1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/AST/APValue.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "llvm/Support/CFG.h" 22 using namespace clang; 23 using namespace CodeGen; 24 25 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 26 : CGM(cgm), Target(CGM.getContext().Target), SwitchInsn(NULL), 27 CaseRangeBlock(NULL) { 28 LLVMIntTy = ConvertType(getContext().IntTy); 29 LLVMPointerWidth = Target.getPointerWidth(0); 30 } 31 32 ASTContext &CodeGenFunction::getContext() const { 33 return CGM.getContext(); 34 } 35 36 37 llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) { 38 llvm::BasicBlock *&BB = LabelMap[S]; 39 if (BB) return BB; 40 41 // Create, but don't insert, the new block. 42 return BB = createBasicBlock(S->getName()); 43 } 44 45 llvm::Constant * 46 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 47 return cast<llvm::Constant>(LocalDeclMap[BVD]); 48 } 49 50 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) 51 { 52 return LocalDeclMap[VD]; 53 } 54 55 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 56 return CGM.getTypes().ConvertType(T); 57 } 58 59 bool CodeGenFunction::isObjCPointerType(QualType T) { 60 // All Objective-C types are pointers. 61 return T->isObjCInterfaceType() || 62 T->isObjCQualifiedInterfaceType() || T->isObjCQualifiedIdType(); 63 } 64 65 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 66 // FIXME: Use positive checks instead of negative ones to be more 67 // robust in the face of extension. 68 return !isObjCPointerType(T) &&!T->isRealType() && !T->isPointerLikeType() && 69 !T->isVoidType() && !T->isVectorType() && !T->isFunctionType() && 70 !T->isBlockPointerType(); 71 } 72 73 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 74 // Finish emission of indirect switches. 75 EmitIndirectSwitches(); 76 77 assert(BreakContinueStack.empty() && 78 "mismatched push/pop in break/continue stack!"); 79 80 // Emit function epilog (to return). For cleanliness, skip emission 81 // if we know it is safe (when it is unused and the current block is 82 // unterminated). 83 if (!ReturnBlock->use_empty() || 84 !Builder.GetInsertBlock() || 85 Builder.GetInsertBlock()->getTerminator()) 86 EmitBlock(ReturnBlock); 87 88 // Emit debug descriptor for function end. 89 if (CGDebugInfo *DI = CGM.getDebugInfo()) { 90 DI->setLocation(EndLoc); 91 DI->EmitRegionEnd(CurFn, Builder); 92 } 93 94 EmitFunctionEpilog(FnRetTy, ReturnValue); 95 96 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 97 AllocaInsertPt->eraseFromParent(); 98 AllocaInsertPt = 0; 99 } 100 101 void CodeGenFunction::StartFunction(const Decl *D, QualType RetTy, 102 llvm::Function *Fn, 103 const FunctionArgList &Args, 104 SourceLocation StartLoc) { 105 CurFuncDecl = D; 106 FnRetTy = RetTy; 107 CurFn = Fn; 108 assert(CurFn->isDeclaration() && "Function already has body?"); 109 110 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 111 112 // Create a marker to make it easy to insert allocas into the entryblock 113 // later. Don't create this with the builder, because we don't want it 114 // folded. 115 llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::Int32Ty); 116 AllocaInsertPt = new llvm::BitCastInst(Undef, llvm::Type::Int32Ty, "allocapt", 117 EntryBB); 118 119 ReturnBlock = createBasicBlock("return"); 120 ReturnValue = 0; 121 if (!RetTy->isVoidType()) 122 ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval"); 123 124 Builder.SetInsertPoint(EntryBB); 125 126 // Emit subprogram debug descriptor. 127 // FIXME: The cast here is a huge hack. 128 if (CGDebugInfo *DI = CGM.getDebugInfo()) { 129 DI->setLocation(StartLoc); 130 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 131 DI->EmitFunctionStart(FD->getIdentifier()->getName(), 132 RetTy, CurFn, Builder); 133 } else { 134 // Just use LLVM function name. 135 DI->EmitFunctionStart(Fn->getName().c_str(), 136 RetTy, CurFn, Builder); 137 } 138 } 139 140 EmitFunctionProlog(CurFn, FnRetTy, Args); 141 142 // If any of the arguments have a variably modified type, make sure to 143 // emit the type size. 144 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 145 i != e; ++i) { 146 QualType Ty = i->second; 147 148 if (Ty->isVariablyModifiedType()) 149 EmitVLASize(Ty); 150 } 151 } 152 153 void CodeGenFunction::GenerateCode(const FunctionDecl *FD, 154 llvm::Function *Fn) { 155 FunctionArgList Args; 156 if (FD->getNumParams()) { 157 const FunctionTypeProto* FProto = FD->getType()->getAsFunctionTypeProto(); 158 assert(FProto && "Function def must have prototype!"); 159 160 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 161 Args.push_back(std::make_pair(FD->getParamDecl(i), 162 FProto->getArgType(i))); 163 } 164 165 StartFunction(FD, FD->getResultType(), Fn, Args, 166 cast<CompoundStmt>(FD->getBody())->getLBracLoc()); 167 168 EmitStmt(FD->getBody()); 169 170 const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()); 171 if (S) { 172 FinishFunction(S->getRBracLoc()); 173 } else { 174 FinishFunction(); 175 } 176 } 177 178 /// ContainsLabel - Return true if the statement contains a label in it. If 179 /// this statement is not executed normally, it not containing a label means 180 /// that we can just remove the code. 181 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 182 // Null statement, not a label! 183 if (S == 0) return false; 184 185 // If this is a label, we have to emit the code, consider something like: 186 // if (0) { ... foo: bar(); } goto foo; 187 if (isa<LabelStmt>(S)) 188 return true; 189 190 // If this is a case/default statement, and we haven't seen a switch, we have 191 // to emit the code. 192 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 193 return true; 194 195 // If this is a switch statement, we want to ignore cases below it. 196 if (isa<SwitchStmt>(S)) 197 IgnoreCaseStmts = true; 198 199 // Scan subexpressions for verboten labels. 200 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 201 I != E; ++I) 202 if (ContainsLabel(*I, IgnoreCaseStmts)) 203 return true; 204 205 return false; 206 } 207 208 209 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 210 /// a constant, or if it does but contains a label, return 0. If it constant 211 /// folds to 'true' and does not contain a label, return 1, if it constant folds 212 /// to 'false' and does not contain a label, return -1. 213 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 214 // FIXME: Rename and handle conversion of other evaluatable things 215 // to bool. 216 Expr::EvalResult Result; 217 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 218 Result.HasSideEffects) 219 return 0; // Not foldable, not integer or not fully evaluatable. 220 221 if (CodeGenFunction::ContainsLabel(Cond)) 222 return 0; // Contains a label. 223 224 return Result.Val.getInt().getBoolValue() ? 1 : -1; 225 } 226 227 228 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 229 /// statement) to the specified blocks. Based on the condition, this might try 230 /// to simplify the codegen of the conditional based on the branch. 231 /// 232 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 233 llvm::BasicBlock *TrueBlock, 234 llvm::BasicBlock *FalseBlock) { 235 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 236 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 237 238 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 239 // Handle X && Y in a condition. 240 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 241 // If we have "1 && X", simplify the code. "0 && X" would have constant 242 // folded if the case was simple enough. 243 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 244 // br(1 && X) -> br(X). 245 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 246 } 247 248 // If we have "X && 1", simplify the code to use an uncond branch. 249 // "X && 0" would have been constant folded to 0. 250 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 251 // br(X && 1) -> br(X). 252 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 253 } 254 255 // Emit the LHS as a conditional. If the LHS conditional is false, we 256 // want to jump to the FalseBlock. 257 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 258 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 259 EmitBlock(LHSTrue); 260 261 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 262 return; 263 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 264 // If we have "0 || X", simplify the code. "1 || X" would have constant 265 // folded if the case was simple enough. 266 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 267 // br(0 || X) -> br(X). 268 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 269 } 270 271 // If we have "X || 0", simplify the code to use an uncond branch. 272 // "X || 1" would have been constant folded to 1. 273 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 274 // br(X || 0) -> br(X). 275 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 276 } 277 278 // Emit the LHS as a conditional. If the LHS conditional is true, we 279 // want to jump to the TrueBlock. 280 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 281 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 282 EmitBlock(LHSFalse); 283 284 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 285 return; 286 } 287 } 288 289 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 290 // br(!x, t, f) -> br(x, f, t) 291 if (CondUOp->getOpcode() == UnaryOperator::LNot) 292 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 293 } 294 295 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 296 // Handle ?: operator. 297 298 // Just ignore GNU ?: extension. 299 if (CondOp->getLHS()) { 300 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 301 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 302 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 303 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 304 EmitBlock(LHSBlock); 305 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 306 EmitBlock(RHSBlock); 307 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 308 return; 309 } 310 } 311 312 // Emit the code with the fully general case. 313 llvm::Value *CondV = EvaluateExprAsBool(Cond); 314 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 315 } 316 317 /// getCGRecordLayout - Return record layout info. 318 const CGRecordLayout *CodeGenFunction::getCGRecordLayout(CodeGenTypes &CGT, 319 QualType Ty) { 320 const RecordType *RTy = Ty->getAsRecordType(); 321 assert (RTy && "Unexpected type. RecordType expected here."); 322 323 return CGT.getCGRecordLayout(RTy->getDecl()); 324 } 325 326 /// ErrorUnsupported - Print out an error that codegen doesn't support the 327 /// specified stmt yet. 328 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 329 bool OmitOnError) { 330 CGM.ErrorUnsupported(S, Type, OmitOnError); 331 } 332 333 unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) { 334 // Use LabelIDs.size() as the new ID if one hasn't been assigned. 335 return LabelIDs.insert(std::make_pair(L, LabelIDs.size())).first->second; 336 } 337 338 void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) 339 { 340 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 341 if (DestPtr->getType() != BP) 342 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 343 344 // Get size and alignment info for this aggregate. 345 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 346 347 // FIXME: Handle variable sized types. 348 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 349 350 Builder.CreateCall4(CGM.getMemSetFn(), DestPtr, 351 llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), 352 // TypeInfo.first describes size in bits. 353 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 354 llvm::ConstantInt::get(llvm::Type::Int32Ty, 355 TypeInfo.second/8)); 356 } 357 358 void CodeGenFunction::EmitIndirectSwitches() { 359 llvm::BasicBlock *Default; 360 361 if (IndirectSwitches.empty()) 362 return; 363 364 if (!LabelIDs.empty()) { 365 Default = getBasicBlockForLabel(LabelIDs.begin()->first); 366 } else { 367 // No possible targets for indirect goto, just emit an infinite 368 // loop. 369 Default = createBasicBlock("indirectgoto.loop", CurFn); 370 llvm::BranchInst::Create(Default, Default); 371 } 372 373 for (std::vector<llvm::SwitchInst*>::iterator i = IndirectSwitches.begin(), 374 e = IndirectSwitches.end(); i != e; ++i) { 375 llvm::SwitchInst *I = *i; 376 377 I->setSuccessor(0, Default); 378 for (std::map<const LabelStmt*,unsigned>::iterator LI = LabelIDs.begin(), 379 LE = LabelIDs.end(); LI != LE; ++LI) { 380 I->addCase(llvm::ConstantInt::get(llvm::Type::Int32Ty, 381 LI->second), 382 getBasicBlockForLabel(LI->first)); 383 } 384 } 385 } 386 387 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) 388 { 389 // FIXME: This entire method is hardcoded for 32-bit X86. 390 391 const char *TargetPrefix = getContext().Target.getTargetPrefix(); 392 393 if (strcmp(TargetPrefix, "x86") != 0 || 394 getContext().Target.getPointerWidth(0) != 32) 395 return 0; 396 397 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 398 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 399 400 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 401 "ap"); 402 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 403 llvm::Value *AddrTyped = 404 Builder.CreateBitCast(Addr, 405 llvm::PointerType::getUnqual(ConvertType(Ty))); 406 407 uint64_t SizeInBytes = getContext().getTypeSize(Ty) / 8; 408 const unsigned ArgumentSizeInBytes = 4; 409 if (SizeInBytes < ArgumentSizeInBytes) 410 SizeInBytes = ArgumentSizeInBytes; 411 412 llvm::Value *NextAddr = 413 Builder.CreateGEP(Addr, 414 llvm::ConstantInt::get(llvm::Type::Int32Ty, SizeInBytes), 415 "ap.next"); 416 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 417 418 return AddrTyped; 419 } 420 421 422 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) 423 { 424 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 425 426 assert(SizeEntry && "Did not emit size for type"); 427 return SizeEntry; 428 } 429 430 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) 431 { 432 assert(Ty->isVariablyModifiedType() && 433 "Must pass variably modified type to EmitVLASizes!"); 434 435 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 436 llvm::Value *&SizeEntry = VLASizeMap[VAT]; 437 438 if (!SizeEntry) { 439 // Get the element size; 440 llvm::Value *ElemSize; 441 442 QualType ElemTy = VAT->getElementType(); 443 444 if (ElemTy->isVariableArrayType()) 445 ElemSize = EmitVLASize(ElemTy); 446 else { 447 // FIXME: We use Int32Ty here because the alloca instruction takes a 448 // 32-bit integer. What should we do about overflow? 449 ElemSize = llvm::ConstantInt::get(llvm::Type::Int32Ty, 450 getContext().getTypeSize(ElemTy) / 8); 451 } 452 453 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 454 455 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 456 } 457 458 return SizeEntry; 459 } else if (const PointerType *PT = Ty->getAsPointerType()) 460 EmitVLASize(PT->getPointeeType()); 461 else { 462 assert(0 && "unknown VM type!"); 463 } 464 465 return 0; 466 } 467 468 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 469 if (CGM.getContext().getBuiltinVaListType()->isArrayType()) { 470 return EmitScalarExpr(E); 471 } 472 return EmitLValue(E).getAddress(); 473 } 474