ty)->getPointeeType();
1468       break;
1469 
1470     case Type::BlockPointer:
1471       type = cast<BlockPointerType>(ty)->getPointeeType();
1472       break;
1473 
1474     case Type::LValueReference:
1475     case Type::RValueReference:
1476       type = cast<ReferenceType>(ty)->getPointeeType();
1477       break;
1478 
1479     case Type::MemberPointer:
1480       type = cast<MemberPointerType>(ty)->getPointeeType();
1481       break;
1482 
1483     case Type::ConstantArray:
1484     case Type::IncompleteArray:
1485       // Losing element qualification here is fine.
1486       type = cast<ArrayType>(ty)->getElementType();
1487       break;
1488 
1489     case Type::VariableArray: {
1490       // Losing element qualification here is fine.
1491       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1492 
1493       // Unknown size indication requires no size computation.
1494       // Otherwise, evaluate and record it.
1495       if (const Expr *size = vat->getSizeExpr()) {
1496         // It's possible that we might have emitted this already,
1497         // e.g. with a typedef and a pointer to it.
1498         llvm::Value *&entry = VLASizeMap[size];
1499         if (!entry) {
1500           llvm::Value *Size = EmitScalarExpr(size);
1501 
1502           // C11 6.7.6.2p5:
1503           //   If the size is an expression that is not an integer constant
1504           //   expression [...] each time it is evaluated it shall have a value
1505           //   greater than zero.
1506           if (SanOpts->VLABound &&
1507               size->getType()->isSignedIntegerType()) {
1508             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1509             llvm::Constant *StaticArgs[] = {
1510               EmitCheckSourceLocation(size->getLocStart()),
1511               EmitCheckTypeDescriptor(size->getType())
1512             };
1513             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1514                       "vla_bound_not_positive", StaticArgs, Size,
1515                       CRK_Recoverable);
1516           }
1517 
1518           // Always zexting here would be wrong if it weren't
1519           // undefined behavior to have a negative bound.
1520           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1521         }
1522       }
1523       type = vat->getElementType();
1524       break;
1525     }
1526 
1527     case Type::FunctionProto:
1528     case Type::FunctionNoProto:
1529       type = cast<FunctionType>(ty)->getReturnType();
1530       break;
1531 
1532     case Type::Paren:
1533     case Type::TypeOf:
1534     case Type::UnaryTransform:
1535     case Type::Attributed:
1536     case Type::SubstTemplateTypeParm:
1537     case Type::PackExpansion:
1538       // Keep walking after single level desugaring.
1539       type = type.getSingleStepDesugaredType(getContext());
1540       break;
1541 
1542     case Type::Typedef:
1543     case Type::Decltype:
1544     case Type::Auto:
1545       // Stop walking: nothing to do.
1546       return;
1547 
1548     case Type::TypeOfExpr:
1549       // Stop walking: emit typeof expression.
1550       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1551       return;
1552 
1553     case Type::Atomic:
1554       type = cast<AtomicType>(ty)->getValueType();
1555       break;
1556     }
1557   } while (type->isVariablyModifiedType());
1558 }
1559 
1560 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1561   if (getContext().getBuiltinVaListType()->isArrayType())
1562     return EmitScalarExpr(E);
1563   return EmitLValue(E).getAddress();
1564 }
1565 
1566 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1567                                               llvm::Constant *Init) {
1568   assert (Init && "Invalid DeclRefExpr initializer!");
1569   if (CGDebugInfo *Dbg = getDebugInfo())
1570     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1571       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1572 }
1573 
1574 CodeGenFunction::PeepholeProtection
1575 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1576   // At the moment, the only aggressive peephole we do in IR gen
1577   // is trunc(zext) folding, but if we add more, we can easily
1578   // extend this protection.
1579 
1580   if (!rvalue.isScalar()) return PeepholeProtection();
1581   llvm::Value *value = rvalue.getScalarVal();
1582   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1583 
1584   // Just make an extra bitcast.
1585   assert(HaveInsertPoint());
1586   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1587                                                   Builder.GetInsertBlock());
1588 
1589   PeepholeProtection protection;
1590   protection.Inst = inst;
1591   return protection;
1592 }
1593 
1594 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1595   if (!protection.Inst) return;
1596 
1597   // In theory, we could try to duplicate the peepholes now, but whatever.
1598   protection.Inst->eraseFromParent();
1599 }
1600 
1601 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1602                                                  llvm::Value *AnnotatedVal,
1603                                                  StringRef AnnotationStr,
1604                                                  SourceLocation Location) {
1605   llvm::Value *Args[4] = {
1606     AnnotatedVal,
1607     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1608     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1609     CGM.EmitAnnotationLineNo(Location)
1610   };
1611   return Builder.CreateCall(AnnotationFn, Args);
1612 }
1613 
1614 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1615   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1616   // FIXME We create a new bitcast for every annotation because that's what
1617   // llvm-gcc was doing.
1618   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1619     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1620                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1621                        I->getAnnotation(), D->getLocation());
1622 }
1623 
1624 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1625                                                    llvm::Value *V) {
1626   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1627   llvm::Type *VTy = V->getType();
1628   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1629                                     CGM.Int8PtrTy);
1630 
1631   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1632     // FIXME Always emit the cast inst so we can differentiate between
1633     // annotation on the first field of a struct and annotation on the struct
1634     // itself.
1635     if (VTy != CGM.Int8PtrTy)
1636       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1637     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1638     V = Builder.CreateBitCast(V, VTy);
1639   }
1640 
1641   return V;
1642 }
1643 
1644 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1645