1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Operator.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
42 /// markers.
43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
44                                       const LangOptions &LangOpts) {
45   if (CGOpts.DisableLifetimeMarkers)
46     return false;
47 
48   // Asan uses markers for use-after-scope checks.
49   if (CGOpts.SanitizeAddressUseAfterScope)
50     return true;
51 
52   // Disable lifetime markers in msan builds.
53   // FIXME: Remove this when msan works with lifetime markers.
54   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
55     return false;
56 
57   // For now, only in optimized builds.
58   return CGOpts.OptimizationLevel != 0;
59 }
60 
61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
62     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
63       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
64               CGBuilderInserterTy(this)),
65       CurFn(nullptr), ReturnValue(Address::invalid()),
66       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
67       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
68       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
69       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
70       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
71       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
72       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
73       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
74       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
75       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
76       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
77       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
78       CXXStructorImplicitParamDecl(nullptr),
79       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
80       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
81       TerminateHandler(nullptr), TrapBB(nullptr),
82       ShouldEmitLifetimeMarkers(
83           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
84   if (!suppressNewContext)
85     CGM.getCXXABI().getMangleContext().startNewFunction();
86 
87   llvm::FastMathFlags FMF;
88   if (CGM.getLangOpts().FastMath)
89     FMF.setUnsafeAlgebra();
90   if (CGM.getLangOpts().FiniteMathOnly) {
91     FMF.setNoNaNs();
92     FMF.setNoInfs();
93   }
94   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
95     FMF.setNoNaNs();
96   }
97   if (CGM.getCodeGenOpts().NoSignedZeros) {
98     FMF.setNoSignedZeros();
99   }
100   if (CGM.getCodeGenOpts().ReciprocalMath) {
101     FMF.setAllowReciprocal();
102   }
103   Builder.setFastMathFlags(FMF);
104 }
105 
106 CodeGenFunction::~CodeGenFunction() {
107   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
108 
109   // If there are any unclaimed block infos, go ahead and destroy them
110   // now.  This can happen if IR-gen gets clever and skips evaluating
111   // something.
112   if (FirstBlockInfo)
113     destroyBlockInfos(FirstBlockInfo);
114 
115   if (getLangOpts().OpenMP && CurFn)
116     CGM.getOpenMPRuntime().functionFinished(*this);
117 }
118 
119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
120                                                      AlignmentSource *Source) {
121   return getNaturalTypeAlignment(T->getPointeeType(), Source,
122                                  /*forPointee*/ true);
123 }
124 
125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
126                                                    AlignmentSource *Source,
127                                                    bool forPointeeType) {
128   // Honor alignment typedef attributes even on incomplete types.
129   // We also honor them straight for C++ class types, even as pointees;
130   // there's an expressivity gap here.
131   if (auto TT = T->getAs<TypedefType>()) {
132     if (auto Align = TT->getDecl()->getMaxAlignment()) {
133       if (Source) *Source = AlignmentSource::AttributedType;
134       return getContext().toCharUnitsFromBits(Align);
135     }
136   }
137 
138   if (Source) *Source = AlignmentSource::Type;
139 
140   CharUnits Alignment;
141   if (T->isIncompleteType()) {
142     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
143   } else {
144     // For C++ class pointees, we don't know whether we're pointing at a
145     // base or a complete object, so we generally need to use the
146     // non-virtual alignment.
147     const CXXRecordDecl *RD;
148     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
149       Alignment = CGM.getClassPointerAlignment(RD);
150     } else {
151       Alignment = getContext().getTypeAlignInChars(T);
152       if (T.getQualifiers().hasUnaligned())
153         Alignment = CharUnits::One();
154     }
155 
156     // Cap to the global maximum type alignment unless the alignment
157     // was somehow explicit on the type.
158     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
159       if (Alignment.getQuantity() > MaxAlign &&
160           !getContext().isAlignmentRequired(T))
161         Alignment = CharUnits::fromQuantity(MaxAlign);
162     }
163   }
164   return Alignment;
165 }
166 
167 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
168   AlignmentSource AlignSource;
169   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
170   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
171                           CGM.getTBAAInfo(T));
172 }
173 
174 /// Given a value of type T* that may not be to a complete object,
175 /// construct an l-value with the natural pointee alignment of T.
176 LValue
177 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
178   AlignmentSource AlignSource;
179   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
180   return MakeAddrLValue(Address(V, Align), T, AlignSource);
181 }
182 
183 
184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
185   return CGM.getTypes().ConvertTypeForMem(T);
186 }
187 
188 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
189   return CGM.getTypes().ConvertType(T);
190 }
191 
192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
193   type = type.getCanonicalType();
194   while (true) {
195     switch (type->getTypeClass()) {
196 #define TYPE(name, parent)
197 #define ABSTRACT_TYPE(name, parent)
198 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
199 #define DEPENDENT_TYPE(name, parent) case Type::name:
200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
201 #include "clang/AST/TypeNodes.def"
202       llvm_unreachable("non-canonical or dependent type in IR-generation");
203 
204     case Type::Auto:
205     case Type::DeducedTemplateSpecialization:
206       llvm_unreachable("undeduced type in IR-generation");
207 
208     // Various scalar types.
209     case Type::Builtin:
210     case Type::Pointer:
211     case Type::BlockPointer:
212     case Type::LValueReference:
213     case Type::RValueReference:
214     case Type::MemberPointer:
215     case Type::Vector:
216     case Type::ExtVector:
217     case Type::FunctionProto:
218     case Type::FunctionNoProto:
219     case Type::Enum:
220     case Type::ObjCObjectPointer:
221     case Type::Pipe:
222       return TEK_Scalar;
223 
224     // Complexes.
225     case Type::Complex:
226       return TEK_Complex;
227 
228     // Arrays, records, and Objective-C objects.
229     case Type::ConstantArray:
230     case Type::IncompleteArray:
231     case Type::VariableArray:
232     case Type::Record:
233     case Type::ObjCObject:
234     case Type::ObjCInterface:
235       return TEK_Aggregate;
236 
237     // We operate on atomic values according to their underlying type.
238     case Type::Atomic:
239       type = cast<AtomicType>(type)->getValueType();
240       continue;
241     }
242     llvm_unreachable("unknown type kind!");
243   }
244 }
245 
246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
247   // For cleanliness, we try to avoid emitting the return block for
248   // simple cases.
249   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
250 
251   if (CurBB) {
252     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
253 
254     // We have a valid insert point, reuse it if it is empty or there are no
255     // explicit jumps to the return block.
256     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
257       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
258       delete ReturnBlock.getBlock();
259     } else
260       EmitBlock(ReturnBlock.getBlock());
261     return llvm::DebugLoc();
262   }
263 
264   // Otherwise, if the return block is the target of a single direct
265   // branch then we can just put the code in that block instead. This
266   // cleans up functions which started with a unified return block.
267   if (ReturnBlock.getBlock()->hasOneUse()) {
268     llvm::BranchInst *BI =
269       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
270     if (BI && BI->isUnconditional() &&
271         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
272       // Record/return the DebugLoc of the simple 'return' expression to be used
273       // later by the actual 'ret' instruction.
274       llvm::DebugLoc Loc = BI->getDebugLoc();
275       Builder.SetInsertPoint(BI->getParent());
276       BI->eraseFromParent();
277       delete ReturnBlock.getBlock();
278       return Loc;
279     }
280   }
281 
282   // FIXME: We are at an unreachable point, there is no reason to emit the block
283   // unless it has uses. However, we still need a place to put the debug
284   // region.end for now.
285 
286   EmitBlock(ReturnBlock.getBlock());
287   return llvm::DebugLoc();
288 }
289 
290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
291   if (!BB) return;
292   if (!BB->use_empty())
293     return CGF.CurFn->getBasicBlockList().push_back(BB);
294   delete BB;
295 }
296 
297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
298   assert(BreakContinueStack.empty() &&
299          "mismatched push/pop in break/continue stack!");
300 
301   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
302     && NumSimpleReturnExprs == NumReturnExprs
303     && ReturnBlock.getBlock()->use_empty();
304   // Usually the return expression is evaluated before the cleanup
305   // code.  If the function contains only a simple return statement,
306   // such as a constant, the location before the cleanup code becomes
307   // the last useful breakpoint in the function, because the simple
308   // return expression will be evaluated after the cleanup code. To be
309   // safe, set the debug location for cleanup code to the location of
310   // the return statement.  Otherwise the cleanup code should be at the
311   // end of the function's lexical scope.
312   //
313   // If there are multiple branches to the return block, the branch
314   // instructions will get the location of the return statements and
315   // all will be fine.
316   if (CGDebugInfo *DI = getDebugInfo()) {
317     if (OnlySimpleReturnStmts)
318       DI->EmitLocation(Builder, LastStopPoint);
319     else
320       DI->EmitLocation(Builder, EndLoc);
321   }
322 
323   // Pop any cleanups that might have been associated with the
324   // parameters.  Do this in whatever block we're currently in; it's
325   // important to do this before we enter the return block or return
326   // edges will be *really* confused.
327   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
328   bool HasOnlyLifetimeMarkers =
329       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
330   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
331   if (HasCleanups) {
332     // Make sure the line table doesn't jump back into the body for
333     // the ret after it's been at EndLoc.
334     if (CGDebugInfo *DI = getDebugInfo())
335       if (OnlySimpleReturnStmts)
336         DI->EmitLocation(Builder, EndLoc);
337 
338     PopCleanupBlocks(PrologueCleanupDepth);
339   }
340 
341   // Emit function epilog (to return).
342   llvm::DebugLoc Loc = EmitReturnBlock();
343 
344   if (ShouldInstrumentFunction())
345     EmitFunctionInstrumentation("__cyg_profile_func_exit");
346 
347   // Emit debug descriptor for function end.
348   if (CGDebugInfo *DI = getDebugInfo())
349     DI->EmitFunctionEnd(Builder);
350 
351   // Reset the debug location to that of the simple 'return' expression, if any
352   // rather than that of the end of the function's scope '}'.
353   ApplyDebugLocation AL(*this, Loc);
354   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
355   EmitEndEHSpec(CurCodeDecl);
356 
357   assert(EHStack.empty() &&
358          "did not remove all scopes from cleanup stack!");
359 
360   // If someone did an indirect goto, emit the indirect goto block at the end of
361   // the function.
362   if (IndirectBranch) {
363     EmitBlock(IndirectBranch->getParent());
364     Builder.ClearInsertionPoint();
365   }
366 
367   // If some of our locals escaped, insert a call to llvm.localescape in the
368   // entry block.
369   if (!EscapedLocals.empty()) {
370     // Invert the map from local to index into a simple vector. There should be
371     // no holes.
372     SmallVector<llvm::Value *, 4> EscapeArgs;
373     EscapeArgs.resize(EscapedLocals.size());
374     for (auto &Pair : EscapedLocals)
375       EscapeArgs[Pair.second] = Pair.first;
376     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
377         &CGM.getModule(), llvm::Intrinsic::localescape);
378     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
379   }
380 
381   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
382   llvm::Instruction *Ptr = AllocaInsertPt;
383   AllocaInsertPt = nullptr;
384   Ptr->eraseFromParent();
385 
386   // If someone took the address of a label but never did an indirect goto, we
387   // made a zero entry PHI node, which is illegal, zap it now.
388   if (IndirectBranch) {
389     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
390     if (PN->getNumIncomingValues() == 0) {
391       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
392       PN->eraseFromParent();
393     }
394   }
395 
396   EmitIfUsed(*this, EHResumeBlock);
397   EmitIfUsed(*this, TerminateLandingPad);
398   EmitIfUsed(*this, TerminateHandler);
399   EmitIfUsed(*this, UnreachableBlock);
400 
401   if (CGM.getCodeGenOpts().EmitDeclMetadata)
402     EmitDeclMetadata();
403 
404   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
405            I = DeferredReplacements.begin(),
406            E = DeferredReplacements.end();
407        I != E; ++I) {
408     I->first->replaceAllUsesWith(I->second);
409     I->first->eraseFromParent();
410   }
411 }
412 
413 /// ShouldInstrumentFunction - Return true if the current function should be
414 /// instrumented with __cyg_profile_func_* calls
415 bool CodeGenFunction::ShouldInstrumentFunction() {
416   if (!CGM.getCodeGenOpts().InstrumentFunctions)
417     return false;
418   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
419     return false;
420   return true;
421 }
422 
423 /// ShouldXRayInstrument - Return true if the current function should be
424 /// instrumented with XRay nop sleds.
425 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
426   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
427 }
428 
429 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
430 /// instrumentation function with the current function and the call site, if
431 /// function instrumentation is enabled.
432 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
433   auto NL = ApplyDebugLocation::CreateArtificial(*this);
434   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
435   llvm::PointerType *PointerTy = Int8PtrTy;
436   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
437   llvm::FunctionType *FunctionTy =
438     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
439 
440   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
441   llvm::CallInst *CallSite = Builder.CreateCall(
442     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
443     llvm::ConstantInt::get(Int32Ty, 0),
444     "callsite");
445 
446   llvm::Value *args[] = {
447     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
448     CallSite
449   };
450 
451   EmitNounwindRuntimeCall(F, args);
452 }
453 
454 static void removeImageAccessQualifier(std::string& TyName) {
455   std::string ReadOnlyQual("__read_only");
456   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
457   if (ReadOnlyPos != std::string::npos)
458     // "+ 1" for the space after access qualifier.
459     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
460   else {
461     std::string WriteOnlyQual("__write_only");
462     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
463     if (WriteOnlyPos != std::string::npos)
464       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
465     else {
466       std::string ReadWriteQual("__read_write");
467       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
468       if (ReadWritePos != std::string::npos)
469         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
470     }
471   }
472 }
473 
474 // Returns the address space id that should be produced to the
475 // kernel_arg_addr_space metadata. This is always fixed to the ids
476 // as specified in the SPIR 2.0 specification in order to differentiate
477 // for example in clGetKernelArgInfo() implementation between the address
478 // spaces with targets without unique mapping to the OpenCL address spaces
479 // (basically all single AS CPUs).
480 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
481   switch (LangAS) {
482   case LangAS::opencl_global:   return 1;
483   case LangAS::opencl_constant: return 2;
484   case LangAS::opencl_local:    return 3;
485   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
486   default:
487     return 0; // Assume private.
488   }
489 }
490 
491 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
492 // information in the program executable. The argument information stored
493 // includes the argument name, its type, the address and access qualifiers used.
494 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
495                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
496                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
497   // Create MDNodes that represent the kernel arg metadata.
498   // Each MDNode is a list in the form of "key", N number of values which is
499   // the same number of values as their are kernel arguments.
500 
501   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
502 
503   // MDNode for the kernel argument address space qualifiers.
504   SmallVector<llvm::Metadata *, 8> addressQuals;
505 
506   // MDNode for the kernel argument access qualifiers (images only).
507   SmallVector<llvm::Metadata *, 8> accessQuals;
508 
509   // MDNode for the kernel argument type names.
510   SmallVector<llvm::Metadata *, 8> argTypeNames;
511 
512   // MDNode for the kernel argument base type names.
513   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
514 
515   // MDNode for the kernel argument type qualifiers.
516   SmallVector<llvm::Metadata *, 8> argTypeQuals;
517 
518   // MDNode for the kernel argument names.
519   SmallVector<llvm::Metadata *, 8> argNames;
520 
521   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
522     const ParmVarDecl *parm = FD->getParamDecl(i);
523     QualType ty = parm->getType();
524     std::string typeQuals;
525 
526     if (ty->isPointerType()) {
527       QualType pointeeTy = ty->getPointeeType();
528 
529       // Get address qualifier.
530       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
531         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
532 
533       // Get argument type name.
534       std::string typeName =
535           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
536 
537       // Turn "unsigned type" to "utype"
538       std::string::size_type pos = typeName.find("unsigned");
539       if (pointeeTy.isCanonical() && pos != std::string::npos)
540         typeName.erase(pos+1, 8);
541 
542       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
543 
544       std::string baseTypeName =
545           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
546               Policy) +
547           "*";
548 
549       // Turn "unsigned type" to "utype"
550       pos = baseTypeName.find("unsigned");
551       if (pos != std::string::npos)
552         baseTypeName.erase(pos+1, 8);
553 
554       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
555 
556       // Get argument type qualifiers:
557       if (ty.isRestrictQualified())
558         typeQuals = "restrict";
559       if (pointeeTy.isConstQualified() ||
560           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
561         typeQuals += typeQuals.empty() ? "const" : " const";
562       if (pointeeTy.isVolatileQualified())
563         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
564     } else {
565       uint32_t AddrSpc = 0;
566       bool isPipe = ty->isPipeType();
567       if (ty->isImageType() || isPipe)
568         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
569 
570       addressQuals.push_back(
571           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
572 
573       // Get argument type name.
574       std::string typeName;
575       if (isPipe)
576         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
577                      .getAsString(Policy);
578       else
579         typeName = ty.getUnqualifiedType().getAsString(Policy);
580 
581       // Turn "unsigned type" to "utype"
582       std::string::size_type pos = typeName.find("unsigned");
583       if (ty.isCanonical() && pos != std::string::npos)
584         typeName.erase(pos+1, 8);
585 
586       std::string baseTypeName;
587       if (isPipe)
588         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
589                           ->getElementType().getCanonicalType()
590                           .getAsString(Policy);
591       else
592         baseTypeName =
593           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
594 
595       // Remove access qualifiers on images
596       // (as they are inseparable from type in clang implementation,
597       // but OpenCL spec provides a special query to get access qualifier
598       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
599       if (ty->isImageType()) {
600         removeImageAccessQualifier(typeName);
601         removeImageAccessQualifier(baseTypeName);
602       }
603 
604       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
605 
606       // Turn "unsigned type" to "utype"
607       pos = baseTypeName.find("unsigned");
608       if (pos != std::string::npos)
609         baseTypeName.erase(pos+1, 8);
610 
611       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
612 
613       // Get argument type qualifiers:
614       if (ty.isConstQualified())
615         typeQuals = "const";
616       if (ty.isVolatileQualified())
617         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
618       if (isPipe)
619         typeQuals = "pipe";
620     }
621 
622     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
623 
624     // Get image and pipe access qualifier:
625     if (ty->isImageType()|| ty->isPipeType()) {
626       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
627       if (A && A->isWriteOnly())
628         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
629       else if (A && A->isReadWrite())
630         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
631       else
632         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
633     } else
634       accessQuals.push_back(llvm::MDString::get(Context, "none"));
635 
636     // Get argument name.
637     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
638   }
639 
640   Fn->setMetadata("kernel_arg_addr_space",
641                   llvm::MDNode::get(Context, addressQuals));
642   Fn->setMetadata("kernel_arg_access_qual",
643                   llvm::MDNode::get(Context, accessQuals));
644   Fn->setMetadata("kernel_arg_type",
645                   llvm::MDNode::get(Context, argTypeNames));
646   Fn->setMetadata("kernel_arg_base_type",
647                   llvm::MDNode::get(Context, argBaseTypeNames));
648   Fn->setMetadata("kernel_arg_type_qual",
649                   llvm::MDNode::get(Context, argTypeQuals));
650   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
651     Fn->setMetadata("kernel_arg_name",
652                     llvm::MDNode::get(Context, argNames));
653 }
654 
655 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
656                                                llvm::Function *Fn)
657 {
658   if (!FD->hasAttr<OpenCLKernelAttr>())
659     return;
660 
661   llvm::LLVMContext &Context = getLLVMContext();
662 
663   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
664 
665   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
666     QualType hintQTy = A->getTypeHint();
667     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
668     bool isSignedInteger =
669         hintQTy->isSignedIntegerType() ||
670         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
671     llvm::Metadata *attrMDArgs[] = {
672         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
673             CGM.getTypes().ConvertType(A->getTypeHint()))),
674         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
675             llvm::IntegerType::get(Context, 32),
676             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
677     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
678   }
679 
680   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
681     llvm::Metadata *attrMDArgs[] = {
682         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
683         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
684         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
685     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
686   }
687 
688   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
689     llvm::Metadata *attrMDArgs[] = {
690         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
691         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
692         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
693     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
694   }
695 }
696 
697 /// Determine whether the function F ends with a return stmt.
698 static bool endsWithReturn(const Decl* F) {
699   const Stmt *Body = nullptr;
700   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
701     Body = FD->getBody();
702   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
703     Body = OMD->getBody();
704 
705   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
706     auto LastStmt = CS->body_rbegin();
707     if (LastStmt != CS->body_rend())
708       return isa<ReturnStmt>(*LastStmt);
709   }
710   return false;
711 }
712 
713 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
714   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
715   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
716 }
717 
718 void CodeGenFunction::StartFunction(GlobalDecl GD,
719                                     QualType RetTy,
720                                     llvm::Function *Fn,
721                                     const CGFunctionInfo &FnInfo,
722                                     const FunctionArgList &Args,
723                                     SourceLocation Loc,
724                                     SourceLocation StartLoc) {
725   assert(!CurFn &&
726          "Do not use a CodeGenFunction object for more than one function");
727 
728   const Decl *D = GD.getDecl();
729 
730   DidCallStackSave = false;
731   CurCodeDecl = D;
732   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
733     if (FD->usesSEHTry())
734       CurSEHParent = FD;
735   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
736   FnRetTy = RetTy;
737   CurFn = Fn;
738   CurFnInfo = &FnInfo;
739   assert(CurFn->isDeclaration() && "Function already has body?");
740 
741   if (CGM.isInSanitizerBlacklist(Fn, Loc))
742     SanOpts.clear();
743 
744   if (D) {
745     // Apply the no_sanitize* attributes to SanOpts.
746     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
747       SanOpts.Mask &= ~Attr->getMask();
748   }
749 
750   // Apply sanitizer attributes to the function.
751   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
752     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
753   if (SanOpts.has(SanitizerKind::Thread))
754     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
755   if (SanOpts.has(SanitizerKind::Memory))
756     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
757   if (SanOpts.has(SanitizerKind::SafeStack))
758     Fn->addFnAttr(llvm::Attribute::SafeStack);
759 
760   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
761   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
762   if (SanOpts.has(SanitizerKind::Thread)) {
763     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
764       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
765       if (OMD->getMethodFamily() == OMF_dealloc ||
766           OMD->getMethodFamily() == OMF_initialize ||
767           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
768         markAsIgnoreThreadCheckingAtRuntime(Fn);
769       }
770     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
771       IdentifierInfo *II = FD->getIdentifier();
772       if (II && II->isStr("__destroy_helper_block_"))
773         markAsIgnoreThreadCheckingAtRuntime(Fn);
774     }
775   }
776 
777   // Apply xray attributes to the function (as a string, for now)
778   if (D && ShouldXRayInstrumentFunction()) {
779     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
780       if (XRayAttr->alwaysXRayInstrument())
781         Fn->addFnAttr("function-instrument", "xray-always");
782       if (XRayAttr->neverXRayInstrument())
783         Fn->addFnAttr("function-instrument", "xray-never");
784       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
785         Fn->addFnAttr("xray-log-args",
786                       llvm::utostr(LogArgs->getArgumentCount()));
787       }
788     } else {
789       Fn->addFnAttr(
790           "xray-instruction-threshold",
791           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
792     }
793   }
794 
795   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
796     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
797       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
798 
799   // Add no-jump-tables value.
800   Fn->addFnAttr("no-jump-tables",
801                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
802 
803   if (getLangOpts().OpenCL) {
804     // Add metadata for a kernel function.
805     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
806       EmitOpenCLKernelMetadata(FD, Fn);
807   }
808 
809   // If we are checking function types, emit a function type signature as
810   // prologue data.
811   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
812     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
813       if (llvm::Constant *PrologueSig =
814               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
815         llvm::Constant *FTRTTIConst =
816             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
817         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
818         llvm::Constant *PrologueStructConst =
819             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
820         Fn->setPrologueData(PrologueStructConst);
821       }
822     }
823   }
824 
825   // If we're checking nullability, we need to know whether we can check the
826   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
827   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
828     auto Nullability = FnRetTy->getNullability(getContext());
829     if (Nullability && *Nullability == NullabilityKind::NonNull) {
830       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
831             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
832         RetValNullabilityPrecondition =
833             llvm::ConstantInt::getTrue(getLLVMContext());
834     }
835   }
836 
837   // If we're in C++ mode and the function name is "main", it is guaranteed
838   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
839   // used within a program").
840   if (getLangOpts().CPlusPlus)
841     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
842       if (FD->isMain())
843         Fn->addFnAttr(llvm::Attribute::NoRecurse);
844 
845   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
846 
847   // Create a marker to make it easy to insert allocas into the entryblock
848   // later.  Don't create this with the builder, because we don't want it
849   // folded.
850   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
851   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
852 
853   ReturnBlock = getJumpDestInCurrentScope("return");
854 
855   Builder.SetInsertPoint(EntryBB);
856 
857   // Emit subprogram debug descriptor.
858   if (CGDebugInfo *DI = getDebugInfo()) {
859     // Reconstruct the type from the argument list so that implicit parameters,
860     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
861     // convention.
862     CallingConv CC = CallingConv::CC_C;
863     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
864       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
865         CC = SrcFnTy->getCallConv();
866     SmallVector<QualType, 16> ArgTypes;
867     for (const VarDecl *VD : Args)
868       ArgTypes.push_back(VD->getType());
869     QualType FnType = getContext().getFunctionType(
870         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
871     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
872   }
873 
874   if (ShouldInstrumentFunction())
875     EmitFunctionInstrumentation("__cyg_profile_func_enter");
876 
877   // Since emitting the mcount call here impacts optimizations such as function
878   // inlining, we just add an attribute to insert a mcount call in backend.
879   // The attribute "counting-function" is set to mcount function name which is
880   // architecture dependent.
881   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
882     if (CGM.getCodeGenOpts().CallFEntry)
883       Fn->addFnAttr("fentry-call", "true");
884     else
885       Fn->addFnAttr("counting-function", getTarget().getMCountName());
886   }
887 
888   if (RetTy->isVoidType()) {
889     // Void type; nothing to return.
890     ReturnValue = Address::invalid();
891 
892     // Count the implicit return.
893     if (!endsWithReturn(D))
894       ++NumReturnExprs;
895   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
896              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
897     // Indirect aggregate return; emit returned value directly into sret slot.
898     // This reduces code size, and affects correctness in C++.
899     auto AI = CurFn->arg_begin();
900     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
901       ++AI;
902     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
903   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
904              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
905     // Load the sret pointer from the argument struct and return into that.
906     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
907     llvm::Function::arg_iterator EI = CurFn->arg_end();
908     --EI;
909     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
910     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
911     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
912   } else {
913     ReturnValue = CreateIRTemp(RetTy, "retval");
914 
915     // Tell the epilog emitter to autorelease the result.  We do this
916     // now so that various specialized functions can suppress it
917     // during their IR-generation.
918     if (getLangOpts().ObjCAutoRefCount &&
919         !CurFnInfo->isReturnsRetained() &&
920         RetTy->isObjCRetainableType())
921       AutoreleaseResult = true;
922   }
923 
924   EmitStartEHSpec(CurCodeDecl);
925 
926   PrologueCleanupDepth = EHStack.stable_begin();
927   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
928 
929   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
930     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
931     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
932     if (MD->getParent()->isLambda() &&
933         MD->getOverloadedOperator() == OO_Call) {
934       // We're in a lambda; figure out the captures.
935       MD->getParent()->getCaptureFields(LambdaCaptureFields,
936                                         LambdaThisCaptureField);
937       if (LambdaThisCaptureField) {
938         // If the lambda captures the object referred to by '*this' - either by
939         // value or by reference, make sure CXXThisValue points to the correct
940         // object.
941 
942         // Get the lvalue for the field (which is a copy of the enclosing object
943         // or contains the address of the enclosing object).
944         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
945         if (!LambdaThisCaptureField->getType()->isPointerType()) {
946           // If the enclosing object was captured by value, just use its address.
947           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
948         } else {
949           // Load the lvalue pointed to by the field, since '*this' was captured
950           // by reference.
951           CXXThisValue =
952               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
953         }
954       }
955       for (auto *FD : MD->getParent()->fields()) {
956         if (FD->hasCapturedVLAType()) {
957           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
958                                            SourceLocation()).getScalarVal();
959           auto VAT = FD->getCapturedVLAType();
960           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
961         }
962       }
963     } else {
964       // Not in a lambda; just use 'this' from the method.
965       // FIXME: Should we generate a new load for each use of 'this'?  The
966       // fast register allocator would be happier...
967       CXXThisValue = CXXABIThisValue;
968     }
969 
970     // Null-check the 'this' pointer once per function, if it's available.
971     if (CXXThisValue) {
972       SanitizerSet SkippedChecks;
973       SkippedChecks.set(SanitizerKind::Alignment, true);
974       SkippedChecks.set(SanitizerKind::ObjectSize, true);
975       EmitTypeCheck(TCK_Load, Loc, CXXThisValue, MD->getThisType(getContext()),
976                     /*Alignment=*/CharUnits::Zero(), SkippedChecks);
977     }
978   }
979 
980   // If any of the arguments have a variably modified type, make sure to
981   // emit the type size.
982   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
983        i != e; ++i) {
984     const VarDecl *VD = *i;
985 
986     // Dig out the type as written from ParmVarDecls; it's unclear whether
987     // the standard (C99 6.9.1p10) requires this, but we're following the
988     // precedent set by gcc.
989     QualType Ty;
990     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
991       Ty = PVD->getOriginalType();
992     else
993       Ty = VD->getType();
994 
995     if (Ty->isVariablyModifiedType())
996       EmitVariablyModifiedType(Ty);
997   }
998   // Emit a location at the end of the prologue.
999   if (CGDebugInfo *DI = getDebugInfo())
1000     DI->EmitLocation(Builder, StartLoc);
1001 }
1002 
1003 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1004                                        const Stmt *Body) {
1005   incrementProfileCounter(Body);
1006   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1007     EmitCompoundStmtWithoutScope(*S);
1008   else
1009     EmitStmt(Body);
1010 }
1011 
1012 /// When instrumenting to collect profile data, the counts for some blocks
1013 /// such as switch cases need to not include the fall-through counts, so
1014 /// emit a branch around the instrumentation code. When not instrumenting,
1015 /// this just calls EmitBlock().
1016 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1017                                                const Stmt *S) {
1018   llvm::BasicBlock *SkipCountBB = nullptr;
1019   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1020     // When instrumenting for profiling, the fallthrough to certain
1021     // statements needs to skip over the instrumentation code so that we
1022     // get an accurate count.
1023     SkipCountBB = createBasicBlock("skipcount");
1024     EmitBranch(SkipCountBB);
1025   }
1026   EmitBlock(BB);
1027   uint64_t CurrentCount = getCurrentProfileCount();
1028   incrementProfileCounter(S);
1029   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1030   if (SkipCountBB)
1031     EmitBlock(SkipCountBB);
1032 }
1033 
1034 /// Tries to mark the given function nounwind based on the
1035 /// non-existence of any throwing calls within it.  We believe this is
1036 /// lightweight enough to do at -O0.
1037 static void TryMarkNoThrow(llvm::Function *F) {
1038   // LLVM treats 'nounwind' on a function as part of the type, so we
1039   // can't do this on functions that can be overwritten.
1040   if (F->isInterposable()) return;
1041 
1042   for (llvm::BasicBlock &BB : *F)
1043     for (llvm::Instruction &I : BB)
1044       if (I.mayThrow())
1045         return;
1046 
1047   F->setDoesNotThrow();
1048 }
1049 
1050 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1051                                                FunctionArgList &Args) {
1052   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1053   QualType ResTy = FD->getReturnType();
1054 
1055   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1056   if (MD && MD->isInstance()) {
1057     if (CGM.getCXXABI().HasThisReturn(GD))
1058       ResTy = MD->getThisType(getContext());
1059     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1060       ResTy = CGM.getContext().VoidPtrTy;
1061     CGM.getCXXABI().buildThisParam(*this, Args);
1062   }
1063 
1064   // The base version of an inheriting constructor whose constructed base is a
1065   // virtual base is not passed any arguments (because it doesn't actually call
1066   // the inherited constructor).
1067   bool PassedParams = true;
1068   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1069     if (auto Inherited = CD->getInheritedConstructor())
1070       PassedParams =
1071           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1072 
1073   if (PassedParams) {
1074     for (auto *Param : FD->parameters()) {
1075       Args.push_back(Param);
1076       if (!Param->hasAttr<PassObjectSizeAttr>())
1077         continue;
1078 
1079       IdentifierInfo *NoID = nullptr;
1080       auto *Implicit = ImplicitParamDecl::Create(
1081           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
1082           getContext().getSizeType());
1083       SizeArguments[Param] = Implicit;
1084       Args.push_back(Implicit);
1085     }
1086   }
1087 
1088   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1089     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1090 
1091   return ResTy;
1092 }
1093 
1094 static bool
1095 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1096                                              const ASTContext &Context) {
1097   QualType T = FD->getReturnType();
1098   // Avoid the optimization for functions that return a record type with a
1099   // trivial destructor or another trivially copyable type.
1100   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1101     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1102       return !ClassDecl->hasTrivialDestructor();
1103   }
1104   return !T.isTriviallyCopyableType(Context);
1105 }
1106 
1107 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1108                                    const CGFunctionInfo &FnInfo) {
1109   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1110   CurGD = GD;
1111 
1112   FunctionArgList Args;
1113   QualType ResTy = BuildFunctionArgList(GD, Args);
1114 
1115   // Check if we should generate debug info for this function.
1116   if (FD->hasAttr<NoDebugAttr>())
1117     DebugInfo = nullptr; // disable debug info indefinitely for this function
1118 
1119   // The function might not have a body if we're generating thunks for a
1120   // function declaration.
1121   SourceRange BodyRange;
1122   if (Stmt *Body = FD->getBody())
1123     BodyRange = Body->getSourceRange();
1124   else
1125     BodyRange = FD->getLocation();
1126   CurEHLocation = BodyRange.getEnd();
1127 
1128   // Use the location of the start of the function to determine where
1129   // the function definition is located. By default use the location
1130   // of the declaration as the location for the subprogram. A function
1131   // may lack a declaration in the source code if it is created by code
1132   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1133   SourceLocation Loc = FD->getLocation();
1134 
1135   // If this is a function specialization then use the pattern body
1136   // as the location for the function.
1137   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1138     if (SpecDecl->hasBody(SpecDecl))
1139       Loc = SpecDecl->getLocation();
1140 
1141   Stmt *Body = FD->getBody();
1142 
1143   // Initialize helper which will detect jumps which can cause invalid lifetime
1144   // markers.
1145   if (Body && ShouldEmitLifetimeMarkers)
1146     Bypasses.Init(Body);
1147 
1148   // Emit the standard function prologue.
1149   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1150 
1151   // Generate the body of the function.
1152   PGO.assignRegionCounters(GD, CurFn);
1153   if (isa<CXXDestructorDecl>(FD))
1154     EmitDestructorBody(Args);
1155   else if (isa<CXXConstructorDecl>(FD))
1156     EmitConstructorBody(Args);
1157   else if (getLangOpts().CUDA &&
1158            !getLangOpts().CUDAIsDevice &&
1159            FD->hasAttr<CUDAGlobalAttr>())
1160     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1161   else if (isa<CXXConversionDecl>(FD) &&
1162            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1163     // The lambda conversion to block pointer is special; the semantics can't be
1164     // expressed in the AST, so IRGen needs to special-case it.
1165     EmitLambdaToBlockPointerBody(Args);
1166   } else if (isa<CXXMethodDecl>(FD) &&
1167              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1168     // The lambda static invoker function is special, because it forwards or
1169     // clones the body of the function call operator (but is actually static).
1170     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1171   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1172              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1173               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1174     // Implicit copy-assignment gets the same special treatment as implicit
1175     // copy-constructors.
1176     emitImplicitAssignmentOperatorBody(Args);
1177   } else if (Body) {
1178     EmitFunctionBody(Args, Body);
1179   } else
1180     llvm_unreachable("no definition for emitted function");
1181 
1182   // C++11 [stmt.return]p2:
1183   //   Flowing off the end of a function [...] results in undefined behavior in
1184   //   a value-returning function.
1185   // C11 6.9.1p12:
1186   //   If the '}' that terminates a function is reached, and the value of the
1187   //   function call is used by the caller, the behavior is undefined.
1188   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1189       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1190     bool ShouldEmitUnreachable =
1191         CGM.getCodeGenOpts().StrictReturn ||
1192         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1193     if (SanOpts.has(SanitizerKind::Return)) {
1194       SanitizerScope SanScope(this);
1195       llvm::Value *IsFalse = Builder.getFalse();
1196       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1197                 SanitizerHandler::MissingReturn,
1198                 EmitCheckSourceLocation(FD->getLocation()), None);
1199     } else if (ShouldEmitUnreachable) {
1200       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1201         EmitTrapCall(llvm::Intrinsic::trap);
1202     }
1203     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1204       Builder.CreateUnreachable();
1205       Builder.ClearInsertionPoint();
1206     }
1207   }
1208 
1209   // Emit the standard function epilogue.
1210   FinishFunction(BodyRange.getEnd());
1211 
1212   // If we haven't marked the function nothrow through other means, do
1213   // a quick pass now to see if we can.
1214   if (!CurFn->doesNotThrow())
1215     TryMarkNoThrow(CurFn);
1216 }
1217 
1218 /// ContainsLabel - Return true if the statement contains a label in it.  If
1219 /// this statement is not executed normally, it not containing a label means
1220 /// that we can just remove the code.
1221 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1222   // Null statement, not a label!
1223   if (!S) return false;
1224 
1225   // If this is a label, we have to emit the code, consider something like:
1226   // if (0) {  ...  foo:  bar(); }  goto foo;
1227   //
1228   // TODO: If anyone cared, we could track __label__'s, since we know that you
1229   // can't jump to one from outside their declared region.
1230   if (isa<LabelStmt>(S))
1231     return true;
1232 
1233   // If this is a case/default statement, and we haven't seen a switch, we have
1234   // to emit the code.
1235   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1236     return true;
1237 
1238   // If this is a switch statement, we want to ignore cases below it.
1239   if (isa<SwitchStmt>(S))
1240     IgnoreCaseStmts = true;
1241 
1242   // Scan subexpressions for verboten labels.
1243   for (const Stmt *SubStmt : S->children())
1244     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1245       return true;
1246 
1247   return false;
1248 }
1249 
1250 /// containsBreak - Return true if the statement contains a break out of it.
1251 /// If the statement (recursively) contains a switch or loop with a break
1252 /// inside of it, this is fine.
1253 bool CodeGenFunction::containsBreak(const Stmt *S) {
1254   // Null statement, not a label!
1255   if (!S) return false;
1256 
1257   // If this is a switch or loop that defines its own break scope, then we can
1258   // include it and anything inside of it.
1259   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1260       isa<ForStmt>(S))
1261     return false;
1262 
1263   if (isa<BreakStmt>(S))
1264     return true;
1265 
1266   // Scan subexpressions for verboten breaks.
1267   for (const Stmt *SubStmt : S->children())
1268     if (containsBreak(SubStmt))
1269       return true;
1270 
1271   return false;
1272 }
1273 
1274 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1275   if (!S) return false;
1276 
1277   // Some statement kinds add a scope and thus never add a decl to the current
1278   // scope. Note, this list is longer than the list of statements that might
1279   // have an unscoped decl nested within them, but this way is conservatively
1280   // correct even if more statement kinds are added.
1281   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1282       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1283       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1284       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1285     return false;
1286 
1287   if (isa<DeclStmt>(S))
1288     return true;
1289 
1290   for (const Stmt *SubStmt : S->children())
1291     if (mightAddDeclToScope(SubStmt))
1292       return true;
1293 
1294   return false;
1295 }
1296 
1297 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1298 /// to a constant, or if it does but contains a label, return false.  If it
1299 /// constant folds return true and set the boolean result in Result.
1300 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1301                                                    bool &ResultBool,
1302                                                    bool AllowLabels) {
1303   llvm::APSInt ResultInt;
1304   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1305     return false;
1306 
1307   ResultBool = ResultInt.getBoolValue();
1308   return true;
1309 }
1310 
1311 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1312 /// to a constant, or if it does but contains a label, return false.  If it
1313 /// constant folds return true and set the folded value.
1314 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1315                                                    llvm::APSInt &ResultInt,
1316                                                    bool AllowLabels) {
1317   // FIXME: Rename and handle conversion of other evaluatable things
1318   // to bool.
1319   llvm::APSInt Int;
1320   if (!Cond->EvaluateAsInt(Int, getContext()))
1321     return false;  // Not foldable, not integer or not fully evaluatable.
1322 
1323   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1324     return false;  // Contains a label.
1325 
1326   ResultInt = Int;
1327   return true;
1328 }
1329 
1330 
1331 
1332 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1333 /// statement) to the specified blocks.  Based on the condition, this might try
1334 /// to simplify the codegen of the conditional based on the branch.
1335 ///
1336 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1337                                            llvm::BasicBlock *TrueBlock,
1338                                            llvm::BasicBlock *FalseBlock,
1339                                            uint64_t TrueCount) {
1340   Cond = Cond->IgnoreParens();
1341 
1342   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1343 
1344     // Handle X && Y in a condition.
1345     if (CondBOp->getOpcode() == BO_LAnd) {
1346       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1347       // folded if the case was simple enough.
1348       bool ConstantBool = false;
1349       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1350           ConstantBool) {
1351         // br(1 && X) -> br(X).
1352         incrementProfileCounter(CondBOp);
1353         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1354                                     TrueCount);
1355       }
1356 
1357       // If we have "X && 1", simplify the code to use an uncond branch.
1358       // "X && 0" would have been constant folded to 0.
1359       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1360           ConstantBool) {
1361         // br(X && 1) -> br(X).
1362         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1363                                     TrueCount);
1364       }
1365 
1366       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1367       // want to jump to the FalseBlock.
1368       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1369       // The counter tells us how often we evaluate RHS, and all of TrueCount
1370       // can be propagated to that branch.
1371       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1372 
1373       ConditionalEvaluation eval(*this);
1374       {
1375         ApplyDebugLocation DL(*this, Cond);
1376         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1377         EmitBlock(LHSTrue);
1378       }
1379 
1380       incrementProfileCounter(CondBOp);
1381       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1382 
1383       // Any temporaries created here are conditional.
1384       eval.begin(*this);
1385       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1386       eval.end(*this);
1387 
1388       return;
1389     }
1390 
1391     if (CondBOp->getOpcode() == BO_LOr) {
1392       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1393       // folded if the case was simple enough.
1394       bool ConstantBool = false;
1395       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1396           !ConstantBool) {
1397         // br(0 || X) -> br(X).
1398         incrementProfileCounter(CondBOp);
1399         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1400                                     TrueCount);
1401       }
1402 
1403       // If we have "X || 0", simplify the code to use an uncond branch.
1404       // "X || 1" would have been constant folded to 1.
1405       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1406           !ConstantBool) {
1407         // br(X || 0) -> br(X).
1408         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1409                                     TrueCount);
1410       }
1411 
1412       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1413       // want to jump to the TrueBlock.
1414       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1415       // We have the count for entry to the RHS and for the whole expression
1416       // being true, so we can divy up True count between the short circuit and
1417       // the RHS.
1418       uint64_t LHSCount =
1419           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1420       uint64_t RHSCount = TrueCount - LHSCount;
1421 
1422       ConditionalEvaluation eval(*this);
1423       {
1424         ApplyDebugLocation DL(*this, Cond);
1425         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1426         EmitBlock(LHSFalse);
1427       }
1428 
1429       incrementProfileCounter(CondBOp);
1430       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1431 
1432       // Any temporaries created here are conditional.
1433       eval.begin(*this);
1434       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1435 
1436       eval.end(*this);
1437 
1438       return;
1439     }
1440   }
1441 
1442   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1443     // br(!x, t, f) -> br(x, f, t)
1444     if (CondUOp->getOpcode() == UO_LNot) {
1445       // Negate the count.
1446       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1447       // Negate the condition and swap the destination blocks.
1448       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1449                                   FalseCount);
1450     }
1451   }
1452 
1453   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1454     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1455     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1456     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1457 
1458     ConditionalEvaluation cond(*this);
1459     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1460                          getProfileCount(CondOp));
1461 
1462     // When computing PGO branch weights, we only know the overall count for
1463     // the true block. This code is essentially doing tail duplication of the
1464     // naive code-gen, introducing new edges for which counts are not
1465     // available. Divide the counts proportionally between the LHS and RHS of
1466     // the conditional operator.
1467     uint64_t LHSScaledTrueCount = 0;
1468     if (TrueCount) {
1469       double LHSRatio =
1470           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1471       LHSScaledTrueCount = TrueCount * LHSRatio;
1472     }
1473 
1474     cond.begin(*this);
1475     EmitBlock(LHSBlock);
1476     incrementProfileCounter(CondOp);
1477     {
1478       ApplyDebugLocation DL(*this, Cond);
1479       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1480                            LHSScaledTrueCount);
1481     }
1482     cond.end(*this);
1483 
1484     cond.begin(*this);
1485     EmitBlock(RHSBlock);
1486     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1487                          TrueCount - LHSScaledTrueCount);
1488     cond.end(*this);
1489 
1490     return;
1491   }
1492 
1493   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1494     // Conditional operator handling can give us a throw expression as a
1495     // condition for a case like:
1496     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1497     // Fold this to:
1498     //   br(c, throw x, br(y, t, f))
1499     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1500     return;
1501   }
1502 
1503   // If the branch has a condition wrapped by __builtin_unpredictable,
1504   // create metadata that specifies that the branch is unpredictable.
1505   // Don't bother if not optimizing because that metadata would not be used.
1506   llvm::MDNode *Unpredictable = nullptr;
1507   auto *Call = dyn_cast<CallExpr>(Cond);
1508   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1509     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1510     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1511       llvm::MDBuilder MDHelper(getLLVMContext());
1512       Unpredictable = MDHelper.createUnpredictable();
1513     }
1514   }
1515 
1516   // Create branch weights based on the number of times we get here and the
1517   // number of times the condition should be true.
1518   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1519   llvm::MDNode *Weights =
1520       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1521 
1522   // Emit the code with the fully general case.
1523   llvm::Value *CondV;
1524   {
1525     ApplyDebugLocation DL(*this, Cond);
1526     CondV = EvaluateExprAsBool(Cond);
1527   }
1528   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1529 }
1530 
1531 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1532 /// specified stmt yet.
1533 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1534   CGM.ErrorUnsupported(S, Type);
1535 }
1536 
1537 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1538 /// variable-length array whose elements have a non-zero bit-pattern.
1539 ///
1540 /// \param baseType the inner-most element type of the array
1541 /// \param src - a char* pointing to the bit-pattern for a single
1542 /// base element of the array
1543 /// \param sizeInChars - the total size of the VLA, in chars
1544 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1545                                Address dest, Address src,
1546                                llvm::Value *sizeInChars) {
1547   CGBuilderTy &Builder = CGF.Builder;
1548 
1549   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1550   llvm::Value *baseSizeInChars
1551     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1552 
1553   Address begin =
1554     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1555   llvm::Value *end =
1556     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1557 
1558   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1559   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1560   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1561 
1562   // Make a loop over the VLA.  C99 guarantees that the VLA element
1563   // count must be nonzero.
1564   CGF.EmitBlock(loopBB);
1565 
1566   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1567   cur->addIncoming(begin.getPointer(), originBB);
1568 
1569   CharUnits curAlign =
1570     dest.getAlignment().alignmentOfArrayElement(baseSize);
1571 
1572   // memcpy the individual element bit-pattern.
1573   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1574                        /*volatile*/ false);
1575 
1576   // Go to the next element.
1577   llvm::Value *next =
1578     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1579 
1580   // Leave if that's the end of the VLA.
1581   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1582   Builder.CreateCondBr(done, contBB, loopBB);
1583   cur->addIncoming(next, loopBB);
1584 
1585   CGF.EmitBlock(contBB);
1586 }
1587 
1588 void
1589 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1590   // Ignore empty classes in C++.
1591   if (getLangOpts().CPlusPlus) {
1592     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1593       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1594         return;
1595     }
1596   }
1597 
1598   // Cast the dest ptr to the appropriate i8 pointer type.
1599   if (DestPtr.getElementType() != Int8Ty)
1600     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1601 
1602   // Get size and alignment info for this aggregate.
1603   CharUnits size = getContext().getTypeSizeInChars(Ty);
1604 
1605   llvm::Value *SizeVal;
1606   const VariableArrayType *vla;
1607 
1608   // Don't bother emitting a zero-byte memset.
1609   if (size.isZero()) {
1610     // But note that getTypeInfo returns 0 for a VLA.
1611     if (const VariableArrayType *vlaType =
1612           dyn_cast_or_null<VariableArrayType>(
1613                                           getContext().getAsArrayType(Ty))) {
1614       QualType eltType;
1615       llvm::Value *numElts;
1616       std::tie(numElts, eltType) = getVLASize(vlaType);
1617 
1618       SizeVal = numElts;
1619       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1620       if (!eltSize.isOne())
1621         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1622       vla = vlaType;
1623     } else {
1624       return;
1625     }
1626   } else {
1627     SizeVal = CGM.getSize(size);
1628     vla = nullptr;
1629   }
1630 
1631   // If the type contains a pointer to data member we can't memset it to zero.
1632   // Instead, create a null constant and copy it to the destination.
1633   // TODO: there are other patterns besides zero that we can usefully memset,
1634   // like -1, which happens to be the pattern used by member-pointers.
1635   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1636     // For a VLA, emit a single element, then splat that over the VLA.
1637     if (vla) Ty = getContext().getBaseElementType(vla);
1638 
1639     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1640 
1641     llvm::GlobalVariable *NullVariable =
1642       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1643                                /*isConstant=*/true,
1644                                llvm::GlobalVariable::PrivateLinkage,
1645                                NullConstant, Twine());
1646     CharUnits NullAlign = DestPtr.getAlignment();
1647     NullVariable->setAlignment(NullAlign.getQuantity());
1648     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1649                    NullAlign);
1650 
1651     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1652 
1653     // Get and call the appropriate llvm.memcpy overload.
1654     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1655     return;
1656   }
1657 
1658   // Otherwise, just memset the whole thing to zero.  This is legal
1659   // because in LLVM, all default initializers (other than the ones we just
1660   // handled above) are guaranteed to have a bit pattern of all zeros.
1661   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1662 }
1663 
1664 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1665   // Make sure that there is a block for the indirect goto.
1666   if (!IndirectBranch)
1667     GetIndirectGotoBlock();
1668 
1669   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1670 
1671   // Make sure the indirect branch includes all of the address-taken blocks.
1672   IndirectBranch->addDestination(BB);
1673   return llvm::BlockAddress::get(CurFn, BB);
1674 }
1675 
1676 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1677   // If we already made the indirect branch for indirect goto, return its block.
1678   if (IndirectBranch) return IndirectBranch->getParent();
1679 
1680   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1681 
1682   // Create the PHI node that indirect gotos will add entries to.
1683   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1684                                               "indirect.goto.dest");
1685 
1686   // Create the indirect branch instruction.
1687   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1688   return IndirectBranch->getParent();
1689 }
1690 
1691 /// Computes the length of an array in elements, as well as the base
1692 /// element type and a properly-typed first element pointer.
1693 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1694                                               QualType &baseType,
1695                                               Address &addr) {
1696   const ArrayType *arrayType = origArrayType;
1697 
1698   // If it's a VLA, we have to load the stored size.  Note that
1699   // this is the size of the VLA in bytes, not its size in elements.
1700   llvm::Value *numVLAElements = nullptr;
1701   if (isa<VariableArrayType>(arrayType)) {
1702     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1703 
1704     // Walk into all VLAs.  This doesn't require changes to addr,
1705     // which has type T* where T is the first non-VLA element type.
1706     do {
1707       QualType elementType = arrayType->getElementType();
1708       arrayType = getContext().getAsArrayType(elementType);
1709 
1710       // If we only have VLA components, 'addr' requires no adjustment.
1711       if (!arrayType) {
1712         baseType = elementType;
1713         return numVLAElements;
1714       }
1715     } while (isa<VariableArrayType>(arrayType));
1716 
1717     // We get out here only if we find a constant array type
1718     // inside the VLA.
1719   }
1720 
1721   // We have some number of constant-length arrays, so addr should
1722   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1723   // down to the first element of addr.
1724   SmallVector<llvm::Value*, 8> gepIndices;
1725 
1726   // GEP down to the array type.
1727   llvm::ConstantInt *zero = Builder.getInt32(0);
1728   gepIndices.push_back(zero);
1729 
1730   uint64_t countFromCLAs = 1;
1731   QualType eltType;
1732 
1733   llvm::ArrayType *llvmArrayType =
1734     dyn_cast<llvm::ArrayType>(addr.getElementType());
1735   while (llvmArrayType) {
1736     assert(isa<ConstantArrayType>(arrayType));
1737     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1738              == llvmArrayType->getNumElements());
1739 
1740     gepIndices.push_back(zero);
1741     countFromCLAs *= llvmArrayType->getNumElements();
1742     eltType = arrayType->getElementType();
1743 
1744     llvmArrayType =
1745       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1746     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1747     assert((!llvmArrayType || arrayType) &&
1748            "LLVM and Clang types are out-of-synch");
1749   }
1750 
1751   if (arrayType) {
1752     // From this point onwards, the Clang array type has been emitted
1753     // as some other type (probably a packed struct). Compute the array
1754     // size, and just emit the 'begin' expression as a bitcast.
1755     while (arrayType) {
1756       countFromCLAs *=
1757           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1758       eltType = arrayType->getElementType();
1759       arrayType = getContext().getAsArrayType(eltType);
1760     }
1761 
1762     llvm::Type *baseType = ConvertType(eltType);
1763     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1764   } else {
1765     // Create the actual GEP.
1766     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1767                                              gepIndices, "array.begin"),
1768                    addr.getAlignment());
1769   }
1770 
1771   baseType = eltType;
1772 
1773   llvm::Value *numElements
1774     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1775 
1776   // If we had any VLA dimensions, factor them in.
1777   if (numVLAElements)
1778     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1779 
1780   return numElements;
1781 }
1782 
1783 std::pair<llvm::Value*, QualType>
1784 CodeGenFunction::getVLASize(QualType type) {
1785   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1786   assert(vla && "type was not a variable array type!");
1787   return getVLASize(vla);
1788 }
1789 
1790 std::pair<llvm::Value*, QualType>
1791 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1792   // The number of elements so far; always size_t.
1793   llvm::Value *numElements = nullptr;
1794 
1795   QualType elementType;
1796   do {
1797     elementType = type->getElementType();
1798     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1799     assert(vlaSize && "no size for VLA!");
1800     assert(vlaSize->getType() == SizeTy);
1801 
1802     if (!numElements) {
1803       numElements = vlaSize;
1804     } else {
1805       // It's undefined behavior if this wraps around, so mark it that way.
1806       // FIXME: Teach -fsanitize=undefined to trap this.
1807       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1808     }
1809   } while ((type = getContext().getAsVariableArrayType(elementType)));
1810 
1811   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1812 }
1813 
1814 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1815   assert(type->isVariablyModifiedType() &&
1816          "Must pass variably modified type to EmitVLASizes!");
1817 
1818   EnsureInsertPoint();
1819 
1820   // We're going to walk down into the type and look for VLA
1821   // expressions.
1822   do {
1823     assert(type->isVariablyModifiedType());
1824 
1825     const Type *ty = type.getTypePtr();
1826     switch (ty->getTypeClass()) {
1827 
1828 #define TYPE(Class, Base)
1829 #define ABSTRACT_TYPE(Class, Base)
1830 #define NON_CANONICAL_TYPE(Class, Base)
1831 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1832 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1833 #include "clang/AST/TypeNodes.def"
1834       llvm_unreachable("unexpected dependent type!");
1835 
1836     // These types are never variably-modified.
1837     case Type::Builtin:
1838     case Type::Complex:
1839     case Type::Vector:
1840     case Type::ExtVector:
1841     case Type::Record:
1842     case Type::Enum:
1843     case Type::Elaborated:
1844     case Type::TemplateSpecialization:
1845     case Type::ObjCTypeParam:
1846     case Type::ObjCObject:
1847     case Type::ObjCInterface:
1848     case Type::ObjCObjectPointer:
1849       llvm_unreachable("type class is never variably-modified!");
1850 
1851     case Type::Adjusted:
1852       type = cast<AdjustedType>(ty)->getAdjustedType();
1853       break;
1854 
1855     case Type::Decayed:
1856       type = cast<DecayedType>(ty)->getPointeeType();
1857       break;
1858 
1859     case Type::Pointer:
1860       type = cast<PointerType>(ty)->getPointeeType();
1861       break;
1862 
1863     case Type::BlockPointer:
1864       type = cast<BlockPointerType>(ty)->getPointeeType();
1865       break;
1866 
1867     case Type::LValueReference:
1868     case Type::RValueReference:
1869       type = cast<ReferenceType>(ty)->getPointeeType();
1870       break;
1871 
1872     case Type::MemberPointer:
1873       type = cast<MemberPointerType>(ty)->getPointeeType();
1874       break;
1875 
1876     case Type::ConstantArray:
1877     case Type::IncompleteArray:
1878       // Losing element qualification here is fine.
1879       type = cast<ArrayType>(ty)->getElementType();
1880       break;
1881 
1882     case Type::VariableArray: {
1883       // Losing element qualification here is fine.
1884       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1885 
1886       // Unknown size indication requires no size computation.
1887       // Otherwise, evaluate and record it.
1888       if (const Expr *size = vat->getSizeExpr()) {
1889         // It's possible that we might have emitted this already,
1890         // e.g. with a typedef and a pointer to it.
1891         llvm::Value *&entry = VLASizeMap[size];
1892         if (!entry) {
1893           llvm::Value *Size = EmitScalarExpr(size);
1894 
1895           // C11 6.7.6.2p5:
1896           //   If the size is an expression that is not an integer constant
1897           //   expression [...] each time it is evaluated it shall have a value
1898           //   greater than zero.
1899           if (SanOpts.has(SanitizerKind::VLABound) &&
1900               size->getType()->isSignedIntegerType()) {
1901             SanitizerScope SanScope(this);
1902             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1903             llvm::Constant *StaticArgs[] = {
1904               EmitCheckSourceLocation(size->getLocStart()),
1905               EmitCheckTypeDescriptor(size->getType())
1906             };
1907             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1908                                      SanitizerKind::VLABound),
1909                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1910           }
1911 
1912           // Always zexting here would be wrong if it weren't
1913           // undefined behavior to have a negative bound.
1914           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1915         }
1916       }
1917       type = vat->getElementType();
1918       break;
1919     }
1920 
1921     case Type::FunctionProto:
1922     case Type::FunctionNoProto:
1923       type = cast<FunctionType>(ty)->getReturnType();
1924       break;
1925 
1926     case Type::Paren:
1927     case Type::TypeOf:
1928     case Type::UnaryTransform:
1929     case Type::Attributed:
1930     case Type::SubstTemplateTypeParm:
1931     case Type::PackExpansion:
1932       // Keep walking after single level desugaring.
1933       type = type.getSingleStepDesugaredType(getContext());
1934       break;
1935 
1936     case Type::Typedef:
1937     case Type::Decltype:
1938     case Type::Auto:
1939     case Type::DeducedTemplateSpecialization:
1940       // Stop walking: nothing to do.
1941       return;
1942 
1943     case Type::TypeOfExpr:
1944       // Stop walking: emit typeof expression.
1945       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1946       return;
1947 
1948     case Type::Atomic:
1949       type = cast<AtomicType>(ty)->getValueType();
1950       break;
1951 
1952     case Type::Pipe:
1953       type = cast<PipeType>(ty)->getElementType();
1954       break;
1955     }
1956   } while (type->isVariablyModifiedType());
1957 }
1958 
1959 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1960   if (getContext().getBuiltinVaListType()->isArrayType())
1961     return EmitPointerWithAlignment(E);
1962   return EmitLValue(E).getAddress();
1963 }
1964 
1965 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1966   return EmitLValue(E).getAddress();
1967 }
1968 
1969 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1970                                               const APValue &Init) {
1971   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
1972   if (CGDebugInfo *Dbg = getDebugInfo())
1973     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1974       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1975 }
1976 
1977 CodeGenFunction::PeepholeProtection
1978 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1979   // At the moment, the only aggressive peephole we do in IR gen
1980   // is trunc(zext) folding, but if we add more, we can easily
1981   // extend this protection.
1982 
1983   if (!rvalue.isScalar()) return PeepholeProtection();
1984   llvm::Value *value = rvalue.getScalarVal();
1985   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1986 
1987   // Just make an extra bitcast.
1988   assert(HaveInsertPoint());
1989   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1990                                                   Builder.GetInsertBlock());
1991 
1992   PeepholeProtection protection;
1993   protection.Inst = inst;
1994   return protection;
1995 }
1996 
1997 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1998   if (!protection.Inst) return;
1999 
2000   // In theory, we could try to duplicate the peepholes now, but whatever.
2001   protection.Inst->eraseFromParent();
2002 }
2003 
2004 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2005                                                  llvm::Value *AnnotatedVal,
2006                                                  StringRef AnnotationStr,
2007                                                  SourceLocation Location) {
2008   llvm::Value *Args[4] = {
2009     AnnotatedVal,
2010     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2011     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2012     CGM.EmitAnnotationLineNo(Location)
2013   };
2014   return Builder.CreateCall(AnnotationFn, Args);
2015 }
2016 
2017 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2018   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2019   // FIXME We create a new bitcast for every annotation because that's what
2020   // llvm-gcc was doing.
2021   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2022     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2023                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2024                        I->getAnnotation(), D->getLocation());
2025 }
2026 
2027 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2028                                               Address Addr) {
2029   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2030   llvm::Value *V = Addr.getPointer();
2031   llvm::Type *VTy = V->getType();
2032   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2033                                     CGM.Int8PtrTy);
2034 
2035   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2036     // FIXME Always emit the cast inst so we can differentiate between
2037     // annotation on the first field of a struct and annotation on the struct
2038     // itself.
2039     if (VTy != CGM.Int8PtrTy)
2040       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2041     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2042     V = Builder.CreateBitCast(V, VTy);
2043   }
2044 
2045   return Address(V, Addr.getAlignment());
2046 }
2047 
2048 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2049 
2050 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2051     : CGF(CGF) {
2052   assert(!CGF->IsSanitizerScope);
2053   CGF->IsSanitizerScope = true;
2054 }
2055 
2056 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2057   CGF->IsSanitizerScope = false;
2058 }
2059 
2060 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2061                                    const llvm::Twine &Name,
2062                                    llvm::BasicBlock *BB,
2063                                    llvm::BasicBlock::iterator InsertPt) const {
2064   LoopStack.InsertHelper(I);
2065   if (IsSanitizerScope)
2066     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2067 }
2068 
2069 void CGBuilderInserter::InsertHelper(
2070     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2071     llvm::BasicBlock::iterator InsertPt) const {
2072   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2073   if (CGF)
2074     CGF->InsertHelper(I, Name, BB, InsertPt);
2075 }
2076 
2077 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2078                                 CodeGenModule &CGM, const FunctionDecl *FD,
2079                                 std::string &FirstMissing) {
2080   // If there aren't any required features listed then go ahead and return.
2081   if (ReqFeatures.empty())
2082     return false;
2083 
2084   // Now build up the set of caller features and verify that all the required
2085   // features are there.
2086   llvm::StringMap<bool> CallerFeatureMap;
2087   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2088 
2089   // If we have at least one of the features in the feature list return
2090   // true, otherwise return false.
2091   return std::all_of(
2092       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2093         SmallVector<StringRef, 1> OrFeatures;
2094         Feature.split(OrFeatures, "|");
2095         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2096                            [&](StringRef Feature) {
2097                              if (!CallerFeatureMap.lookup(Feature)) {
2098                                FirstMissing = Feature.str();
2099                                return false;
2100                              }
2101                              return true;
2102                            });
2103       });
2104 }
2105 
2106 // Emits an error if we don't have a valid set of target features for the
2107 // called function.
2108 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2109                                           const FunctionDecl *TargetDecl) {
2110   // Early exit if this is an indirect call.
2111   if (!TargetDecl)
2112     return;
2113 
2114   // Get the current enclosing function if it exists. If it doesn't
2115   // we can't check the target features anyhow.
2116   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2117   if (!FD)
2118     return;
2119 
2120   // Grab the required features for the call. For a builtin this is listed in
2121   // the td file with the default cpu, for an always_inline function this is any
2122   // listed cpu and any listed features.
2123   unsigned BuiltinID = TargetDecl->getBuiltinID();
2124   std::string MissingFeature;
2125   if (BuiltinID) {
2126     SmallVector<StringRef, 1> ReqFeatures;
2127     const char *FeatureList =
2128         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2129     // Return if the builtin doesn't have any required features.
2130     if (!FeatureList || StringRef(FeatureList) == "")
2131       return;
2132     StringRef(FeatureList).split(ReqFeatures, ",");
2133     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2134       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2135           << TargetDecl->getDeclName()
2136           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2137 
2138   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2139     // Get the required features for the callee.
2140     SmallVector<StringRef, 1> ReqFeatures;
2141     llvm::StringMap<bool> CalleeFeatureMap;
2142     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2143     for (const auto &F : CalleeFeatureMap) {
2144       // Only positive features are "required".
2145       if (F.getValue())
2146         ReqFeatures.push_back(F.getKey());
2147     }
2148     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2149       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2150           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2151   }
2152 }
2153 
2154 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2155   if (!CGM.getCodeGenOpts().SanitizeStats)
2156     return;
2157 
2158   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2159   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2160   CGM.getSanStats().create(IRB, SSK);
2161 }
2162 
2163 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2164   if (CGDebugInfo *DI = getDebugInfo())
2165     return DI->SourceLocToDebugLoc(Location);
2166 
2167   return llvm::DebugLoc();
2168 }
2169