1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCleanup.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/FPEnv.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
46 /// markers.
47 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
48                                       const LangOptions &LangOpts) {
49   if (CGOpts.DisableLifetimeMarkers)
50     return false;
51 
52   // Sanitizers may use markers.
53   if (CGOpts.SanitizeAddressUseAfterScope ||
54       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
55       LangOpts.Sanitize.has(SanitizerKind::Memory))
56     return true;
57 
58   // For now, only in optimized builds.
59   return CGOpts.OptimizationLevel != 0;
60 }
61 
62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
63     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
64       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
65               CGBuilderInserterTy(this)),
66       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
67       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
68                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
69   if (!suppressNewContext)
70     CGM.getCXXABI().getMangleContext().startNewFunction();
71 
72   llvm::FastMathFlags FMF;
73   if (CGM.getLangOpts().FastMath)
74     FMF.setFast();
75   if (CGM.getLangOpts().FiniteMathOnly) {
76     FMF.setNoNaNs();
77     FMF.setNoInfs();
78   }
79   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
80     FMF.setNoNaNs();
81   }
82   if (CGM.getCodeGenOpts().NoSignedZeros) {
83     FMF.setNoSignedZeros();
84   }
85   if (CGM.getCodeGenOpts().ReciprocalMath) {
86     FMF.setAllowReciprocal();
87   }
88   if (CGM.getCodeGenOpts().Reassociate) {
89     FMF.setAllowReassoc();
90   }
91   Builder.setFastMathFlags(FMF);
92   SetFPModel();
93 }
94 
95 CodeGenFunction::~CodeGenFunction() {
96   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
97 
98   // If there are any unclaimed block infos, go ahead and destroy them
99   // now.  This can happen if IR-gen gets clever and skips evaluating
100   // something.
101   if (FirstBlockInfo)
102     destroyBlockInfos(FirstBlockInfo);
103 
104   if (getLangOpts().OpenMP && CurFn)
105     CGM.getOpenMPRuntime().functionFinished(*this);
106 }
107 
108 // Map the LangOption for rounding mode into
109 // the corresponding enum in the IR.
110 static llvm::fp::RoundingMode ToConstrainedRoundingMD(
111   LangOptions::FPRoundingModeKind Kind) {
112 
113   switch (Kind) {
114   case LangOptions::FPR_ToNearest:  return llvm::fp::rmToNearest;
115   case LangOptions::FPR_Downward:   return llvm::fp::rmDownward;
116   case LangOptions::FPR_Upward:     return llvm::fp::rmUpward;
117   case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero;
118   case LangOptions::FPR_Dynamic:    return llvm::fp::rmDynamic;
119   }
120   llvm_unreachable("Unsupported FP RoundingMode");
121 }
122 
123 // Map the LangOption for exception behavior into
124 // the corresponding enum in the IR.
125 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD(
126   LangOptions::FPExceptionModeKind Kind) {
127 
128   switch (Kind) {
129   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
130   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
131   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
132   }
133   llvm_unreachable("Unsupported FP Exception Behavior");
134 }
135 
136 void CodeGenFunction::SetFPModel() {
137   auto fpRoundingMode = ToConstrainedRoundingMD(
138                           getLangOpts().getFPRoundingMode());
139   auto fpExceptionBehavior = ToConstrainedExceptMD(
140                                getLangOpts().getFPExceptionMode());
141 
142   if (fpExceptionBehavior == llvm::fp::ebIgnore &&
143       fpRoundingMode == llvm::fp::rmToNearest)
144     // Constrained intrinsics are not used.
145     ;
146   else {
147     Builder.setIsFPConstrained(true);
148     Builder.setDefaultConstrainedRounding(fpRoundingMode);
149     Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
150   }
151 }
152 
153 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
154                                                     LValueBaseInfo *BaseInfo,
155                                                     TBAAAccessInfo *TBAAInfo) {
156   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
157                                  /* forPointeeType= */ true);
158 }
159 
160 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
161                                                    LValueBaseInfo *BaseInfo,
162                                                    TBAAAccessInfo *TBAAInfo,
163                                                    bool forPointeeType) {
164   if (TBAAInfo)
165     *TBAAInfo = CGM.getTBAAAccessInfo(T);
166 
167   // Honor alignment typedef attributes even on incomplete types.
168   // We also honor them straight for C++ class types, even as pointees;
169   // there's an expressivity gap here.
170   if (auto TT = T->getAs<TypedefType>()) {
171     if (auto Align = TT->getDecl()->getMaxAlignment()) {
172       if (BaseInfo)
173         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
174       return getContext().toCharUnitsFromBits(Align);
175     }
176   }
177 
178   if (BaseInfo)
179     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
180 
181   CharUnits Alignment;
182   if (T->isIncompleteType()) {
183     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
184   } else {
185     // For C++ class pointees, we don't know whether we're pointing at a
186     // base or a complete object, so we generally need to use the
187     // non-virtual alignment.
188     const CXXRecordDecl *RD;
189     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
190       Alignment = CGM.getClassPointerAlignment(RD);
191     } else {
192       Alignment = getContext().getTypeAlignInChars(T);
193       if (T.getQualifiers().hasUnaligned())
194         Alignment = CharUnits::One();
195     }
196 
197     // Cap to the global maximum type alignment unless the alignment
198     // was somehow explicit on the type.
199     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
200       if (Alignment.getQuantity() > MaxAlign &&
201           !getContext().isAlignmentRequired(T))
202         Alignment = CharUnits::fromQuantity(MaxAlign);
203     }
204   }
205   return Alignment;
206 }
207 
208 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
209   LValueBaseInfo BaseInfo;
210   TBAAAccessInfo TBAAInfo;
211   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
212   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
213                           TBAAInfo);
214 }
215 
216 /// Given a value of type T* that may not be to a complete object,
217 /// construct an l-value with the natural pointee alignment of T.
218 LValue
219 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
220   LValueBaseInfo BaseInfo;
221   TBAAAccessInfo TBAAInfo;
222   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
223                                             /* forPointeeType= */ true);
224   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
225 }
226 
227 
228 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
229   return CGM.getTypes().ConvertTypeForMem(T);
230 }
231 
232 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
233   return CGM.getTypes().ConvertType(T);
234 }
235 
236 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
237   type = type.getCanonicalType();
238   while (true) {
239     switch (type->getTypeClass()) {
240 #define TYPE(name, parent)
241 #define ABSTRACT_TYPE(name, parent)
242 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
243 #define DEPENDENT_TYPE(name, parent) case Type::name:
244 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
245 #include "clang/AST/TypeNodes.inc"
246       llvm_unreachable("non-canonical or dependent type in IR-generation");
247 
248     case Type::Auto:
249     case Type::DeducedTemplateSpecialization:
250       llvm_unreachable("undeduced type in IR-generation");
251 
252     // Various scalar types.
253     case Type::Builtin:
254     case Type::Pointer:
255     case Type::BlockPointer:
256     case Type::LValueReference:
257     case Type::RValueReference:
258     case Type::MemberPointer:
259     case Type::Vector:
260     case Type::ExtVector:
261     case Type::FunctionProto:
262     case Type::FunctionNoProto:
263     case Type::Enum:
264     case Type::ObjCObjectPointer:
265     case Type::Pipe:
266       return TEK_Scalar;
267 
268     // Complexes.
269     case Type::Complex:
270       return TEK_Complex;
271 
272     // Arrays, records, and Objective-C objects.
273     case Type::ConstantArray:
274     case Type::IncompleteArray:
275     case Type::VariableArray:
276     case Type::Record:
277     case Type::ObjCObject:
278     case Type::ObjCInterface:
279       return TEK_Aggregate;
280 
281     // We operate on atomic values according to their underlying type.
282     case Type::Atomic:
283       type = cast<AtomicType>(type)->getValueType();
284       continue;
285     }
286     llvm_unreachable("unknown type kind!");
287   }
288 }
289 
290 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
291   // For cleanliness, we try to avoid emitting the return block for
292   // simple cases.
293   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
294 
295   if (CurBB) {
296     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
297 
298     // We have a valid insert point, reuse it if it is empty or there are no
299     // explicit jumps to the return block.
300     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
301       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
302       delete ReturnBlock.getBlock();
303       ReturnBlock = JumpDest();
304     } else
305       EmitBlock(ReturnBlock.getBlock());
306     return llvm::DebugLoc();
307   }
308 
309   // Otherwise, if the return block is the target of a single direct
310   // branch then we can just put the code in that block instead. This
311   // cleans up functions which started with a unified return block.
312   if (ReturnBlock.getBlock()->hasOneUse()) {
313     llvm::BranchInst *BI =
314       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
315     if (BI && BI->isUnconditional() &&
316         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
317       // Record/return the DebugLoc of the simple 'return' expression to be used
318       // later by the actual 'ret' instruction.
319       llvm::DebugLoc Loc = BI->getDebugLoc();
320       Builder.SetInsertPoint(BI->getParent());
321       BI->eraseFromParent();
322       delete ReturnBlock.getBlock();
323       ReturnBlock = JumpDest();
324       return Loc;
325     }
326   }
327 
328   // FIXME: We are at an unreachable point, there is no reason to emit the block
329   // unless it has uses. However, we still need a place to put the debug
330   // region.end for now.
331 
332   EmitBlock(ReturnBlock.getBlock());
333   return llvm::DebugLoc();
334 }
335 
336 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
337   if (!BB) return;
338   if (!BB->use_empty())
339     return CGF.CurFn->getBasicBlockList().push_back(BB);
340   delete BB;
341 }
342 
343 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
344   assert(BreakContinueStack.empty() &&
345          "mismatched push/pop in break/continue stack!");
346 
347   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
348     && NumSimpleReturnExprs == NumReturnExprs
349     && ReturnBlock.getBlock()->use_empty();
350   // Usually the return expression is evaluated before the cleanup
351   // code.  If the function contains only a simple return statement,
352   // such as a constant, the location before the cleanup code becomes
353   // the last useful breakpoint in the function, because the simple
354   // return expression will be evaluated after the cleanup code. To be
355   // safe, set the debug location for cleanup code to the location of
356   // the return statement.  Otherwise the cleanup code should be at the
357   // end of the function's lexical scope.
358   //
359   // If there are multiple branches to the return block, the branch
360   // instructions will get the location of the return statements and
361   // all will be fine.
362   if (CGDebugInfo *DI = getDebugInfo()) {
363     if (OnlySimpleReturnStmts)
364       DI->EmitLocation(Builder, LastStopPoint);
365     else
366       DI->EmitLocation(Builder, EndLoc);
367   }
368 
369   // Pop any cleanups that might have been associated with the
370   // parameters.  Do this in whatever block we're currently in; it's
371   // important to do this before we enter the return block or return
372   // edges will be *really* confused.
373   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
374   bool HasOnlyLifetimeMarkers =
375       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
376   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
377   if (HasCleanups) {
378     // Make sure the line table doesn't jump back into the body for
379     // the ret after it's been at EndLoc.
380     Optional<ApplyDebugLocation> AL;
381     if (CGDebugInfo *DI = getDebugInfo()) {
382       if (OnlySimpleReturnStmts)
383         DI->EmitLocation(Builder, EndLoc);
384       else
385         // We may not have a valid end location. Try to apply it anyway, and
386         // fall back to an artificial location if needed.
387         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
388     }
389 
390     PopCleanupBlocks(PrologueCleanupDepth);
391   }
392 
393   // Emit function epilog (to return).
394   llvm::DebugLoc Loc = EmitReturnBlock();
395 
396   if (ShouldInstrumentFunction()) {
397     if (CGM.getCodeGenOpts().InstrumentFunctions)
398       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
399     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
400       CurFn->addFnAttr("instrument-function-exit-inlined",
401                        "__cyg_profile_func_exit");
402   }
403 
404   // Emit debug descriptor for function end.
405   if (CGDebugInfo *DI = getDebugInfo())
406     DI->EmitFunctionEnd(Builder, CurFn);
407 
408   // Reset the debug location to that of the simple 'return' expression, if any
409   // rather than that of the end of the function's scope '}'.
410   ApplyDebugLocation AL(*this, Loc);
411   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
412   EmitEndEHSpec(CurCodeDecl);
413 
414   assert(EHStack.empty() &&
415          "did not remove all scopes from cleanup stack!");
416 
417   // If someone did an indirect goto, emit the indirect goto block at the end of
418   // the function.
419   if (IndirectBranch) {
420     EmitBlock(IndirectBranch->getParent());
421     Builder.ClearInsertionPoint();
422   }
423 
424   // If some of our locals escaped, insert a call to llvm.localescape in the
425   // entry block.
426   if (!EscapedLocals.empty()) {
427     // Invert the map from local to index into a simple vector. There should be
428     // no holes.
429     SmallVector<llvm::Value *, 4> EscapeArgs;
430     EscapeArgs.resize(EscapedLocals.size());
431     for (auto &Pair : EscapedLocals)
432       EscapeArgs[Pair.second] = Pair.first;
433     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
434         &CGM.getModule(), llvm::Intrinsic::localescape);
435     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
436   }
437 
438   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
439   llvm::Instruction *Ptr = AllocaInsertPt;
440   AllocaInsertPt = nullptr;
441   Ptr->eraseFromParent();
442 
443   // If someone took the address of a label but never did an indirect goto, we
444   // made a zero entry PHI node, which is illegal, zap it now.
445   if (IndirectBranch) {
446     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
447     if (PN->getNumIncomingValues() == 0) {
448       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
449       PN->eraseFromParent();
450     }
451   }
452 
453   EmitIfUsed(*this, EHResumeBlock);
454   EmitIfUsed(*this, TerminateLandingPad);
455   EmitIfUsed(*this, TerminateHandler);
456   EmitIfUsed(*this, UnreachableBlock);
457 
458   for (const auto &FuncletAndParent : TerminateFunclets)
459     EmitIfUsed(*this, FuncletAndParent.second);
460 
461   if (CGM.getCodeGenOpts().EmitDeclMetadata)
462     EmitDeclMetadata();
463 
464   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
465            I = DeferredReplacements.begin(),
466            E = DeferredReplacements.end();
467        I != E; ++I) {
468     I->first->replaceAllUsesWith(I->second);
469     I->first->eraseFromParent();
470   }
471 
472   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
473   // PHIs if the current function is a coroutine. We don't do it for all
474   // functions as it may result in slight increase in numbers of instructions
475   // if compiled with no optimizations. We do it for coroutine as the lifetime
476   // of CleanupDestSlot alloca make correct coroutine frame building very
477   // difficult.
478   if (NormalCleanupDest.isValid() && isCoroutine()) {
479     llvm::DominatorTree DT(*CurFn);
480     llvm::PromoteMemToReg(
481         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
482     NormalCleanupDest = Address::invalid();
483   }
484 
485   // Scan function arguments for vector width.
486   for (llvm::Argument &A : CurFn->args())
487     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
488       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
489                                    VT->getPrimitiveSizeInBits().getFixedSize());
490 
491   // Update vector width based on return type.
492   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
493     LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
494                                   VT->getPrimitiveSizeInBits().getFixedSize());
495 
496   // Add the required-vector-width attribute. This contains the max width from:
497   // 1. min-vector-width attribute used in the source program.
498   // 2. Any builtins used that have a vector width specified.
499   // 3. Values passed in and out of inline assembly.
500   // 4. Width of vector arguments and return types for this function.
501   // 5. Width of vector aguments and return types for functions called by this
502   //    function.
503   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
504 
505   // If we generated an unreachable return block, delete it now.
506   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
507     Builder.ClearInsertionPoint();
508     ReturnBlock.getBlock()->eraseFromParent();
509   }
510   if (ReturnValue.isValid()) {
511     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
512     if (RetAlloca && RetAlloca->use_empty()) {
513       RetAlloca->eraseFromParent();
514       ReturnValue = Address::invalid();
515     }
516   }
517 }
518 
519 /// ShouldInstrumentFunction - Return true if the current function should be
520 /// instrumented with __cyg_profile_func_* calls
521 bool CodeGenFunction::ShouldInstrumentFunction() {
522   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
523       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
524       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
525     return false;
526   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
527     return false;
528   return true;
529 }
530 
531 /// ShouldXRayInstrument - Return true if the current function should be
532 /// instrumented with XRay nop sleds.
533 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
534   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
535 }
536 
537 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
538 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
539 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
540   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
541          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
542           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
543               XRayInstrKind::Custom);
544 }
545 
546 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
547   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
548          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
549           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
550               XRayInstrKind::Typed);
551 }
552 
553 llvm::Constant *
554 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
555                                             llvm::Constant *Addr) {
556   // Addresses stored in prologue data can't require run-time fixups and must
557   // be PC-relative. Run-time fixups are undesirable because they necessitate
558   // writable text segments, which are unsafe. And absolute addresses are
559   // undesirable because they break PIE mode.
560 
561   // Add a layer of indirection through a private global. Taking its address
562   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
563   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
564                                       /*isConstant=*/true,
565                                       llvm::GlobalValue::PrivateLinkage, Addr);
566 
567   // Create a PC-relative address.
568   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
569   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
570   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
571   return (IntPtrTy == Int32Ty)
572              ? PCRelAsInt
573              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
574 }
575 
576 llvm::Value *
577 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
578                                           llvm::Value *EncodedAddr) {
579   // Reconstruct the address of the global.
580   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
581   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
582   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
583   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
584 
585   // Load the original pointer through the global.
586   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
587                             "decoded_addr");
588 }
589 
590 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
591                                                llvm::Function *Fn)
592 {
593   if (!FD->hasAttr<OpenCLKernelAttr>())
594     return;
595 
596   llvm::LLVMContext &Context = getLLVMContext();
597 
598   CGM.GenOpenCLArgMetadata(Fn, FD, this);
599 
600   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
601     QualType HintQTy = A->getTypeHint();
602     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
603     bool IsSignedInteger =
604         HintQTy->isSignedIntegerType() ||
605         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
606     llvm::Metadata *AttrMDArgs[] = {
607         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
608             CGM.getTypes().ConvertType(A->getTypeHint()))),
609         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
610             llvm::IntegerType::get(Context, 32),
611             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
612     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
613   }
614 
615   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
616     llvm::Metadata *AttrMDArgs[] = {
617         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
620     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
621   }
622 
623   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
624     llvm::Metadata *AttrMDArgs[] = {
625         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
628     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
629   }
630 
631   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
632           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
633     llvm::Metadata *AttrMDArgs[] = {
634         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
635     Fn->setMetadata("intel_reqd_sub_group_size",
636                     llvm::MDNode::get(Context, AttrMDArgs));
637   }
638 }
639 
640 /// Determine whether the function F ends with a return stmt.
641 static bool endsWithReturn(const Decl* F) {
642   const Stmt *Body = nullptr;
643   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
644     Body = FD->getBody();
645   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
646     Body = OMD->getBody();
647 
648   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
649     auto LastStmt = CS->body_rbegin();
650     if (LastStmt != CS->body_rend())
651       return isa<ReturnStmt>(*LastStmt);
652   }
653   return false;
654 }
655 
656 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
657   if (SanOpts.has(SanitizerKind::Thread)) {
658     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
659     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
660   }
661 }
662 
663 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
664   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
665   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
666       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
667       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
668     return false;
669 
670   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
671     return false;
672 
673   if (MD->getNumParams() == 2) {
674     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
675     if (!PT || !PT->isVoidPointerType() ||
676         !PT->getPointeeType().isConstQualified())
677       return false;
678   }
679 
680   return true;
681 }
682 
683 /// Return the UBSan prologue signature for \p FD if one is available.
684 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
685                                             const FunctionDecl *FD) {
686   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
687     if (!MD->isStatic())
688       return nullptr;
689   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
690 }
691 
692 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
693                                     llvm::Function *Fn,
694                                     const CGFunctionInfo &FnInfo,
695                                     const FunctionArgList &Args,
696                                     SourceLocation Loc,
697                                     SourceLocation StartLoc) {
698   assert(!CurFn &&
699          "Do not use a CodeGenFunction object for more than one function");
700 
701   const Decl *D = GD.getDecl();
702 
703   DidCallStackSave = false;
704   CurCodeDecl = D;
705   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
706     if (FD->usesSEHTry())
707       CurSEHParent = FD;
708   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
709   FnRetTy = RetTy;
710   CurFn = Fn;
711   CurFnInfo = &FnInfo;
712   assert(CurFn->isDeclaration() && "Function already has body?");
713 
714   // If this function has been blacklisted for any of the enabled sanitizers,
715   // disable the sanitizer for the function.
716   do {
717 #define SANITIZER(NAME, ID)                                                    \
718   if (SanOpts.empty())                                                         \
719     break;                                                                     \
720   if (SanOpts.has(SanitizerKind::ID))                                          \
721     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
722       SanOpts.set(SanitizerKind::ID, false);
723 
724 #include "clang/Basic/Sanitizers.def"
725 #undef SANITIZER
726   } while (0);
727 
728   if (D) {
729     // Apply the no_sanitize* attributes to SanOpts.
730     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
731       SanitizerMask mask = Attr->getMask();
732       SanOpts.Mask &= ~mask;
733       if (mask & SanitizerKind::Address)
734         SanOpts.set(SanitizerKind::KernelAddress, false);
735       if (mask & SanitizerKind::KernelAddress)
736         SanOpts.set(SanitizerKind::Address, false);
737       if (mask & SanitizerKind::HWAddress)
738         SanOpts.set(SanitizerKind::KernelHWAddress, false);
739       if (mask & SanitizerKind::KernelHWAddress)
740         SanOpts.set(SanitizerKind::HWAddress, false);
741     }
742   }
743 
744   // Apply sanitizer attributes to the function.
745   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
746     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
747   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
748     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
749   if (SanOpts.has(SanitizerKind::MemTag))
750     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
751   if (SanOpts.has(SanitizerKind::Thread))
752     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
753   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
754     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
755   if (SanOpts.has(SanitizerKind::SafeStack))
756     Fn->addFnAttr(llvm::Attribute::SafeStack);
757   if (SanOpts.has(SanitizerKind::ShadowCallStack))
758     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
759 
760   // Apply fuzzing attribute to the function.
761   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
762     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
763 
764   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
765   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
766   if (SanOpts.has(SanitizerKind::Thread)) {
767     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
768       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
769       if (OMD->getMethodFamily() == OMF_dealloc ||
770           OMD->getMethodFamily() == OMF_initialize ||
771           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
772         markAsIgnoreThreadCheckingAtRuntime(Fn);
773       }
774     }
775   }
776 
777   // Ignore unrelated casts in STL allocate() since the allocator must cast
778   // from void* to T* before object initialization completes. Don't match on the
779   // namespace because not all allocators are in std::
780   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
781     if (matchesStlAllocatorFn(D, getContext()))
782       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
783   }
784 
785   // Ignore null checks in coroutine functions since the coroutines passes
786   // are not aware of how to move the extra UBSan instructions across the split
787   // coroutine boundaries.
788   if (D && SanOpts.has(SanitizerKind::Null))
789     if (const auto *FD = dyn_cast<FunctionDecl>(D))
790       if (FD->getBody() &&
791           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
792         SanOpts.Mask &= ~SanitizerKind::Null;
793 
794   // Apply xray attributes to the function (as a string, for now)
795   if (D) {
796     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
797       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
798               XRayInstrKind::Function)) {
799         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
800           Fn->addFnAttr("function-instrument", "xray-always");
801         if (XRayAttr->neverXRayInstrument())
802           Fn->addFnAttr("function-instrument", "xray-never");
803         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
804           if (ShouldXRayInstrumentFunction())
805             Fn->addFnAttr("xray-log-args",
806                           llvm::utostr(LogArgs->getArgumentCount()));
807       }
808     } else {
809       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
810         Fn->addFnAttr(
811             "xray-instruction-threshold",
812             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
813     }
814   }
815 
816   // Add no-jump-tables value.
817   Fn->addFnAttr("no-jump-tables",
818                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
819 
820   // Add no-inline-line-tables value.
821   if (CGM.getCodeGenOpts().NoInlineLineTables)
822     Fn->addFnAttr("no-inline-line-tables");
823 
824   // Add profile-sample-accurate value.
825   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
826     Fn->addFnAttr("profile-sample-accurate");
827 
828   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
829     Fn->addFnAttr("cfi-canonical-jump-table");
830 
831   if (getLangOpts().OpenCL) {
832     // Add metadata for a kernel function.
833     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
834       EmitOpenCLKernelMetadata(FD, Fn);
835   }
836 
837   // If we are checking function types, emit a function type signature as
838   // prologue data.
839   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
840     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
841       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
842         // Remove any (C++17) exception specifications, to allow calling e.g. a
843         // noexcept function through a non-noexcept pointer.
844         auto ProtoTy =
845           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
846                                                         EST_None);
847         llvm::Constant *FTRTTIConst =
848             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
849         llvm::Constant *FTRTTIConstEncoded =
850             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
851         llvm::Constant *PrologueStructElems[] = {PrologueSig,
852                                                  FTRTTIConstEncoded};
853         llvm::Constant *PrologueStructConst =
854             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
855         Fn->setPrologueData(PrologueStructConst);
856       }
857     }
858   }
859 
860   // If we're checking nullability, we need to know whether we can check the
861   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
862   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
863     auto Nullability = FnRetTy->getNullability(getContext());
864     if (Nullability && *Nullability == NullabilityKind::NonNull) {
865       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
866             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
867         RetValNullabilityPrecondition =
868             llvm::ConstantInt::getTrue(getLLVMContext());
869     }
870   }
871 
872   // If we're in C++ mode and the function name is "main", it is guaranteed
873   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
874   // used within a program").
875   if (getLangOpts().CPlusPlus)
876     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
877       if (FD->isMain())
878         Fn->addFnAttr(llvm::Attribute::NoRecurse);
879 
880   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
881     if (FD->usesFPIntrin())
882       Fn->addFnAttr(llvm::Attribute::StrictFP);
883 
884   // If a custom alignment is used, force realigning to this alignment on
885   // any main function which certainly will need it.
886   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
887     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
888         CGM.getCodeGenOpts().StackAlignment)
889       Fn->addFnAttr("stackrealign");
890 
891   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
892 
893   // Create a marker to make it easy to insert allocas into the entryblock
894   // later.  Don't create this with the builder, because we don't want it
895   // folded.
896   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
897   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
898 
899   ReturnBlock = getJumpDestInCurrentScope("return");
900 
901   Builder.SetInsertPoint(EntryBB);
902 
903   // If we're checking the return value, allocate space for a pointer to a
904   // precise source location of the checked return statement.
905   if (requiresReturnValueCheck()) {
906     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
907     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
908   }
909 
910   // Emit subprogram debug descriptor.
911   if (CGDebugInfo *DI = getDebugInfo()) {
912     // Reconstruct the type from the argument list so that implicit parameters,
913     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
914     // convention.
915     CallingConv CC = CallingConv::CC_C;
916     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
917       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
918         CC = SrcFnTy->getCallConv();
919     SmallVector<QualType, 16> ArgTypes;
920     for (const VarDecl *VD : Args)
921       ArgTypes.push_back(VD->getType());
922     QualType FnType = getContext().getFunctionType(
923         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
924     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
925                           Builder);
926   }
927 
928   if (ShouldInstrumentFunction()) {
929     if (CGM.getCodeGenOpts().InstrumentFunctions)
930       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
931     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
932       CurFn->addFnAttr("instrument-function-entry-inlined",
933                        "__cyg_profile_func_enter");
934     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
935       CurFn->addFnAttr("instrument-function-entry-inlined",
936                        "__cyg_profile_func_enter_bare");
937   }
938 
939   // Since emitting the mcount call here impacts optimizations such as function
940   // inlining, we just add an attribute to insert a mcount call in backend.
941   // The attribute "counting-function" is set to mcount function name which is
942   // architecture dependent.
943   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
944     // Calls to fentry/mcount should not be generated if function has
945     // the no_instrument_function attribute.
946     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
947       if (CGM.getCodeGenOpts().CallFEntry)
948         Fn->addFnAttr("fentry-call", "true");
949       else {
950         Fn->addFnAttr("instrument-function-entry-inlined",
951                       getTarget().getMCountName());
952       }
953       if (CGM.getCodeGenOpts().MNopMCount) {
954         if (getContext().getTargetInfo().getTriple().getArch() !=
955             llvm::Triple::systemz)
956           CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
957             << "-mnop-mcount";
958         if (!CGM.getCodeGenOpts().CallFEntry)
959           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
960             << "-mnop-mcount" << "-mfentry";
961         Fn->addFnAttr("mnop-mcount", "true");
962       }
963     }
964   }
965 
966   if (RetTy->isVoidType()) {
967     // Void type; nothing to return.
968     ReturnValue = Address::invalid();
969 
970     // Count the implicit return.
971     if (!endsWithReturn(D))
972       ++NumReturnExprs;
973   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
974     // Indirect return; emit returned value directly into sret slot.
975     // This reduces code size, and affects correctness in C++.
976     auto AI = CurFn->arg_begin();
977     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
978       ++AI;
979     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
980     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
981       ReturnValuePointer =
982           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
983       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
984                               ReturnValue.getPointer(), Int8PtrTy),
985                           ReturnValuePointer);
986     }
987   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
988              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
989     // Load the sret pointer from the argument struct and return into that.
990     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
991     llvm::Function::arg_iterator EI = CurFn->arg_end();
992     --EI;
993     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
994     ReturnValuePointer = Address(Addr, getPointerAlign());
995     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
996     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
997   } else {
998     ReturnValue = CreateIRTemp(RetTy, "retval");
999 
1000     // Tell the epilog emitter to autorelease the result.  We do this
1001     // now so that various specialized functions can suppress it
1002     // during their IR-generation.
1003     if (getLangOpts().ObjCAutoRefCount &&
1004         !CurFnInfo->isReturnsRetained() &&
1005         RetTy->isObjCRetainableType())
1006       AutoreleaseResult = true;
1007   }
1008 
1009   EmitStartEHSpec(CurCodeDecl);
1010 
1011   PrologueCleanupDepth = EHStack.stable_begin();
1012 
1013   // Emit OpenMP specific initialization of the device functions.
1014   if (getLangOpts().OpenMP && CurCodeDecl)
1015     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1016 
1017   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1018 
1019   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1020     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1021     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1022     if (MD->getParent()->isLambda() &&
1023         MD->getOverloadedOperator() == OO_Call) {
1024       // We're in a lambda; figure out the captures.
1025       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1026                                         LambdaThisCaptureField);
1027       if (LambdaThisCaptureField) {
1028         // If the lambda captures the object referred to by '*this' - either by
1029         // value or by reference, make sure CXXThisValue points to the correct
1030         // object.
1031 
1032         // Get the lvalue for the field (which is a copy of the enclosing object
1033         // or contains the address of the enclosing object).
1034         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1035         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1036           // If the enclosing object was captured by value, just use its address.
1037           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1038         } else {
1039           // Load the lvalue pointed to by the field, since '*this' was captured
1040           // by reference.
1041           CXXThisValue =
1042               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1043         }
1044       }
1045       for (auto *FD : MD->getParent()->fields()) {
1046         if (FD->hasCapturedVLAType()) {
1047           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1048                                            SourceLocation()).getScalarVal();
1049           auto VAT = FD->getCapturedVLAType();
1050           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1051         }
1052       }
1053     } else {
1054       // Not in a lambda; just use 'this' from the method.
1055       // FIXME: Should we generate a new load for each use of 'this'?  The
1056       // fast register allocator would be happier...
1057       CXXThisValue = CXXABIThisValue;
1058     }
1059 
1060     // Check the 'this' pointer once per function, if it's available.
1061     if (CXXABIThisValue) {
1062       SanitizerSet SkippedChecks;
1063       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1064       QualType ThisTy = MD->getThisType();
1065 
1066       // If this is the call operator of a lambda with no capture-default, it
1067       // may have a static invoker function, which may call this operator with
1068       // a null 'this' pointer.
1069       if (isLambdaCallOperator(MD) &&
1070           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1071         SkippedChecks.set(SanitizerKind::Null, true);
1072 
1073       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1074                                                 : TCK_MemberCall,
1075                     Loc, CXXABIThisValue, ThisTy,
1076                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1077                     SkippedChecks);
1078     }
1079   }
1080 
1081   // If any of the arguments have a variably modified type, make sure to
1082   // emit the type size.
1083   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1084        i != e; ++i) {
1085     const VarDecl *VD = *i;
1086 
1087     // Dig out the type as written from ParmVarDecls; it's unclear whether
1088     // the standard (C99 6.9.1p10) requires this, but we're following the
1089     // precedent set by gcc.
1090     QualType Ty;
1091     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1092       Ty = PVD->getOriginalType();
1093     else
1094       Ty = VD->getType();
1095 
1096     if (Ty->isVariablyModifiedType())
1097       EmitVariablyModifiedType(Ty);
1098   }
1099   // Emit a location at the end of the prologue.
1100   if (CGDebugInfo *DI = getDebugInfo())
1101     DI->EmitLocation(Builder, StartLoc);
1102 
1103   // TODO: Do we need to handle this in two places like we do with
1104   // target-features/target-cpu?
1105   if (CurFuncDecl)
1106     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1107       LargestVectorWidth = VecWidth->getVectorWidth();
1108 }
1109 
1110 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1111   incrementProfileCounter(Body);
1112   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1113     EmitCompoundStmtWithoutScope(*S);
1114   else
1115     EmitStmt(Body);
1116 }
1117 
1118 /// When instrumenting to collect profile data, the counts for some blocks
1119 /// such as switch cases need to not include the fall-through counts, so
1120 /// emit a branch around the instrumentation code. When not instrumenting,
1121 /// this just calls EmitBlock().
1122 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1123                                                const Stmt *S) {
1124   llvm::BasicBlock *SkipCountBB = nullptr;
1125   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1126     // When instrumenting for profiling, the fallthrough to certain
1127     // statements needs to skip over the instrumentation code so that we
1128     // get an accurate count.
1129     SkipCountBB = createBasicBlock("skipcount");
1130     EmitBranch(SkipCountBB);
1131   }
1132   EmitBlock(BB);
1133   uint64_t CurrentCount = getCurrentProfileCount();
1134   incrementProfileCounter(S);
1135   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1136   if (SkipCountBB)
1137     EmitBlock(SkipCountBB);
1138 }
1139 
1140 /// Tries to mark the given function nounwind based on the
1141 /// non-existence of any throwing calls within it.  We believe this is
1142 /// lightweight enough to do at -O0.
1143 static void TryMarkNoThrow(llvm::Function *F) {
1144   // LLVM treats 'nounwind' on a function as part of the type, so we
1145   // can't do this on functions that can be overwritten.
1146   if (F->isInterposable()) return;
1147 
1148   for (llvm::BasicBlock &BB : *F)
1149     for (llvm::Instruction &I : BB)
1150       if (I.mayThrow())
1151         return;
1152 
1153   F->setDoesNotThrow();
1154 }
1155 
1156 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1157                                                FunctionArgList &Args) {
1158   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1159   QualType ResTy = FD->getReturnType();
1160 
1161   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1162   if (MD && MD->isInstance()) {
1163     if (CGM.getCXXABI().HasThisReturn(GD))
1164       ResTy = MD->getThisType();
1165     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1166       ResTy = CGM.getContext().VoidPtrTy;
1167     CGM.getCXXABI().buildThisParam(*this, Args);
1168   }
1169 
1170   // The base version of an inheriting constructor whose constructed base is a
1171   // virtual base is not passed any arguments (because it doesn't actually call
1172   // the inherited constructor).
1173   bool PassedParams = true;
1174   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1175     if (auto Inherited = CD->getInheritedConstructor())
1176       PassedParams =
1177           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1178 
1179   if (PassedParams) {
1180     for (auto *Param : FD->parameters()) {
1181       Args.push_back(Param);
1182       if (!Param->hasAttr<PassObjectSizeAttr>())
1183         continue;
1184 
1185       auto *Implicit = ImplicitParamDecl::Create(
1186           getContext(), Param->getDeclContext(), Param->getLocation(),
1187           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1188       SizeArguments[Param] = Implicit;
1189       Args.push_back(Implicit);
1190     }
1191   }
1192 
1193   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1194     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1195 
1196   return ResTy;
1197 }
1198 
1199 static bool
1200 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1201                                              const ASTContext &Context) {
1202   QualType T = FD->getReturnType();
1203   // Avoid the optimization for functions that return a record type with a
1204   // trivial destructor or another trivially copyable type.
1205   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1206     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1207       return !ClassDecl->hasTrivialDestructor();
1208   }
1209   return !T.isTriviallyCopyableType(Context);
1210 }
1211 
1212 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1213                                    const CGFunctionInfo &FnInfo) {
1214   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1215   CurGD = GD;
1216 
1217   FunctionArgList Args;
1218   QualType ResTy = BuildFunctionArgList(GD, Args);
1219 
1220   // Check if we should generate debug info for this function.
1221   if (FD->hasAttr<NoDebugAttr>())
1222     DebugInfo = nullptr; // disable debug info indefinitely for this function
1223 
1224   // The function might not have a body if we're generating thunks for a
1225   // function declaration.
1226   SourceRange BodyRange;
1227   if (Stmt *Body = FD->getBody())
1228     BodyRange = Body->getSourceRange();
1229   else
1230     BodyRange = FD->getLocation();
1231   CurEHLocation = BodyRange.getEnd();
1232 
1233   // Use the location of the start of the function to determine where
1234   // the function definition is located. By default use the location
1235   // of the declaration as the location for the subprogram. A function
1236   // may lack a declaration in the source code if it is created by code
1237   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1238   SourceLocation Loc = FD->getLocation();
1239 
1240   // If this is a function specialization then use the pattern body
1241   // as the location for the function.
1242   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1243     if (SpecDecl->hasBody(SpecDecl))
1244       Loc = SpecDecl->getLocation();
1245 
1246   Stmt *Body = FD->getBody();
1247 
1248   // Initialize helper which will detect jumps which can cause invalid lifetime
1249   // markers.
1250   if (Body && ShouldEmitLifetimeMarkers)
1251     Bypasses.Init(Body);
1252 
1253   // Emit the standard function prologue.
1254   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1255 
1256   // Generate the body of the function.
1257   PGO.assignRegionCounters(GD, CurFn);
1258   if (isa<CXXDestructorDecl>(FD))
1259     EmitDestructorBody(Args);
1260   else if (isa<CXXConstructorDecl>(FD))
1261     EmitConstructorBody(Args);
1262   else if (getLangOpts().CUDA &&
1263            !getLangOpts().CUDAIsDevice &&
1264            FD->hasAttr<CUDAGlobalAttr>())
1265     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1266   else if (isa<CXXMethodDecl>(FD) &&
1267            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1268     // The lambda static invoker function is special, because it forwards or
1269     // clones the body of the function call operator (but is actually static).
1270     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1271   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1272              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1273               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1274     // Implicit copy-assignment gets the same special treatment as implicit
1275     // copy-constructors.
1276     emitImplicitAssignmentOperatorBody(Args);
1277   } else if (Body) {
1278     EmitFunctionBody(Body);
1279   } else
1280     llvm_unreachable("no definition for emitted function");
1281 
1282   // C++11 [stmt.return]p2:
1283   //   Flowing off the end of a function [...] results in undefined behavior in
1284   //   a value-returning function.
1285   // C11 6.9.1p12:
1286   //   If the '}' that terminates a function is reached, and the value of the
1287   //   function call is used by the caller, the behavior is undefined.
1288   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1289       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1290     bool ShouldEmitUnreachable =
1291         CGM.getCodeGenOpts().StrictReturn ||
1292         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1293     if (SanOpts.has(SanitizerKind::Return)) {
1294       SanitizerScope SanScope(this);
1295       llvm::Value *IsFalse = Builder.getFalse();
1296       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1297                 SanitizerHandler::MissingReturn,
1298                 EmitCheckSourceLocation(FD->getLocation()), None);
1299     } else if (ShouldEmitUnreachable) {
1300       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1301         EmitTrapCall(llvm::Intrinsic::trap);
1302     }
1303     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1304       Builder.CreateUnreachable();
1305       Builder.ClearInsertionPoint();
1306     }
1307   }
1308 
1309   // Emit the standard function epilogue.
1310   FinishFunction(BodyRange.getEnd());
1311 
1312   // If we haven't marked the function nothrow through other means, do
1313   // a quick pass now to see if we can.
1314   if (!CurFn->doesNotThrow())
1315     TryMarkNoThrow(CurFn);
1316 }
1317 
1318 /// ContainsLabel - Return true if the statement contains a label in it.  If
1319 /// this statement is not executed normally, it not containing a label means
1320 /// that we can just remove the code.
1321 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1322   // Null statement, not a label!
1323   if (!S) return false;
1324 
1325   // If this is a label, we have to emit the code, consider something like:
1326   // if (0) {  ...  foo:  bar(); }  goto foo;
1327   //
1328   // TODO: If anyone cared, we could track __label__'s, since we know that you
1329   // can't jump to one from outside their declared region.
1330   if (isa<LabelStmt>(S))
1331     return true;
1332 
1333   // If this is a case/default statement, and we haven't seen a switch, we have
1334   // to emit the code.
1335   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1336     return true;
1337 
1338   // If this is a switch statement, we want to ignore cases below it.
1339   if (isa<SwitchStmt>(S))
1340     IgnoreCaseStmts = true;
1341 
1342   // Scan subexpressions for verboten labels.
1343   for (const Stmt *SubStmt : S->children())
1344     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1345       return true;
1346 
1347   return false;
1348 }
1349 
1350 /// containsBreak - Return true if the statement contains a break out of it.
1351 /// If the statement (recursively) contains a switch or loop with a break
1352 /// inside of it, this is fine.
1353 bool CodeGenFunction::containsBreak(const Stmt *S) {
1354   // Null statement, not a label!
1355   if (!S) return false;
1356 
1357   // If this is a switch or loop that defines its own break scope, then we can
1358   // include it and anything inside of it.
1359   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1360       isa<ForStmt>(S))
1361     return false;
1362 
1363   if (isa<BreakStmt>(S))
1364     return true;
1365 
1366   // Scan subexpressions for verboten breaks.
1367   for (const Stmt *SubStmt : S->children())
1368     if (containsBreak(SubStmt))
1369       return true;
1370 
1371   return false;
1372 }
1373 
1374 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1375   if (!S) return false;
1376 
1377   // Some statement kinds add a scope and thus never add a decl to the current
1378   // scope. Note, this list is longer than the list of statements that might
1379   // have an unscoped decl nested within them, but this way is conservatively
1380   // correct even if more statement kinds are added.
1381   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1382       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1383       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1384       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1385     return false;
1386 
1387   if (isa<DeclStmt>(S))
1388     return true;
1389 
1390   for (const Stmt *SubStmt : S->children())
1391     if (mightAddDeclToScope(SubStmt))
1392       return true;
1393 
1394   return false;
1395 }
1396 
1397 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1398 /// to a constant, or if it does but contains a label, return false.  If it
1399 /// constant folds return true and set the boolean result in Result.
1400 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1401                                                    bool &ResultBool,
1402                                                    bool AllowLabels) {
1403   llvm::APSInt ResultInt;
1404   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1405     return false;
1406 
1407   ResultBool = ResultInt.getBoolValue();
1408   return true;
1409 }
1410 
1411 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1412 /// to a constant, or if it does but contains a label, return false.  If it
1413 /// constant folds return true and set the folded value.
1414 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1415                                                    llvm::APSInt &ResultInt,
1416                                                    bool AllowLabels) {
1417   // FIXME: Rename and handle conversion of other evaluatable things
1418   // to bool.
1419   Expr::EvalResult Result;
1420   if (!Cond->EvaluateAsInt(Result, getContext()))
1421     return false;  // Not foldable, not integer or not fully evaluatable.
1422 
1423   llvm::APSInt Int = Result.Val.getInt();
1424   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1425     return false;  // Contains a label.
1426 
1427   ResultInt = Int;
1428   return true;
1429 }
1430 
1431 
1432 
1433 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1434 /// statement) to the specified blocks.  Based on the condition, this might try
1435 /// to simplify the codegen of the conditional based on the branch.
1436 ///
1437 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1438                                            llvm::BasicBlock *TrueBlock,
1439                                            llvm::BasicBlock *FalseBlock,
1440                                            uint64_t TrueCount) {
1441   Cond = Cond->IgnoreParens();
1442 
1443   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1444 
1445     // Handle X && Y in a condition.
1446     if (CondBOp->getOpcode() == BO_LAnd) {
1447       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1448       // folded if the case was simple enough.
1449       bool ConstantBool = false;
1450       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1451           ConstantBool) {
1452         // br(1 && X) -> br(X).
1453         incrementProfileCounter(CondBOp);
1454         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1455                                     TrueCount);
1456       }
1457 
1458       // If we have "X && 1", simplify the code to use an uncond branch.
1459       // "X && 0" would have been constant folded to 0.
1460       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1461           ConstantBool) {
1462         // br(X && 1) -> br(X).
1463         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1464                                     TrueCount);
1465       }
1466 
1467       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1468       // want to jump to the FalseBlock.
1469       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1470       // The counter tells us how often we evaluate RHS, and all of TrueCount
1471       // can be propagated to that branch.
1472       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1473 
1474       ConditionalEvaluation eval(*this);
1475       {
1476         ApplyDebugLocation DL(*this, Cond);
1477         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1478         EmitBlock(LHSTrue);
1479       }
1480 
1481       incrementProfileCounter(CondBOp);
1482       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1483 
1484       // Any temporaries created here are conditional.
1485       eval.begin(*this);
1486       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1487       eval.end(*this);
1488 
1489       return;
1490     }
1491 
1492     if (CondBOp->getOpcode() == BO_LOr) {
1493       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1494       // folded if the case was simple enough.
1495       bool ConstantBool = false;
1496       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1497           !ConstantBool) {
1498         // br(0 || X) -> br(X).
1499         incrementProfileCounter(CondBOp);
1500         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1501                                     TrueCount);
1502       }
1503 
1504       // If we have "X || 0", simplify the code to use an uncond branch.
1505       // "X || 1" would have been constant folded to 1.
1506       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1507           !ConstantBool) {
1508         // br(X || 0) -> br(X).
1509         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1510                                     TrueCount);
1511       }
1512 
1513       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1514       // want to jump to the TrueBlock.
1515       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1516       // We have the count for entry to the RHS and for the whole expression
1517       // being true, so we can divy up True count between the short circuit and
1518       // the RHS.
1519       uint64_t LHSCount =
1520           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1521       uint64_t RHSCount = TrueCount - LHSCount;
1522 
1523       ConditionalEvaluation eval(*this);
1524       {
1525         ApplyDebugLocation DL(*this, Cond);
1526         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1527         EmitBlock(LHSFalse);
1528       }
1529 
1530       incrementProfileCounter(CondBOp);
1531       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1532 
1533       // Any temporaries created here are conditional.
1534       eval.begin(*this);
1535       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1536 
1537       eval.end(*this);
1538 
1539       return;
1540     }
1541   }
1542 
1543   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1544     // br(!x, t, f) -> br(x, f, t)
1545     if (CondUOp->getOpcode() == UO_LNot) {
1546       // Negate the count.
1547       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1548       // Negate the condition and swap the destination blocks.
1549       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1550                                   FalseCount);
1551     }
1552   }
1553 
1554   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1555     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1556     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1557     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1558 
1559     ConditionalEvaluation cond(*this);
1560     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1561                          getProfileCount(CondOp));
1562 
1563     // When computing PGO branch weights, we only know the overall count for
1564     // the true block. This code is essentially doing tail duplication of the
1565     // naive code-gen, introducing new edges for which counts are not
1566     // available. Divide the counts proportionally between the LHS and RHS of
1567     // the conditional operator.
1568     uint64_t LHSScaledTrueCount = 0;
1569     if (TrueCount) {
1570       double LHSRatio =
1571           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1572       LHSScaledTrueCount = TrueCount * LHSRatio;
1573     }
1574 
1575     cond.begin(*this);
1576     EmitBlock(LHSBlock);
1577     incrementProfileCounter(CondOp);
1578     {
1579       ApplyDebugLocation DL(*this, Cond);
1580       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1581                            LHSScaledTrueCount);
1582     }
1583     cond.end(*this);
1584 
1585     cond.begin(*this);
1586     EmitBlock(RHSBlock);
1587     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1588                          TrueCount - LHSScaledTrueCount);
1589     cond.end(*this);
1590 
1591     return;
1592   }
1593 
1594   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1595     // Conditional operator handling can give us a throw expression as a
1596     // condition for a case like:
1597     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1598     // Fold this to:
1599     //   br(c, throw x, br(y, t, f))
1600     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1601     return;
1602   }
1603 
1604   // If the branch has a condition wrapped by __builtin_unpredictable,
1605   // create metadata that specifies that the branch is unpredictable.
1606   // Don't bother if not optimizing because that metadata would not be used.
1607   llvm::MDNode *Unpredictable = nullptr;
1608   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1609   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1610     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1611     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1612       llvm::MDBuilder MDHelper(getLLVMContext());
1613       Unpredictable = MDHelper.createUnpredictable();
1614     }
1615   }
1616 
1617   // Create branch weights based on the number of times we get here and the
1618   // number of times the condition should be true.
1619   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1620   llvm::MDNode *Weights =
1621       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1622 
1623   // Emit the code with the fully general case.
1624   llvm::Value *CondV;
1625   {
1626     ApplyDebugLocation DL(*this, Cond);
1627     CondV = EvaluateExprAsBool(Cond);
1628   }
1629   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1630 }
1631 
1632 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1633 /// specified stmt yet.
1634 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1635   CGM.ErrorUnsupported(S, Type);
1636 }
1637 
1638 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1639 /// variable-length array whose elements have a non-zero bit-pattern.
1640 ///
1641 /// \param baseType the inner-most element type of the array
1642 /// \param src - a char* pointing to the bit-pattern for a single
1643 /// base element of the array
1644 /// \param sizeInChars - the total size of the VLA, in chars
1645 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1646                                Address dest, Address src,
1647                                llvm::Value *sizeInChars) {
1648   CGBuilderTy &Builder = CGF.Builder;
1649 
1650   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1651   llvm::Value *baseSizeInChars
1652     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1653 
1654   Address begin =
1655     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1656   llvm::Value *end =
1657     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1658 
1659   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1660   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1661   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1662 
1663   // Make a loop over the VLA.  C99 guarantees that the VLA element
1664   // count must be nonzero.
1665   CGF.EmitBlock(loopBB);
1666 
1667   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1668   cur->addIncoming(begin.getPointer(), originBB);
1669 
1670   CharUnits curAlign =
1671     dest.getAlignment().alignmentOfArrayElement(baseSize);
1672 
1673   // memcpy the individual element bit-pattern.
1674   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1675                        /*volatile*/ false);
1676 
1677   // Go to the next element.
1678   llvm::Value *next =
1679     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1680 
1681   // Leave if that's the end of the VLA.
1682   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1683   Builder.CreateCondBr(done, contBB, loopBB);
1684   cur->addIncoming(next, loopBB);
1685 
1686   CGF.EmitBlock(contBB);
1687 }
1688 
1689 void
1690 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1691   // Ignore empty classes in C++.
1692   if (getLangOpts().CPlusPlus) {
1693     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1694       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1695         return;
1696     }
1697   }
1698 
1699   // Cast the dest ptr to the appropriate i8 pointer type.
1700   if (DestPtr.getElementType() != Int8Ty)
1701     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1702 
1703   // Get size and alignment info for this aggregate.
1704   CharUnits size = getContext().getTypeSizeInChars(Ty);
1705 
1706   llvm::Value *SizeVal;
1707   const VariableArrayType *vla;
1708 
1709   // Don't bother emitting a zero-byte memset.
1710   if (size.isZero()) {
1711     // But note that getTypeInfo returns 0 for a VLA.
1712     if (const VariableArrayType *vlaType =
1713           dyn_cast_or_null<VariableArrayType>(
1714                                           getContext().getAsArrayType(Ty))) {
1715       auto VlaSize = getVLASize(vlaType);
1716       SizeVal = VlaSize.NumElts;
1717       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1718       if (!eltSize.isOne())
1719         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1720       vla = vlaType;
1721     } else {
1722       return;
1723     }
1724   } else {
1725     SizeVal = CGM.getSize(size);
1726     vla = nullptr;
1727   }
1728 
1729   // If the type contains a pointer to data member we can't memset it to zero.
1730   // Instead, create a null constant and copy it to the destination.
1731   // TODO: there are other patterns besides zero that we can usefully memset,
1732   // like -1, which happens to be the pattern used by member-pointers.
1733   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1734     // For a VLA, emit a single element, then splat that over the VLA.
1735     if (vla) Ty = getContext().getBaseElementType(vla);
1736 
1737     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1738 
1739     llvm::GlobalVariable *NullVariable =
1740       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1741                                /*isConstant=*/true,
1742                                llvm::GlobalVariable::PrivateLinkage,
1743                                NullConstant, Twine());
1744     CharUnits NullAlign = DestPtr.getAlignment();
1745     NullVariable->setAlignment(NullAlign.getAsAlign());
1746     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1747                    NullAlign);
1748 
1749     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1750 
1751     // Get and call the appropriate llvm.memcpy overload.
1752     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1753     return;
1754   }
1755 
1756   // Otherwise, just memset the whole thing to zero.  This is legal
1757   // because in LLVM, all default initializers (other than the ones we just
1758   // handled above) are guaranteed to have a bit pattern of all zeros.
1759   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1760 }
1761 
1762 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1763   // Make sure that there is a block for the indirect goto.
1764   if (!IndirectBranch)
1765     GetIndirectGotoBlock();
1766 
1767   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1768 
1769   // Make sure the indirect branch includes all of the address-taken blocks.
1770   IndirectBranch->addDestination(BB);
1771   return llvm::BlockAddress::get(CurFn, BB);
1772 }
1773 
1774 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1775   // If we already made the indirect branch for indirect goto, return its block.
1776   if (IndirectBranch) return IndirectBranch->getParent();
1777 
1778   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1779 
1780   // Create the PHI node that indirect gotos will add entries to.
1781   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1782                                               "indirect.goto.dest");
1783 
1784   // Create the indirect branch instruction.
1785   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1786   return IndirectBranch->getParent();
1787 }
1788 
1789 /// Computes the length of an array in elements, as well as the base
1790 /// element type and a properly-typed first element pointer.
1791 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1792                                               QualType &baseType,
1793                                               Address &addr) {
1794   const ArrayType *arrayType = origArrayType;
1795 
1796   // If it's a VLA, we have to load the stored size.  Note that
1797   // this is the size of the VLA in bytes, not its size in elements.
1798   llvm::Value *numVLAElements = nullptr;
1799   if (isa<VariableArrayType>(arrayType)) {
1800     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1801 
1802     // Walk into all VLAs.  This doesn't require changes to addr,
1803     // which has type T* where T is the first non-VLA element type.
1804     do {
1805       QualType elementType = arrayType->getElementType();
1806       arrayType = getContext().getAsArrayType(elementType);
1807 
1808       // If we only have VLA components, 'addr' requires no adjustment.
1809       if (!arrayType) {
1810         baseType = elementType;
1811         return numVLAElements;
1812       }
1813     } while (isa<VariableArrayType>(arrayType));
1814 
1815     // We get out here only if we find a constant array type
1816     // inside the VLA.
1817   }
1818 
1819   // We have some number of constant-length arrays, so addr should
1820   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1821   // down to the first element of addr.
1822   SmallVector<llvm::Value*, 8> gepIndices;
1823 
1824   // GEP down to the array type.
1825   llvm::ConstantInt *zero = Builder.getInt32(0);
1826   gepIndices.push_back(zero);
1827 
1828   uint64_t countFromCLAs = 1;
1829   QualType eltType;
1830 
1831   llvm::ArrayType *llvmArrayType =
1832     dyn_cast<llvm::ArrayType>(addr.getElementType());
1833   while (llvmArrayType) {
1834     assert(isa<ConstantArrayType>(arrayType));
1835     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1836              == llvmArrayType->getNumElements());
1837 
1838     gepIndices.push_back(zero);
1839     countFromCLAs *= llvmArrayType->getNumElements();
1840     eltType = arrayType->getElementType();
1841 
1842     llvmArrayType =
1843       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1844     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1845     assert((!llvmArrayType || arrayType) &&
1846            "LLVM and Clang types are out-of-synch");
1847   }
1848 
1849   if (arrayType) {
1850     // From this point onwards, the Clang array type has been emitted
1851     // as some other type (probably a packed struct). Compute the array
1852     // size, and just emit the 'begin' expression as a bitcast.
1853     while (arrayType) {
1854       countFromCLAs *=
1855           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1856       eltType = arrayType->getElementType();
1857       arrayType = getContext().getAsArrayType(eltType);
1858     }
1859 
1860     llvm::Type *baseType = ConvertType(eltType);
1861     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1862   } else {
1863     // Create the actual GEP.
1864     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1865                                              gepIndices, "array.begin"),
1866                    addr.getAlignment());
1867   }
1868 
1869   baseType = eltType;
1870 
1871   llvm::Value *numElements
1872     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1873 
1874   // If we had any VLA dimensions, factor them in.
1875   if (numVLAElements)
1876     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1877 
1878   return numElements;
1879 }
1880 
1881 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1882   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1883   assert(vla && "type was not a variable array type!");
1884   return getVLASize(vla);
1885 }
1886 
1887 CodeGenFunction::VlaSizePair
1888 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1889   // The number of elements so far; always size_t.
1890   llvm::Value *numElements = nullptr;
1891 
1892   QualType elementType;
1893   do {
1894     elementType = type->getElementType();
1895     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1896     assert(vlaSize && "no size for VLA!");
1897     assert(vlaSize->getType() == SizeTy);
1898 
1899     if (!numElements) {
1900       numElements = vlaSize;
1901     } else {
1902       // It's undefined behavior if this wraps around, so mark it that way.
1903       // FIXME: Teach -fsanitize=undefined to trap this.
1904       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1905     }
1906   } while ((type = getContext().getAsVariableArrayType(elementType)));
1907 
1908   return { numElements, elementType };
1909 }
1910 
1911 CodeGenFunction::VlaSizePair
1912 CodeGenFunction::getVLAElements1D(QualType type) {
1913   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1914   assert(vla && "type was not a variable array type!");
1915   return getVLAElements1D(vla);
1916 }
1917 
1918 CodeGenFunction::VlaSizePair
1919 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1920   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1921   assert(VlaSize && "no size for VLA!");
1922   assert(VlaSize->getType() == SizeTy);
1923   return { VlaSize, Vla->getElementType() };
1924 }
1925 
1926 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1927   assert(type->isVariablyModifiedType() &&
1928          "Must pass variably modified type to EmitVLASizes!");
1929 
1930   EnsureInsertPoint();
1931 
1932   // We're going to walk down into the type and look for VLA
1933   // expressions.
1934   do {
1935     assert(type->isVariablyModifiedType());
1936 
1937     const Type *ty = type.getTypePtr();
1938     switch (ty->getTypeClass()) {
1939 
1940 #define TYPE(Class, Base)
1941 #define ABSTRACT_TYPE(Class, Base)
1942 #define NON_CANONICAL_TYPE(Class, Base)
1943 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1944 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1945 #include "clang/AST/TypeNodes.inc"
1946       llvm_unreachable("unexpected dependent type!");
1947 
1948     // These types are never variably-modified.
1949     case Type::Builtin:
1950     case Type::Complex:
1951     case Type::Vector:
1952     case Type::ExtVector:
1953     case Type::Record:
1954     case Type::Enum:
1955     case Type::Elaborated:
1956     case Type::TemplateSpecialization:
1957     case Type::ObjCTypeParam:
1958     case Type::ObjCObject:
1959     case Type::ObjCInterface:
1960     case Type::ObjCObjectPointer:
1961       llvm_unreachable("type class is never variably-modified!");
1962 
1963     case Type::Adjusted:
1964       type = cast<AdjustedType>(ty)->getAdjustedType();
1965       break;
1966 
1967     case Type::Decayed:
1968       type = cast<DecayedType>(ty)->getPointeeType();
1969       break;
1970 
1971     case Type::Pointer:
1972       type = cast<PointerType>(ty)->getPointeeType();
1973       break;
1974 
1975     case Type::BlockPointer:
1976       type = cast<BlockPointerType>(ty)->getPointeeType();
1977       break;
1978 
1979     case Type::LValueReference:
1980     case Type::RValueReference:
1981       type = cast<ReferenceType>(ty)->getPointeeType();
1982       break;
1983 
1984     case Type::MemberPointer:
1985       type = cast<MemberPointerType>(ty)->getPointeeType();
1986       break;
1987 
1988     case Type::ConstantArray:
1989     case Type::IncompleteArray:
1990       // Losing element qualification here is fine.
1991       type = cast<ArrayType>(ty)->getElementType();
1992       break;
1993 
1994     case Type::VariableArray: {
1995       // Losing element qualification here is fine.
1996       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1997 
1998       // Unknown size indication requires no size computation.
1999       // Otherwise, evaluate and record it.
2000       if (const Expr *size = vat->getSizeExpr()) {
2001         // It's possible that we might have emitted this already,
2002         // e.g. with a typedef and a pointer to it.
2003         llvm::Value *&entry = VLASizeMap[size];
2004         if (!entry) {
2005           llvm::Value *Size = EmitScalarExpr(size);
2006 
2007           // C11 6.7.6.2p5:
2008           //   If the size is an expression that is not an integer constant
2009           //   expression [...] each time it is evaluated it shall have a value
2010           //   greater than zero.
2011           if (SanOpts.has(SanitizerKind::VLABound) &&
2012               size->getType()->isSignedIntegerType()) {
2013             SanitizerScope SanScope(this);
2014             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2015             llvm::Constant *StaticArgs[] = {
2016                 EmitCheckSourceLocation(size->getBeginLoc()),
2017                 EmitCheckTypeDescriptor(size->getType())};
2018             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2019                                      SanitizerKind::VLABound),
2020                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2021           }
2022 
2023           // Always zexting here would be wrong if it weren't
2024           // undefined behavior to have a negative bound.
2025           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2026         }
2027       }
2028       type = vat->getElementType();
2029       break;
2030     }
2031 
2032     case Type::FunctionProto:
2033     case Type::FunctionNoProto:
2034       type = cast<FunctionType>(ty)->getReturnType();
2035       break;
2036 
2037     case Type::Paren:
2038     case Type::TypeOf:
2039     case Type::UnaryTransform:
2040     case Type::Attributed:
2041     case Type::SubstTemplateTypeParm:
2042     case Type::PackExpansion:
2043     case Type::MacroQualified:
2044       // Keep walking after single level desugaring.
2045       type = type.getSingleStepDesugaredType(getContext());
2046       break;
2047 
2048     case Type::Typedef:
2049     case Type::Decltype:
2050     case Type::Auto:
2051     case Type::DeducedTemplateSpecialization:
2052       // Stop walking: nothing to do.
2053       return;
2054 
2055     case Type::TypeOfExpr:
2056       // Stop walking: emit typeof expression.
2057       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2058       return;
2059 
2060     case Type::Atomic:
2061       type = cast<AtomicType>(ty)->getValueType();
2062       break;
2063 
2064     case Type::Pipe:
2065       type = cast<PipeType>(ty)->getElementType();
2066       break;
2067     }
2068   } while (type->isVariablyModifiedType());
2069 }
2070 
2071 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2072   if (getContext().getBuiltinVaListType()->isArrayType())
2073     return EmitPointerWithAlignment(E);
2074   return EmitLValue(E).getAddress(*this);
2075 }
2076 
2077 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2078   return EmitLValue(E).getAddress(*this);
2079 }
2080 
2081 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2082                                               const APValue &Init) {
2083   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2084   if (CGDebugInfo *Dbg = getDebugInfo())
2085     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2086       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2087 }
2088 
2089 CodeGenFunction::PeepholeProtection
2090 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2091   // At the moment, the only aggressive peephole we do in IR gen
2092   // is trunc(zext) folding, but if we add more, we can easily
2093   // extend this protection.
2094 
2095   if (!rvalue.isScalar()) return PeepholeProtection();
2096   llvm::Value *value = rvalue.getScalarVal();
2097   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2098 
2099   // Just make an extra bitcast.
2100   assert(HaveInsertPoint());
2101   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2102                                                   Builder.GetInsertBlock());
2103 
2104   PeepholeProtection protection;
2105   protection.Inst = inst;
2106   return protection;
2107 }
2108 
2109 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2110   if (!protection.Inst) return;
2111 
2112   // In theory, we could try to duplicate the peepholes now, but whatever.
2113   protection.Inst->eraseFromParent();
2114 }
2115 
2116 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2117                                               QualType Ty, SourceLocation Loc,
2118                                               SourceLocation AssumptionLoc,
2119                                               llvm::Value *Alignment,
2120                                               llvm::Value *OffsetValue) {
2121   llvm::Value *TheCheck;
2122   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2123       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2124   if (SanOpts.has(SanitizerKind::Alignment)) {
2125     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2126                                  OffsetValue, TheCheck, Assumption);
2127   }
2128 }
2129 
2130 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2131                                               const Expr *E,
2132                                               SourceLocation AssumptionLoc,
2133                                               llvm::Value *Alignment,
2134                                               llvm::Value *OffsetValue) {
2135   if (auto *CE = dyn_cast<CastExpr>(E))
2136     E = CE->getSubExprAsWritten();
2137   QualType Ty = E->getType();
2138   SourceLocation Loc = E->getExprLoc();
2139 
2140   EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2141                           OffsetValue);
2142 }
2143 
2144 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2145                                                  llvm::Value *AnnotatedVal,
2146                                                  StringRef AnnotationStr,
2147                                                  SourceLocation Location) {
2148   llvm::Value *Args[4] = {
2149     AnnotatedVal,
2150     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2151     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2152     CGM.EmitAnnotationLineNo(Location)
2153   };
2154   return Builder.CreateCall(AnnotationFn, Args);
2155 }
2156 
2157 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2158   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2159   // FIXME We create a new bitcast for every annotation because that's what
2160   // llvm-gcc was doing.
2161   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2162     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2163                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2164                        I->getAnnotation(), D->getLocation());
2165 }
2166 
2167 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2168                                               Address Addr) {
2169   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2170   llvm::Value *V = Addr.getPointer();
2171   llvm::Type *VTy = V->getType();
2172   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2173                                     CGM.Int8PtrTy);
2174 
2175   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2176     // FIXME Always emit the cast inst so we can differentiate between
2177     // annotation on the first field of a struct and annotation on the struct
2178     // itself.
2179     if (VTy != CGM.Int8PtrTy)
2180       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2181     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2182     V = Builder.CreateBitCast(V, VTy);
2183   }
2184 
2185   return Address(V, Addr.getAlignment());
2186 }
2187 
2188 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2189 
2190 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2191     : CGF(CGF) {
2192   assert(!CGF->IsSanitizerScope);
2193   CGF->IsSanitizerScope = true;
2194 }
2195 
2196 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2197   CGF->IsSanitizerScope = false;
2198 }
2199 
2200 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2201                                    const llvm::Twine &Name,
2202                                    llvm::BasicBlock *BB,
2203                                    llvm::BasicBlock::iterator InsertPt) const {
2204   LoopStack.InsertHelper(I);
2205   if (IsSanitizerScope)
2206     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2207 }
2208 
2209 void CGBuilderInserter::InsertHelper(
2210     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2211     llvm::BasicBlock::iterator InsertPt) const {
2212   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2213   if (CGF)
2214     CGF->InsertHelper(I, Name, BB, InsertPt);
2215 }
2216 
2217 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2218                                 CodeGenModule &CGM, const FunctionDecl *FD,
2219                                 std::string &FirstMissing) {
2220   // If there aren't any required features listed then go ahead and return.
2221   if (ReqFeatures.empty())
2222     return false;
2223 
2224   // Now build up the set of caller features and verify that all the required
2225   // features are there.
2226   llvm::StringMap<bool> CallerFeatureMap;
2227   CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD));
2228 
2229   // If we have at least one of the features in the feature list return
2230   // true, otherwise return false.
2231   return std::all_of(
2232       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2233         SmallVector<StringRef, 1> OrFeatures;
2234         Feature.split(OrFeatures, '|');
2235         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2236           if (!CallerFeatureMap.lookup(Feature)) {
2237             FirstMissing = Feature.str();
2238             return false;
2239           }
2240           return true;
2241         });
2242       });
2243 }
2244 
2245 // Emits an error if we don't have a valid set of target features for the
2246 // called function.
2247 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2248                                           const FunctionDecl *TargetDecl) {
2249   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2250 }
2251 
2252 // Emits an error if we don't have a valid set of target features for the
2253 // called function.
2254 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2255                                           const FunctionDecl *TargetDecl) {
2256   // Early exit if this is an indirect call.
2257   if (!TargetDecl)
2258     return;
2259 
2260   // Get the current enclosing function if it exists. If it doesn't
2261   // we can't check the target features anyhow.
2262   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2263   if (!FD)
2264     return;
2265 
2266   // Grab the required features for the call. For a builtin this is listed in
2267   // the td file with the default cpu, for an always_inline function this is any
2268   // listed cpu and any listed features.
2269   unsigned BuiltinID = TargetDecl->getBuiltinID();
2270   std::string MissingFeature;
2271   if (BuiltinID) {
2272     SmallVector<StringRef, 1> ReqFeatures;
2273     const char *FeatureList =
2274         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2275     // Return if the builtin doesn't have any required features.
2276     if (!FeatureList || StringRef(FeatureList) == "")
2277       return;
2278     StringRef(FeatureList).split(ReqFeatures, ',');
2279     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2280       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2281           << TargetDecl->getDeclName()
2282           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2283 
2284   } else if (!TargetDecl->isMultiVersion() &&
2285              TargetDecl->hasAttr<TargetAttr>()) {
2286     // Get the required features for the callee.
2287 
2288     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2289     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2290 
2291     SmallVector<StringRef, 1> ReqFeatures;
2292     llvm::StringMap<bool> CalleeFeatureMap;
2293     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2294 
2295     for (const auto &F : ParsedAttr.Features) {
2296       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2297         ReqFeatures.push_back(StringRef(F).substr(1));
2298     }
2299 
2300     for (const auto &F : CalleeFeatureMap) {
2301       // Only positive features are "required".
2302       if (F.getValue())
2303         ReqFeatures.push_back(F.getKey());
2304     }
2305     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2306       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2307           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2308   }
2309 }
2310 
2311 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2312   if (!CGM.getCodeGenOpts().SanitizeStats)
2313     return;
2314 
2315   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2316   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2317   CGM.getSanStats().create(IRB, SSK);
2318 }
2319 
2320 llvm::Value *
2321 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2322   llvm::Value *Condition = nullptr;
2323 
2324   if (!RO.Conditions.Architecture.empty())
2325     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2326 
2327   if (!RO.Conditions.Features.empty()) {
2328     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2329     Condition =
2330         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2331   }
2332   return Condition;
2333 }
2334 
2335 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2336                                              llvm::Function *Resolver,
2337                                              CGBuilderTy &Builder,
2338                                              llvm::Function *FuncToReturn,
2339                                              bool SupportsIFunc) {
2340   if (SupportsIFunc) {
2341     Builder.CreateRet(FuncToReturn);
2342     return;
2343   }
2344 
2345   llvm::SmallVector<llvm::Value *, 10> Args;
2346   llvm::for_each(Resolver->args(),
2347                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2348 
2349   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2350   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2351 
2352   if (Resolver->getReturnType()->isVoidTy())
2353     Builder.CreateRetVoid();
2354   else
2355     Builder.CreateRet(Result);
2356 }
2357 
2358 void CodeGenFunction::EmitMultiVersionResolver(
2359     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2360   assert((getContext().getTargetInfo().getTriple().getArch() ==
2361               llvm::Triple::x86 ||
2362           getContext().getTargetInfo().getTriple().getArch() ==
2363               llvm::Triple::x86_64) &&
2364          "Only implemented for x86 targets");
2365 
2366   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2367 
2368   // Main function's basic block.
2369   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2370   Builder.SetInsertPoint(CurBlock);
2371   EmitX86CpuInit();
2372 
2373   for (const MultiVersionResolverOption &RO : Options) {
2374     Builder.SetInsertPoint(CurBlock);
2375     llvm::Value *Condition = FormResolverCondition(RO);
2376 
2377     // The 'default' or 'generic' case.
2378     if (!Condition) {
2379       assert(&RO == Options.end() - 1 &&
2380              "Default or Generic case must be last");
2381       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2382                                        SupportsIFunc);
2383       return;
2384     }
2385 
2386     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2387     CGBuilderTy RetBuilder(*this, RetBlock);
2388     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2389                                      SupportsIFunc);
2390     CurBlock = createBasicBlock("resolver_else", Resolver);
2391     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2392   }
2393 
2394   // If no generic/default, emit an unreachable.
2395   Builder.SetInsertPoint(CurBlock);
2396   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2397   TrapCall->setDoesNotReturn();
2398   TrapCall->setDoesNotThrow();
2399   Builder.CreateUnreachable();
2400   Builder.ClearInsertionPoint();
2401 }
2402 
2403 // Loc - where the diagnostic will point, where in the source code this
2404 //  alignment has failed.
2405 // SecondaryLoc - if present (will be present if sufficiently different from
2406 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2407 //  It should be the location where the __attribute__((assume_aligned))
2408 //  was written e.g.
2409 void CodeGenFunction::EmitAlignmentAssumptionCheck(
2410     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2411     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2412     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2413     llvm::Instruction *Assumption) {
2414   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2415          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2416              llvm::Intrinsic::getDeclaration(
2417                  Builder.GetInsertBlock()->getParent()->getParent(),
2418                  llvm::Intrinsic::assume) &&
2419          "Assumption should be a call to llvm.assume().");
2420   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2421          "Assumption should be the last instruction of the basic block, "
2422          "since the basic block is still being generated.");
2423 
2424   if (!SanOpts.has(SanitizerKind::Alignment))
2425     return;
2426 
2427   // Don't check pointers to volatile data. The behavior here is implementation-
2428   // defined.
2429   if (Ty->getPointeeType().isVolatileQualified())
2430     return;
2431 
2432   // We need to temorairly remove the assumption so we can insert the
2433   // sanitizer check before it, else the check will be dropped by optimizations.
2434   Assumption->removeFromParent();
2435 
2436   {
2437     SanitizerScope SanScope(this);
2438 
2439     if (!OffsetValue)
2440       OffsetValue = Builder.getInt1(0); // no offset.
2441 
2442     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2443                                     EmitCheckSourceLocation(SecondaryLoc),
2444                                     EmitCheckTypeDescriptor(Ty)};
2445     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2446                                   EmitCheckValue(Alignment),
2447                                   EmitCheckValue(OffsetValue)};
2448     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2449               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2450   }
2451 
2452   // We are now in the (new, empty) "cont" basic block.
2453   // Reintroduce the assumption.
2454   Builder.Insert(Assumption);
2455   // FIXME: Assumption still has it's original basic block as it's Parent.
2456 }
2457 
2458 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2459   if (CGDebugInfo *DI = getDebugInfo())
2460     return DI->SourceLocToDebugLoc(Location);
2461 
2462   return llvm::DebugLoc();
2463 }
2464