1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "CodeGenPGO.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Basic/OpenCL.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext()), CapturedStmtInfo(0), 39 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 40 CGM.getSanOpts().Alignment | 41 CGM.getSanOpts().ObjectSize | 42 CGM.getSanOpts().Vptr), 43 SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0), 44 BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0), 45 NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0), 46 ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()), 47 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0), 48 PGO(cgm), SwitchInsn(0), SwitchWeights(0), 49 CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0), 50 NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0), 51 CXXThisValue(0), CXXDefaultInitExprThis(0), 52 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 53 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 54 TerminateHandler(0), TrapBB(0) { 55 if (!suppressNewContext) 56 CGM.getCXXABI().getMangleContext().startNewFunction(); 57 58 llvm::FastMathFlags FMF; 59 if (CGM.getLangOpts().FastMath) 60 FMF.setUnsafeAlgebra(); 61 if (CGM.getLangOpts().FiniteMathOnly) { 62 FMF.setNoNaNs(); 63 FMF.setNoInfs(); 64 } 65 Builder.SetFastMathFlags(FMF); 66 } 67 68 CodeGenFunction::~CodeGenFunction() { 69 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 70 71 // If there are any unclaimed block infos, go ahead and destroy them 72 // now. This can happen if IR-gen gets clever and skips evaluating 73 // something. 74 if (FirstBlockInfo) 75 destroyBlockInfos(FirstBlockInfo); 76 } 77 78 79 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 80 return CGM.getTypes().ConvertTypeForMem(T); 81 } 82 83 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 84 return CGM.getTypes().ConvertType(T); 85 } 86 87 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 88 type = type.getCanonicalType(); 89 while (true) { 90 switch (type->getTypeClass()) { 91 #define TYPE(name, parent) 92 #define ABSTRACT_TYPE(name, parent) 93 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 94 #define DEPENDENT_TYPE(name, parent) case Type::name: 95 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 96 #include "clang/AST/TypeNodes.def" 97 llvm_unreachable("non-canonical or dependent type in IR-generation"); 98 99 case Type::Auto: 100 llvm_unreachable("undeduced auto type in IR-generation"); 101 102 // Various scalar types. 103 case Type::Builtin: 104 case Type::Pointer: 105 case Type::BlockPointer: 106 case Type::LValueReference: 107 case Type::RValueReference: 108 case Type::MemberPointer: 109 case Type::Vector: 110 case Type::ExtVector: 111 case Type::FunctionProto: 112 case Type::FunctionNoProto: 113 case Type::Enum: 114 case Type::ObjCObjectPointer: 115 return TEK_Scalar; 116 117 // Complexes. 118 case Type::Complex: 119 return TEK_Complex; 120 121 // Arrays, records, and Objective-C objects. 122 case Type::ConstantArray: 123 case Type::IncompleteArray: 124 case Type::VariableArray: 125 case Type::Record: 126 case Type::ObjCObject: 127 case Type::ObjCInterface: 128 return TEK_Aggregate; 129 130 // We operate on atomic values according to their underlying type. 131 case Type::Atomic: 132 type = cast<AtomicType>(type)->getValueType(); 133 continue; 134 } 135 llvm_unreachable("unknown type kind!"); 136 } 137 } 138 139 void CodeGenFunction::EmitReturnBlock() { 140 // For cleanliness, we try to avoid emitting the return block for 141 // simple cases. 142 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 143 144 if (CurBB) { 145 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 146 147 // We have a valid insert point, reuse it if it is empty or there are no 148 // explicit jumps to the return block. 149 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 150 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 151 delete ReturnBlock.getBlock(); 152 } else 153 EmitBlock(ReturnBlock.getBlock()); 154 return; 155 } 156 157 // Otherwise, if the return block is the target of a single direct 158 // branch then we can just put the code in that block instead. This 159 // cleans up functions which started with a unified return block. 160 if (ReturnBlock.getBlock()->hasOneUse()) { 161 llvm::BranchInst *BI = 162 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 163 if (BI && BI->isUnconditional() && 164 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 165 // Reset insertion point, including debug location, and delete the 166 // branch. This is really subtle and only works because the next change 167 // in location will hit the caching in CGDebugInfo::EmitLocation and not 168 // override this. 169 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 170 Builder.SetInsertPoint(BI->getParent()); 171 BI->eraseFromParent(); 172 delete ReturnBlock.getBlock(); 173 return; 174 } 175 } 176 177 // FIXME: We are at an unreachable point, there is no reason to emit the block 178 // unless it has uses. However, we still need a place to put the debug 179 // region.end for now. 180 181 EmitBlock(ReturnBlock.getBlock()); 182 } 183 184 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 185 if (!BB) return; 186 if (!BB->use_empty()) 187 return CGF.CurFn->getBasicBlockList().push_back(BB); 188 delete BB; 189 } 190 191 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 192 assert(BreakContinueStack.empty() && 193 "mismatched push/pop in break/continue stack!"); 194 195 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 196 && NumSimpleReturnExprs == NumReturnExprs 197 && ReturnBlock.getBlock()->use_empty(); 198 // Usually the return expression is evaluated before the cleanup 199 // code. If the function contains only a simple return statement, 200 // such as a constant, the location before the cleanup code becomes 201 // the last useful breakpoint in the function, because the simple 202 // return expression will be evaluated after the cleanup code. To be 203 // safe, set the debug location for cleanup code to the location of 204 // the return statement. Otherwise the cleanup code should be at the 205 // end of the function's lexical scope. 206 // 207 // If there are multiple branches to the return block, the branch 208 // instructions will get the location of the return statements and 209 // all will be fine. 210 if (CGDebugInfo *DI = getDebugInfo()) { 211 if (OnlySimpleReturnStmts) 212 DI->EmitLocation(Builder, LastStopPoint); 213 else 214 DI->EmitLocation(Builder, EndLoc); 215 } 216 217 // Pop any cleanups that might have been associated with the 218 // parameters. Do this in whatever block we're currently in; it's 219 // important to do this before we enter the return block or return 220 // edges will be *really* confused. 221 bool EmitRetDbgLoc = true; 222 if (EHStack.stable_begin() != PrologueCleanupDepth) { 223 PopCleanupBlocks(PrologueCleanupDepth); 224 225 // Make sure the line table doesn't jump back into the body for 226 // the ret after it's been at EndLoc. 227 EmitRetDbgLoc = false; 228 229 if (CGDebugInfo *DI = getDebugInfo()) 230 if (OnlySimpleReturnStmts) 231 DI->EmitLocation(Builder, EndLoc); 232 } 233 234 // Emit function epilog (to return). 235 EmitReturnBlock(); 236 237 if (ShouldInstrumentFunction()) 238 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 239 240 // Emit debug descriptor for function end. 241 if (CGDebugInfo *DI = getDebugInfo()) { 242 DI->EmitFunctionEnd(Builder); 243 } 244 245 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 246 EmitEndEHSpec(CurCodeDecl); 247 248 assert(EHStack.empty() && 249 "did not remove all scopes from cleanup stack!"); 250 251 // If someone did an indirect goto, emit the indirect goto block at the end of 252 // the function. 253 if (IndirectBranch) { 254 EmitBlock(IndirectBranch->getParent()); 255 Builder.ClearInsertionPoint(); 256 } 257 258 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 259 llvm::Instruction *Ptr = AllocaInsertPt; 260 AllocaInsertPt = 0; 261 Ptr->eraseFromParent(); 262 263 // If someone took the address of a label but never did an indirect goto, we 264 // made a zero entry PHI node, which is illegal, zap it now. 265 if (IndirectBranch) { 266 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 267 if (PN->getNumIncomingValues() == 0) { 268 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 269 PN->eraseFromParent(); 270 } 271 } 272 273 EmitIfUsed(*this, EHResumeBlock); 274 EmitIfUsed(*this, TerminateLandingPad); 275 EmitIfUsed(*this, TerminateHandler); 276 EmitIfUsed(*this, UnreachableBlock); 277 278 if (CGM.getCodeGenOpts().EmitDeclMetadata) 279 EmitDeclMetadata(); 280 } 281 282 /// ShouldInstrumentFunction - Return true if the current function should be 283 /// instrumented with __cyg_profile_func_* calls 284 bool CodeGenFunction::ShouldInstrumentFunction() { 285 if (!CGM.getCodeGenOpts().InstrumentFunctions) 286 return false; 287 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 288 return false; 289 return true; 290 } 291 292 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 293 /// instrumentation function with the current function and the call site, if 294 /// function instrumentation is enabled. 295 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 296 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 297 llvm::PointerType *PointerTy = Int8PtrTy; 298 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 299 llvm::FunctionType *FunctionTy = 300 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 301 302 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 303 llvm::CallInst *CallSite = Builder.CreateCall( 304 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 305 llvm::ConstantInt::get(Int32Ty, 0), 306 "callsite"); 307 308 llvm::Value *args[] = { 309 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 310 CallSite 311 }; 312 313 EmitNounwindRuntimeCall(F, args); 314 } 315 316 void CodeGenFunction::EmitMCountInstrumentation() { 317 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 318 319 llvm::Constant *MCountFn = 320 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 321 EmitNounwindRuntimeCall(MCountFn); 322 } 323 324 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 325 // information in the program executable. The argument information stored 326 // includes the argument name, its type, the address and access qualifiers used. 327 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 328 CodeGenModule &CGM,llvm::LLVMContext &Context, 329 SmallVector <llvm::Value*, 5> &kernelMDArgs, 330 CGBuilderTy& Builder, ASTContext &ASTCtx) { 331 // Create MDNodes that represent the kernel arg metadata. 332 // Each MDNode is a list in the form of "key", N number of values which is 333 // the same number of values as their are kernel arguments. 334 335 // MDNode for the kernel argument address space qualifiers. 336 SmallVector<llvm::Value*, 8> addressQuals; 337 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 338 339 // MDNode for the kernel argument access qualifiers (images only). 340 SmallVector<llvm::Value*, 8> accessQuals; 341 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 342 343 // MDNode for the kernel argument type names. 344 SmallVector<llvm::Value*, 8> argTypeNames; 345 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 346 347 // MDNode for the kernel argument type qualifiers. 348 SmallVector<llvm::Value*, 8> argTypeQuals; 349 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 350 351 // MDNode for the kernel argument names. 352 SmallVector<llvm::Value*, 8> argNames; 353 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 354 355 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 356 const ParmVarDecl *parm = FD->getParamDecl(i); 357 QualType ty = parm->getType(); 358 std::string typeQuals; 359 360 if (ty->isPointerType()) { 361 QualType pointeeTy = ty->getPointeeType(); 362 363 // Get address qualifier. 364 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 365 pointeeTy.getAddressSpace()))); 366 367 // Get argument type name. 368 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 369 370 // Turn "unsigned type" to "utype" 371 std::string::size_type pos = typeName.find("unsigned"); 372 if (pos != std::string::npos) 373 typeName.erase(pos+1, 8); 374 375 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 376 377 // Get argument type qualifiers: 378 if (ty.isRestrictQualified()) 379 typeQuals = "restrict"; 380 if (pointeeTy.isConstQualified() || 381 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 382 typeQuals += typeQuals.empty() ? "const" : " const"; 383 if (pointeeTy.isVolatileQualified()) 384 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 385 } else { 386 uint32_t AddrSpc = 0; 387 if (ty->isImageType()) 388 AddrSpc = 389 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 390 391 addressQuals.push_back(Builder.getInt32(AddrSpc)); 392 393 // Get argument type name. 394 std::string typeName = ty.getUnqualifiedType().getAsString(); 395 396 // Turn "unsigned type" to "utype" 397 std::string::size_type pos = typeName.find("unsigned"); 398 if (pos != std::string::npos) 399 typeName.erase(pos+1, 8); 400 401 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 402 403 // Get argument type qualifiers: 404 if (ty.isConstQualified()) 405 typeQuals = "const"; 406 if (ty.isVolatileQualified()) 407 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 408 } 409 410 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 411 412 // Get image access qualifier: 413 if (ty->isImageType()) { 414 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 415 if (A && A->getAccess() == CLIA_write_only) 416 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 417 else 418 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 419 } else 420 accessQuals.push_back(llvm::MDString::get(Context, "none")); 421 422 // Get argument name. 423 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 424 } 425 426 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 427 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 428 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 429 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 430 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 431 } 432 433 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 434 llvm::Function *Fn) 435 { 436 if (!FD->hasAttr<OpenCLKernelAttr>()) 437 return; 438 439 llvm::LLVMContext &Context = getLLVMContext(); 440 441 SmallVector <llvm::Value*, 5> kernelMDArgs; 442 kernelMDArgs.push_back(Fn); 443 444 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 445 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 446 Builder, getContext()); 447 448 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 449 QualType hintQTy = A->getTypeHint(); 450 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 451 bool isSignedInteger = 452 hintQTy->isSignedIntegerType() || 453 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 454 llvm::Value *attrMDArgs[] = { 455 llvm::MDString::get(Context, "vec_type_hint"), 456 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 457 llvm::ConstantInt::get( 458 llvm::IntegerType::get(Context, 32), 459 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 460 }; 461 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 462 } 463 464 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 465 llvm::Value *attrMDArgs[] = { 466 llvm::MDString::get(Context, "work_group_size_hint"), 467 Builder.getInt32(A->getXDim()), 468 Builder.getInt32(A->getYDim()), 469 Builder.getInt32(A->getZDim()) 470 }; 471 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 472 } 473 474 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 475 llvm::Value *attrMDArgs[] = { 476 llvm::MDString::get(Context, "reqd_work_group_size"), 477 Builder.getInt32(A->getXDim()), 478 Builder.getInt32(A->getYDim()), 479 Builder.getInt32(A->getZDim()) 480 }; 481 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 482 } 483 484 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 485 llvm::NamedMDNode *OpenCLKernelMetadata = 486 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 487 OpenCLKernelMetadata->addOperand(kernelMDNode); 488 } 489 490 void CodeGenFunction::StartFunction(GlobalDecl GD, 491 QualType RetTy, 492 llvm::Function *Fn, 493 const CGFunctionInfo &FnInfo, 494 const FunctionArgList &Args, 495 SourceLocation StartLoc) { 496 const Decl *D = GD.getDecl(); 497 498 DidCallStackSave = false; 499 CurCodeDecl = D; 500 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 501 FnRetTy = RetTy; 502 CurFn = Fn; 503 CurFnInfo = &FnInfo; 504 assert(CurFn->isDeclaration() && "Function already has body?"); 505 506 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 507 SanOpts = &SanitizerOptions::Disabled; 508 SanitizePerformTypeCheck = false; 509 } 510 511 // Pass inline keyword to optimizer if it appears explicitly on any 512 // declaration. 513 if (!CGM.getCodeGenOpts().NoInline) 514 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 515 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 516 RE = FD->redecls_end(); RI != RE; ++RI) 517 if (RI->isInlineSpecified()) { 518 Fn->addFnAttr(llvm::Attribute::InlineHint); 519 break; 520 } 521 522 if (getLangOpts().OpenCL) { 523 // Add metadata for a kernel function. 524 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 525 EmitOpenCLKernelMetadata(FD, Fn); 526 } 527 528 // If we are checking function types, emit a function type signature as 529 // prefix data. 530 if (getLangOpts().CPlusPlus && SanOpts->Function) { 531 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 532 if (llvm::Constant *PrefixSig = 533 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 534 llvm::Constant *FTRTTIConst = 535 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 536 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 537 llvm::Constant *PrefixStructConst = 538 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 539 Fn->setPrefixData(PrefixStructConst); 540 } 541 } 542 } 543 544 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 545 546 // Create a marker to make it easy to insert allocas into the entryblock 547 // later. Don't create this with the builder, because we don't want it 548 // folded. 549 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 550 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 551 if (Builder.isNamePreserving()) 552 AllocaInsertPt->setName("allocapt"); 553 554 ReturnBlock = getJumpDestInCurrentScope("return"); 555 556 Builder.SetInsertPoint(EntryBB); 557 558 // Emit subprogram debug descriptor. 559 if (CGDebugInfo *DI = getDebugInfo()) { 560 SmallVector<QualType, 16> ArgTypes; 561 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 562 i != e; ++i) { 563 ArgTypes.push_back((*i)->getType()); 564 } 565 566 QualType FnType = 567 getContext().getFunctionType(RetTy, ArgTypes, 568 FunctionProtoType::ExtProtoInfo()); 569 570 DI->setLocation(StartLoc); 571 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 572 } 573 574 if (ShouldInstrumentFunction()) 575 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 576 577 if (CGM.getCodeGenOpts().InstrumentForProfiling) 578 EmitMCountInstrumentation(); 579 580 PGO.assignRegionCounters(GD); 581 582 if (RetTy->isVoidType()) { 583 // Void type; nothing to return. 584 ReturnValue = 0; 585 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 586 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 587 // Indirect aggregate return; emit returned value directly into sret slot. 588 // This reduces code size, and affects correctness in C++. 589 ReturnValue = CurFn->arg_begin(); 590 } else { 591 ReturnValue = CreateIRTemp(RetTy, "retval"); 592 593 // Tell the epilog emitter to autorelease the result. We do this 594 // now so that various specialized functions can suppress it 595 // during their IR-generation. 596 if (getLangOpts().ObjCAutoRefCount && 597 !CurFnInfo->isReturnsRetained() && 598 RetTy->isObjCRetainableType()) 599 AutoreleaseResult = true; 600 } 601 602 EmitStartEHSpec(CurCodeDecl); 603 604 PrologueCleanupDepth = EHStack.stable_begin(); 605 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 606 607 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 608 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 609 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 610 if (MD->getParent()->isLambda() && 611 MD->getOverloadedOperator() == OO_Call) { 612 // We're in a lambda; figure out the captures. 613 MD->getParent()->getCaptureFields(LambdaCaptureFields, 614 LambdaThisCaptureField); 615 if (LambdaThisCaptureField) { 616 // If this lambda captures this, load it. 617 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 618 CXXThisValue = EmitLoadOfLValue(ThisLValue, 619 SourceLocation()).getScalarVal(); 620 } 621 } else { 622 // Not in a lambda; just use 'this' from the method. 623 // FIXME: Should we generate a new load for each use of 'this'? The 624 // fast register allocator would be happier... 625 CXXThisValue = CXXABIThisValue; 626 } 627 } 628 629 // If any of the arguments have a variably modified type, make sure to 630 // emit the type size. 631 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 632 i != e; ++i) { 633 const VarDecl *VD = *i; 634 635 // Dig out the type as written from ParmVarDecls; it's unclear whether 636 // the standard (C99 6.9.1p10) requires this, but we're following the 637 // precedent set by gcc. 638 QualType Ty; 639 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 640 Ty = PVD->getOriginalType(); 641 else 642 Ty = VD->getType(); 643 644 if (Ty->isVariablyModifiedType()) 645 EmitVariablyModifiedType(Ty); 646 } 647 // Emit a location at the end of the prologue. 648 if (CGDebugInfo *DI = getDebugInfo()) 649 DI->EmitLocation(Builder, StartLoc); 650 } 651 652 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 653 const Stmt *Body) { 654 RegionCounter Cnt = getPGORegionCounter(Body); 655 Cnt.beginRegion(Builder); 656 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 657 EmitCompoundStmtWithoutScope(*S); 658 else 659 EmitStmt(Body); 660 } 661 662 /// Tries to mark the given function nounwind based on the 663 /// non-existence of any throwing calls within it. We believe this is 664 /// lightweight enough to do at -O0. 665 static void TryMarkNoThrow(llvm::Function *F) { 666 // LLVM treats 'nounwind' on a function as part of the type, so we 667 // can't do this on functions that can be overwritten. 668 if (F->mayBeOverridden()) return; 669 670 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 671 for (llvm::BasicBlock::iterator 672 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 673 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 674 if (!Call->doesNotThrow()) 675 return; 676 } else if (isa<llvm::ResumeInst>(&*BI)) { 677 return; 678 } 679 F->setDoesNotThrow(); 680 } 681 682 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 683 const FunctionDecl *UnsizedDealloc) { 684 // This is a weak discardable definition of the sized deallocation function. 685 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 686 687 // Call the unsized deallocation function and forward the first argument 688 // unchanged. 689 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 690 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 691 } 692 693 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 694 const CGFunctionInfo &FnInfo) { 695 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 696 697 // Check if we should generate debug info for this function. 698 if (FD->hasAttr<NoDebugAttr>()) 699 DebugInfo = NULL; // disable debug info indefinitely for this function 700 701 FunctionArgList Args; 702 QualType ResTy = FD->getResultType(); 703 704 CurGD = GD; 705 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 706 if (MD && MD->isInstance()) { 707 if (CGM.getCXXABI().HasThisReturn(GD)) 708 ResTy = MD->getThisType(getContext()); 709 CGM.getCXXABI().buildThisParam(*this, Args); 710 } 711 712 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 713 Args.push_back(FD->getParamDecl(i)); 714 715 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 716 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 717 718 SourceRange BodyRange; 719 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 720 CurEHLocation = BodyRange.getEnd(); 721 722 // Emit the standard function prologue. 723 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 724 725 // Generate the body of the function. 726 if (isa<CXXDestructorDecl>(FD)) 727 EmitDestructorBody(Args); 728 else if (isa<CXXConstructorDecl>(FD)) 729 EmitConstructorBody(Args); 730 else if (getLangOpts().CUDA && 731 !CGM.getCodeGenOpts().CUDAIsDevice && 732 FD->hasAttr<CUDAGlobalAttr>()) 733 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 734 else if (isa<CXXConversionDecl>(FD) && 735 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 736 // The lambda conversion to block pointer is special; the semantics can't be 737 // expressed in the AST, so IRGen needs to special-case it. 738 EmitLambdaToBlockPointerBody(Args); 739 } else if (isa<CXXMethodDecl>(FD) && 740 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 741 // The lambda static invoker function is special, because it forwards or 742 // clones the body of the function call operator (but is actually static). 743 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 744 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 745 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 746 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 747 // Implicit copy-assignment gets the same special treatment as implicit 748 // copy-constructors. 749 emitImplicitAssignmentOperatorBody(Args); 750 } else if (Stmt *Body = FD->getBody()) { 751 EmitFunctionBody(Args, Body); 752 } else if (FunctionDecl *UnsizedDealloc = 753 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 754 // Global sized deallocation functions get an implicit weak definition if 755 // they don't have an explicit definition. 756 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 757 } else 758 llvm_unreachable("no definition for emitted function"); 759 760 // C++11 [stmt.return]p2: 761 // Flowing off the end of a function [...] results in undefined behavior in 762 // a value-returning function. 763 // C11 6.9.1p12: 764 // If the '}' that terminates a function is reached, and the value of the 765 // function call is used by the caller, the behavior is undefined. 766 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 767 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 768 if (SanOpts->Return) 769 EmitCheck(Builder.getFalse(), "missing_return", 770 EmitCheckSourceLocation(FD->getLocation()), 771 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 772 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 773 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 774 Builder.CreateUnreachable(); 775 Builder.ClearInsertionPoint(); 776 } 777 778 // Emit the standard function epilogue. 779 FinishFunction(BodyRange.getEnd()); 780 781 // If we haven't marked the function nothrow through other means, do 782 // a quick pass now to see if we can. 783 if (!CurFn->doesNotThrow()) 784 TryMarkNoThrow(CurFn); 785 786 PGO.emitWriteoutFunction(CurGD); 787 PGO.destroyRegionCounters(); 788 } 789 790 /// ContainsLabel - Return true if the statement contains a label in it. If 791 /// this statement is not executed normally, it not containing a label means 792 /// that we can just remove the code. 793 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 794 // Null statement, not a label! 795 if (S == 0) return false; 796 797 // If this is a label, we have to emit the code, consider something like: 798 // if (0) { ... foo: bar(); } goto foo; 799 // 800 // TODO: If anyone cared, we could track __label__'s, since we know that you 801 // can't jump to one from outside their declared region. 802 if (isa<LabelStmt>(S)) 803 return true; 804 805 // If this is a case/default statement, and we haven't seen a switch, we have 806 // to emit the code. 807 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 808 return true; 809 810 // If this is a switch statement, we want to ignore cases below it. 811 if (isa<SwitchStmt>(S)) 812 IgnoreCaseStmts = true; 813 814 // Scan subexpressions for verboten labels. 815 for (Stmt::const_child_range I = S->children(); I; ++I) 816 if (ContainsLabel(*I, IgnoreCaseStmts)) 817 return true; 818 819 return false; 820 } 821 822 /// containsBreak - Return true if the statement contains a break out of it. 823 /// If the statement (recursively) contains a switch or loop with a break 824 /// inside of it, this is fine. 825 bool CodeGenFunction::containsBreak(const Stmt *S) { 826 // Null statement, not a label! 827 if (S == 0) return false; 828 829 // If this is a switch or loop that defines its own break scope, then we can 830 // include it and anything inside of it. 831 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 832 isa<ForStmt>(S)) 833 return false; 834 835 if (isa<BreakStmt>(S)) 836 return true; 837 838 // Scan subexpressions for verboten breaks. 839 for (Stmt::const_child_range I = S->children(); I; ++I) 840 if (containsBreak(*I)) 841 return true; 842 843 return false; 844 } 845 846 847 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 848 /// to a constant, or if it does but contains a label, return false. If it 849 /// constant folds return true and set the boolean result in Result. 850 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 851 bool &ResultBool) { 852 llvm::APSInt ResultInt; 853 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 854 return false; 855 856 ResultBool = ResultInt.getBoolValue(); 857 return true; 858 } 859 860 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 861 /// to a constant, or if it does but contains a label, return false. If it 862 /// constant folds return true and set the folded value. 863 bool CodeGenFunction:: 864 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 865 // FIXME: Rename and handle conversion of other evaluatable things 866 // to bool. 867 llvm::APSInt Int; 868 if (!Cond->EvaluateAsInt(Int, getContext())) 869 return false; // Not foldable, not integer or not fully evaluatable. 870 871 if (CodeGenFunction::ContainsLabel(Cond)) 872 return false; // Contains a label. 873 874 ResultInt = Int; 875 return true; 876 } 877 878 879 880 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 881 /// statement) to the specified blocks. Based on the condition, this might try 882 /// to simplify the codegen of the conditional based on the branch. 883 /// 884 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 885 llvm::BasicBlock *TrueBlock, 886 llvm::BasicBlock *FalseBlock, 887 uint64_t TrueCount) { 888 Cond = Cond->IgnoreParens(); 889 890 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 891 RegionCounter Cnt = getPGORegionCounter(CondBOp); 892 893 // Handle X && Y in a condition. 894 if (CondBOp->getOpcode() == BO_LAnd) { 895 // If we have "1 && X", simplify the code. "0 && X" would have constant 896 // folded if the case was simple enough. 897 bool ConstantBool = false; 898 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 899 ConstantBool) { 900 // br(1 && X) -> br(X). 901 Cnt.beginRegion(Builder); 902 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 903 TrueCount); 904 } 905 906 // If we have "X && 1", simplify the code to use an uncond branch. 907 // "X && 0" would have been constant folded to 0. 908 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 909 ConstantBool) { 910 // br(X && 1) -> br(X). 911 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 912 TrueCount); 913 } 914 915 // Emit the LHS as a conditional. If the LHS conditional is false, we 916 // want to jump to the FalseBlock. 917 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 918 // The counter tells us how often we evaluate RHS, and all of TrueCount 919 // can be propagated to that branch. 920 uint64_t RHSCount = Cnt.getCount(); 921 922 ConditionalEvaluation eval(*this); 923 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 924 EmitBlock(LHSTrue); 925 926 // Any temporaries created here are conditional. 927 Cnt.beginRegion(Builder); 928 eval.begin(*this); 929 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 930 eval.end(*this); 931 Cnt.adjustFallThroughCount(); 932 Cnt.applyAdjustmentsToRegion(); 933 934 return; 935 } 936 937 if (CondBOp->getOpcode() == BO_LOr) { 938 // If we have "0 || X", simplify the code. "1 || X" would have constant 939 // folded if the case was simple enough. 940 bool ConstantBool = false; 941 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 942 !ConstantBool) { 943 // br(0 || X) -> br(X). 944 Cnt.beginRegion(Builder); 945 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 946 TrueCount); 947 } 948 949 // If we have "X || 0", simplify the code to use an uncond branch. 950 // "X || 1" would have been constant folded to 1. 951 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 952 !ConstantBool) { 953 // br(X || 0) -> br(X). 954 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 955 TrueCount); 956 } 957 958 // Emit the LHS as a conditional. If the LHS conditional is true, we 959 // want to jump to the TrueBlock. 960 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 961 // We have the count for entry to the RHS and for the whole expression 962 // being true, so we can divy up True count between the short circuit and 963 // the RHS. 964 uint64_t LHSCount = TrueCount - Cnt.getCount(); 965 uint64_t RHSCount = TrueCount - LHSCount; 966 967 ConditionalEvaluation eval(*this); 968 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 969 EmitBlock(LHSFalse); 970 971 // Any temporaries created here are conditional. 972 Cnt.beginRegion(Builder); 973 eval.begin(*this); 974 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 975 976 eval.end(*this); 977 Cnt.adjustFallThroughCount(); 978 Cnt.applyAdjustmentsToRegion(); 979 980 return; 981 } 982 } 983 984 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 985 // br(!x, t, f) -> br(x, f, t) 986 if (CondUOp->getOpcode() == UO_LNot) { 987 // Negate the count. 988 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 989 // Negate the condition and swap the destination blocks. 990 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 991 FalseCount); 992 } 993 } 994 995 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 996 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 997 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 998 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 999 1000 RegionCounter Cnt = getPGORegionCounter(CondOp); 1001 ConditionalEvaluation cond(*this); 1002 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1003 1004 // When computing PGO branch weights, we only know the overall count for 1005 // the true block. This code is essentially doing tail duplication of the 1006 // naive code-gen, introducing new edges for which counts are not 1007 // available. Divide the counts proportionally between the LHS and RHS of 1008 // the conditional operator. 1009 uint64_t LHSScaledTrueCount = 0; 1010 if (TrueCount) { 1011 double LHSRatio = Cnt.getCount() / (double) PGO.getCurrentRegionCount(); 1012 LHSScaledTrueCount = TrueCount * LHSRatio; 1013 } 1014 1015 cond.begin(*this); 1016 EmitBlock(LHSBlock); 1017 Cnt.beginRegion(Builder); 1018 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1019 LHSScaledTrueCount); 1020 cond.end(*this); 1021 1022 cond.begin(*this); 1023 EmitBlock(RHSBlock); 1024 Cnt.beginElseRegion(); 1025 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1026 TrueCount - LHSScaledTrueCount); 1027 cond.end(*this); 1028 1029 return; 1030 } 1031 1032 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1033 // Conditional operator handling can give us a throw expression as a 1034 // condition for a case like: 1035 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1036 // Fold this to: 1037 // br(c, throw x, br(y, t, f)) 1038 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1039 return; 1040 } 1041 1042 // Create branch weights based on the number of times we get here and the 1043 // number of times the condition should be true. 1044 uint64_t CurrentCount = PGO.getCurrentRegionCountWithMin(TrueCount); 1045 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1046 CurrentCount - TrueCount); 1047 1048 // Emit the code with the fully general case. 1049 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1050 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1051 } 1052 1053 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1054 /// specified stmt yet. 1055 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1056 CGM.ErrorUnsupported(S, Type); 1057 } 1058 1059 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1060 /// variable-length array whose elements have a non-zero bit-pattern. 1061 /// 1062 /// \param baseType the inner-most element type of the array 1063 /// \param src - a char* pointing to the bit-pattern for a single 1064 /// base element of the array 1065 /// \param sizeInChars - the total size of the VLA, in chars 1066 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1067 llvm::Value *dest, llvm::Value *src, 1068 llvm::Value *sizeInChars) { 1069 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1070 = CGF.getContext().getTypeInfoInChars(baseType); 1071 1072 CGBuilderTy &Builder = CGF.Builder; 1073 1074 llvm::Value *baseSizeInChars 1075 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1076 1077 llvm::Type *i8p = Builder.getInt8PtrTy(); 1078 1079 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1080 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1081 1082 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1083 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1084 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1085 1086 // Make a loop over the VLA. C99 guarantees that the VLA element 1087 // count must be nonzero. 1088 CGF.EmitBlock(loopBB); 1089 1090 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1091 cur->addIncoming(begin, originBB); 1092 1093 // memcpy the individual element bit-pattern. 1094 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1095 baseSizeAndAlign.second.getQuantity(), 1096 /*volatile*/ false); 1097 1098 // Go to the next element. 1099 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1100 1101 // Leave if that's the end of the VLA. 1102 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1103 Builder.CreateCondBr(done, contBB, loopBB); 1104 cur->addIncoming(next, loopBB); 1105 1106 CGF.EmitBlock(contBB); 1107 } 1108 1109 void 1110 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1111 // Ignore empty classes in C++. 1112 if (getLangOpts().CPlusPlus) { 1113 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1114 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1115 return; 1116 } 1117 } 1118 1119 // Cast the dest ptr to the appropriate i8 pointer type. 1120 unsigned DestAS = 1121 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1122 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1123 if (DestPtr->getType() != BP) 1124 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1125 1126 // Get size and alignment info for this aggregate. 1127 std::pair<CharUnits, CharUnits> TypeInfo = 1128 getContext().getTypeInfoInChars(Ty); 1129 CharUnits Size = TypeInfo.first; 1130 CharUnits Align = TypeInfo.second; 1131 1132 llvm::Value *SizeVal; 1133 const VariableArrayType *vla; 1134 1135 // Don't bother emitting a zero-byte memset. 1136 if (Size.isZero()) { 1137 // But note that getTypeInfo returns 0 for a VLA. 1138 if (const VariableArrayType *vlaType = 1139 dyn_cast_or_null<VariableArrayType>( 1140 getContext().getAsArrayType(Ty))) { 1141 QualType eltType; 1142 llvm::Value *numElts; 1143 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1144 1145 SizeVal = numElts; 1146 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1147 if (!eltSize.isOne()) 1148 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1149 vla = vlaType; 1150 } else { 1151 return; 1152 } 1153 } else { 1154 SizeVal = CGM.getSize(Size); 1155 vla = 0; 1156 } 1157 1158 // If the type contains a pointer to data member we can't memset it to zero. 1159 // Instead, create a null constant and copy it to the destination. 1160 // TODO: there are other patterns besides zero that we can usefully memset, 1161 // like -1, which happens to be the pattern used by member-pointers. 1162 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1163 // For a VLA, emit a single element, then splat that over the VLA. 1164 if (vla) Ty = getContext().getBaseElementType(vla); 1165 1166 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1167 1168 llvm::GlobalVariable *NullVariable = 1169 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1170 /*isConstant=*/true, 1171 llvm::GlobalVariable::PrivateLinkage, 1172 NullConstant, Twine()); 1173 llvm::Value *SrcPtr = 1174 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1175 1176 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1177 1178 // Get and call the appropriate llvm.memcpy overload. 1179 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1180 return; 1181 } 1182 1183 // Otherwise, just memset the whole thing to zero. This is legal 1184 // because in LLVM, all default initializers (other than the ones we just 1185 // handled above) are guaranteed to have a bit pattern of all zeros. 1186 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1187 Align.getQuantity(), false); 1188 } 1189 1190 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1191 // Make sure that there is a block for the indirect goto. 1192 if (IndirectBranch == 0) 1193 GetIndirectGotoBlock(); 1194 1195 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1196 1197 // Make sure the indirect branch includes all of the address-taken blocks. 1198 IndirectBranch->addDestination(BB); 1199 return llvm::BlockAddress::get(CurFn, BB); 1200 } 1201 1202 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1203 // If we already made the indirect branch for indirect goto, return its block. 1204 if (IndirectBranch) return IndirectBranch->getParent(); 1205 1206 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1207 1208 // Create the PHI node that indirect gotos will add entries to. 1209 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1210 "indirect.goto.dest"); 1211 1212 // Create the indirect branch instruction. 1213 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1214 return IndirectBranch->getParent(); 1215 } 1216 1217 /// Computes the length of an array in elements, as well as the base 1218 /// element type and a properly-typed first element pointer. 1219 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1220 QualType &baseType, 1221 llvm::Value *&addr) { 1222 const ArrayType *arrayType = origArrayType; 1223 1224 // If it's a VLA, we have to load the stored size. Note that 1225 // this is the size of the VLA in bytes, not its size in elements. 1226 llvm::Value *numVLAElements = 0; 1227 if (isa<VariableArrayType>(arrayType)) { 1228 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1229 1230 // Walk into all VLAs. This doesn't require changes to addr, 1231 // which has type T* where T is the first non-VLA element type. 1232 do { 1233 QualType elementType = arrayType->getElementType(); 1234 arrayType = getContext().getAsArrayType(elementType); 1235 1236 // If we only have VLA components, 'addr' requires no adjustment. 1237 if (!arrayType) { 1238 baseType = elementType; 1239 return numVLAElements; 1240 } 1241 } while (isa<VariableArrayType>(arrayType)); 1242 1243 // We get out here only if we find a constant array type 1244 // inside the VLA. 1245 } 1246 1247 // We have some number of constant-length arrays, so addr should 1248 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1249 // down to the first element of addr. 1250 SmallVector<llvm::Value*, 8> gepIndices; 1251 1252 // GEP down to the array type. 1253 llvm::ConstantInt *zero = Builder.getInt32(0); 1254 gepIndices.push_back(zero); 1255 1256 uint64_t countFromCLAs = 1; 1257 QualType eltType; 1258 1259 llvm::ArrayType *llvmArrayType = 1260 dyn_cast<llvm::ArrayType>( 1261 cast<llvm::PointerType>(addr->getType())->getElementType()); 1262 while (llvmArrayType) { 1263 assert(isa<ConstantArrayType>(arrayType)); 1264 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1265 == llvmArrayType->getNumElements()); 1266 1267 gepIndices.push_back(zero); 1268 countFromCLAs *= llvmArrayType->getNumElements(); 1269 eltType = arrayType->getElementType(); 1270 1271 llvmArrayType = 1272 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1273 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1274 assert((!llvmArrayType || arrayType) && 1275 "LLVM and Clang types are out-of-synch"); 1276 } 1277 1278 if (arrayType) { 1279 // From this point onwards, the Clang array type has been emitted 1280 // as some other type (probably a packed struct). Compute the array 1281 // size, and just emit the 'begin' expression as a bitcast. 1282 while (arrayType) { 1283 countFromCLAs *= 1284 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1285 eltType = arrayType->getElementType(); 1286 arrayType = getContext().getAsArrayType(eltType); 1287 } 1288 1289 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1290 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1291 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1292 } else { 1293 // Create the actual GEP. 1294 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1295 } 1296 1297 baseType = eltType; 1298 1299 llvm::Value *numElements 1300 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1301 1302 // If we had any VLA dimensions, factor them in. 1303 if (numVLAElements) 1304 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1305 1306 return numElements; 1307 } 1308 1309 std::pair<llvm::Value*, QualType> 1310 CodeGenFunction::getVLASize(QualType type) { 1311 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1312 assert(vla && "type was not a variable array type!"); 1313 return getVLASize(vla); 1314 } 1315 1316 std::pair<llvm::Value*, QualType> 1317 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1318 // The number of elements so far; always size_t. 1319 llvm::Value *numElements = 0; 1320 1321 QualType elementType; 1322 do { 1323 elementType = type->getElementType(); 1324 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1325 assert(vlaSize && "no size for VLA!"); 1326 assert(vlaSize->getType() == SizeTy); 1327 1328 if (!numElements) { 1329 numElements = vlaSize; 1330 } else { 1331 // It's undefined behavior if this wraps around, so mark it that way. 1332 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1333 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1334 } 1335 } while ((type = getContext().getAsVariableArrayType(elementType))); 1336 1337 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1338 } 1339 1340 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1341 assert(type->isVariablyModifiedType() && 1342 "Must pass variably modified type to EmitVLASizes!"); 1343 1344 EnsureInsertPoint(); 1345 1346 // We're going to walk down into the type and look for VLA 1347 // expressions. 1348 do { 1349 assert(type->isVariablyModifiedType()); 1350 1351 const Type *ty = type.getTypePtr(); 1352 switch (ty->getTypeClass()) { 1353 1354 #define TYPE(Class, Base) 1355 #define ABSTRACT_TYPE(Class, Base) 1356 #define NON_CANONICAL_TYPE(Class, Base) 1357 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1358 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1359 #include "clang/AST/TypeNodes.def" 1360 llvm_unreachable("unexpected dependent type!"); 1361 1362 // These types are never variably-modified. 1363 case Type::Builtin: 1364 case Type::Complex: 1365 case Type::Vector: 1366 case Type::ExtVector: 1367 case Type::Record: 1368 case Type::Enum: 1369 case Type::Elaborated: 1370 case Type::TemplateSpecialization: 1371 case Type::ObjCObject: 1372 case Type::ObjCInterface: 1373 case Type::ObjCObjectPointer: 1374 llvm_unreachable("type class is never variably-modified!"); 1375 1376 case Type::Adjusted: 1377 type = cast<AdjustedType>(ty)->getAdjustedType(); 1378 break; 1379 1380 case Type::Decayed: 1381 type = cast<DecayedType>(ty)->getPointeeType(); 1382 break; 1383 1384 case Type::Pointer: 1385 type = cast<PointerType>(ty)->getPointeeType(); 1386 break; 1387 1388 case Type::BlockPointer: 1389 type = cast<BlockPointerType>(ty)->getPointeeType(); 1390 break; 1391 1392 case Type::LValueReference: 1393 case Type::RValueReference: 1394 type = cast<ReferenceType>(ty)->getPointeeType(); 1395 break; 1396 1397 case Type::MemberPointer: 1398 type = cast<MemberPointerType>(ty)->getPointeeType(); 1399 break; 1400 1401 case Type::ConstantArray: 1402 case Type::IncompleteArray: 1403 // Losing element qualification here is fine. 1404 type = cast<ArrayType>(ty)->getElementType(); 1405 break; 1406 1407 case Type::VariableArray: { 1408 // Losing element qualification here is fine. 1409 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1410 1411 // Unknown size indication requires no size computation. 1412 // Otherwise, evaluate and record it. 1413 if (const Expr *size = vat->getSizeExpr()) { 1414 // It's possible that we might have emitted this already, 1415 // e.g. with a typedef and a pointer to it. 1416 llvm::Value *&entry = VLASizeMap[size]; 1417 if (!entry) { 1418 llvm::Value *Size = EmitScalarExpr(size); 1419 1420 // C11 6.7.6.2p5: 1421 // If the size is an expression that is not an integer constant 1422 // expression [...] each time it is evaluated it shall have a value 1423 // greater than zero. 1424 if (SanOpts->VLABound && 1425 size->getType()->isSignedIntegerType()) { 1426 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1427 llvm::Constant *StaticArgs[] = { 1428 EmitCheckSourceLocation(size->getLocStart()), 1429 EmitCheckTypeDescriptor(size->getType()) 1430 }; 1431 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1432 "vla_bound_not_positive", StaticArgs, Size, 1433 CRK_Recoverable); 1434 } 1435 1436 // Always zexting here would be wrong if it weren't 1437 // undefined behavior to have a negative bound. 1438 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1439 } 1440 } 1441 type = vat->getElementType(); 1442 break; 1443 } 1444 1445 case Type::FunctionProto: 1446 case Type::FunctionNoProto: 1447 type = cast<FunctionType>(ty)->getResultType(); 1448 break; 1449 1450 case Type::Paren: 1451 case Type::TypeOf: 1452 case Type::UnaryTransform: 1453 case Type::Attributed: 1454 case Type::SubstTemplateTypeParm: 1455 case Type::PackExpansion: 1456 // Keep walking after single level desugaring. 1457 type = type.getSingleStepDesugaredType(getContext()); 1458 break; 1459 1460 case Type::Typedef: 1461 case Type::Decltype: 1462 case Type::Auto: 1463 // Stop walking: nothing to do. 1464 return; 1465 1466 case Type::TypeOfExpr: 1467 // Stop walking: emit typeof expression. 1468 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1469 return; 1470 1471 case Type::Atomic: 1472 type = cast<AtomicType>(ty)->getValueType(); 1473 break; 1474 } 1475 } while (type->isVariablyModifiedType()); 1476 } 1477 1478 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1479 if (getContext().getBuiltinVaListType()->isArrayType()) 1480 return EmitScalarExpr(E); 1481 return EmitLValue(E).getAddress(); 1482 } 1483 1484 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1485 llvm::Constant *Init) { 1486 assert (Init && "Invalid DeclRefExpr initializer!"); 1487 if (CGDebugInfo *Dbg = getDebugInfo()) 1488 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1489 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1490 } 1491 1492 CodeGenFunction::PeepholeProtection 1493 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1494 // At the moment, the only aggressive peephole we do in IR gen 1495 // is trunc(zext) folding, but if we add more, we can easily 1496 // extend this protection. 1497 1498 if (!rvalue.isScalar()) return PeepholeProtection(); 1499 llvm::Value *value = rvalue.getScalarVal(); 1500 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1501 1502 // Just make an extra bitcast. 1503 assert(HaveInsertPoint()); 1504 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1505 Builder.GetInsertBlock()); 1506 1507 PeepholeProtection protection; 1508 protection.Inst = inst; 1509 return protection; 1510 } 1511 1512 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1513 if (!protection.Inst) return; 1514 1515 // In theory, we could try to duplicate the peepholes now, but whatever. 1516 protection.Inst->eraseFromParent(); 1517 } 1518 1519 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1520 llvm::Value *AnnotatedVal, 1521 StringRef AnnotationStr, 1522 SourceLocation Location) { 1523 llvm::Value *Args[4] = { 1524 AnnotatedVal, 1525 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1526 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1527 CGM.EmitAnnotationLineNo(Location) 1528 }; 1529 return Builder.CreateCall(AnnotationFn, Args); 1530 } 1531 1532 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1533 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1534 // FIXME We create a new bitcast for every annotation because that's what 1535 // llvm-gcc was doing. 1536 for (specific_attr_iterator<AnnotateAttr> 1537 ai = D->specific_attr_begin<AnnotateAttr>(), 1538 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1539 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1540 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1541 (*ai)->getAnnotation(), D->getLocation()); 1542 } 1543 1544 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1545 llvm::Value *V) { 1546 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1547 llvm::Type *VTy = V->getType(); 1548 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1549 CGM.Int8PtrTy); 1550 1551 for (specific_attr_iterator<AnnotateAttr> 1552 ai = D->specific_attr_begin<AnnotateAttr>(), 1553 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1554 // FIXME Always emit the cast inst so we can differentiate between 1555 // annotation on the first field of a struct and annotation on the struct 1556 // itself. 1557 if (VTy != CGM.Int8PtrTy) 1558 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1559 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1560 V = Builder.CreateBitCast(V, VTy); 1561 } 1562 1563 return V; 1564 } 1565 1566 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1567