1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       CurFn(nullptr), ReturnValue(Address::invalid()),
69       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
70       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
71       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
72       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
73       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
74       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
75       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
76       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
77       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
78       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
79       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
80       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
81       CXXStructorImplicitParamDecl(nullptr),
82       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
83       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
84       TerminateHandler(nullptr), TrapBB(nullptr),
85       ShouldEmitLifetimeMarkers(
86           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
87   if (!suppressNewContext)
88     CGM.getCXXABI().getMangleContext().startNewFunction();
89 
90   llvm::FastMathFlags FMF;
91   if (CGM.getLangOpts().FastMath)
92     FMF.setFast();
93   if (CGM.getLangOpts().FiniteMathOnly) {
94     FMF.setNoNaNs();
95     FMF.setNoInfs();
96   }
97   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
98     FMF.setNoNaNs();
99   }
100   if (CGM.getCodeGenOpts().NoSignedZeros) {
101     FMF.setNoSignedZeros();
102   }
103   if (CGM.getCodeGenOpts().ReciprocalMath) {
104     FMF.setAllowReciprocal();
105   }
106   Builder.setFastMathFlags(FMF);
107 }
108 
109 CodeGenFunction::~CodeGenFunction() {
110   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
111 
112   // If there are any unclaimed block infos, go ahead and destroy them
113   // now.  This can happen if IR-gen gets clever and skips evaluating
114   // something.
115   if (FirstBlockInfo)
116     destroyBlockInfos(FirstBlockInfo);
117 
118   if (getLangOpts().OpenMP && CurFn)
119     CGM.getOpenMPRuntime().functionFinished(*this);
120 }
121 
122 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
123                                                     LValueBaseInfo *BaseInfo,
124                                                     TBAAAccessInfo *TBAAInfo) {
125   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
126                                  /* forPointeeType= */ true);
127 }
128 
129 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
130                                                    LValueBaseInfo *BaseInfo,
131                                                    TBAAAccessInfo *TBAAInfo,
132                                                    bool forPointeeType) {
133   if (TBAAInfo)
134     *TBAAInfo = CGM.getTBAAAccessInfo(T);
135 
136   // Honor alignment typedef attributes even on incomplete types.
137   // We also honor them straight for C++ class types, even as pointees;
138   // there's an expressivity gap here.
139   if (auto TT = T->getAs<TypedefType>()) {
140     if (auto Align = TT->getDecl()->getMaxAlignment()) {
141       if (BaseInfo)
142         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
143       return getContext().toCharUnitsFromBits(Align);
144     }
145   }
146 
147   if (BaseInfo)
148     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
149 
150   CharUnits Alignment;
151   if (T->isIncompleteType()) {
152     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
153   } else {
154     // For C++ class pointees, we don't know whether we're pointing at a
155     // base or a complete object, so we generally need to use the
156     // non-virtual alignment.
157     const CXXRecordDecl *RD;
158     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
159       Alignment = CGM.getClassPointerAlignment(RD);
160     } else {
161       Alignment = getContext().getTypeAlignInChars(T);
162       if (T.getQualifiers().hasUnaligned())
163         Alignment = CharUnits::One();
164     }
165 
166     // Cap to the global maximum type alignment unless the alignment
167     // was somehow explicit on the type.
168     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
169       if (Alignment.getQuantity() > MaxAlign &&
170           !getContext().isAlignmentRequired(T))
171         Alignment = CharUnits::fromQuantity(MaxAlign);
172     }
173   }
174   return Alignment;
175 }
176 
177 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
178   LValueBaseInfo BaseInfo;
179   TBAAAccessInfo TBAAInfo;
180   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
181   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
182                           TBAAInfo);
183 }
184 
185 /// Given a value of type T* that may not be to a complete object,
186 /// construct an l-value with the natural pointee alignment of T.
187 LValue
188 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
189   LValueBaseInfo BaseInfo;
190   TBAAAccessInfo TBAAInfo;
191   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
192                                             /* forPointeeType= */ true);
193   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
194 }
195 
196 
197 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
198   return CGM.getTypes().ConvertTypeForMem(T);
199 }
200 
201 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
202   return CGM.getTypes().ConvertType(T);
203 }
204 
205 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
206   type = type.getCanonicalType();
207   while (true) {
208     switch (type->getTypeClass()) {
209 #define TYPE(name, parent)
210 #define ABSTRACT_TYPE(name, parent)
211 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
212 #define DEPENDENT_TYPE(name, parent) case Type::name:
213 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
214 #include "clang/AST/TypeNodes.def"
215       llvm_unreachable("non-canonical or dependent type in IR-generation");
216 
217     case Type::Auto:
218     case Type::DeducedTemplateSpecialization:
219       llvm_unreachable("undeduced type in IR-generation");
220 
221     // Various scalar types.
222     case Type::Builtin:
223     case Type::Pointer:
224     case Type::BlockPointer:
225     case Type::LValueReference:
226     case Type::RValueReference:
227     case Type::MemberPointer:
228     case Type::Vector:
229     case Type::ExtVector:
230     case Type::FunctionProto:
231     case Type::FunctionNoProto:
232     case Type::Enum:
233     case Type::ObjCObjectPointer:
234     case Type::Pipe:
235       return TEK_Scalar;
236 
237     // Complexes.
238     case Type::Complex:
239       return TEK_Complex;
240 
241     // Arrays, records, and Objective-C objects.
242     case Type::ConstantArray:
243     case Type::IncompleteArray:
244     case Type::VariableArray:
245     case Type::Record:
246     case Type::ObjCObject:
247     case Type::ObjCInterface:
248       return TEK_Aggregate;
249 
250     // We operate on atomic values according to their underlying type.
251     case Type::Atomic:
252       type = cast<AtomicType>(type)->getValueType();
253       continue;
254     }
255     llvm_unreachable("unknown type kind!");
256   }
257 }
258 
259 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
260   // For cleanliness, we try to avoid emitting the return block for
261   // simple cases.
262   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
263 
264   if (CurBB) {
265     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
266 
267     // We have a valid insert point, reuse it if it is empty or there are no
268     // explicit jumps to the return block.
269     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
270       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
271       delete ReturnBlock.getBlock();
272     } else
273       EmitBlock(ReturnBlock.getBlock());
274     return llvm::DebugLoc();
275   }
276 
277   // Otherwise, if the return block is the target of a single direct
278   // branch then we can just put the code in that block instead. This
279   // cleans up functions which started with a unified return block.
280   if (ReturnBlock.getBlock()->hasOneUse()) {
281     llvm::BranchInst *BI =
282       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
283     if (BI && BI->isUnconditional() &&
284         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
285       // Record/return the DebugLoc of the simple 'return' expression to be used
286       // later by the actual 'ret' instruction.
287       llvm::DebugLoc Loc = BI->getDebugLoc();
288       Builder.SetInsertPoint(BI->getParent());
289       BI->eraseFromParent();
290       delete ReturnBlock.getBlock();
291       return Loc;
292     }
293   }
294 
295   // FIXME: We are at an unreachable point, there is no reason to emit the block
296   // unless it has uses. However, we still need a place to put the debug
297   // region.end for now.
298 
299   EmitBlock(ReturnBlock.getBlock());
300   return llvm::DebugLoc();
301 }
302 
303 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
304   if (!BB) return;
305   if (!BB->use_empty())
306     return CGF.CurFn->getBasicBlockList().push_back(BB);
307   delete BB;
308 }
309 
310 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
311   assert(BreakContinueStack.empty() &&
312          "mismatched push/pop in break/continue stack!");
313 
314   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
315     && NumSimpleReturnExprs == NumReturnExprs
316     && ReturnBlock.getBlock()->use_empty();
317   // Usually the return expression is evaluated before the cleanup
318   // code.  If the function contains only a simple return statement,
319   // such as a constant, the location before the cleanup code becomes
320   // the last useful breakpoint in the function, because the simple
321   // return expression will be evaluated after the cleanup code. To be
322   // safe, set the debug location for cleanup code to the location of
323   // the return statement.  Otherwise the cleanup code should be at the
324   // end of the function's lexical scope.
325   //
326   // If there are multiple branches to the return block, the branch
327   // instructions will get the location of the return statements and
328   // all will be fine.
329   if (CGDebugInfo *DI = getDebugInfo()) {
330     if (OnlySimpleReturnStmts)
331       DI->EmitLocation(Builder, LastStopPoint);
332     else
333       DI->EmitLocation(Builder, EndLoc);
334   }
335 
336   // Pop any cleanups that might have been associated with the
337   // parameters.  Do this in whatever block we're currently in; it's
338   // important to do this before we enter the return block or return
339   // edges will be *really* confused.
340   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
341   bool HasOnlyLifetimeMarkers =
342       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
343   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
344   if (HasCleanups) {
345     // Make sure the line table doesn't jump back into the body for
346     // the ret after it's been at EndLoc.
347     if (CGDebugInfo *DI = getDebugInfo())
348       if (OnlySimpleReturnStmts)
349         DI->EmitLocation(Builder, EndLoc);
350 
351     PopCleanupBlocks(PrologueCleanupDepth);
352   }
353 
354   // Emit function epilog (to return).
355   llvm::DebugLoc Loc = EmitReturnBlock();
356 
357   if (ShouldInstrumentFunction()) {
358     if (CGM.getCodeGenOpts().InstrumentFunctions)
359       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
360     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
361       CurFn->addFnAttr("instrument-function-exit-inlined",
362                        "__cyg_profile_func_exit");
363   }
364 
365   // Emit debug descriptor for function end.
366   if (CGDebugInfo *DI = getDebugInfo())
367     DI->EmitFunctionEnd(Builder, CurFn);
368 
369   // Reset the debug location to that of the simple 'return' expression, if any
370   // rather than that of the end of the function's scope '}'.
371   ApplyDebugLocation AL(*this, Loc);
372   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
373   EmitEndEHSpec(CurCodeDecl);
374 
375   assert(EHStack.empty() &&
376          "did not remove all scopes from cleanup stack!");
377 
378   // If someone did an indirect goto, emit the indirect goto block at the end of
379   // the function.
380   if (IndirectBranch) {
381     EmitBlock(IndirectBranch->getParent());
382     Builder.ClearInsertionPoint();
383   }
384 
385   // If some of our locals escaped, insert a call to llvm.localescape in the
386   // entry block.
387   if (!EscapedLocals.empty()) {
388     // Invert the map from local to index into a simple vector. There should be
389     // no holes.
390     SmallVector<llvm::Value *, 4> EscapeArgs;
391     EscapeArgs.resize(EscapedLocals.size());
392     for (auto &Pair : EscapedLocals)
393       EscapeArgs[Pair.second] = Pair.first;
394     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
395         &CGM.getModule(), llvm::Intrinsic::localescape);
396     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
397   }
398 
399   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
400   llvm::Instruction *Ptr = AllocaInsertPt;
401   AllocaInsertPt = nullptr;
402   Ptr->eraseFromParent();
403 
404   // If someone took the address of a label but never did an indirect goto, we
405   // made a zero entry PHI node, which is illegal, zap it now.
406   if (IndirectBranch) {
407     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
408     if (PN->getNumIncomingValues() == 0) {
409       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
410       PN->eraseFromParent();
411     }
412   }
413 
414   EmitIfUsed(*this, EHResumeBlock);
415   EmitIfUsed(*this, TerminateLandingPad);
416   EmitIfUsed(*this, TerminateHandler);
417   EmitIfUsed(*this, UnreachableBlock);
418 
419   if (CGM.getCodeGenOpts().EmitDeclMetadata)
420     EmitDeclMetadata();
421 
422   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
423            I = DeferredReplacements.begin(),
424            E = DeferredReplacements.end();
425        I != E; ++I) {
426     I->first->replaceAllUsesWith(I->second);
427     I->first->eraseFromParent();
428   }
429 
430   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
431   // PHIs if the current function is a coroutine. We don't do it for all
432   // functions as it may result in slight increase in numbers of instructions
433   // if compiled with no optimizations. We do it for coroutine as the lifetime
434   // of CleanupDestSlot alloca make correct coroutine frame building very
435   // difficult.
436   if (NormalCleanupDest && isCoroutine()) {
437     llvm::DominatorTree DT(*CurFn);
438     llvm::PromoteMemToReg(NormalCleanupDest, DT);
439     NormalCleanupDest = nullptr;
440   }
441 }
442 
443 /// ShouldInstrumentFunction - Return true if the current function should be
444 /// instrumented with __cyg_profile_func_* calls
445 bool CodeGenFunction::ShouldInstrumentFunction() {
446   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
447       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
448       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
449     return false;
450   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
451     return false;
452   return true;
453 }
454 
455 /// ShouldXRayInstrument - Return true if the current function should be
456 /// instrumented with XRay nop sleds.
457 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
458   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
459 }
460 
461 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
462 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation.
463 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
464   return CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents;
465 }
466 
467 llvm::Constant *
468 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
469                                             llvm::Constant *Addr) {
470   // Addresses stored in prologue data can't require run-time fixups and must
471   // be PC-relative. Run-time fixups are undesirable because they necessitate
472   // writable text segments, which are unsafe. And absolute addresses are
473   // undesirable because they break PIE mode.
474 
475   // Add a layer of indirection through a private global. Taking its address
476   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
477   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
478                                       /*isConstant=*/true,
479                                       llvm::GlobalValue::PrivateLinkage, Addr);
480 
481   // Create a PC-relative address.
482   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
483   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
484   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
485   return (IntPtrTy == Int32Ty)
486              ? PCRelAsInt
487              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
488 }
489 
490 llvm::Value *
491 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
492                                           llvm::Value *EncodedAddr) {
493   // Reconstruct the address of the global.
494   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
495   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
496   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
497   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
498 
499   // Load the original pointer through the global.
500   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
501                             "decoded_addr");
502 }
503 
504 static void removeImageAccessQualifier(std::string& TyName) {
505   std::string ReadOnlyQual("__read_only");
506   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
507   if (ReadOnlyPos != std::string::npos)
508     // "+ 1" for the space after access qualifier.
509     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
510   else {
511     std::string WriteOnlyQual("__write_only");
512     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
513     if (WriteOnlyPos != std::string::npos)
514       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
515     else {
516       std::string ReadWriteQual("__read_write");
517       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
518       if (ReadWritePos != std::string::npos)
519         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
520     }
521   }
522 }
523 
524 // Returns the address space id that should be produced to the
525 // kernel_arg_addr_space metadata. This is always fixed to the ids
526 // as specified in the SPIR 2.0 specification in order to differentiate
527 // for example in clGetKernelArgInfo() implementation between the address
528 // spaces with targets without unique mapping to the OpenCL address spaces
529 // (basically all single AS CPUs).
530 static unsigned ArgInfoAddressSpace(LangAS AS) {
531   switch (AS) {
532   case LangAS::opencl_global:   return 1;
533   case LangAS::opencl_constant: return 2;
534   case LangAS::opencl_local:    return 3;
535   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
536   default:
537     return 0; // Assume private.
538   }
539 }
540 
541 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
542 // information in the program executable. The argument information stored
543 // includes the argument name, its type, the address and access qualifiers used.
544 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
545                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
546                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
547   // Create MDNodes that represent the kernel arg metadata.
548   // Each MDNode is a list in the form of "key", N number of values which is
549   // the same number of values as their are kernel arguments.
550 
551   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
552 
553   // MDNode for the kernel argument address space qualifiers.
554   SmallVector<llvm::Metadata *, 8> addressQuals;
555 
556   // MDNode for the kernel argument access qualifiers (images only).
557   SmallVector<llvm::Metadata *, 8> accessQuals;
558 
559   // MDNode for the kernel argument type names.
560   SmallVector<llvm::Metadata *, 8> argTypeNames;
561 
562   // MDNode for the kernel argument base type names.
563   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
564 
565   // MDNode for the kernel argument type qualifiers.
566   SmallVector<llvm::Metadata *, 8> argTypeQuals;
567 
568   // MDNode for the kernel argument names.
569   SmallVector<llvm::Metadata *, 8> argNames;
570 
571   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
572     const ParmVarDecl *parm = FD->getParamDecl(i);
573     QualType ty = parm->getType();
574     std::string typeQuals;
575 
576     if (ty->isPointerType()) {
577       QualType pointeeTy = ty->getPointeeType();
578 
579       // Get address qualifier.
580       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
581         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
582 
583       // Get argument type name.
584       std::string typeName =
585           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
586 
587       // Turn "unsigned type" to "utype"
588       std::string::size_type pos = typeName.find("unsigned");
589       if (pointeeTy.isCanonical() && pos != std::string::npos)
590         typeName.erase(pos+1, 8);
591 
592       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
593 
594       std::string baseTypeName =
595           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
596               Policy) +
597           "*";
598 
599       // Turn "unsigned type" to "utype"
600       pos = baseTypeName.find("unsigned");
601       if (pos != std::string::npos)
602         baseTypeName.erase(pos+1, 8);
603 
604       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
605 
606       // Get argument type qualifiers:
607       if (ty.isRestrictQualified())
608         typeQuals = "restrict";
609       if (pointeeTy.isConstQualified() ||
610           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
611         typeQuals += typeQuals.empty() ? "const" : " const";
612       if (pointeeTy.isVolatileQualified())
613         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
614     } else {
615       uint32_t AddrSpc = 0;
616       bool isPipe = ty->isPipeType();
617       if (ty->isImageType() || isPipe)
618         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
619 
620       addressQuals.push_back(
621           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
622 
623       // Get argument type name.
624       std::string typeName;
625       if (isPipe)
626         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
627                      .getAsString(Policy);
628       else
629         typeName = ty.getUnqualifiedType().getAsString(Policy);
630 
631       // Turn "unsigned type" to "utype"
632       std::string::size_type pos = typeName.find("unsigned");
633       if (ty.isCanonical() && pos != std::string::npos)
634         typeName.erase(pos+1, 8);
635 
636       std::string baseTypeName;
637       if (isPipe)
638         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
639                           ->getElementType().getCanonicalType()
640                           .getAsString(Policy);
641       else
642         baseTypeName =
643           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
644 
645       // Remove access qualifiers on images
646       // (as they are inseparable from type in clang implementation,
647       // but OpenCL spec provides a special query to get access qualifier
648       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
649       if (ty->isImageType()) {
650         removeImageAccessQualifier(typeName);
651         removeImageAccessQualifier(baseTypeName);
652       }
653 
654       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
655 
656       // Turn "unsigned type" to "utype"
657       pos = baseTypeName.find("unsigned");
658       if (pos != std::string::npos)
659         baseTypeName.erase(pos+1, 8);
660 
661       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
662 
663       if (isPipe)
664         typeQuals = "pipe";
665     }
666 
667     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
668 
669     // Get image and pipe access qualifier:
670     if (ty->isImageType()|| ty->isPipeType()) {
671       const Decl *PDecl = parm;
672       if (auto *TD = dyn_cast<TypedefType>(ty))
673         PDecl = TD->getDecl();
674       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
675       if (A && A->isWriteOnly())
676         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
677       else if (A && A->isReadWrite())
678         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
679       else
680         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
681     } else
682       accessQuals.push_back(llvm::MDString::get(Context, "none"));
683 
684     // Get argument name.
685     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
686   }
687 
688   Fn->setMetadata("kernel_arg_addr_space",
689                   llvm::MDNode::get(Context, addressQuals));
690   Fn->setMetadata("kernel_arg_access_qual",
691                   llvm::MDNode::get(Context, accessQuals));
692   Fn->setMetadata("kernel_arg_type",
693                   llvm::MDNode::get(Context, argTypeNames));
694   Fn->setMetadata("kernel_arg_base_type",
695                   llvm::MDNode::get(Context, argBaseTypeNames));
696   Fn->setMetadata("kernel_arg_type_qual",
697                   llvm::MDNode::get(Context, argTypeQuals));
698   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
699     Fn->setMetadata("kernel_arg_name",
700                     llvm::MDNode::get(Context, argNames));
701 }
702 
703 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
704                                                llvm::Function *Fn)
705 {
706   if (!FD->hasAttr<OpenCLKernelAttr>())
707     return;
708 
709   llvm::LLVMContext &Context = getLLVMContext();
710 
711   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
712 
713   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
714     QualType HintQTy = A->getTypeHint();
715     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
716     bool IsSignedInteger =
717         HintQTy->isSignedIntegerType() ||
718         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
719     llvm::Metadata *AttrMDArgs[] = {
720         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
721             CGM.getTypes().ConvertType(A->getTypeHint()))),
722         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
723             llvm::IntegerType::get(Context, 32),
724             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
725     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
726   }
727 
728   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
729     llvm::Metadata *AttrMDArgs[] = {
730         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
731         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
732         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
733     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
734   }
735 
736   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
737     llvm::Metadata *AttrMDArgs[] = {
738         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
739         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
740         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
741     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
742   }
743 
744   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
745           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
746     llvm::Metadata *AttrMDArgs[] = {
747         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
748     Fn->setMetadata("intel_reqd_sub_group_size",
749                     llvm::MDNode::get(Context, AttrMDArgs));
750   }
751 }
752 
753 /// Determine whether the function F ends with a return stmt.
754 static bool endsWithReturn(const Decl* F) {
755   const Stmt *Body = nullptr;
756   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
757     Body = FD->getBody();
758   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
759     Body = OMD->getBody();
760 
761   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
762     auto LastStmt = CS->body_rbegin();
763     if (LastStmt != CS->body_rend())
764       return isa<ReturnStmt>(*LastStmt);
765   }
766   return false;
767 }
768 
769 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
770   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
771   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
772 }
773 
774 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
775   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
776   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
777       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
778       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
779     return false;
780 
781   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
782     return false;
783 
784   if (MD->getNumParams() == 2) {
785     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
786     if (!PT || !PT->isVoidPointerType() ||
787         !PT->getPointeeType().isConstQualified())
788       return false;
789   }
790 
791   return true;
792 }
793 
794 /// Return the UBSan prologue signature for \p FD if one is available.
795 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
796                                             const FunctionDecl *FD) {
797   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
798     if (!MD->isStatic())
799       return nullptr;
800   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
801 }
802 
803 void CodeGenFunction::StartFunction(GlobalDecl GD,
804                                     QualType RetTy,
805                                     llvm::Function *Fn,
806                                     const CGFunctionInfo &FnInfo,
807                                     const FunctionArgList &Args,
808                                     SourceLocation Loc,
809                                     SourceLocation StartLoc) {
810   assert(!CurFn &&
811          "Do not use a CodeGenFunction object for more than one function");
812 
813   const Decl *D = GD.getDecl();
814 
815   DidCallStackSave = false;
816   CurCodeDecl = D;
817   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
818     if (FD->usesSEHTry())
819       CurSEHParent = FD;
820   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
821   FnRetTy = RetTy;
822   CurFn = Fn;
823   CurFnInfo = &FnInfo;
824   assert(CurFn->isDeclaration() && "Function already has body?");
825 
826   // If this function has been blacklisted for any of the enabled sanitizers,
827   // disable the sanitizer for the function.
828   do {
829 #define SANITIZER(NAME, ID)                                                    \
830   if (SanOpts.empty())                                                         \
831     break;                                                                     \
832   if (SanOpts.has(SanitizerKind::ID))                                          \
833     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
834       SanOpts.set(SanitizerKind::ID, false);
835 
836 #include "clang/Basic/Sanitizers.def"
837 #undef SANITIZER
838   } while (0);
839 
840   if (D) {
841     // Apply the no_sanitize* attributes to SanOpts.
842     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
843       SanOpts.Mask &= ~Attr->getMask();
844   }
845 
846   // Apply sanitizer attributes to the function.
847   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
848     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
849   if (SanOpts.hasOneOf(SanitizerKind::HWAddress))
850     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
851   if (SanOpts.has(SanitizerKind::Thread))
852     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
853   if (SanOpts.has(SanitizerKind::Memory))
854     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
855   if (SanOpts.has(SanitizerKind::SafeStack))
856     Fn->addFnAttr(llvm::Attribute::SafeStack);
857 
858   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
859   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
860   if (SanOpts.has(SanitizerKind::Thread)) {
861     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
862       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
863       if (OMD->getMethodFamily() == OMF_dealloc ||
864           OMD->getMethodFamily() == OMF_initialize ||
865           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
866         markAsIgnoreThreadCheckingAtRuntime(Fn);
867       }
868     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
869       IdentifierInfo *II = FD->getIdentifier();
870       if (II && II->isStr("__destroy_helper_block_"))
871         markAsIgnoreThreadCheckingAtRuntime(Fn);
872     }
873   }
874 
875   // Ignore unrelated casts in STL allocate() since the allocator must cast
876   // from void* to T* before object initialization completes. Don't match on the
877   // namespace because not all allocators are in std::
878   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
879     if (matchesStlAllocatorFn(D, getContext()))
880       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
881   }
882 
883   // Apply xray attributes to the function (as a string, for now)
884   if (D && ShouldXRayInstrumentFunction()) {
885     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
886       if (XRayAttr->alwaysXRayInstrument())
887         Fn->addFnAttr("function-instrument", "xray-always");
888       if (XRayAttr->neverXRayInstrument())
889         Fn->addFnAttr("function-instrument", "xray-never");
890       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
891         Fn->addFnAttr("xray-log-args",
892                       llvm::utostr(LogArgs->getArgumentCount()));
893       }
894     } else {
895       if (!CGM.imbueXRayAttrs(Fn, Loc))
896         Fn->addFnAttr(
897             "xray-instruction-threshold",
898             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
899     }
900   }
901 
902   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
903     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
904       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
905 
906   // Add no-jump-tables value.
907   Fn->addFnAttr("no-jump-tables",
908                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
909 
910   // Add profile-sample-accurate value.
911   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
912     Fn->addFnAttr("profile-sample-accurate");
913 
914   if (getLangOpts().OpenCL) {
915     // Add metadata for a kernel function.
916     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
917       EmitOpenCLKernelMetadata(FD, Fn);
918   }
919 
920   // If we are checking function types, emit a function type signature as
921   // prologue data.
922   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
923     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
924       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
925         llvm::Constant *FTRTTIConst =
926             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
927         llvm::Constant *FTRTTIConstEncoded =
928             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
929         llvm::Constant *PrologueStructElems[] = {PrologueSig,
930                                                  FTRTTIConstEncoded};
931         llvm::Constant *PrologueStructConst =
932             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
933         Fn->setPrologueData(PrologueStructConst);
934       }
935     }
936   }
937 
938   // If we're checking nullability, we need to know whether we can check the
939   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
940   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
941     auto Nullability = FnRetTy->getNullability(getContext());
942     if (Nullability && *Nullability == NullabilityKind::NonNull) {
943       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
944             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
945         RetValNullabilityPrecondition =
946             llvm::ConstantInt::getTrue(getLLVMContext());
947     }
948   }
949 
950   // If we're in C++ mode and the function name is "main", it is guaranteed
951   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
952   // used within a program").
953   if (getLangOpts().CPlusPlus)
954     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
955       if (FD->isMain())
956         Fn->addFnAttr(llvm::Attribute::NoRecurse);
957 
958   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
959 
960   // Create a marker to make it easy to insert allocas into the entryblock
961   // later.  Don't create this with the builder, because we don't want it
962   // folded.
963   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
964   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
965 
966   ReturnBlock = getJumpDestInCurrentScope("return");
967 
968   Builder.SetInsertPoint(EntryBB);
969 
970   // If we're checking the return value, allocate space for a pointer to a
971   // precise source location of the checked return statement.
972   if (requiresReturnValueCheck()) {
973     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
974     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
975   }
976 
977   // Emit subprogram debug descriptor.
978   if (CGDebugInfo *DI = getDebugInfo()) {
979     // Reconstruct the type from the argument list so that implicit parameters,
980     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
981     // convention.
982     CallingConv CC = CallingConv::CC_C;
983     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
984       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
985         CC = SrcFnTy->getCallConv();
986     SmallVector<QualType, 16> ArgTypes;
987     for (const VarDecl *VD : Args)
988       ArgTypes.push_back(VD->getType());
989     QualType FnType = getContext().getFunctionType(
990         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
991     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
992   }
993 
994   if (ShouldInstrumentFunction()) {
995     if (CGM.getCodeGenOpts().InstrumentFunctions)
996       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
997     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
998       CurFn->addFnAttr("instrument-function-entry-inlined",
999                        "__cyg_profile_func_enter");
1000     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1001       CurFn->addFnAttr("instrument-function-entry-inlined",
1002                        "__cyg_profile_func_enter_bare");
1003   }
1004 
1005   // Since emitting the mcount call here impacts optimizations such as function
1006   // inlining, we just add an attribute to insert a mcount call in backend.
1007   // The attribute "counting-function" is set to mcount function name which is
1008   // architecture dependent.
1009   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1010     if (CGM.getCodeGenOpts().CallFEntry)
1011       Fn->addFnAttr("fentry-call", "true");
1012     else {
1013       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1014         Fn->addFnAttr("instrument-function-entry-inlined",
1015                       getTarget().getMCountName());
1016       }
1017     }
1018   }
1019 
1020   if (RetTy->isVoidType()) {
1021     // Void type; nothing to return.
1022     ReturnValue = Address::invalid();
1023 
1024     // Count the implicit return.
1025     if (!endsWithReturn(D))
1026       ++NumReturnExprs;
1027   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1028              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1029     // Indirect aggregate return; emit returned value directly into sret slot.
1030     // This reduces code size, and affects correctness in C++.
1031     auto AI = CurFn->arg_begin();
1032     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1033       ++AI;
1034     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1035   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1036              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1037     // Load the sret pointer from the argument struct and return into that.
1038     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1039     llvm::Function::arg_iterator EI = CurFn->arg_end();
1040     --EI;
1041     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1042     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1043     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1044   } else {
1045     ReturnValue = CreateIRTemp(RetTy, "retval");
1046 
1047     // Tell the epilog emitter to autorelease the result.  We do this
1048     // now so that various specialized functions can suppress it
1049     // during their IR-generation.
1050     if (getLangOpts().ObjCAutoRefCount &&
1051         !CurFnInfo->isReturnsRetained() &&
1052         RetTy->isObjCRetainableType())
1053       AutoreleaseResult = true;
1054   }
1055 
1056   EmitStartEHSpec(CurCodeDecl);
1057 
1058   PrologueCleanupDepth = EHStack.stable_begin();
1059   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1060 
1061   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1062     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1063     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1064     if (MD->getParent()->isLambda() &&
1065         MD->getOverloadedOperator() == OO_Call) {
1066       // We're in a lambda; figure out the captures.
1067       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1068                                         LambdaThisCaptureField);
1069       if (LambdaThisCaptureField) {
1070         // If the lambda captures the object referred to by '*this' - either by
1071         // value or by reference, make sure CXXThisValue points to the correct
1072         // object.
1073 
1074         // Get the lvalue for the field (which is a copy of the enclosing object
1075         // or contains the address of the enclosing object).
1076         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1077         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1078           // If the enclosing object was captured by value, just use its address.
1079           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1080         } else {
1081           // Load the lvalue pointed to by the field, since '*this' was captured
1082           // by reference.
1083           CXXThisValue =
1084               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1085         }
1086       }
1087       for (auto *FD : MD->getParent()->fields()) {
1088         if (FD->hasCapturedVLAType()) {
1089           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1090                                            SourceLocation()).getScalarVal();
1091           auto VAT = FD->getCapturedVLAType();
1092           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1093         }
1094       }
1095     } else {
1096       // Not in a lambda; just use 'this' from the method.
1097       // FIXME: Should we generate a new load for each use of 'this'?  The
1098       // fast register allocator would be happier...
1099       CXXThisValue = CXXABIThisValue;
1100     }
1101 
1102     // Check the 'this' pointer once per function, if it's available.
1103     if (CXXABIThisValue) {
1104       SanitizerSet SkippedChecks;
1105       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1106       QualType ThisTy = MD->getThisType(getContext());
1107 
1108       // If this is the call operator of a lambda with no capture-default, it
1109       // may have a static invoker function, which may call this operator with
1110       // a null 'this' pointer.
1111       if (isLambdaCallOperator(MD) &&
1112           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1113               LCD_None)
1114         SkippedChecks.set(SanitizerKind::Null, true);
1115 
1116       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1117                                                 : TCK_MemberCall,
1118                     Loc, CXXABIThisValue, ThisTy,
1119                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1120                     SkippedChecks);
1121     }
1122   }
1123 
1124   // If any of the arguments have a variably modified type, make sure to
1125   // emit the type size.
1126   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1127        i != e; ++i) {
1128     const VarDecl *VD = *i;
1129 
1130     // Dig out the type as written from ParmVarDecls; it's unclear whether
1131     // the standard (C99 6.9.1p10) requires this, but we're following the
1132     // precedent set by gcc.
1133     QualType Ty;
1134     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1135       Ty = PVD->getOriginalType();
1136     else
1137       Ty = VD->getType();
1138 
1139     if (Ty->isVariablyModifiedType())
1140       EmitVariablyModifiedType(Ty);
1141   }
1142   // Emit a location at the end of the prologue.
1143   if (CGDebugInfo *DI = getDebugInfo())
1144     DI->EmitLocation(Builder, StartLoc);
1145 }
1146 
1147 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1148                                        const Stmt *Body) {
1149   incrementProfileCounter(Body);
1150   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1151     EmitCompoundStmtWithoutScope(*S);
1152   else
1153     EmitStmt(Body);
1154 }
1155 
1156 /// When instrumenting to collect profile data, the counts for some blocks
1157 /// such as switch cases need to not include the fall-through counts, so
1158 /// emit a branch around the instrumentation code. When not instrumenting,
1159 /// this just calls EmitBlock().
1160 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1161                                                const Stmt *S) {
1162   llvm::BasicBlock *SkipCountBB = nullptr;
1163   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1164     // When instrumenting for profiling, the fallthrough to certain
1165     // statements needs to skip over the instrumentation code so that we
1166     // get an accurate count.
1167     SkipCountBB = createBasicBlock("skipcount");
1168     EmitBranch(SkipCountBB);
1169   }
1170   EmitBlock(BB);
1171   uint64_t CurrentCount = getCurrentProfileCount();
1172   incrementProfileCounter(S);
1173   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1174   if (SkipCountBB)
1175     EmitBlock(SkipCountBB);
1176 }
1177 
1178 /// Tries to mark the given function nounwind based on the
1179 /// non-existence of any throwing calls within it.  We believe this is
1180 /// lightweight enough to do at -O0.
1181 static void TryMarkNoThrow(llvm::Function *F) {
1182   // LLVM treats 'nounwind' on a function as part of the type, so we
1183   // can't do this on functions that can be overwritten.
1184   if (F->isInterposable()) return;
1185 
1186   for (llvm::BasicBlock &BB : *F)
1187     for (llvm::Instruction &I : BB)
1188       if (I.mayThrow())
1189         return;
1190 
1191   F->setDoesNotThrow();
1192 }
1193 
1194 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1195                                                FunctionArgList &Args) {
1196   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1197   QualType ResTy = FD->getReturnType();
1198 
1199   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1200   if (MD && MD->isInstance()) {
1201     if (CGM.getCXXABI().HasThisReturn(GD))
1202       ResTy = MD->getThisType(getContext());
1203     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1204       ResTy = CGM.getContext().VoidPtrTy;
1205     CGM.getCXXABI().buildThisParam(*this, Args);
1206   }
1207 
1208   // The base version of an inheriting constructor whose constructed base is a
1209   // virtual base is not passed any arguments (because it doesn't actually call
1210   // the inherited constructor).
1211   bool PassedParams = true;
1212   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1213     if (auto Inherited = CD->getInheritedConstructor())
1214       PassedParams =
1215           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1216 
1217   if (PassedParams) {
1218     for (auto *Param : FD->parameters()) {
1219       Args.push_back(Param);
1220       if (!Param->hasAttr<PassObjectSizeAttr>())
1221         continue;
1222 
1223       auto *Implicit = ImplicitParamDecl::Create(
1224           getContext(), Param->getDeclContext(), Param->getLocation(),
1225           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1226       SizeArguments[Param] = Implicit;
1227       Args.push_back(Implicit);
1228     }
1229   }
1230 
1231   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1232     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1233 
1234   return ResTy;
1235 }
1236 
1237 static bool
1238 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1239                                              const ASTContext &Context) {
1240   QualType T = FD->getReturnType();
1241   // Avoid the optimization for functions that return a record type with a
1242   // trivial destructor or another trivially copyable type.
1243   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1244     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1245       return !ClassDecl->hasTrivialDestructor();
1246   }
1247   return !T.isTriviallyCopyableType(Context);
1248 }
1249 
1250 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1251                                    const CGFunctionInfo &FnInfo) {
1252   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1253   CurGD = GD;
1254 
1255   FunctionArgList Args;
1256   QualType ResTy = BuildFunctionArgList(GD, Args);
1257 
1258   // Check if we should generate debug info for this function.
1259   if (FD->hasAttr<NoDebugAttr>())
1260     DebugInfo = nullptr; // disable debug info indefinitely for this function
1261 
1262   // The function might not have a body if we're generating thunks for a
1263   // function declaration.
1264   SourceRange BodyRange;
1265   if (Stmt *Body = FD->getBody())
1266     BodyRange = Body->getSourceRange();
1267   else
1268     BodyRange = FD->getLocation();
1269   CurEHLocation = BodyRange.getEnd();
1270 
1271   // Use the location of the start of the function to determine where
1272   // the function definition is located. By default use the location
1273   // of the declaration as the location for the subprogram. A function
1274   // may lack a declaration in the source code if it is created by code
1275   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1276   SourceLocation Loc = FD->getLocation();
1277 
1278   // If this is a function specialization then use the pattern body
1279   // as the location for the function.
1280   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1281     if (SpecDecl->hasBody(SpecDecl))
1282       Loc = SpecDecl->getLocation();
1283 
1284   Stmt *Body = FD->getBody();
1285 
1286   // Initialize helper which will detect jumps which can cause invalid lifetime
1287   // markers.
1288   if (Body && ShouldEmitLifetimeMarkers)
1289     Bypasses.Init(Body);
1290 
1291   // Emit the standard function prologue.
1292   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1293 
1294   // Generate the body of the function.
1295   PGO.assignRegionCounters(GD, CurFn);
1296   if (isa<CXXDestructorDecl>(FD))
1297     EmitDestructorBody(Args);
1298   else if (isa<CXXConstructorDecl>(FD))
1299     EmitConstructorBody(Args);
1300   else if (getLangOpts().CUDA &&
1301            !getLangOpts().CUDAIsDevice &&
1302            FD->hasAttr<CUDAGlobalAttr>())
1303     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1304   else if (isa<CXXMethodDecl>(FD) &&
1305            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1306     // The lambda static invoker function is special, because it forwards or
1307     // clones the body of the function call operator (but is actually static).
1308     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1309   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1310              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1311               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1312     // Implicit copy-assignment gets the same special treatment as implicit
1313     // copy-constructors.
1314     emitImplicitAssignmentOperatorBody(Args);
1315   } else if (Body) {
1316     EmitFunctionBody(Args, Body);
1317   } else
1318     llvm_unreachable("no definition for emitted function");
1319 
1320   // C++11 [stmt.return]p2:
1321   //   Flowing off the end of a function [...] results in undefined behavior in
1322   //   a value-returning function.
1323   // C11 6.9.1p12:
1324   //   If the '}' that terminates a function is reached, and the value of the
1325   //   function call is used by the caller, the behavior is undefined.
1326   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1327       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1328     bool ShouldEmitUnreachable =
1329         CGM.getCodeGenOpts().StrictReturn ||
1330         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1331     if (SanOpts.has(SanitizerKind::Return)) {
1332       SanitizerScope SanScope(this);
1333       llvm::Value *IsFalse = Builder.getFalse();
1334       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1335                 SanitizerHandler::MissingReturn,
1336                 EmitCheckSourceLocation(FD->getLocation()), None);
1337     } else if (ShouldEmitUnreachable) {
1338       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1339         EmitTrapCall(llvm::Intrinsic::trap);
1340     }
1341     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1342       Builder.CreateUnreachable();
1343       Builder.ClearInsertionPoint();
1344     }
1345   }
1346 
1347   // Emit the standard function epilogue.
1348   FinishFunction(BodyRange.getEnd());
1349 
1350   // If we haven't marked the function nothrow through other means, do
1351   // a quick pass now to see if we can.
1352   if (!CurFn->doesNotThrow())
1353     TryMarkNoThrow(CurFn);
1354 }
1355 
1356 /// ContainsLabel - Return true if the statement contains a label in it.  If
1357 /// this statement is not executed normally, it not containing a label means
1358 /// that we can just remove the code.
1359 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1360   // Null statement, not a label!
1361   if (!S) return false;
1362 
1363   // If this is a label, we have to emit the code, consider something like:
1364   // if (0) {  ...  foo:  bar(); }  goto foo;
1365   //
1366   // TODO: If anyone cared, we could track __label__'s, since we know that you
1367   // can't jump to one from outside their declared region.
1368   if (isa<LabelStmt>(S))
1369     return true;
1370 
1371   // If this is a case/default statement, and we haven't seen a switch, we have
1372   // to emit the code.
1373   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1374     return true;
1375 
1376   // If this is a switch statement, we want to ignore cases below it.
1377   if (isa<SwitchStmt>(S))
1378     IgnoreCaseStmts = true;
1379 
1380   // Scan subexpressions for verboten labels.
1381   for (const Stmt *SubStmt : S->children())
1382     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1383       return true;
1384 
1385   return false;
1386 }
1387 
1388 /// containsBreak - Return true if the statement contains a break out of it.
1389 /// If the statement (recursively) contains a switch or loop with a break
1390 /// inside of it, this is fine.
1391 bool CodeGenFunction::containsBreak(const Stmt *S) {
1392   // Null statement, not a label!
1393   if (!S) return false;
1394 
1395   // If this is a switch or loop that defines its own break scope, then we can
1396   // include it and anything inside of it.
1397   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1398       isa<ForStmt>(S))
1399     return false;
1400 
1401   if (isa<BreakStmt>(S))
1402     return true;
1403 
1404   // Scan subexpressions for verboten breaks.
1405   for (const Stmt *SubStmt : S->children())
1406     if (containsBreak(SubStmt))
1407       return true;
1408 
1409   return false;
1410 }
1411 
1412 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1413   if (!S) return false;
1414 
1415   // Some statement kinds add a scope and thus never add a decl to the current
1416   // scope. Note, this list is longer than the list of statements that might
1417   // have an unscoped decl nested within them, but this way is conservatively
1418   // correct even if more statement kinds are added.
1419   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1420       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1421       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1422       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1423     return false;
1424 
1425   if (isa<DeclStmt>(S))
1426     return true;
1427 
1428   for (const Stmt *SubStmt : S->children())
1429     if (mightAddDeclToScope(SubStmt))
1430       return true;
1431 
1432   return false;
1433 }
1434 
1435 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1436 /// to a constant, or if it does but contains a label, return false.  If it
1437 /// constant folds return true and set the boolean result in Result.
1438 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1439                                                    bool &ResultBool,
1440                                                    bool AllowLabels) {
1441   llvm::APSInt ResultInt;
1442   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1443     return false;
1444 
1445   ResultBool = ResultInt.getBoolValue();
1446   return true;
1447 }
1448 
1449 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1450 /// to a constant, or if it does but contains a label, return false.  If it
1451 /// constant folds return true and set the folded value.
1452 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1453                                                    llvm::APSInt &ResultInt,
1454                                                    bool AllowLabels) {
1455   // FIXME: Rename and handle conversion of other evaluatable things
1456   // to bool.
1457   llvm::APSInt Int;
1458   if (!Cond->EvaluateAsInt(Int, getContext()))
1459     return false;  // Not foldable, not integer or not fully evaluatable.
1460 
1461   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1462     return false;  // Contains a label.
1463 
1464   ResultInt = Int;
1465   return true;
1466 }
1467 
1468 
1469 
1470 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1471 /// statement) to the specified blocks.  Based on the condition, this might try
1472 /// to simplify the codegen of the conditional based on the branch.
1473 ///
1474 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1475                                            llvm::BasicBlock *TrueBlock,
1476                                            llvm::BasicBlock *FalseBlock,
1477                                            uint64_t TrueCount) {
1478   Cond = Cond->IgnoreParens();
1479 
1480   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1481 
1482     // Handle X && Y in a condition.
1483     if (CondBOp->getOpcode() == BO_LAnd) {
1484       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1485       // folded if the case was simple enough.
1486       bool ConstantBool = false;
1487       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1488           ConstantBool) {
1489         // br(1 && X) -> br(X).
1490         incrementProfileCounter(CondBOp);
1491         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1492                                     TrueCount);
1493       }
1494 
1495       // If we have "X && 1", simplify the code to use an uncond branch.
1496       // "X && 0" would have been constant folded to 0.
1497       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1498           ConstantBool) {
1499         // br(X && 1) -> br(X).
1500         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1501                                     TrueCount);
1502       }
1503 
1504       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1505       // want to jump to the FalseBlock.
1506       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1507       // The counter tells us how often we evaluate RHS, and all of TrueCount
1508       // can be propagated to that branch.
1509       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1510 
1511       ConditionalEvaluation eval(*this);
1512       {
1513         ApplyDebugLocation DL(*this, Cond);
1514         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1515         EmitBlock(LHSTrue);
1516       }
1517 
1518       incrementProfileCounter(CondBOp);
1519       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1520 
1521       // Any temporaries created here are conditional.
1522       eval.begin(*this);
1523       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1524       eval.end(*this);
1525 
1526       return;
1527     }
1528 
1529     if (CondBOp->getOpcode() == BO_LOr) {
1530       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1531       // folded if the case was simple enough.
1532       bool ConstantBool = false;
1533       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1534           !ConstantBool) {
1535         // br(0 || X) -> br(X).
1536         incrementProfileCounter(CondBOp);
1537         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1538                                     TrueCount);
1539       }
1540 
1541       // If we have "X || 0", simplify the code to use an uncond branch.
1542       // "X || 1" would have been constant folded to 1.
1543       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1544           !ConstantBool) {
1545         // br(X || 0) -> br(X).
1546         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1547                                     TrueCount);
1548       }
1549 
1550       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1551       // want to jump to the TrueBlock.
1552       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1553       // We have the count for entry to the RHS and for the whole expression
1554       // being true, so we can divy up True count between the short circuit and
1555       // the RHS.
1556       uint64_t LHSCount =
1557           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1558       uint64_t RHSCount = TrueCount - LHSCount;
1559 
1560       ConditionalEvaluation eval(*this);
1561       {
1562         ApplyDebugLocation DL(*this, Cond);
1563         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1564         EmitBlock(LHSFalse);
1565       }
1566 
1567       incrementProfileCounter(CondBOp);
1568       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1569 
1570       // Any temporaries created here are conditional.
1571       eval.begin(*this);
1572       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1573 
1574       eval.end(*this);
1575 
1576       return;
1577     }
1578   }
1579 
1580   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1581     // br(!x, t, f) -> br(x, f, t)
1582     if (CondUOp->getOpcode() == UO_LNot) {
1583       // Negate the count.
1584       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1585       // Negate the condition and swap the destination blocks.
1586       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1587                                   FalseCount);
1588     }
1589   }
1590 
1591   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1592     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1593     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1594     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1595 
1596     ConditionalEvaluation cond(*this);
1597     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1598                          getProfileCount(CondOp));
1599 
1600     // When computing PGO branch weights, we only know the overall count for
1601     // the true block. This code is essentially doing tail duplication of the
1602     // naive code-gen, introducing new edges for which counts are not
1603     // available. Divide the counts proportionally between the LHS and RHS of
1604     // the conditional operator.
1605     uint64_t LHSScaledTrueCount = 0;
1606     if (TrueCount) {
1607       double LHSRatio =
1608           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1609       LHSScaledTrueCount = TrueCount * LHSRatio;
1610     }
1611 
1612     cond.begin(*this);
1613     EmitBlock(LHSBlock);
1614     incrementProfileCounter(CondOp);
1615     {
1616       ApplyDebugLocation DL(*this, Cond);
1617       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1618                            LHSScaledTrueCount);
1619     }
1620     cond.end(*this);
1621 
1622     cond.begin(*this);
1623     EmitBlock(RHSBlock);
1624     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1625                          TrueCount - LHSScaledTrueCount);
1626     cond.end(*this);
1627 
1628     return;
1629   }
1630 
1631   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1632     // Conditional operator handling can give us a throw expression as a
1633     // condition for a case like:
1634     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1635     // Fold this to:
1636     //   br(c, throw x, br(y, t, f))
1637     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1638     return;
1639   }
1640 
1641   // If the branch has a condition wrapped by __builtin_unpredictable,
1642   // create metadata that specifies that the branch is unpredictable.
1643   // Don't bother if not optimizing because that metadata would not be used.
1644   llvm::MDNode *Unpredictable = nullptr;
1645   auto *Call = dyn_cast<CallExpr>(Cond);
1646   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1647     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1648     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1649       llvm::MDBuilder MDHelper(getLLVMContext());
1650       Unpredictable = MDHelper.createUnpredictable();
1651     }
1652   }
1653 
1654   // Create branch weights based on the number of times we get here and the
1655   // number of times the condition should be true.
1656   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1657   llvm::MDNode *Weights =
1658       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1659 
1660   // Emit the code with the fully general case.
1661   llvm::Value *CondV;
1662   {
1663     ApplyDebugLocation DL(*this, Cond);
1664     CondV = EvaluateExprAsBool(Cond);
1665   }
1666   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1667 }
1668 
1669 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1670 /// specified stmt yet.
1671 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1672   CGM.ErrorUnsupported(S, Type);
1673 }
1674 
1675 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1676 /// variable-length array whose elements have a non-zero bit-pattern.
1677 ///
1678 /// \param baseType the inner-most element type of the array
1679 /// \param src - a char* pointing to the bit-pattern for a single
1680 /// base element of the array
1681 /// \param sizeInChars - the total size of the VLA, in chars
1682 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1683                                Address dest, Address src,
1684                                llvm::Value *sizeInChars) {
1685   CGBuilderTy &Builder = CGF.Builder;
1686 
1687   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1688   llvm::Value *baseSizeInChars
1689     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1690 
1691   Address begin =
1692     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1693   llvm::Value *end =
1694     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1695 
1696   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1697   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1698   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1699 
1700   // Make a loop over the VLA.  C99 guarantees that the VLA element
1701   // count must be nonzero.
1702   CGF.EmitBlock(loopBB);
1703 
1704   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1705   cur->addIncoming(begin.getPointer(), originBB);
1706 
1707   CharUnits curAlign =
1708     dest.getAlignment().alignmentOfArrayElement(baseSize);
1709 
1710   // memcpy the individual element bit-pattern.
1711   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1712                        /*volatile*/ false);
1713 
1714   // Go to the next element.
1715   llvm::Value *next =
1716     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1717 
1718   // Leave if that's the end of the VLA.
1719   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1720   Builder.CreateCondBr(done, contBB, loopBB);
1721   cur->addIncoming(next, loopBB);
1722 
1723   CGF.EmitBlock(contBB);
1724 }
1725 
1726 void
1727 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1728   // Ignore empty classes in C++.
1729   if (getLangOpts().CPlusPlus) {
1730     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1731       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1732         return;
1733     }
1734   }
1735 
1736   // Cast the dest ptr to the appropriate i8 pointer type.
1737   if (DestPtr.getElementType() != Int8Ty)
1738     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1739 
1740   // Get size and alignment info for this aggregate.
1741   CharUnits size = getContext().getTypeSizeInChars(Ty);
1742 
1743   llvm::Value *SizeVal;
1744   const VariableArrayType *vla;
1745 
1746   // Don't bother emitting a zero-byte memset.
1747   if (size.isZero()) {
1748     // But note that getTypeInfo returns 0 for a VLA.
1749     if (const VariableArrayType *vlaType =
1750           dyn_cast_or_null<VariableArrayType>(
1751                                           getContext().getAsArrayType(Ty))) {
1752       QualType eltType;
1753       llvm::Value *numElts;
1754       std::tie(numElts, eltType) = getVLASize(vlaType);
1755 
1756       SizeVal = numElts;
1757       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1758       if (!eltSize.isOne())
1759         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1760       vla = vlaType;
1761     } else {
1762       return;
1763     }
1764   } else {
1765     SizeVal = CGM.getSize(size);
1766     vla = nullptr;
1767   }
1768 
1769   // If the type contains a pointer to data member we can't memset it to zero.
1770   // Instead, create a null constant and copy it to the destination.
1771   // TODO: there are other patterns besides zero that we can usefully memset,
1772   // like -1, which happens to be the pattern used by member-pointers.
1773   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1774     // For a VLA, emit a single element, then splat that over the VLA.
1775     if (vla) Ty = getContext().getBaseElementType(vla);
1776 
1777     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1778 
1779     llvm::GlobalVariable *NullVariable =
1780       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1781                                /*isConstant=*/true,
1782                                llvm::GlobalVariable::PrivateLinkage,
1783                                NullConstant, Twine());
1784     CharUnits NullAlign = DestPtr.getAlignment();
1785     NullVariable->setAlignment(NullAlign.getQuantity());
1786     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1787                    NullAlign);
1788 
1789     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1790 
1791     // Get and call the appropriate llvm.memcpy overload.
1792     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1793     return;
1794   }
1795 
1796   // Otherwise, just memset the whole thing to zero.  This is legal
1797   // because in LLVM, all default initializers (other than the ones we just
1798   // handled above) are guaranteed to have a bit pattern of all zeros.
1799   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1800 }
1801 
1802 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1803   // Make sure that there is a block for the indirect goto.
1804   if (!IndirectBranch)
1805     GetIndirectGotoBlock();
1806 
1807   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1808 
1809   // Make sure the indirect branch includes all of the address-taken blocks.
1810   IndirectBranch->addDestination(BB);
1811   return llvm::BlockAddress::get(CurFn, BB);
1812 }
1813 
1814 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1815   // If we already made the indirect branch for indirect goto, return its block.
1816   if (IndirectBranch) return IndirectBranch->getParent();
1817 
1818   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1819 
1820   // Create the PHI node that indirect gotos will add entries to.
1821   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1822                                               "indirect.goto.dest");
1823 
1824   // Create the indirect branch instruction.
1825   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1826   return IndirectBranch->getParent();
1827 }
1828 
1829 /// Computes the length of an array in elements, as well as the base
1830 /// element type and a properly-typed first element pointer.
1831 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1832                                               QualType &baseType,
1833                                               Address &addr) {
1834   const ArrayType *arrayType = origArrayType;
1835 
1836   // If it's a VLA, we have to load the stored size.  Note that
1837   // this is the size of the VLA in bytes, not its size in elements.
1838   llvm::Value *numVLAElements = nullptr;
1839   if (isa<VariableArrayType>(arrayType)) {
1840     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1841 
1842     // Walk into all VLAs.  This doesn't require changes to addr,
1843     // which has type T* where T is the first non-VLA element type.
1844     do {
1845       QualType elementType = arrayType->getElementType();
1846       arrayType = getContext().getAsArrayType(elementType);
1847 
1848       // If we only have VLA components, 'addr' requires no adjustment.
1849       if (!arrayType) {
1850         baseType = elementType;
1851         return numVLAElements;
1852       }
1853     } while (isa<VariableArrayType>(arrayType));
1854 
1855     // We get out here only if we find a constant array type
1856     // inside the VLA.
1857   }
1858 
1859   // We have some number of constant-length arrays, so addr should
1860   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1861   // down to the first element of addr.
1862   SmallVector<llvm::Value*, 8> gepIndices;
1863 
1864   // GEP down to the array type.
1865   llvm::ConstantInt *zero = Builder.getInt32(0);
1866   gepIndices.push_back(zero);
1867 
1868   uint64_t countFromCLAs = 1;
1869   QualType eltType;
1870 
1871   llvm::ArrayType *llvmArrayType =
1872     dyn_cast<llvm::ArrayType>(addr.getElementType());
1873   while (llvmArrayType) {
1874     assert(isa<ConstantArrayType>(arrayType));
1875     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1876              == llvmArrayType->getNumElements());
1877 
1878     gepIndices.push_back(zero);
1879     countFromCLAs *= llvmArrayType->getNumElements();
1880     eltType = arrayType->getElementType();
1881 
1882     llvmArrayType =
1883       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1884     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1885     assert((!llvmArrayType || arrayType) &&
1886            "LLVM and Clang types are out-of-synch");
1887   }
1888 
1889   if (arrayType) {
1890     // From this point onwards, the Clang array type has been emitted
1891     // as some other type (probably a packed struct). Compute the array
1892     // size, and just emit the 'begin' expression as a bitcast.
1893     while (arrayType) {
1894       countFromCLAs *=
1895           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1896       eltType = arrayType->getElementType();
1897       arrayType = getContext().getAsArrayType(eltType);
1898     }
1899 
1900     llvm::Type *baseType = ConvertType(eltType);
1901     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1902   } else {
1903     // Create the actual GEP.
1904     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1905                                              gepIndices, "array.begin"),
1906                    addr.getAlignment());
1907   }
1908 
1909   baseType = eltType;
1910 
1911   llvm::Value *numElements
1912     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1913 
1914   // If we had any VLA dimensions, factor them in.
1915   if (numVLAElements)
1916     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1917 
1918   return numElements;
1919 }
1920 
1921 std::pair<llvm::Value*, QualType>
1922 CodeGenFunction::getVLASize(QualType type) {
1923   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1924   assert(vla && "type was not a variable array type!");
1925   return getVLASize(vla);
1926 }
1927 
1928 std::pair<llvm::Value*, QualType>
1929 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1930   // The number of elements so far; always size_t.
1931   llvm::Value *numElements = nullptr;
1932 
1933   QualType elementType;
1934   do {
1935     elementType = type->getElementType();
1936     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1937     assert(vlaSize && "no size for VLA!");
1938     assert(vlaSize->getType() == SizeTy);
1939 
1940     if (!numElements) {
1941       numElements = vlaSize;
1942     } else {
1943       // It's undefined behavior if this wraps around, so mark it that way.
1944       // FIXME: Teach -fsanitize=undefined to trap this.
1945       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1946     }
1947   } while ((type = getContext().getAsVariableArrayType(elementType)));
1948 
1949   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1950 }
1951 
1952 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1953   assert(type->isVariablyModifiedType() &&
1954          "Must pass variably modified type to EmitVLASizes!");
1955 
1956   EnsureInsertPoint();
1957 
1958   // We're going to walk down into the type and look for VLA
1959   // expressions.
1960   do {
1961     assert(type->isVariablyModifiedType());
1962 
1963     const Type *ty = type.getTypePtr();
1964     switch (ty->getTypeClass()) {
1965 
1966 #define TYPE(Class, Base)
1967 #define ABSTRACT_TYPE(Class, Base)
1968 #define NON_CANONICAL_TYPE(Class, Base)
1969 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1970 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1971 #include "clang/AST/TypeNodes.def"
1972       llvm_unreachable("unexpected dependent type!");
1973 
1974     // These types are never variably-modified.
1975     case Type::Builtin:
1976     case Type::Complex:
1977     case Type::Vector:
1978     case Type::ExtVector:
1979     case Type::Record:
1980     case Type::Enum:
1981     case Type::Elaborated:
1982     case Type::TemplateSpecialization:
1983     case Type::ObjCTypeParam:
1984     case Type::ObjCObject:
1985     case Type::ObjCInterface:
1986     case Type::ObjCObjectPointer:
1987       llvm_unreachable("type class is never variably-modified!");
1988 
1989     case Type::Adjusted:
1990       type = cast<AdjustedType>(ty)->getAdjustedType();
1991       break;
1992 
1993     case Type::Decayed:
1994       type = cast<DecayedType>(ty)->getPointeeType();
1995       break;
1996 
1997     case Type::Pointer:
1998       type = cast<PointerType>(ty)->getPointeeType();
1999       break;
2000 
2001     case Type::BlockPointer:
2002       type = cast<BlockPointerType>(ty)->getPointeeType();
2003       break;
2004 
2005     case Type::LValueReference:
2006     case Type::RValueReference:
2007       type = cast<ReferenceType>(ty)->getPointeeType();
2008       break;
2009 
2010     case Type::MemberPointer:
2011       type = cast<MemberPointerType>(ty)->getPointeeType();
2012       break;
2013 
2014     case Type::ConstantArray:
2015     case Type::IncompleteArray:
2016       // Losing element qualification here is fine.
2017       type = cast<ArrayType>(ty)->getElementType();
2018       break;
2019 
2020     case Type::VariableArray: {
2021       // Losing element qualification here is fine.
2022       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2023 
2024       // Unknown size indication requires no size computation.
2025       // Otherwise, evaluate and record it.
2026       if (const Expr *size = vat->getSizeExpr()) {
2027         // It's possible that we might have emitted this already,
2028         // e.g. with a typedef and a pointer to it.
2029         llvm::Value *&entry = VLASizeMap[size];
2030         if (!entry) {
2031           llvm::Value *Size = EmitScalarExpr(size);
2032 
2033           // C11 6.7.6.2p5:
2034           //   If the size is an expression that is not an integer constant
2035           //   expression [...] each time it is evaluated it shall have a value
2036           //   greater than zero.
2037           if (SanOpts.has(SanitizerKind::VLABound) &&
2038               size->getType()->isSignedIntegerType()) {
2039             SanitizerScope SanScope(this);
2040             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2041             llvm::Constant *StaticArgs[] = {
2042               EmitCheckSourceLocation(size->getLocStart()),
2043               EmitCheckTypeDescriptor(size->getType())
2044             };
2045             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2046                                      SanitizerKind::VLABound),
2047                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2048           }
2049 
2050           // Always zexting here would be wrong if it weren't
2051           // undefined behavior to have a negative bound.
2052           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2053         }
2054       }
2055       type = vat->getElementType();
2056       break;
2057     }
2058 
2059     case Type::FunctionProto:
2060     case Type::FunctionNoProto:
2061       type = cast<FunctionType>(ty)->getReturnType();
2062       break;
2063 
2064     case Type::Paren:
2065     case Type::TypeOf:
2066     case Type::UnaryTransform:
2067     case Type::Attributed:
2068     case Type::SubstTemplateTypeParm:
2069     case Type::PackExpansion:
2070       // Keep walking after single level desugaring.
2071       type = type.getSingleStepDesugaredType(getContext());
2072       break;
2073 
2074     case Type::Typedef:
2075     case Type::Decltype:
2076     case Type::Auto:
2077     case Type::DeducedTemplateSpecialization:
2078       // Stop walking: nothing to do.
2079       return;
2080 
2081     case Type::TypeOfExpr:
2082       // Stop walking: emit typeof expression.
2083       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2084       return;
2085 
2086     case Type::Atomic:
2087       type = cast<AtomicType>(ty)->getValueType();
2088       break;
2089 
2090     case Type::Pipe:
2091       type = cast<PipeType>(ty)->getElementType();
2092       break;
2093     }
2094   } while (type->isVariablyModifiedType());
2095 }
2096 
2097 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2098   if (getContext().getBuiltinVaListType()->isArrayType())
2099     return EmitPointerWithAlignment(E);
2100   return EmitLValue(E).getAddress();
2101 }
2102 
2103 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2104   return EmitLValue(E).getAddress();
2105 }
2106 
2107 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2108                                               const APValue &Init) {
2109   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2110   if (CGDebugInfo *Dbg = getDebugInfo())
2111     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2112       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2113 }
2114 
2115 CodeGenFunction::PeepholeProtection
2116 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2117   // At the moment, the only aggressive peephole we do in IR gen
2118   // is trunc(zext) folding, but if we add more, we can easily
2119   // extend this protection.
2120 
2121   if (!rvalue.isScalar()) return PeepholeProtection();
2122   llvm::Value *value = rvalue.getScalarVal();
2123   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2124 
2125   // Just make an extra bitcast.
2126   assert(HaveInsertPoint());
2127   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2128                                                   Builder.GetInsertBlock());
2129 
2130   PeepholeProtection protection;
2131   protection.Inst = inst;
2132   return protection;
2133 }
2134 
2135 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2136   if (!protection.Inst) return;
2137 
2138   // In theory, we could try to duplicate the peepholes now, but whatever.
2139   protection.Inst->eraseFromParent();
2140 }
2141 
2142 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2143                                                  llvm::Value *AnnotatedVal,
2144                                                  StringRef AnnotationStr,
2145                                                  SourceLocation Location) {
2146   llvm::Value *Args[4] = {
2147     AnnotatedVal,
2148     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2149     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2150     CGM.EmitAnnotationLineNo(Location)
2151   };
2152   return Builder.CreateCall(AnnotationFn, Args);
2153 }
2154 
2155 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2156   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2157   // FIXME We create a new bitcast for every annotation because that's what
2158   // llvm-gcc was doing.
2159   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2160     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2161                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2162                        I->getAnnotation(), D->getLocation());
2163 }
2164 
2165 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2166                                               Address Addr) {
2167   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2168   llvm::Value *V = Addr.getPointer();
2169   llvm::Type *VTy = V->getType();
2170   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2171                                     CGM.Int8PtrTy);
2172 
2173   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2174     // FIXME Always emit the cast inst so we can differentiate between
2175     // annotation on the first field of a struct and annotation on the struct
2176     // itself.
2177     if (VTy != CGM.Int8PtrTy)
2178       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2179     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2180     V = Builder.CreateBitCast(V, VTy);
2181   }
2182 
2183   return Address(V, Addr.getAlignment());
2184 }
2185 
2186 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2187 
2188 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2189     : CGF(CGF) {
2190   assert(!CGF->IsSanitizerScope);
2191   CGF->IsSanitizerScope = true;
2192 }
2193 
2194 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2195   CGF->IsSanitizerScope = false;
2196 }
2197 
2198 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2199                                    const llvm::Twine &Name,
2200                                    llvm::BasicBlock *BB,
2201                                    llvm::BasicBlock::iterator InsertPt) const {
2202   LoopStack.InsertHelper(I);
2203   if (IsSanitizerScope)
2204     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2205 }
2206 
2207 void CGBuilderInserter::InsertHelper(
2208     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2209     llvm::BasicBlock::iterator InsertPt) const {
2210   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2211   if (CGF)
2212     CGF->InsertHelper(I, Name, BB, InsertPt);
2213 }
2214 
2215 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2216                                 CodeGenModule &CGM, const FunctionDecl *FD,
2217                                 std::string &FirstMissing) {
2218   // If there aren't any required features listed then go ahead and return.
2219   if (ReqFeatures.empty())
2220     return false;
2221 
2222   // Now build up the set of caller features and verify that all the required
2223   // features are there.
2224   llvm::StringMap<bool> CallerFeatureMap;
2225   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2226 
2227   // If we have at least one of the features in the feature list return
2228   // true, otherwise return false.
2229   return std::all_of(
2230       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2231         SmallVector<StringRef, 1> OrFeatures;
2232         Feature.split(OrFeatures, "|");
2233         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2234                            [&](StringRef Feature) {
2235                              if (!CallerFeatureMap.lookup(Feature)) {
2236                                FirstMissing = Feature.str();
2237                                return false;
2238                              }
2239                              return true;
2240                            });
2241       });
2242 }
2243 
2244 // Emits an error if we don't have a valid set of target features for the
2245 // called function.
2246 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2247                                           const FunctionDecl *TargetDecl) {
2248   // Early exit if this is an indirect call.
2249   if (!TargetDecl)
2250     return;
2251 
2252   // Get the current enclosing function if it exists. If it doesn't
2253   // we can't check the target features anyhow.
2254   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2255   if (!FD)
2256     return;
2257 
2258   // Grab the required features for the call. For a builtin this is listed in
2259   // the td file with the default cpu, for an always_inline function this is any
2260   // listed cpu and any listed features.
2261   unsigned BuiltinID = TargetDecl->getBuiltinID();
2262   std::string MissingFeature;
2263   if (BuiltinID) {
2264     SmallVector<StringRef, 1> ReqFeatures;
2265     const char *FeatureList =
2266         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2267     // Return if the builtin doesn't have any required features.
2268     if (!FeatureList || StringRef(FeatureList) == "")
2269       return;
2270     StringRef(FeatureList).split(ReqFeatures, ",");
2271     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2272       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2273           << TargetDecl->getDeclName()
2274           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2275 
2276   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2277     // Get the required features for the callee.
2278     SmallVector<StringRef, 1> ReqFeatures;
2279     llvm::StringMap<bool> CalleeFeatureMap;
2280     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2281     for (const auto &F : CalleeFeatureMap) {
2282       // Only positive features are "required".
2283       if (F.getValue())
2284         ReqFeatures.push_back(F.getKey());
2285     }
2286     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2287       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2288           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2289   }
2290 }
2291 
2292 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2293   if (!CGM.getCodeGenOpts().SanitizeStats)
2294     return;
2295 
2296   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2297   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2298   CGM.getSanStats().create(IRB, SSK);
2299 }
2300 
2301 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2302   if (CGDebugInfo *DI = getDebugInfo())
2303     return DI->SourceLocToDebugLoc(Location);
2304 
2305   return llvm::DebugLoc();
2306 }
2307