1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Operator.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 45 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 46 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0), 47 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0), 48 TerminateHandler(0), TrapBB(0) { 49 if (!suppressNewContext) 50 CGM.getCXXABI().getMangleContext().startNewFunction(); 51 52 llvm::FastMathFlags FMF; 53 if (CGM.getLangOpts().FastMath) 54 FMF.setUnsafeAlgebra(); 55 if (CGM.getLangOpts().FiniteMathOnly) { 56 FMF.setNoNaNs(); 57 FMF.setNoInfs(); 58 } 59 Builder.SetFastMathFlags(FMF); 60 } 61 62 CodeGenFunction::~CodeGenFunction() { 63 // If there are any unclaimed block infos, go ahead and destroy them 64 // now. This can happen if IR-gen gets clever and skips evaluating 65 // something. 66 if (FirstBlockInfo) 67 destroyBlockInfos(FirstBlockInfo); 68 } 69 70 71 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 72 return CGM.getTypes().ConvertTypeForMem(T); 73 } 74 75 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 76 return CGM.getTypes().ConvertType(T); 77 } 78 79 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 80 switch (type.getCanonicalType()->getTypeClass()) { 81 #define TYPE(name, parent) 82 #define ABSTRACT_TYPE(name, parent) 83 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 84 #define DEPENDENT_TYPE(name, parent) case Type::name: 85 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 86 #include "clang/AST/TypeNodes.def" 87 llvm_unreachable("non-canonical or dependent type in IR-generation"); 88 89 case Type::Builtin: 90 case Type::Pointer: 91 case Type::BlockPointer: 92 case Type::LValueReference: 93 case Type::RValueReference: 94 case Type::MemberPointer: 95 case Type::Vector: 96 case Type::ExtVector: 97 case Type::FunctionProto: 98 case Type::FunctionNoProto: 99 case Type::Enum: 100 case Type::ObjCObjectPointer: 101 return false; 102 103 // Complexes, arrays, records, and Objective-C objects. 104 case Type::Complex: 105 case Type::ConstantArray: 106 case Type::IncompleteArray: 107 case Type::VariableArray: 108 case Type::Record: 109 case Type::ObjCObject: 110 case Type::ObjCInterface: 111 return true; 112 113 // In IRGen, atomic types are just the underlying type 114 case Type::Atomic: 115 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 116 } 117 llvm_unreachable("unknown type kind!"); 118 } 119 120 void CodeGenFunction::EmitReturnBlock() { 121 // For cleanliness, we try to avoid emitting the return block for 122 // simple cases. 123 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 124 125 if (CurBB) { 126 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 127 128 // We have a valid insert point, reuse it if it is empty or there are no 129 // explicit jumps to the return block. 130 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 131 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 132 delete ReturnBlock.getBlock(); 133 } else 134 EmitBlock(ReturnBlock.getBlock()); 135 return; 136 } 137 138 // Otherwise, if the return block is the target of a single direct 139 // branch then we can just put the code in that block instead. This 140 // cleans up functions which started with a unified return block. 141 if (ReturnBlock.getBlock()->hasOneUse()) { 142 llvm::BranchInst *BI = 143 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 144 if (BI && BI->isUnconditional() && 145 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 146 // Reset insertion point, including debug location, and delete the branch. 147 // this is really subtle & only works because the next change in location 148 // will hit the caching in CGDebugInfo::EmitLocation & not override this 149 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 150 Builder.SetInsertPoint(BI->getParent()); 151 BI->eraseFromParent(); 152 delete ReturnBlock.getBlock(); 153 return; 154 } 155 } 156 157 // FIXME: We are at an unreachable point, there is no reason to emit the block 158 // unless it has uses. However, we still need a place to put the debug 159 // region.end for now. 160 161 EmitBlock(ReturnBlock.getBlock()); 162 } 163 164 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 165 if (!BB) return; 166 if (!BB->use_empty()) 167 return CGF.CurFn->getBasicBlockList().push_back(BB); 168 delete BB; 169 } 170 171 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 172 assert(BreakContinueStack.empty() && 173 "mismatched push/pop in break/continue stack!"); 174 175 if (CGDebugInfo *DI = getDebugInfo()) 176 DI->EmitLocation(Builder, EndLoc); 177 178 // Pop any cleanups that might have been associated with the 179 // parameters. Do this in whatever block we're currently in; it's 180 // important to do this before we enter the return block or return 181 // edges will be *really* confused. 182 if (EHStack.stable_begin() != PrologueCleanupDepth) 183 PopCleanupBlocks(PrologueCleanupDepth); 184 185 // Emit function epilog (to return). 186 EmitReturnBlock(); 187 188 if (ShouldInstrumentFunction()) 189 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 190 191 // Emit debug descriptor for function end. 192 if (CGDebugInfo *DI = getDebugInfo()) { 193 DI->EmitFunctionEnd(Builder); 194 } 195 196 EmitFunctionEpilog(*CurFnInfo); 197 EmitEndEHSpec(CurCodeDecl); 198 199 assert(EHStack.empty() && 200 "did not remove all scopes from cleanup stack!"); 201 202 // If someone did an indirect goto, emit the indirect goto block at the end of 203 // the function. 204 if (IndirectBranch) { 205 EmitBlock(IndirectBranch->getParent()); 206 Builder.ClearInsertionPoint(); 207 } 208 209 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 210 llvm::Instruction *Ptr = AllocaInsertPt; 211 AllocaInsertPt = 0; 212 Ptr->eraseFromParent(); 213 214 // If someone took the address of a label but never did an indirect goto, we 215 // made a zero entry PHI node, which is illegal, zap it now. 216 if (IndirectBranch) { 217 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 218 if (PN->getNumIncomingValues() == 0) { 219 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 220 PN->eraseFromParent(); 221 } 222 } 223 224 EmitIfUsed(*this, EHResumeBlock); 225 EmitIfUsed(*this, TerminateLandingPad); 226 EmitIfUsed(*this, TerminateHandler); 227 EmitIfUsed(*this, UnreachableBlock); 228 229 if (CGM.getCodeGenOpts().EmitDeclMetadata) 230 EmitDeclMetadata(); 231 } 232 233 /// ShouldInstrumentFunction - Return true if the current function should be 234 /// instrumented with __cyg_profile_func_* calls 235 bool CodeGenFunction::ShouldInstrumentFunction() { 236 if (!CGM.getCodeGenOpts().InstrumentFunctions) 237 return false; 238 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 239 return false; 240 return true; 241 } 242 243 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 244 /// instrumentation function with the current function and the call site, if 245 /// function instrumentation is enabled. 246 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 247 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 248 llvm::PointerType *PointerTy = Int8PtrTy; 249 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 250 llvm::FunctionType *FunctionTy = 251 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 252 253 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 254 llvm::CallInst *CallSite = Builder.CreateCall( 255 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 256 llvm::ConstantInt::get(Int32Ty, 0), 257 "callsite"); 258 259 Builder.CreateCall2(F, 260 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 261 CallSite); 262 } 263 264 void CodeGenFunction::EmitMCountInstrumentation() { 265 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 266 267 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 268 Target.getMCountName()); 269 Builder.CreateCall(MCountFn); 270 } 271 272 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 273 // information in the program executable. The argument information stored 274 // includes the argument name, its type, the address and access qualifiers used. 275 // FIXME: Add type, address, and access qualifiers. 276 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 277 CodeGenModule &CGM,llvm::LLVMContext &Context, 278 SmallVector <llvm::Value*, 5> &kernelMDArgs) { 279 280 // Create MDNodes that represents the kernel arg metadata. 281 // Each MDNode is a list in the form of "key", N number of values which is 282 // the same number of values as their are kernel arguments. 283 284 // MDNode for the kernel argument names. 285 SmallVector<llvm::Value*, 8> argNames; 286 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 287 288 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 289 const ParmVarDecl *parm = FD->getParamDecl(i); 290 291 // Get argument name. 292 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 293 294 } 295 // Add MDNode to the list of all metadata. 296 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 297 } 298 299 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 300 llvm::Function *Fn) 301 { 302 if (!FD->hasAttr<OpenCLKernelAttr>()) 303 return; 304 305 llvm::LLVMContext &Context = getLLVMContext(); 306 307 SmallVector <llvm::Value*, 5> kernelMDArgs; 308 kernelMDArgs.push_back(Fn); 309 310 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 311 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 312 313 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 314 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 315 llvm::Value *attrMDArgs[] = { 316 llvm::MDString::get(Context, "work_group_size_hint"), 317 Builder.getInt32(attr->getXDim()), 318 Builder.getInt32(attr->getYDim()), 319 Builder.getInt32(attr->getZDim()) 320 }; 321 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 322 } 323 324 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 325 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 326 llvm::Value *attrMDArgs[] = { 327 llvm::MDString::get(Context, "reqd_work_group_size"), 328 Builder.getInt32(attr->getXDim()), 329 Builder.getInt32(attr->getYDim()), 330 Builder.getInt32(attr->getZDim()) 331 }; 332 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 333 } 334 335 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 336 llvm::NamedMDNode *OpenCLKernelMetadata = 337 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 338 OpenCLKernelMetadata->addOperand(kernelMDNode); 339 } 340 341 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 342 llvm::Function *Fn, 343 const CGFunctionInfo &FnInfo, 344 const FunctionArgList &Args, 345 SourceLocation StartLoc) { 346 const Decl *D = GD.getDecl(); 347 348 DidCallStackSave = false; 349 CurCodeDecl = CurFuncDecl = D; 350 FnRetTy = RetTy; 351 CurFn = Fn; 352 CurFnInfo = &FnInfo; 353 assert(CurFn->isDeclaration() && "Function already has body?"); 354 355 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 356 SanOpts = &SanitizerOptions::Disabled; 357 SanitizePerformTypeCheck = false; 358 } 359 360 // Pass inline keyword to optimizer if it appears explicitly on any 361 // declaration. 362 if (!CGM.getCodeGenOpts().NoInline) 363 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 364 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 365 RE = FD->redecls_end(); RI != RE; ++RI) 366 if (RI->isInlineSpecified()) { 367 Fn->addFnAttr(llvm::Attribute::InlineHint); 368 break; 369 } 370 371 if (getLangOpts().OpenCL) { 372 // Add metadata for a kernel function. 373 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 374 EmitOpenCLKernelMetadata(FD, Fn); 375 } 376 377 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 378 379 // Create a marker to make it easy to insert allocas into the entryblock 380 // later. Don't create this with the builder, because we don't want it 381 // folded. 382 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 383 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 384 if (Builder.isNamePreserving()) 385 AllocaInsertPt->setName("allocapt"); 386 387 ReturnBlock = getJumpDestInCurrentScope("return"); 388 389 Builder.SetInsertPoint(EntryBB); 390 391 // Emit subprogram debug descriptor. 392 if (CGDebugInfo *DI = getDebugInfo()) { 393 unsigned NumArgs = 0; 394 QualType *ArgsArray = new QualType[Args.size()]; 395 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 396 i != e; ++i) { 397 ArgsArray[NumArgs++] = (*i)->getType(); 398 } 399 400 QualType FnType = 401 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 402 FunctionProtoType::ExtProtoInfo()); 403 404 delete[] ArgsArray; 405 406 DI->setLocation(StartLoc); 407 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 408 } 409 410 if (ShouldInstrumentFunction()) 411 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 412 413 if (CGM.getCodeGenOpts().InstrumentForProfiling) 414 EmitMCountInstrumentation(); 415 416 if (RetTy->isVoidType()) { 417 // Void type; nothing to return. 418 ReturnValue = 0; 419 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 420 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 421 // Indirect aggregate return; emit returned value directly into sret slot. 422 // This reduces code size, and affects correctness in C++. 423 ReturnValue = CurFn->arg_begin(); 424 } else { 425 ReturnValue = CreateIRTemp(RetTy, "retval"); 426 427 // Tell the epilog emitter to autorelease the result. We do this 428 // now so that various specialized functions can suppress it 429 // during their IR-generation. 430 if (getLangOpts().ObjCAutoRefCount && 431 !CurFnInfo->isReturnsRetained() && 432 RetTy->isObjCRetainableType()) 433 AutoreleaseResult = true; 434 } 435 436 EmitStartEHSpec(CurCodeDecl); 437 438 PrologueCleanupDepth = EHStack.stable_begin(); 439 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 440 441 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 442 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 443 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 444 if (MD->getParent()->isLambda() && 445 MD->getOverloadedOperator() == OO_Call) { 446 // We're in a lambda; figure out the captures. 447 MD->getParent()->getCaptureFields(LambdaCaptureFields, 448 LambdaThisCaptureField); 449 if (LambdaThisCaptureField) { 450 // If this lambda captures this, load it. 451 QualType LambdaTagType = 452 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 453 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 454 LambdaTagType); 455 LValue ThisLValue = EmitLValueForField(LambdaLV, 456 LambdaThisCaptureField); 457 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 458 } 459 } else { 460 // Not in a lambda; just use 'this' from the method. 461 // FIXME: Should we generate a new load for each use of 'this'? The 462 // fast register allocator would be happier... 463 CXXThisValue = CXXABIThisValue; 464 } 465 } 466 467 // If any of the arguments have a variably modified type, make sure to 468 // emit the type size. 469 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 470 i != e; ++i) { 471 const VarDecl *VD = *i; 472 473 // Dig out the type as written from ParmVarDecls; it's unclear whether 474 // the standard (C99 6.9.1p10) requires this, but we're following the 475 // precedent set by gcc. 476 QualType Ty; 477 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 478 Ty = PVD->getOriginalType(); 479 else 480 Ty = VD->getType(); 481 482 if (Ty->isVariablyModifiedType()) 483 EmitVariablyModifiedType(Ty); 484 } 485 // Emit a location at the end of the prologue. 486 if (CGDebugInfo *DI = getDebugInfo()) 487 DI->EmitLocation(Builder, StartLoc); 488 } 489 490 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 491 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 492 assert(FD->getBody()); 493 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 494 EmitCompoundStmtWithoutScope(*S); 495 else 496 EmitStmt(FD->getBody()); 497 } 498 499 /// Tries to mark the given function nounwind based on the 500 /// non-existence of any throwing calls within it. We believe this is 501 /// lightweight enough to do at -O0. 502 static void TryMarkNoThrow(llvm::Function *F) { 503 // LLVM treats 'nounwind' on a function as part of the type, so we 504 // can't do this on functions that can be overwritten. 505 if (F->mayBeOverridden()) return; 506 507 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 508 for (llvm::BasicBlock::iterator 509 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 510 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 511 if (!Call->doesNotThrow()) 512 return; 513 } else if (isa<llvm::ResumeInst>(&*BI)) { 514 return; 515 } 516 F->setDoesNotThrow(); 517 } 518 519 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 520 const CGFunctionInfo &FnInfo) { 521 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 522 523 // Check if we should generate debug info for this function. 524 if (!FD->hasAttr<NoDebugAttr>()) 525 maybeInitializeDebugInfo(); 526 527 FunctionArgList Args; 528 QualType ResTy = FD->getResultType(); 529 530 CurGD = GD; 531 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 532 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 533 534 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 535 Args.push_back(FD->getParamDecl(i)); 536 537 SourceRange BodyRange; 538 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 539 540 // Emit the standard function prologue. 541 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 542 543 // Generate the body of the function. 544 if (isa<CXXDestructorDecl>(FD)) 545 EmitDestructorBody(Args); 546 else if (isa<CXXConstructorDecl>(FD)) 547 EmitConstructorBody(Args); 548 else if (getLangOpts().CUDA && 549 !CGM.getCodeGenOpts().CUDAIsDevice && 550 FD->hasAttr<CUDAGlobalAttr>()) 551 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 552 else if (isa<CXXConversionDecl>(FD) && 553 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 554 // The lambda conversion to block pointer is special; the semantics can't be 555 // expressed in the AST, so IRGen needs to special-case it. 556 EmitLambdaToBlockPointerBody(Args); 557 } else if (isa<CXXMethodDecl>(FD) && 558 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 559 // The lambda "__invoke" function is special, because it forwards or 560 // clones the body of the function call operator (but is actually static). 561 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 562 } 563 else 564 EmitFunctionBody(Args); 565 566 // C++11 [stmt.return]p2: 567 // Flowing off the end of a function [...] results in undefined behavior in 568 // a value-returning function. 569 // C11 6.9.1p12: 570 // If the '}' that terminates a function is reached, and the value of the 571 // function call is used by the caller, the behavior is undefined. 572 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 573 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 574 if (SanOpts->Return) 575 EmitCheck(Builder.getFalse(), "missing_return", 576 EmitCheckSourceLocation(FD->getLocation()), 577 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 578 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 579 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 580 Builder.CreateUnreachable(); 581 Builder.ClearInsertionPoint(); 582 } 583 584 // Emit the standard function epilogue. 585 FinishFunction(BodyRange.getEnd()); 586 587 // If we haven't marked the function nothrow through other means, do 588 // a quick pass now to see if we can. 589 if (!CurFn->doesNotThrow()) 590 TryMarkNoThrow(CurFn); 591 } 592 593 /// ContainsLabel - Return true if the statement contains a label in it. If 594 /// this statement is not executed normally, it not containing a label means 595 /// that we can just remove the code. 596 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 597 // Null statement, not a label! 598 if (S == 0) return false; 599 600 // If this is a label, we have to emit the code, consider something like: 601 // if (0) { ... foo: bar(); } goto foo; 602 // 603 // TODO: If anyone cared, we could track __label__'s, since we know that you 604 // can't jump to one from outside their declared region. 605 if (isa<LabelStmt>(S)) 606 return true; 607 608 // If this is a case/default statement, and we haven't seen a switch, we have 609 // to emit the code. 610 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 611 return true; 612 613 // If this is a switch statement, we want to ignore cases below it. 614 if (isa<SwitchStmt>(S)) 615 IgnoreCaseStmts = true; 616 617 // Scan subexpressions for verboten labels. 618 for (Stmt::const_child_range I = S->children(); I; ++I) 619 if (ContainsLabel(*I, IgnoreCaseStmts)) 620 return true; 621 622 return false; 623 } 624 625 /// containsBreak - Return true if the statement contains a break out of it. 626 /// If the statement (recursively) contains a switch or loop with a break 627 /// inside of it, this is fine. 628 bool CodeGenFunction::containsBreak(const Stmt *S) { 629 // Null statement, not a label! 630 if (S == 0) return false; 631 632 // If this is a switch or loop that defines its own break scope, then we can 633 // include it and anything inside of it. 634 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 635 isa<ForStmt>(S)) 636 return false; 637 638 if (isa<BreakStmt>(S)) 639 return true; 640 641 // Scan subexpressions for verboten breaks. 642 for (Stmt::const_child_range I = S->children(); I; ++I) 643 if (containsBreak(*I)) 644 return true; 645 646 return false; 647 } 648 649 650 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 651 /// to a constant, or if it does but contains a label, return false. If it 652 /// constant folds return true and set the boolean result in Result. 653 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 654 bool &ResultBool) { 655 llvm::APSInt ResultInt; 656 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 657 return false; 658 659 ResultBool = ResultInt.getBoolValue(); 660 return true; 661 } 662 663 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 664 /// to a constant, or if it does but contains a label, return false. If it 665 /// constant folds return true and set the folded value. 666 bool CodeGenFunction:: 667 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 668 // FIXME: Rename and handle conversion of other evaluatable things 669 // to bool. 670 llvm::APSInt Int; 671 if (!Cond->EvaluateAsInt(Int, getContext())) 672 return false; // Not foldable, not integer or not fully evaluatable. 673 674 if (CodeGenFunction::ContainsLabel(Cond)) 675 return false; // Contains a label. 676 677 ResultInt = Int; 678 return true; 679 } 680 681 682 683 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 684 /// statement) to the specified blocks. Based on the condition, this might try 685 /// to simplify the codegen of the conditional based on the branch. 686 /// 687 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 688 llvm::BasicBlock *TrueBlock, 689 llvm::BasicBlock *FalseBlock) { 690 Cond = Cond->IgnoreParens(); 691 692 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 693 // Handle X && Y in a condition. 694 if (CondBOp->getOpcode() == BO_LAnd) { 695 // If we have "1 && X", simplify the code. "0 && X" would have constant 696 // folded if the case was simple enough. 697 bool ConstantBool = false; 698 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 699 ConstantBool) { 700 // br(1 && X) -> br(X). 701 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 702 } 703 704 // If we have "X && 1", simplify the code to use an uncond branch. 705 // "X && 0" would have been constant folded to 0. 706 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 707 ConstantBool) { 708 // br(X && 1) -> br(X). 709 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 710 } 711 712 // Emit the LHS as a conditional. If the LHS conditional is false, we 713 // want to jump to the FalseBlock. 714 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 715 716 ConditionalEvaluation eval(*this); 717 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 718 EmitBlock(LHSTrue); 719 720 // Any temporaries created here are conditional. 721 eval.begin(*this); 722 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 723 eval.end(*this); 724 725 return; 726 } 727 728 if (CondBOp->getOpcode() == BO_LOr) { 729 // If we have "0 || X", simplify the code. "1 || X" would have constant 730 // folded if the case was simple enough. 731 bool ConstantBool = false; 732 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 733 !ConstantBool) { 734 // br(0 || X) -> br(X). 735 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 736 } 737 738 // If we have "X || 0", simplify the code to use an uncond branch. 739 // "X || 1" would have been constant folded to 1. 740 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 741 !ConstantBool) { 742 // br(X || 0) -> br(X). 743 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 744 } 745 746 // Emit the LHS as a conditional. If the LHS conditional is true, we 747 // want to jump to the TrueBlock. 748 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 749 750 ConditionalEvaluation eval(*this); 751 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 752 EmitBlock(LHSFalse); 753 754 // Any temporaries created here are conditional. 755 eval.begin(*this); 756 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 757 eval.end(*this); 758 759 return; 760 } 761 } 762 763 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 764 // br(!x, t, f) -> br(x, f, t) 765 if (CondUOp->getOpcode() == UO_LNot) 766 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 767 } 768 769 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 770 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 771 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 772 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 773 774 ConditionalEvaluation cond(*this); 775 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 776 777 cond.begin(*this); 778 EmitBlock(LHSBlock); 779 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 780 cond.end(*this); 781 782 cond.begin(*this); 783 EmitBlock(RHSBlock); 784 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 785 cond.end(*this); 786 787 return; 788 } 789 790 // Emit the code with the fully general case. 791 llvm::Value *CondV = EvaluateExprAsBool(Cond); 792 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 793 } 794 795 /// ErrorUnsupported - Print out an error that codegen doesn't support the 796 /// specified stmt yet. 797 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 798 bool OmitOnError) { 799 CGM.ErrorUnsupported(S, Type, OmitOnError); 800 } 801 802 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 803 /// variable-length array whose elements have a non-zero bit-pattern. 804 /// 805 /// \param baseType the inner-most element type of the array 806 /// \param src - a char* pointing to the bit-pattern for a single 807 /// base element of the array 808 /// \param sizeInChars - the total size of the VLA, in chars 809 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 810 llvm::Value *dest, llvm::Value *src, 811 llvm::Value *sizeInChars) { 812 std::pair<CharUnits,CharUnits> baseSizeAndAlign 813 = CGF.getContext().getTypeInfoInChars(baseType); 814 815 CGBuilderTy &Builder = CGF.Builder; 816 817 llvm::Value *baseSizeInChars 818 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 819 820 llvm::Type *i8p = Builder.getInt8PtrTy(); 821 822 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 823 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 824 825 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 826 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 827 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 828 829 // Make a loop over the VLA. C99 guarantees that the VLA element 830 // count must be nonzero. 831 CGF.EmitBlock(loopBB); 832 833 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 834 cur->addIncoming(begin, originBB); 835 836 // memcpy the individual element bit-pattern. 837 Builder.CreateMemCpy(cur, src, baseSizeInChars, 838 baseSizeAndAlign.second.getQuantity(), 839 /*volatile*/ false); 840 841 // Go to the next element. 842 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 843 844 // Leave if that's the end of the VLA. 845 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 846 Builder.CreateCondBr(done, contBB, loopBB); 847 cur->addIncoming(next, loopBB); 848 849 CGF.EmitBlock(contBB); 850 } 851 852 void 853 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 854 // Ignore empty classes in C++. 855 if (getLangOpts().CPlusPlus) { 856 if (const RecordType *RT = Ty->getAs<RecordType>()) { 857 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 858 return; 859 } 860 } 861 862 // Cast the dest ptr to the appropriate i8 pointer type. 863 unsigned DestAS = 864 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 865 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 866 if (DestPtr->getType() != BP) 867 DestPtr = Builder.CreateBitCast(DestPtr, BP); 868 869 // Get size and alignment info for this aggregate. 870 std::pair<CharUnits, CharUnits> TypeInfo = 871 getContext().getTypeInfoInChars(Ty); 872 CharUnits Size = TypeInfo.first; 873 CharUnits Align = TypeInfo.second; 874 875 llvm::Value *SizeVal; 876 const VariableArrayType *vla; 877 878 // Don't bother emitting a zero-byte memset. 879 if (Size.isZero()) { 880 // But note that getTypeInfo returns 0 for a VLA. 881 if (const VariableArrayType *vlaType = 882 dyn_cast_or_null<VariableArrayType>( 883 getContext().getAsArrayType(Ty))) { 884 QualType eltType; 885 llvm::Value *numElts; 886 llvm::tie(numElts, eltType) = getVLASize(vlaType); 887 888 SizeVal = numElts; 889 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 890 if (!eltSize.isOne()) 891 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 892 vla = vlaType; 893 } else { 894 return; 895 } 896 } else { 897 SizeVal = CGM.getSize(Size); 898 vla = 0; 899 } 900 901 // If the type contains a pointer to data member we can't memset it to zero. 902 // Instead, create a null constant and copy it to the destination. 903 // TODO: there are other patterns besides zero that we can usefully memset, 904 // like -1, which happens to be the pattern used by member-pointers. 905 if (!CGM.getTypes().isZeroInitializable(Ty)) { 906 // For a VLA, emit a single element, then splat that over the VLA. 907 if (vla) Ty = getContext().getBaseElementType(vla); 908 909 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 910 911 llvm::GlobalVariable *NullVariable = 912 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 913 /*isConstant=*/true, 914 llvm::GlobalVariable::PrivateLinkage, 915 NullConstant, Twine()); 916 llvm::Value *SrcPtr = 917 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 918 919 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 920 921 // Get and call the appropriate llvm.memcpy overload. 922 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 923 return; 924 } 925 926 // Otherwise, just memset the whole thing to zero. This is legal 927 // because in LLVM, all default initializers (other than the ones we just 928 // handled above) are guaranteed to have a bit pattern of all zeros. 929 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 930 Align.getQuantity(), false); 931 } 932 933 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 934 // Make sure that there is a block for the indirect goto. 935 if (IndirectBranch == 0) 936 GetIndirectGotoBlock(); 937 938 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 939 940 // Make sure the indirect branch includes all of the address-taken blocks. 941 IndirectBranch->addDestination(BB); 942 return llvm::BlockAddress::get(CurFn, BB); 943 } 944 945 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 946 // If we already made the indirect branch for indirect goto, return its block. 947 if (IndirectBranch) return IndirectBranch->getParent(); 948 949 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 950 951 // Create the PHI node that indirect gotos will add entries to. 952 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 953 "indirect.goto.dest"); 954 955 // Create the indirect branch instruction. 956 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 957 return IndirectBranch->getParent(); 958 } 959 960 /// Computes the length of an array in elements, as well as the base 961 /// element type and a properly-typed first element pointer. 962 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 963 QualType &baseType, 964 llvm::Value *&addr) { 965 const ArrayType *arrayType = origArrayType; 966 967 // If it's a VLA, we have to load the stored size. Note that 968 // this is the size of the VLA in bytes, not its size in elements. 969 llvm::Value *numVLAElements = 0; 970 if (isa<VariableArrayType>(arrayType)) { 971 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 972 973 // Walk into all VLAs. This doesn't require changes to addr, 974 // which has type T* where T is the first non-VLA element type. 975 do { 976 QualType elementType = arrayType->getElementType(); 977 arrayType = getContext().getAsArrayType(elementType); 978 979 // If we only have VLA components, 'addr' requires no adjustment. 980 if (!arrayType) { 981 baseType = elementType; 982 return numVLAElements; 983 } 984 } while (isa<VariableArrayType>(arrayType)); 985 986 // We get out here only if we find a constant array type 987 // inside the VLA. 988 } 989 990 // We have some number of constant-length arrays, so addr should 991 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 992 // down to the first element of addr. 993 SmallVector<llvm::Value*, 8> gepIndices; 994 995 // GEP down to the array type. 996 llvm::ConstantInt *zero = Builder.getInt32(0); 997 gepIndices.push_back(zero); 998 999 uint64_t countFromCLAs = 1; 1000 QualType eltType; 1001 1002 llvm::ArrayType *llvmArrayType = 1003 dyn_cast<llvm::ArrayType>( 1004 cast<llvm::PointerType>(addr->getType())->getElementType()); 1005 while (llvmArrayType) { 1006 assert(isa<ConstantArrayType>(arrayType)); 1007 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1008 == llvmArrayType->getNumElements()); 1009 1010 gepIndices.push_back(zero); 1011 countFromCLAs *= llvmArrayType->getNumElements(); 1012 eltType = arrayType->getElementType(); 1013 1014 llvmArrayType = 1015 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1016 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1017 assert((!llvmArrayType || arrayType) && 1018 "LLVM and Clang types are out-of-synch"); 1019 } 1020 1021 if (arrayType) { 1022 // From this point onwards, the Clang array type has been emitted 1023 // as some other type (probably a packed struct). Compute the array 1024 // size, and just emit the 'begin' expression as a bitcast. 1025 while (arrayType) { 1026 countFromCLAs *= 1027 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1028 eltType = arrayType->getElementType(); 1029 arrayType = getContext().getAsArrayType(eltType); 1030 } 1031 1032 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1033 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1034 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1035 } else { 1036 // Create the actual GEP. 1037 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1038 } 1039 1040 baseType = eltType; 1041 1042 llvm::Value *numElements 1043 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1044 1045 // If we had any VLA dimensions, factor them in. 1046 if (numVLAElements) 1047 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1048 1049 return numElements; 1050 } 1051 1052 std::pair<llvm::Value*, QualType> 1053 CodeGenFunction::getVLASize(QualType type) { 1054 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1055 assert(vla && "type was not a variable array type!"); 1056 return getVLASize(vla); 1057 } 1058 1059 std::pair<llvm::Value*, QualType> 1060 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1061 // The number of elements so far; always size_t. 1062 llvm::Value *numElements = 0; 1063 1064 QualType elementType; 1065 do { 1066 elementType = type->getElementType(); 1067 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1068 assert(vlaSize && "no size for VLA!"); 1069 assert(vlaSize->getType() == SizeTy); 1070 1071 if (!numElements) { 1072 numElements = vlaSize; 1073 } else { 1074 // It's undefined behavior if this wraps around, so mark it that way. 1075 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1076 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1077 } 1078 } while ((type = getContext().getAsVariableArrayType(elementType))); 1079 1080 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1081 } 1082 1083 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1084 assert(type->isVariablyModifiedType() && 1085 "Must pass variably modified type to EmitVLASizes!"); 1086 1087 EnsureInsertPoint(); 1088 1089 // We're going to walk down into the type and look for VLA 1090 // expressions. 1091 do { 1092 assert(type->isVariablyModifiedType()); 1093 1094 const Type *ty = type.getTypePtr(); 1095 switch (ty->getTypeClass()) { 1096 1097 #define TYPE(Class, Base) 1098 #define ABSTRACT_TYPE(Class, Base) 1099 #define NON_CANONICAL_TYPE(Class, Base) 1100 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1101 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1102 #include "clang/AST/TypeNodes.def" 1103 llvm_unreachable("unexpected dependent type!"); 1104 1105 // These types are never variably-modified. 1106 case Type::Builtin: 1107 case Type::Complex: 1108 case Type::Vector: 1109 case Type::ExtVector: 1110 case Type::Record: 1111 case Type::Enum: 1112 case Type::Elaborated: 1113 case Type::TemplateSpecialization: 1114 case Type::ObjCObject: 1115 case Type::ObjCInterface: 1116 case Type::ObjCObjectPointer: 1117 llvm_unreachable("type class is never variably-modified!"); 1118 1119 case Type::Pointer: 1120 type = cast<PointerType>(ty)->getPointeeType(); 1121 break; 1122 1123 case Type::BlockPointer: 1124 type = cast<BlockPointerType>(ty)->getPointeeType(); 1125 break; 1126 1127 case Type::LValueReference: 1128 case Type::RValueReference: 1129 type = cast<ReferenceType>(ty)->getPointeeType(); 1130 break; 1131 1132 case Type::MemberPointer: 1133 type = cast<MemberPointerType>(ty)->getPointeeType(); 1134 break; 1135 1136 case Type::ConstantArray: 1137 case Type::IncompleteArray: 1138 // Losing element qualification here is fine. 1139 type = cast<ArrayType>(ty)->getElementType(); 1140 break; 1141 1142 case Type::VariableArray: { 1143 // Losing element qualification here is fine. 1144 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1145 1146 // Unknown size indication requires no size computation. 1147 // Otherwise, evaluate and record it. 1148 if (const Expr *size = vat->getSizeExpr()) { 1149 // It's possible that we might have emitted this already, 1150 // e.g. with a typedef and a pointer to it. 1151 llvm::Value *&entry = VLASizeMap[size]; 1152 if (!entry) { 1153 llvm::Value *Size = EmitScalarExpr(size); 1154 1155 // C11 6.7.6.2p5: 1156 // If the size is an expression that is not an integer constant 1157 // expression [...] each time it is evaluated it shall have a value 1158 // greater than zero. 1159 if (SanOpts->VLABound && 1160 size->getType()->isSignedIntegerType()) { 1161 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1162 llvm::Constant *StaticArgs[] = { 1163 EmitCheckSourceLocation(size->getLocStart()), 1164 EmitCheckTypeDescriptor(size->getType()) 1165 }; 1166 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1167 "vla_bound_not_positive", StaticArgs, Size, 1168 CRK_Recoverable); 1169 } 1170 1171 // Always zexting here would be wrong if it weren't 1172 // undefined behavior to have a negative bound. 1173 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1174 } 1175 } 1176 type = vat->getElementType(); 1177 break; 1178 } 1179 1180 case Type::FunctionProto: 1181 case Type::FunctionNoProto: 1182 type = cast<FunctionType>(ty)->getResultType(); 1183 break; 1184 1185 case Type::Paren: 1186 case Type::TypeOf: 1187 case Type::UnaryTransform: 1188 case Type::Attributed: 1189 case Type::SubstTemplateTypeParm: 1190 // Keep walking after single level desugaring. 1191 type = type.getSingleStepDesugaredType(getContext()); 1192 break; 1193 1194 case Type::Typedef: 1195 case Type::Decltype: 1196 case Type::Auto: 1197 // Stop walking: nothing to do. 1198 return; 1199 1200 case Type::TypeOfExpr: 1201 // Stop walking: emit typeof expression. 1202 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1203 return; 1204 1205 case Type::Atomic: 1206 type = cast<AtomicType>(ty)->getValueType(); 1207 break; 1208 } 1209 } while (type->isVariablyModifiedType()); 1210 } 1211 1212 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1213 if (getContext().getBuiltinVaListType()->isArrayType()) 1214 return EmitScalarExpr(E); 1215 return EmitLValue(E).getAddress(); 1216 } 1217 1218 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1219 llvm::Constant *Init) { 1220 assert (Init && "Invalid DeclRefExpr initializer!"); 1221 if (CGDebugInfo *Dbg = getDebugInfo()) 1222 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1223 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1224 } 1225 1226 CodeGenFunction::PeepholeProtection 1227 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1228 // At the moment, the only aggressive peephole we do in IR gen 1229 // is trunc(zext) folding, but if we add more, we can easily 1230 // extend this protection. 1231 1232 if (!rvalue.isScalar()) return PeepholeProtection(); 1233 llvm::Value *value = rvalue.getScalarVal(); 1234 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1235 1236 // Just make an extra bitcast. 1237 assert(HaveInsertPoint()); 1238 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1239 Builder.GetInsertBlock()); 1240 1241 PeepholeProtection protection; 1242 protection.Inst = inst; 1243 return protection; 1244 } 1245 1246 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1247 if (!protection.Inst) return; 1248 1249 // In theory, we could try to duplicate the peepholes now, but whatever. 1250 protection.Inst->eraseFromParent(); 1251 } 1252 1253 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1254 llvm::Value *AnnotatedVal, 1255 StringRef AnnotationStr, 1256 SourceLocation Location) { 1257 llvm::Value *Args[4] = { 1258 AnnotatedVal, 1259 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1260 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1261 CGM.EmitAnnotationLineNo(Location) 1262 }; 1263 return Builder.CreateCall(AnnotationFn, Args); 1264 } 1265 1266 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1267 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1268 // FIXME We create a new bitcast for every annotation because that's what 1269 // llvm-gcc was doing. 1270 for (specific_attr_iterator<AnnotateAttr> 1271 ai = D->specific_attr_begin<AnnotateAttr>(), 1272 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1273 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1274 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1275 (*ai)->getAnnotation(), D->getLocation()); 1276 } 1277 1278 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1279 llvm::Value *V) { 1280 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1281 llvm::Type *VTy = V->getType(); 1282 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1283 CGM.Int8PtrTy); 1284 1285 for (specific_attr_iterator<AnnotateAttr> 1286 ai = D->specific_attr_begin<AnnotateAttr>(), 1287 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1288 // FIXME Always emit the cast inst so we can differentiate between 1289 // annotation on the first field of a struct and annotation on the struct 1290 // itself. 1291 if (VTy != CGM.Int8PtrTy) 1292 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1293 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1294 V = Builder.CreateBitCast(V, VTy); 1295 } 1296 1297 return V; 1298 } 1299