1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   llvm::FastMathFlags FMF;
75   if (CGM.getLangOpts().FastMath)
76     FMF.setFast();
77   if (CGM.getLangOpts().FiniteMathOnly) {
78     FMF.setNoNaNs();
79     FMF.setNoInfs();
80   }
81   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
82     FMF.setNoNaNs();
83   }
84   if (CGM.getCodeGenOpts().NoSignedZeros) {
85     FMF.setNoSignedZeros();
86   }
87   if (CGM.getCodeGenOpts().ReciprocalMath) {
88     FMF.setAllowReciprocal();
89   }
90   if (CGM.getCodeGenOpts().Reassociate) {
91     FMF.setAllowReassoc();
92   }
93   Builder.setFastMathFlags(FMF);
94 }
95 
96 CodeGenFunction::~CodeGenFunction() {
97   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
98 
99   // If there are any unclaimed block infos, go ahead and destroy them
100   // now.  This can happen if IR-gen gets clever and skips evaluating
101   // something.
102   if (FirstBlockInfo)
103     destroyBlockInfos(FirstBlockInfo);
104 
105   if (getLangOpts().OpenMP && CurFn)
106     CGM.getOpenMPRuntime().functionFinished(*this);
107 }
108 
109 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
110                                                     LValueBaseInfo *BaseInfo,
111                                                     TBAAAccessInfo *TBAAInfo) {
112   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
113                                  /* forPointeeType= */ true);
114 }
115 
116 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
117                                                    LValueBaseInfo *BaseInfo,
118                                                    TBAAAccessInfo *TBAAInfo,
119                                                    bool forPointeeType) {
120   if (TBAAInfo)
121     *TBAAInfo = CGM.getTBAAAccessInfo(T);
122 
123   // Honor alignment typedef attributes even on incomplete types.
124   // We also honor them straight for C++ class types, even as pointees;
125   // there's an expressivity gap here.
126   if (auto TT = T->getAs<TypedefType>()) {
127     if (auto Align = TT->getDecl()->getMaxAlignment()) {
128       if (BaseInfo)
129         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
130       return getContext().toCharUnitsFromBits(Align);
131     }
132   }
133 
134   if (BaseInfo)
135     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
136 
137   CharUnits Alignment;
138   if (T->isIncompleteType()) {
139     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
140   } else {
141     // For C++ class pointees, we don't know whether we're pointing at a
142     // base or a complete object, so we generally need to use the
143     // non-virtual alignment.
144     const CXXRecordDecl *RD;
145     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
146       Alignment = CGM.getClassPointerAlignment(RD);
147     } else {
148       Alignment = getContext().getTypeAlignInChars(T);
149       if (T.getQualifiers().hasUnaligned())
150         Alignment = CharUnits::One();
151     }
152 
153     // Cap to the global maximum type alignment unless the alignment
154     // was somehow explicit on the type.
155     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
156       if (Alignment.getQuantity() > MaxAlign &&
157           !getContext().isAlignmentRequired(T))
158         Alignment = CharUnits::fromQuantity(MaxAlign);
159     }
160   }
161   return Alignment;
162 }
163 
164 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
165   LValueBaseInfo BaseInfo;
166   TBAAAccessInfo TBAAInfo;
167   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
168   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
169                           TBAAInfo);
170 }
171 
172 /// Given a value of type T* that may not be to a complete object,
173 /// construct an l-value with the natural pointee alignment of T.
174 LValue
175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
176   LValueBaseInfo BaseInfo;
177   TBAAAccessInfo TBAAInfo;
178   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
179                                             /* forPointeeType= */ true);
180   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
181 }
182 
183 
184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
185   return CGM.getTypes().ConvertTypeForMem(T);
186 }
187 
188 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
189   return CGM.getTypes().ConvertType(T);
190 }
191 
192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
193   type = type.getCanonicalType();
194   while (true) {
195     switch (type->getTypeClass()) {
196 #define TYPE(name, parent)
197 #define ABSTRACT_TYPE(name, parent)
198 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
199 #define DEPENDENT_TYPE(name, parent) case Type::name:
200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
201 #include "clang/AST/TypeNodes.def"
202       llvm_unreachable("non-canonical or dependent type in IR-generation");
203 
204     case Type::Auto:
205     case Type::DeducedTemplateSpecialization:
206       llvm_unreachable("undeduced type in IR-generation");
207 
208     // Various scalar types.
209     case Type::Builtin:
210     case Type::Pointer:
211     case Type::BlockPointer:
212     case Type::LValueReference:
213     case Type::RValueReference:
214     case Type::MemberPointer:
215     case Type::Vector:
216     case Type::ExtVector:
217     case Type::FunctionProto:
218     case Type::FunctionNoProto:
219     case Type::Enum:
220     case Type::ObjCObjectPointer:
221     case Type::Pipe:
222       return TEK_Scalar;
223 
224     // Complexes.
225     case Type::Complex:
226       return TEK_Complex;
227 
228     // Arrays, records, and Objective-C objects.
229     case Type::ConstantArray:
230     case Type::IncompleteArray:
231     case Type::VariableArray:
232     case Type::Record:
233     case Type::ObjCObject:
234     case Type::ObjCInterface:
235       return TEK_Aggregate;
236 
237     // We operate on atomic values according to their underlying type.
238     case Type::Atomic:
239       type = cast<AtomicType>(type)->getValueType();
240       continue;
241     }
242     llvm_unreachable("unknown type kind!");
243   }
244 }
245 
246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
247   // For cleanliness, we try to avoid emitting the return block for
248   // simple cases.
249   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
250 
251   if (CurBB) {
252     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
253 
254     // We have a valid insert point, reuse it if it is empty or there are no
255     // explicit jumps to the return block.
256     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
257       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
258       delete ReturnBlock.getBlock();
259     } else
260       EmitBlock(ReturnBlock.getBlock());
261     return llvm::DebugLoc();
262   }
263 
264   // Otherwise, if the return block is the target of a single direct
265   // branch then we can just put the code in that block instead. This
266   // cleans up functions which started with a unified return block.
267   if (ReturnBlock.getBlock()->hasOneUse()) {
268     llvm::BranchInst *BI =
269       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
270     if (BI && BI->isUnconditional() &&
271         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
272       // Record/return the DebugLoc of the simple 'return' expression to be used
273       // later by the actual 'ret' instruction.
274       llvm::DebugLoc Loc = BI->getDebugLoc();
275       Builder.SetInsertPoint(BI->getParent());
276       BI->eraseFromParent();
277       delete ReturnBlock.getBlock();
278       return Loc;
279     }
280   }
281 
282   // FIXME: We are at an unreachable point, there is no reason to emit the block
283   // unless it has uses. However, we still need a place to put the debug
284   // region.end for now.
285 
286   EmitBlock(ReturnBlock.getBlock());
287   return llvm::DebugLoc();
288 }
289 
290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
291   if (!BB) return;
292   if (!BB->use_empty())
293     return CGF.CurFn->getBasicBlockList().push_back(BB);
294   delete BB;
295 }
296 
297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
298   assert(BreakContinueStack.empty() &&
299          "mismatched push/pop in break/continue stack!");
300 
301   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
302     && NumSimpleReturnExprs == NumReturnExprs
303     && ReturnBlock.getBlock()->use_empty();
304   // Usually the return expression is evaluated before the cleanup
305   // code.  If the function contains only a simple return statement,
306   // such as a constant, the location before the cleanup code becomes
307   // the last useful breakpoint in the function, because the simple
308   // return expression will be evaluated after the cleanup code. To be
309   // safe, set the debug location for cleanup code to the location of
310   // the return statement.  Otherwise the cleanup code should be at the
311   // end of the function's lexical scope.
312   //
313   // If there are multiple branches to the return block, the branch
314   // instructions will get the location of the return statements and
315   // all will be fine.
316   if (CGDebugInfo *DI = getDebugInfo()) {
317     if (OnlySimpleReturnStmts)
318       DI->EmitLocation(Builder, LastStopPoint);
319     else
320       DI->EmitLocation(Builder, EndLoc);
321   }
322 
323   // Pop any cleanups that might have been associated with the
324   // parameters.  Do this in whatever block we're currently in; it's
325   // important to do this before we enter the return block or return
326   // edges will be *really* confused.
327   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
328   bool HasOnlyLifetimeMarkers =
329       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
330   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
331   if (HasCleanups) {
332     // Make sure the line table doesn't jump back into the body for
333     // the ret after it's been at EndLoc.
334     if (CGDebugInfo *DI = getDebugInfo())
335       if (OnlySimpleReturnStmts)
336         DI->EmitLocation(Builder, EndLoc);
337 
338     PopCleanupBlocks(PrologueCleanupDepth);
339   }
340 
341   // Emit function epilog (to return).
342   llvm::DebugLoc Loc = EmitReturnBlock();
343 
344   if (ShouldInstrumentFunction()) {
345     if (CGM.getCodeGenOpts().InstrumentFunctions)
346       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
347     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
348       CurFn->addFnAttr("instrument-function-exit-inlined",
349                        "__cyg_profile_func_exit");
350   }
351 
352   // Emit debug descriptor for function end.
353   if (CGDebugInfo *DI = getDebugInfo())
354     DI->EmitFunctionEnd(Builder, CurFn);
355 
356   // Reset the debug location to that of the simple 'return' expression, if any
357   // rather than that of the end of the function's scope '}'.
358   ApplyDebugLocation AL(*this, Loc);
359   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
360   EmitEndEHSpec(CurCodeDecl);
361 
362   assert(EHStack.empty() &&
363          "did not remove all scopes from cleanup stack!");
364 
365   // If someone did an indirect goto, emit the indirect goto block at the end of
366   // the function.
367   if (IndirectBranch) {
368     EmitBlock(IndirectBranch->getParent());
369     Builder.ClearInsertionPoint();
370   }
371 
372   // If some of our locals escaped, insert a call to llvm.localescape in the
373   // entry block.
374   if (!EscapedLocals.empty()) {
375     // Invert the map from local to index into a simple vector. There should be
376     // no holes.
377     SmallVector<llvm::Value *, 4> EscapeArgs;
378     EscapeArgs.resize(EscapedLocals.size());
379     for (auto &Pair : EscapedLocals)
380       EscapeArgs[Pair.second] = Pair.first;
381     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
382         &CGM.getModule(), llvm::Intrinsic::localescape);
383     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
384   }
385 
386   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
387   llvm::Instruction *Ptr = AllocaInsertPt;
388   AllocaInsertPt = nullptr;
389   Ptr->eraseFromParent();
390 
391   // If someone took the address of a label but never did an indirect goto, we
392   // made a zero entry PHI node, which is illegal, zap it now.
393   if (IndirectBranch) {
394     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
395     if (PN->getNumIncomingValues() == 0) {
396       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
397       PN->eraseFromParent();
398     }
399   }
400 
401   EmitIfUsed(*this, EHResumeBlock);
402   EmitIfUsed(*this, TerminateLandingPad);
403   EmitIfUsed(*this, TerminateHandler);
404   EmitIfUsed(*this, UnreachableBlock);
405 
406   for (const auto &FuncletAndParent : TerminateFunclets)
407     EmitIfUsed(*this, FuncletAndParent.second);
408 
409   if (CGM.getCodeGenOpts().EmitDeclMetadata)
410     EmitDeclMetadata();
411 
412   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
413            I = DeferredReplacements.begin(),
414            E = DeferredReplacements.end();
415        I != E; ++I) {
416     I->first->replaceAllUsesWith(I->second);
417     I->first->eraseFromParent();
418   }
419 
420   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
421   // PHIs if the current function is a coroutine. We don't do it for all
422   // functions as it may result in slight increase in numbers of instructions
423   // if compiled with no optimizations. We do it for coroutine as the lifetime
424   // of CleanupDestSlot alloca make correct coroutine frame building very
425   // difficult.
426   if (NormalCleanupDest.isValid() && isCoroutine()) {
427     llvm::DominatorTree DT(*CurFn);
428     llvm::PromoteMemToReg(
429         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
430     NormalCleanupDest = Address::invalid();
431   }
432 
433   // Scan function arguments for vector width.
434   for (llvm::Argument &A : CurFn->args())
435     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
436       LargestVectorWidth = std::max(LargestVectorWidth,
437                                     VT->getPrimitiveSizeInBits());
438 
439   // Update vector width based on return type.
440   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
441     LargestVectorWidth = std::max(LargestVectorWidth,
442                                   VT->getPrimitiveSizeInBits());
443 
444   // Add the required-vector-width attribute. This contains the max width from:
445   // 1. min-vector-width attribute used in the source program.
446   // 2. Any builtins used that have a vector width specified.
447   // 3. Values passed in and out of inline assembly.
448   // 4. Width of vector arguments and return types for this function.
449   // 5. Width of vector aguments and return types for functions called by this
450   //    function.
451   if (LargestVectorWidth != 0)
452     CurFn->addFnAttr("min-legal-vector-width",
453                      llvm::utostr(LargestVectorWidth));
454 }
455 
456 /// ShouldInstrumentFunction - Return true if the current function should be
457 /// instrumented with __cyg_profile_func_* calls
458 bool CodeGenFunction::ShouldInstrumentFunction() {
459   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
460       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
461       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
462     return false;
463   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
464     return false;
465   return true;
466 }
467 
468 /// ShouldXRayInstrument - Return true if the current function should be
469 /// instrumented with XRay nop sleds.
470 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
471   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
472 }
473 
474 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
475 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
476 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
477   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
478          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
479           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
480               XRayInstrKind::Custom);
481 }
482 
483 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
484   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
485          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
486           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
487               XRayInstrKind::Typed);
488 }
489 
490 llvm::Constant *
491 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
492                                             llvm::Constant *Addr) {
493   // Addresses stored in prologue data can't require run-time fixups and must
494   // be PC-relative. Run-time fixups are undesirable because they necessitate
495   // writable text segments, which are unsafe. And absolute addresses are
496   // undesirable because they break PIE mode.
497 
498   // Add a layer of indirection through a private global. Taking its address
499   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
500   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
501                                       /*isConstant=*/true,
502                                       llvm::GlobalValue::PrivateLinkage, Addr);
503 
504   // Create a PC-relative address.
505   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
506   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
507   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
508   return (IntPtrTy == Int32Ty)
509              ? PCRelAsInt
510              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
511 }
512 
513 llvm::Value *
514 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
515                                           llvm::Value *EncodedAddr) {
516   // Reconstruct the address of the global.
517   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
518   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
519   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
520   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
521 
522   // Load the original pointer through the global.
523   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
524                             "decoded_addr");
525 }
526 
527 static void removeImageAccessQualifier(std::string& TyName) {
528   std::string ReadOnlyQual("__read_only");
529   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
530   if (ReadOnlyPos != std::string::npos)
531     // "+ 1" for the space after access qualifier.
532     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
533   else {
534     std::string WriteOnlyQual("__write_only");
535     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
536     if (WriteOnlyPos != std::string::npos)
537       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
538     else {
539       std::string ReadWriteQual("__read_write");
540       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
541       if (ReadWritePos != std::string::npos)
542         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
543     }
544   }
545 }
546 
547 // Returns the address space id that should be produced to the
548 // kernel_arg_addr_space metadata. This is always fixed to the ids
549 // as specified in the SPIR 2.0 specification in order to differentiate
550 // for example in clGetKernelArgInfo() implementation between the address
551 // spaces with targets without unique mapping to the OpenCL address spaces
552 // (basically all single AS CPUs).
553 static unsigned ArgInfoAddressSpace(LangAS AS) {
554   switch (AS) {
555   case LangAS::opencl_global:   return 1;
556   case LangAS::opencl_constant: return 2;
557   case LangAS::opencl_local:    return 3;
558   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
559   default:
560     return 0; // Assume private.
561   }
562 }
563 
564 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
565 // information in the program executable. The argument information stored
566 // includes the argument name, its type, the address and access qualifiers used.
567 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
568                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
569                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
570   // Create MDNodes that represent the kernel arg metadata.
571   // Each MDNode is a list in the form of "key", N number of values which is
572   // the same number of values as their are kernel arguments.
573 
574   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
575 
576   // MDNode for the kernel argument address space qualifiers.
577   SmallVector<llvm::Metadata *, 8> addressQuals;
578 
579   // MDNode for the kernel argument access qualifiers (images only).
580   SmallVector<llvm::Metadata *, 8> accessQuals;
581 
582   // MDNode for the kernel argument type names.
583   SmallVector<llvm::Metadata *, 8> argTypeNames;
584 
585   // MDNode for the kernel argument base type names.
586   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
587 
588   // MDNode for the kernel argument type qualifiers.
589   SmallVector<llvm::Metadata *, 8> argTypeQuals;
590 
591   // MDNode for the kernel argument names.
592   SmallVector<llvm::Metadata *, 8> argNames;
593 
594   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
595     const ParmVarDecl *parm = FD->getParamDecl(i);
596     QualType ty = parm->getType();
597     std::string typeQuals;
598 
599     if (ty->isPointerType()) {
600       QualType pointeeTy = ty->getPointeeType();
601 
602       // Get address qualifier.
603       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
604         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
605 
606       // Get argument type name.
607       std::string typeName =
608           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
609 
610       // Turn "unsigned type" to "utype"
611       std::string::size_type pos = typeName.find("unsigned");
612       if (pointeeTy.isCanonical() && pos != std::string::npos)
613         typeName.erase(pos+1, 8);
614 
615       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
616 
617       std::string baseTypeName =
618           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
619               Policy) +
620           "*";
621 
622       // Turn "unsigned type" to "utype"
623       pos = baseTypeName.find("unsigned");
624       if (pos != std::string::npos)
625         baseTypeName.erase(pos+1, 8);
626 
627       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
628 
629       // Get argument type qualifiers:
630       if (ty.isRestrictQualified())
631         typeQuals = "restrict";
632       if (pointeeTy.isConstQualified() ||
633           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
634         typeQuals += typeQuals.empty() ? "const" : " const";
635       if (pointeeTy.isVolatileQualified())
636         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
637     } else {
638       uint32_t AddrSpc = 0;
639       bool isPipe = ty->isPipeType();
640       if (ty->isImageType() || isPipe)
641         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
642 
643       addressQuals.push_back(
644           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
645 
646       // Get argument type name.
647       std::string typeName;
648       if (isPipe)
649         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
650                      .getAsString(Policy);
651       else
652         typeName = ty.getUnqualifiedType().getAsString(Policy);
653 
654       // Turn "unsigned type" to "utype"
655       std::string::size_type pos = typeName.find("unsigned");
656       if (ty.isCanonical() && pos != std::string::npos)
657         typeName.erase(pos+1, 8);
658 
659       std::string baseTypeName;
660       if (isPipe)
661         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
662                           ->getElementType().getCanonicalType()
663                           .getAsString(Policy);
664       else
665         baseTypeName =
666           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
667 
668       // Remove access qualifiers on images
669       // (as they are inseparable from type in clang implementation,
670       // but OpenCL spec provides a special query to get access qualifier
671       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
672       if (ty->isImageType()) {
673         removeImageAccessQualifier(typeName);
674         removeImageAccessQualifier(baseTypeName);
675       }
676 
677       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
678 
679       // Turn "unsigned type" to "utype"
680       pos = baseTypeName.find("unsigned");
681       if (pos != std::string::npos)
682         baseTypeName.erase(pos+1, 8);
683 
684       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
685 
686       if (isPipe)
687         typeQuals = "pipe";
688     }
689 
690     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
691 
692     // Get image and pipe access qualifier:
693     if (ty->isImageType()|| ty->isPipeType()) {
694       const Decl *PDecl = parm;
695       if (auto *TD = dyn_cast<TypedefType>(ty))
696         PDecl = TD->getDecl();
697       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
698       if (A && A->isWriteOnly())
699         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
700       else if (A && A->isReadWrite())
701         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
702       else
703         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
704     } else
705       accessQuals.push_back(llvm::MDString::get(Context, "none"));
706 
707     // Get argument name.
708     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
709   }
710 
711   Fn->setMetadata("kernel_arg_addr_space",
712                   llvm::MDNode::get(Context, addressQuals));
713   Fn->setMetadata("kernel_arg_access_qual",
714                   llvm::MDNode::get(Context, accessQuals));
715   Fn->setMetadata("kernel_arg_type",
716                   llvm::MDNode::get(Context, argTypeNames));
717   Fn->setMetadata("kernel_arg_base_type",
718                   llvm::MDNode::get(Context, argBaseTypeNames));
719   Fn->setMetadata("kernel_arg_type_qual",
720                   llvm::MDNode::get(Context, argTypeQuals));
721   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
722     Fn->setMetadata("kernel_arg_name",
723                     llvm::MDNode::get(Context, argNames));
724 }
725 
726 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
727                                                llvm::Function *Fn)
728 {
729   if (!FD->hasAttr<OpenCLKernelAttr>())
730     return;
731 
732   llvm::LLVMContext &Context = getLLVMContext();
733 
734   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
735 
736   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
737     QualType HintQTy = A->getTypeHint();
738     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
739     bool IsSignedInteger =
740         HintQTy->isSignedIntegerType() ||
741         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
742     llvm::Metadata *AttrMDArgs[] = {
743         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
744             CGM.getTypes().ConvertType(A->getTypeHint()))),
745         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
746             llvm::IntegerType::get(Context, 32),
747             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
748     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
749   }
750 
751   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
752     llvm::Metadata *AttrMDArgs[] = {
753         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
754         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
755         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
756     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
757   }
758 
759   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
760     llvm::Metadata *AttrMDArgs[] = {
761         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
762         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
763         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
764     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
765   }
766 
767   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
768           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
769     llvm::Metadata *AttrMDArgs[] = {
770         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
771     Fn->setMetadata("intel_reqd_sub_group_size",
772                     llvm::MDNode::get(Context, AttrMDArgs));
773   }
774 }
775 
776 /// Determine whether the function F ends with a return stmt.
777 static bool endsWithReturn(const Decl* F) {
778   const Stmt *Body = nullptr;
779   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
780     Body = FD->getBody();
781   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
782     Body = OMD->getBody();
783 
784   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
785     auto LastStmt = CS->body_rbegin();
786     if (LastStmt != CS->body_rend())
787       return isa<ReturnStmt>(*LastStmt);
788   }
789   return false;
790 }
791 
792 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
793   if (SanOpts.has(SanitizerKind::Thread)) {
794     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
795     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
796   }
797 }
798 
799 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
800   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
801   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
802       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
803       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
804     return false;
805 
806   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
807     return false;
808 
809   if (MD->getNumParams() == 2) {
810     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
811     if (!PT || !PT->isVoidPointerType() ||
812         !PT->getPointeeType().isConstQualified())
813       return false;
814   }
815 
816   return true;
817 }
818 
819 /// Return the UBSan prologue signature for \p FD if one is available.
820 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
821                                             const FunctionDecl *FD) {
822   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
823     if (!MD->isStatic())
824       return nullptr;
825   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
826 }
827 
828 void CodeGenFunction::StartFunction(GlobalDecl GD,
829                                     QualType RetTy,
830                                     llvm::Function *Fn,
831                                     const CGFunctionInfo &FnInfo,
832                                     const FunctionArgList &Args,
833                                     SourceLocation Loc,
834                                     SourceLocation StartLoc) {
835   assert(!CurFn &&
836          "Do not use a CodeGenFunction object for more than one function");
837 
838   const Decl *D = GD.getDecl();
839 
840   DidCallStackSave = false;
841   CurCodeDecl = D;
842   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
843     if (FD->usesSEHTry())
844       CurSEHParent = FD;
845   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
846   FnRetTy = RetTy;
847   CurFn = Fn;
848   CurFnInfo = &FnInfo;
849   assert(CurFn->isDeclaration() && "Function already has body?");
850 
851   // If this function has been blacklisted for any of the enabled sanitizers,
852   // disable the sanitizer for the function.
853   do {
854 #define SANITIZER(NAME, ID)                                                    \
855   if (SanOpts.empty())                                                         \
856     break;                                                                     \
857   if (SanOpts.has(SanitizerKind::ID))                                          \
858     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
859       SanOpts.set(SanitizerKind::ID, false);
860 
861 #include "clang/Basic/Sanitizers.def"
862 #undef SANITIZER
863   } while (0);
864 
865   if (D) {
866     // Apply the no_sanitize* attributes to SanOpts.
867     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
868       SanitizerMask mask = Attr->getMask();
869       SanOpts.Mask &= ~mask;
870       if (mask & SanitizerKind::Address)
871         SanOpts.set(SanitizerKind::KernelAddress, false);
872       if (mask & SanitizerKind::KernelAddress)
873         SanOpts.set(SanitizerKind::Address, false);
874       if (mask & SanitizerKind::HWAddress)
875         SanOpts.set(SanitizerKind::KernelHWAddress, false);
876       if (mask & SanitizerKind::KernelHWAddress)
877         SanOpts.set(SanitizerKind::HWAddress, false);
878     }
879   }
880 
881   // Apply sanitizer attributes to the function.
882   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
883     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
884   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
885     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
886   if (SanOpts.has(SanitizerKind::Thread))
887     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
888   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
889     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
890   if (SanOpts.has(SanitizerKind::SafeStack))
891     Fn->addFnAttr(llvm::Attribute::SafeStack);
892   if (SanOpts.has(SanitizerKind::ShadowCallStack))
893     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
894 
895   // Apply fuzzing attribute to the function.
896   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
897     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
898 
899   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
900   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
901   if (SanOpts.has(SanitizerKind::Thread)) {
902     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
903       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
904       if (OMD->getMethodFamily() == OMF_dealloc ||
905           OMD->getMethodFamily() == OMF_initialize ||
906           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
907         markAsIgnoreThreadCheckingAtRuntime(Fn);
908       }
909     }
910   }
911 
912   // Ignore unrelated casts in STL allocate() since the allocator must cast
913   // from void* to T* before object initialization completes. Don't match on the
914   // namespace because not all allocators are in std::
915   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
916     if (matchesStlAllocatorFn(D, getContext()))
917       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
918   }
919 
920   // Apply xray attributes to the function (as a string, for now)
921   if (D) {
922     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
923       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
924               XRayInstrKind::Function)) {
925         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
926           Fn->addFnAttr("function-instrument", "xray-always");
927         if (XRayAttr->neverXRayInstrument())
928           Fn->addFnAttr("function-instrument", "xray-never");
929         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
930           if (ShouldXRayInstrumentFunction())
931             Fn->addFnAttr("xray-log-args",
932                           llvm::utostr(LogArgs->getArgumentCount()));
933       }
934     } else {
935       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
936         Fn->addFnAttr(
937             "xray-instruction-threshold",
938             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
939     }
940   }
941 
942   // Add no-jump-tables value.
943   Fn->addFnAttr("no-jump-tables",
944                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
945 
946   // Add profile-sample-accurate value.
947   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
948     Fn->addFnAttr("profile-sample-accurate");
949 
950   if (getLangOpts().OpenCL) {
951     // Add metadata for a kernel function.
952     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
953       EmitOpenCLKernelMetadata(FD, Fn);
954   }
955 
956   // If we are checking function types, emit a function type signature as
957   // prologue data.
958   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
959     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
960       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
961         // Remove any (C++17) exception specifications, to allow calling e.g. a
962         // noexcept function through a non-noexcept pointer.
963         auto ProtoTy =
964           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
965                                                         EST_None);
966         llvm::Constant *FTRTTIConst =
967             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
968         llvm::Constant *FTRTTIConstEncoded =
969             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
970         llvm::Constant *PrologueStructElems[] = {PrologueSig,
971                                                  FTRTTIConstEncoded};
972         llvm::Constant *PrologueStructConst =
973             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
974         Fn->setPrologueData(PrologueStructConst);
975       }
976     }
977   }
978 
979   // If we're checking nullability, we need to know whether we can check the
980   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
981   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
982     auto Nullability = FnRetTy->getNullability(getContext());
983     if (Nullability && *Nullability == NullabilityKind::NonNull) {
984       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
985             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
986         RetValNullabilityPrecondition =
987             llvm::ConstantInt::getTrue(getLLVMContext());
988     }
989   }
990 
991   // If we're in C++ mode and the function name is "main", it is guaranteed
992   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
993   // used within a program").
994   if (getLangOpts().CPlusPlus)
995     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
996       if (FD->isMain())
997         Fn->addFnAttr(llvm::Attribute::NoRecurse);
998 
999   // If a custom alignment is used, force realigning to this alignment on
1000   // any main function which certainly will need it.
1001   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
1002     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1003         CGM.getCodeGenOpts().StackAlignment)
1004       Fn->addFnAttr("stackrealign");
1005 
1006   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1007 
1008   // Create a marker to make it easy to insert allocas into the entryblock
1009   // later.  Don't create this with the builder, because we don't want it
1010   // folded.
1011   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1012   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1013 
1014   ReturnBlock = getJumpDestInCurrentScope("return");
1015 
1016   Builder.SetInsertPoint(EntryBB);
1017 
1018   // If we're checking the return value, allocate space for a pointer to a
1019   // precise source location of the checked return statement.
1020   if (requiresReturnValueCheck()) {
1021     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1022     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
1023   }
1024 
1025   // Emit subprogram debug descriptor.
1026   if (CGDebugInfo *DI = getDebugInfo()) {
1027     // Reconstruct the type from the argument list so that implicit parameters,
1028     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1029     // convention.
1030     CallingConv CC = CallingConv::CC_C;
1031     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
1032       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
1033         CC = SrcFnTy->getCallConv();
1034     SmallVector<QualType, 16> ArgTypes;
1035     for (const VarDecl *VD : Args)
1036       ArgTypes.push_back(VD->getType());
1037     QualType FnType = getContext().getFunctionType(
1038         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
1039     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
1040                           Builder);
1041   }
1042 
1043   if (ShouldInstrumentFunction()) {
1044     if (CGM.getCodeGenOpts().InstrumentFunctions)
1045       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1046     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1047       CurFn->addFnAttr("instrument-function-entry-inlined",
1048                        "__cyg_profile_func_enter");
1049     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1050       CurFn->addFnAttr("instrument-function-entry-inlined",
1051                        "__cyg_profile_func_enter_bare");
1052   }
1053 
1054   // Since emitting the mcount call here impacts optimizations such as function
1055   // inlining, we just add an attribute to insert a mcount call in backend.
1056   // The attribute "counting-function" is set to mcount function name which is
1057   // architecture dependent.
1058   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1059     // Calls to fentry/mcount should not be generated if function has
1060     // the no_instrument_function attribute.
1061     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1062       if (CGM.getCodeGenOpts().CallFEntry)
1063         Fn->addFnAttr("fentry-call", "true");
1064       else {
1065         Fn->addFnAttr("instrument-function-entry-inlined",
1066                       getTarget().getMCountName());
1067       }
1068     }
1069   }
1070 
1071   if (RetTy->isVoidType()) {
1072     // Void type; nothing to return.
1073     ReturnValue = Address::invalid();
1074 
1075     // Count the implicit return.
1076     if (!endsWithReturn(D))
1077       ++NumReturnExprs;
1078   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1079              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1080     // Indirect aggregate return; emit returned value directly into sret slot.
1081     // This reduces code size, and affects correctness in C++.
1082     auto AI = CurFn->arg_begin();
1083     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1084       ++AI;
1085     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1086   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1087              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1088     // Load the sret pointer from the argument struct and return into that.
1089     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1090     llvm::Function::arg_iterator EI = CurFn->arg_end();
1091     --EI;
1092     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1093     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1094     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1095   } else {
1096     ReturnValue = CreateIRTemp(RetTy, "retval");
1097 
1098     // Tell the epilog emitter to autorelease the result.  We do this
1099     // now so that various specialized functions can suppress it
1100     // during their IR-generation.
1101     if (getLangOpts().ObjCAutoRefCount &&
1102         !CurFnInfo->isReturnsRetained() &&
1103         RetTy->isObjCRetainableType())
1104       AutoreleaseResult = true;
1105   }
1106 
1107   EmitStartEHSpec(CurCodeDecl);
1108 
1109   PrologueCleanupDepth = EHStack.stable_begin();
1110 
1111   // Emit OpenMP specific initialization of the device functions.
1112   if (getLangOpts().OpenMP && CurCodeDecl)
1113     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1114 
1115   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1116 
1117   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1118     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1119     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1120     if (MD->getParent()->isLambda() &&
1121         MD->getOverloadedOperator() == OO_Call) {
1122       // We're in a lambda; figure out the captures.
1123       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1124                                         LambdaThisCaptureField);
1125       if (LambdaThisCaptureField) {
1126         // If the lambda captures the object referred to by '*this' - either by
1127         // value or by reference, make sure CXXThisValue points to the correct
1128         // object.
1129 
1130         // Get the lvalue for the field (which is a copy of the enclosing object
1131         // or contains the address of the enclosing object).
1132         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1133         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1134           // If the enclosing object was captured by value, just use its address.
1135           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1136         } else {
1137           // Load the lvalue pointed to by the field, since '*this' was captured
1138           // by reference.
1139           CXXThisValue =
1140               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1141         }
1142       }
1143       for (auto *FD : MD->getParent()->fields()) {
1144         if (FD->hasCapturedVLAType()) {
1145           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1146                                            SourceLocation()).getScalarVal();
1147           auto VAT = FD->getCapturedVLAType();
1148           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1149         }
1150       }
1151     } else {
1152       // Not in a lambda; just use 'this' from the method.
1153       // FIXME: Should we generate a new load for each use of 'this'?  The
1154       // fast register allocator would be happier...
1155       CXXThisValue = CXXABIThisValue;
1156     }
1157 
1158     // Check the 'this' pointer once per function, if it's available.
1159     if (CXXABIThisValue) {
1160       SanitizerSet SkippedChecks;
1161       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1162       QualType ThisTy = MD->getThisType(getContext());
1163 
1164       // If this is the call operator of a lambda with no capture-default, it
1165       // may have a static invoker function, which may call this operator with
1166       // a null 'this' pointer.
1167       if (isLambdaCallOperator(MD) &&
1168           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1169         SkippedChecks.set(SanitizerKind::Null, true);
1170 
1171       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1172                                                 : TCK_MemberCall,
1173                     Loc, CXXABIThisValue, ThisTy,
1174                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1175                     SkippedChecks);
1176     }
1177   }
1178 
1179   // If any of the arguments have a variably modified type, make sure to
1180   // emit the type size.
1181   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1182        i != e; ++i) {
1183     const VarDecl *VD = *i;
1184 
1185     // Dig out the type as written from ParmVarDecls; it's unclear whether
1186     // the standard (C99 6.9.1p10) requires this, but we're following the
1187     // precedent set by gcc.
1188     QualType Ty;
1189     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1190       Ty = PVD->getOriginalType();
1191     else
1192       Ty = VD->getType();
1193 
1194     if (Ty->isVariablyModifiedType())
1195       EmitVariablyModifiedType(Ty);
1196   }
1197   // Emit a location at the end of the prologue.
1198   if (CGDebugInfo *DI = getDebugInfo())
1199     DI->EmitLocation(Builder, StartLoc);
1200 
1201   // TODO: Do we need to handle this in two places like we do with
1202   // target-features/target-cpu?
1203   if (CurFuncDecl)
1204     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1205       LargestVectorWidth = VecWidth->getVectorWidth();
1206 }
1207 
1208 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1209                                        const Stmt *Body) {
1210   incrementProfileCounter(Body);
1211   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1212     EmitCompoundStmtWithoutScope(*S);
1213   else
1214     EmitStmt(Body);
1215 }
1216 
1217 /// When instrumenting to collect profile data, the counts for some blocks
1218 /// such as switch cases need to not include the fall-through counts, so
1219 /// emit a branch around the instrumentation code. When not instrumenting,
1220 /// this just calls EmitBlock().
1221 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1222                                                const Stmt *S) {
1223   llvm::BasicBlock *SkipCountBB = nullptr;
1224   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1225     // When instrumenting for profiling, the fallthrough to certain
1226     // statements needs to skip over the instrumentation code so that we
1227     // get an accurate count.
1228     SkipCountBB = createBasicBlock("skipcount");
1229     EmitBranch(SkipCountBB);
1230   }
1231   EmitBlock(BB);
1232   uint64_t CurrentCount = getCurrentProfileCount();
1233   incrementProfileCounter(S);
1234   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1235   if (SkipCountBB)
1236     EmitBlock(SkipCountBB);
1237 }
1238 
1239 /// Tries to mark the given function nounwind based on the
1240 /// non-existence of any throwing calls within it.  We believe this is
1241 /// lightweight enough to do at -O0.
1242 static void TryMarkNoThrow(llvm::Function *F) {
1243   // LLVM treats 'nounwind' on a function as part of the type, so we
1244   // can't do this on functions that can be overwritten.
1245   if (F->isInterposable()) return;
1246 
1247   for (llvm::BasicBlock &BB : *F)
1248     for (llvm::Instruction &I : BB)
1249       if (I.mayThrow())
1250         return;
1251 
1252   F->setDoesNotThrow();
1253 }
1254 
1255 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1256                                                FunctionArgList &Args) {
1257   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1258   QualType ResTy = FD->getReturnType();
1259 
1260   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1261   if (MD && MD->isInstance()) {
1262     if (CGM.getCXXABI().HasThisReturn(GD))
1263       ResTy = MD->getThisType(getContext());
1264     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1265       ResTy = CGM.getContext().VoidPtrTy;
1266     CGM.getCXXABI().buildThisParam(*this, Args);
1267   }
1268 
1269   // The base version of an inheriting constructor whose constructed base is a
1270   // virtual base is not passed any arguments (because it doesn't actually call
1271   // the inherited constructor).
1272   bool PassedParams = true;
1273   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1274     if (auto Inherited = CD->getInheritedConstructor())
1275       PassedParams =
1276           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1277 
1278   if (PassedParams) {
1279     for (auto *Param : FD->parameters()) {
1280       Args.push_back(Param);
1281       if (!Param->hasAttr<PassObjectSizeAttr>())
1282         continue;
1283 
1284       auto *Implicit = ImplicitParamDecl::Create(
1285           getContext(), Param->getDeclContext(), Param->getLocation(),
1286           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1287       SizeArguments[Param] = Implicit;
1288       Args.push_back(Implicit);
1289     }
1290   }
1291 
1292   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1293     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1294 
1295   return ResTy;
1296 }
1297 
1298 static bool
1299 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1300                                              const ASTContext &Context) {
1301   QualType T = FD->getReturnType();
1302   // Avoid the optimization for functions that return a record type with a
1303   // trivial destructor or another trivially copyable type.
1304   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1305     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1306       return !ClassDecl->hasTrivialDestructor();
1307   }
1308   return !T.isTriviallyCopyableType(Context);
1309 }
1310 
1311 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1312                                    const CGFunctionInfo &FnInfo) {
1313   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1314   CurGD = GD;
1315 
1316   FunctionArgList Args;
1317   QualType ResTy = BuildFunctionArgList(GD, Args);
1318 
1319   // Check if we should generate debug info for this function.
1320   if (FD->hasAttr<NoDebugAttr>())
1321     DebugInfo = nullptr; // disable debug info indefinitely for this function
1322 
1323   // The function might not have a body if we're generating thunks for a
1324   // function declaration.
1325   SourceRange BodyRange;
1326   if (Stmt *Body = FD->getBody())
1327     BodyRange = Body->getSourceRange();
1328   else
1329     BodyRange = FD->getLocation();
1330   CurEHLocation = BodyRange.getEnd();
1331 
1332   // Use the location of the start of the function to determine where
1333   // the function definition is located. By default use the location
1334   // of the declaration as the location for the subprogram. A function
1335   // may lack a declaration in the source code if it is created by code
1336   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1337   SourceLocation Loc = FD->getLocation();
1338 
1339   // If this is a function specialization then use the pattern body
1340   // as the location for the function.
1341   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1342     if (SpecDecl->hasBody(SpecDecl))
1343       Loc = SpecDecl->getLocation();
1344 
1345   Stmt *Body = FD->getBody();
1346 
1347   // Initialize helper which will detect jumps which can cause invalid lifetime
1348   // markers.
1349   if (Body && ShouldEmitLifetimeMarkers)
1350     Bypasses.Init(Body);
1351 
1352   // Emit the standard function prologue.
1353   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1354 
1355   // Generate the body of the function.
1356   PGO.assignRegionCounters(GD, CurFn);
1357   if (isa<CXXDestructorDecl>(FD))
1358     EmitDestructorBody(Args);
1359   else if (isa<CXXConstructorDecl>(FD))
1360     EmitConstructorBody(Args);
1361   else if (getLangOpts().CUDA &&
1362            !getLangOpts().CUDAIsDevice &&
1363            FD->hasAttr<CUDAGlobalAttr>())
1364     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1365   else if (isa<CXXMethodDecl>(FD) &&
1366            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1367     // The lambda static invoker function is special, because it forwards or
1368     // clones the body of the function call operator (but is actually static).
1369     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1370   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1371              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1372               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1373     // Implicit copy-assignment gets the same special treatment as implicit
1374     // copy-constructors.
1375     emitImplicitAssignmentOperatorBody(Args);
1376   } else if (Body) {
1377     EmitFunctionBody(Args, Body);
1378   } else
1379     llvm_unreachable("no definition for emitted function");
1380 
1381   // C++11 [stmt.return]p2:
1382   //   Flowing off the end of a function [...] results in undefined behavior in
1383   //   a value-returning function.
1384   // C11 6.9.1p12:
1385   //   If the '}' that terminates a function is reached, and the value of the
1386   //   function call is used by the caller, the behavior is undefined.
1387   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1388       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1389     bool ShouldEmitUnreachable =
1390         CGM.getCodeGenOpts().StrictReturn ||
1391         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1392     if (SanOpts.has(SanitizerKind::Return)) {
1393       SanitizerScope SanScope(this);
1394       llvm::Value *IsFalse = Builder.getFalse();
1395       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1396                 SanitizerHandler::MissingReturn,
1397                 EmitCheckSourceLocation(FD->getLocation()), None);
1398     } else if (ShouldEmitUnreachable) {
1399       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1400         EmitTrapCall(llvm::Intrinsic::trap);
1401     }
1402     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1403       Builder.CreateUnreachable();
1404       Builder.ClearInsertionPoint();
1405     }
1406   }
1407 
1408   // Emit the standard function epilogue.
1409   FinishFunction(BodyRange.getEnd());
1410 
1411   // If we haven't marked the function nothrow through other means, do
1412   // a quick pass now to see if we can.
1413   if (!CurFn->doesNotThrow())
1414     TryMarkNoThrow(CurFn);
1415 }
1416 
1417 /// ContainsLabel - Return true if the statement contains a label in it.  If
1418 /// this statement is not executed normally, it not containing a label means
1419 /// that we can just remove the code.
1420 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1421   // Null statement, not a label!
1422   if (!S) return false;
1423 
1424   // If this is a label, we have to emit the code, consider something like:
1425   // if (0) {  ...  foo:  bar(); }  goto foo;
1426   //
1427   // TODO: If anyone cared, we could track __label__'s, since we know that you
1428   // can't jump to one from outside their declared region.
1429   if (isa<LabelStmt>(S))
1430     return true;
1431 
1432   // If this is a case/default statement, and we haven't seen a switch, we have
1433   // to emit the code.
1434   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1435     return true;
1436 
1437   // If this is a switch statement, we want to ignore cases below it.
1438   if (isa<SwitchStmt>(S))
1439     IgnoreCaseStmts = true;
1440 
1441   // Scan subexpressions for verboten labels.
1442   for (const Stmt *SubStmt : S->children())
1443     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1444       return true;
1445 
1446   return false;
1447 }
1448 
1449 /// containsBreak - Return true if the statement contains a break out of it.
1450 /// If the statement (recursively) contains a switch or loop with a break
1451 /// inside of it, this is fine.
1452 bool CodeGenFunction::containsBreak(const Stmt *S) {
1453   // Null statement, not a label!
1454   if (!S) return false;
1455 
1456   // If this is a switch or loop that defines its own break scope, then we can
1457   // include it and anything inside of it.
1458   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1459       isa<ForStmt>(S))
1460     return false;
1461 
1462   if (isa<BreakStmt>(S))
1463     return true;
1464 
1465   // Scan subexpressions for verboten breaks.
1466   for (const Stmt *SubStmt : S->children())
1467     if (containsBreak(SubStmt))
1468       return true;
1469 
1470   return false;
1471 }
1472 
1473 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1474   if (!S) return false;
1475 
1476   // Some statement kinds add a scope and thus never add a decl to the current
1477   // scope. Note, this list is longer than the list of statements that might
1478   // have an unscoped decl nested within them, but this way is conservatively
1479   // correct even if more statement kinds are added.
1480   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1481       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1482       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1483       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1484     return false;
1485 
1486   if (isa<DeclStmt>(S))
1487     return true;
1488 
1489   for (const Stmt *SubStmt : S->children())
1490     if (mightAddDeclToScope(SubStmt))
1491       return true;
1492 
1493   return false;
1494 }
1495 
1496 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1497 /// to a constant, or if it does but contains a label, return false.  If it
1498 /// constant folds return true and set the boolean result in Result.
1499 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1500                                                    bool &ResultBool,
1501                                                    bool AllowLabels) {
1502   llvm::APSInt ResultInt;
1503   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1504     return false;
1505 
1506   ResultBool = ResultInt.getBoolValue();
1507   return true;
1508 }
1509 
1510 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1511 /// to a constant, or if it does but contains a label, return false.  If it
1512 /// constant folds return true and set the folded value.
1513 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1514                                                    llvm::APSInt &ResultInt,
1515                                                    bool AllowLabels) {
1516   // FIXME: Rename and handle conversion of other evaluatable things
1517   // to bool.
1518   llvm::APSInt Int;
1519   if (!Cond->EvaluateAsInt(Int, getContext()))
1520     return false;  // Not foldable, not integer or not fully evaluatable.
1521 
1522   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1523     return false;  // Contains a label.
1524 
1525   ResultInt = Int;
1526   return true;
1527 }
1528 
1529 
1530 
1531 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1532 /// statement) to the specified blocks.  Based on the condition, this might try
1533 /// to simplify the codegen of the conditional based on the branch.
1534 ///
1535 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1536                                            llvm::BasicBlock *TrueBlock,
1537                                            llvm::BasicBlock *FalseBlock,
1538                                            uint64_t TrueCount) {
1539   Cond = Cond->IgnoreParens();
1540 
1541   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1542 
1543     // Handle X && Y in a condition.
1544     if (CondBOp->getOpcode() == BO_LAnd) {
1545       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1546       // folded if the case was simple enough.
1547       bool ConstantBool = false;
1548       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1549           ConstantBool) {
1550         // br(1 && X) -> br(X).
1551         incrementProfileCounter(CondBOp);
1552         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1553                                     TrueCount);
1554       }
1555 
1556       // If we have "X && 1", simplify the code to use an uncond branch.
1557       // "X && 0" would have been constant folded to 0.
1558       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1559           ConstantBool) {
1560         // br(X && 1) -> br(X).
1561         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1562                                     TrueCount);
1563       }
1564 
1565       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1566       // want to jump to the FalseBlock.
1567       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1568       // The counter tells us how often we evaluate RHS, and all of TrueCount
1569       // can be propagated to that branch.
1570       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1571 
1572       ConditionalEvaluation eval(*this);
1573       {
1574         ApplyDebugLocation DL(*this, Cond);
1575         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1576         EmitBlock(LHSTrue);
1577       }
1578 
1579       incrementProfileCounter(CondBOp);
1580       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1581 
1582       // Any temporaries created here are conditional.
1583       eval.begin(*this);
1584       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1585       eval.end(*this);
1586 
1587       return;
1588     }
1589 
1590     if (CondBOp->getOpcode() == BO_LOr) {
1591       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1592       // folded if the case was simple enough.
1593       bool ConstantBool = false;
1594       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1595           !ConstantBool) {
1596         // br(0 || X) -> br(X).
1597         incrementProfileCounter(CondBOp);
1598         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1599                                     TrueCount);
1600       }
1601 
1602       // If we have "X || 0", simplify the code to use an uncond branch.
1603       // "X || 1" would have been constant folded to 1.
1604       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1605           !ConstantBool) {
1606         // br(X || 0) -> br(X).
1607         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1608                                     TrueCount);
1609       }
1610 
1611       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1612       // want to jump to the TrueBlock.
1613       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1614       // We have the count for entry to the RHS and for the whole expression
1615       // being true, so we can divy up True count between the short circuit and
1616       // the RHS.
1617       uint64_t LHSCount =
1618           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1619       uint64_t RHSCount = TrueCount - LHSCount;
1620 
1621       ConditionalEvaluation eval(*this);
1622       {
1623         ApplyDebugLocation DL(*this, Cond);
1624         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1625         EmitBlock(LHSFalse);
1626       }
1627 
1628       incrementProfileCounter(CondBOp);
1629       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1630 
1631       // Any temporaries created here are conditional.
1632       eval.begin(*this);
1633       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1634 
1635       eval.end(*this);
1636 
1637       return;
1638     }
1639   }
1640 
1641   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1642     // br(!x, t, f) -> br(x, f, t)
1643     if (CondUOp->getOpcode() == UO_LNot) {
1644       // Negate the count.
1645       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1646       // Negate the condition and swap the destination blocks.
1647       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1648                                   FalseCount);
1649     }
1650   }
1651 
1652   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1653     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1654     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1655     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1656 
1657     ConditionalEvaluation cond(*this);
1658     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1659                          getProfileCount(CondOp));
1660 
1661     // When computing PGO branch weights, we only know the overall count for
1662     // the true block. This code is essentially doing tail duplication of the
1663     // naive code-gen, introducing new edges for which counts are not
1664     // available. Divide the counts proportionally between the LHS and RHS of
1665     // the conditional operator.
1666     uint64_t LHSScaledTrueCount = 0;
1667     if (TrueCount) {
1668       double LHSRatio =
1669           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1670       LHSScaledTrueCount = TrueCount * LHSRatio;
1671     }
1672 
1673     cond.begin(*this);
1674     EmitBlock(LHSBlock);
1675     incrementProfileCounter(CondOp);
1676     {
1677       ApplyDebugLocation DL(*this, Cond);
1678       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1679                            LHSScaledTrueCount);
1680     }
1681     cond.end(*this);
1682 
1683     cond.begin(*this);
1684     EmitBlock(RHSBlock);
1685     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1686                          TrueCount - LHSScaledTrueCount);
1687     cond.end(*this);
1688 
1689     return;
1690   }
1691 
1692   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1693     // Conditional operator handling can give us a throw expression as a
1694     // condition for a case like:
1695     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1696     // Fold this to:
1697     //   br(c, throw x, br(y, t, f))
1698     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1699     return;
1700   }
1701 
1702   // If the branch has a condition wrapped by __builtin_unpredictable,
1703   // create metadata that specifies that the branch is unpredictable.
1704   // Don't bother if not optimizing because that metadata would not be used.
1705   llvm::MDNode *Unpredictable = nullptr;
1706   auto *Call = dyn_cast<CallExpr>(Cond);
1707   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1708     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1709     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1710       llvm::MDBuilder MDHelper(getLLVMContext());
1711       Unpredictable = MDHelper.createUnpredictable();
1712     }
1713   }
1714 
1715   // Create branch weights based on the number of times we get here and the
1716   // number of times the condition should be true.
1717   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1718   llvm::MDNode *Weights =
1719       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1720 
1721   // Emit the code with the fully general case.
1722   llvm::Value *CondV;
1723   {
1724     ApplyDebugLocation DL(*this, Cond);
1725     CondV = EvaluateExprAsBool(Cond);
1726   }
1727   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1728 }
1729 
1730 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1731 /// specified stmt yet.
1732 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1733   CGM.ErrorUnsupported(S, Type);
1734 }
1735 
1736 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1737 /// variable-length array whose elements have a non-zero bit-pattern.
1738 ///
1739 /// \param baseType the inner-most element type of the array
1740 /// \param src - a char* pointing to the bit-pattern for a single
1741 /// base element of the array
1742 /// \param sizeInChars - the total size of the VLA, in chars
1743 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1744                                Address dest, Address src,
1745                                llvm::Value *sizeInChars) {
1746   CGBuilderTy &Builder = CGF.Builder;
1747 
1748   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1749   llvm::Value *baseSizeInChars
1750     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1751 
1752   Address begin =
1753     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1754   llvm::Value *end =
1755     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1756 
1757   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1758   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1759   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1760 
1761   // Make a loop over the VLA.  C99 guarantees that the VLA element
1762   // count must be nonzero.
1763   CGF.EmitBlock(loopBB);
1764 
1765   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1766   cur->addIncoming(begin.getPointer(), originBB);
1767 
1768   CharUnits curAlign =
1769     dest.getAlignment().alignmentOfArrayElement(baseSize);
1770 
1771   // memcpy the individual element bit-pattern.
1772   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1773                        /*volatile*/ false);
1774 
1775   // Go to the next element.
1776   llvm::Value *next =
1777     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1778 
1779   // Leave if that's the end of the VLA.
1780   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1781   Builder.CreateCondBr(done, contBB, loopBB);
1782   cur->addIncoming(next, loopBB);
1783 
1784   CGF.EmitBlock(contBB);
1785 }
1786 
1787 void
1788 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1789   // Ignore empty classes in C++.
1790   if (getLangOpts().CPlusPlus) {
1791     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1792       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1793         return;
1794     }
1795   }
1796 
1797   // Cast the dest ptr to the appropriate i8 pointer type.
1798   if (DestPtr.getElementType() != Int8Ty)
1799     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1800 
1801   // Get size and alignment info for this aggregate.
1802   CharUnits size = getContext().getTypeSizeInChars(Ty);
1803 
1804   llvm::Value *SizeVal;
1805   const VariableArrayType *vla;
1806 
1807   // Don't bother emitting a zero-byte memset.
1808   if (size.isZero()) {
1809     // But note that getTypeInfo returns 0 for a VLA.
1810     if (const VariableArrayType *vlaType =
1811           dyn_cast_or_null<VariableArrayType>(
1812                                           getContext().getAsArrayType(Ty))) {
1813       auto VlaSize = getVLASize(vlaType);
1814       SizeVal = VlaSize.NumElts;
1815       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1816       if (!eltSize.isOne())
1817         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1818       vla = vlaType;
1819     } else {
1820       return;
1821     }
1822   } else {
1823     SizeVal = CGM.getSize(size);
1824     vla = nullptr;
1825   }
1826 
1827   // If the type contains a pointer to data member we can't memset it to zero.
1828   // Instead, create a null constant and copy it to the destination.
1829   // TODO: there are other patterns besides zero that we can usefully memset,
1830   // like -1, which happens to be the pattern used by member-pointers.
1831   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1832     // For a VLA, emit a single element, then splat that over the VLA.
1833     if (vla) Ty = getContext().getBaseElementType(vla);
1834 
1835     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1836 
1837     llvm::GlobalVariable *NullVariable =
1838       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1839                                /*isConstant=*/true,
1840                                llvm::GlobalVariable::PrivateLinkage,
1841                                NullConstant, Twine());
1842     CharUnits NullAlign = DestPtr.getAlignment();
1843     NullVariable->setAlignment(NullAlign.getQuantity());
1844     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1845                    NullAlign);
1846 
1847     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1848 
1849     // Get and call the appropriate llvm.memcpy overload.
1850     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1851     return;
1852   }
1853 
1854   // Otherwise, just memset the whole thing to zero.  This is legal
1855   // because in LLVM, all default initializers (other than the ones we just
1856   // handled above) are guaranteed to have a bit pattern of all zeros.
1857   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1858 }
1859 
1860 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1861   // Make sure that there is a block for the indirect goto.
1862   if (!IndirectBranch)
1863     GetIndirectGotoBlock();
1864 
1865   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1866 
1867   // Make sure the indirect branch includes all of the address-taken blocks.
1868   IndirectBranch->addDestination(BB);
1869   return llvm::BlockAddress::get(CurFn, BB);
1870 }
1871 
1872 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1873   // If we already made the indirect branch for indirect goto, return its block.
1874   if (IndirectBranch) return IndirectBranch->getParent();
1875 
1876   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1877 
1878   // Create the PHI node that indirect gotos will add entries to.
1879   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1880                                               "indirect.goto.dest");
1881 
1882   // Create the indirect branch instruction.
1883   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1884   return IndirectBranch->getParent();
1885 }
1886 
1887 /// Computes the length of an array in elements, as well as the base
1888 /// element type and a properly-typed first element pointer.
1889 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1890                                               QualType &baseType,
1891                                               Address &addr) {
1892   const ArrayType *arrayType = origArrayType;
1893 
1894   // If it's a VLA, we have to load the stored size.  Note that
1895   // this is the size of the VLA in bytes, not its size in elements.
1896   llvm::Value *numVLAElements = nullptr;
1897   if (isa<VariableArrayType>(arrayType)) {
1898     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1899 
1900     // Walk into all VLAs.  This doesn't require changes to addr,
1901     // which has type T* where T is the first non-VLA element type.
1902     do {
1903       QualType elementType = arrayType->getElementType();
1904       arrayType = getContext().getAsArrayType(elementType);
1905 
1906       // If we only have VLA components, 'addr' requires no adjustment.
1907       if (!arrayType) {
1908         baseType = elementType;
1909         return numVLAElements;
1910       }
1911     } while (isa<VariableArrayType>(arrayType));
1912 
1913     // We get out here only if we find a constant array type
1914     // inside the VLA.
1915   }
1916 
1917   // We have some number of constant-length arrays, so addr should
1918   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1919   // down to the first element of addr.
1920   SmallVector<llvm::Value*, 8> gepIndices;
1921 
1922   // GEP down to the array type.
1923   llvm::ConstantInt *zero = Builder.getInt32(0);
1924   gepIndices.push_back(zero);
1925 
1926   uint64_t countFromCLAs = 1;
1927   QualType eltType;
1928 
1929   llvm::ArrayType *llvmArrayType =
1930     dyn_cast<llvm::ArrayType>(addr.getElementType());
1931   while (llvmArrayType) {
1932     assert(isa<ConstantArrayType>(arrayType));
1933     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1934              == llvmArrayType->getNumElements());
1935 
1936     gepIndices.push_back(zero);
1937     countFromCLAs *= llvmArrayType->getNumElements();
1938     eltType = arrayType->getElementType();
1939 
1940     llvmArrayType =
1941       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1942     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1943     assert((!llvmArrayType || arrayType) &&
1944            "LLVM and Clang types are out-of-synch");
1945   }
1946 
1947   if (arrayType) {
1948     // From this point onwards, the Clang array type has been emitted
1949     // as some other type (probably a packed struct). Compute the array
1950     // size, and just emit the 'begin' expression as a bitcast.
1951     while (arrayType) {
1952       countFromCLAs *=
1953           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1954       eltType = arrayType->getElementType();
1955       arrayType = getContext().getAsArrayType(eltType);
1956     }
1957 
1958     llvm::Type *baseType = ConvertType(eltType);
1959     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1960   } else {
1961     // Create the actual GEP.
1962     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1963                                              gepIndices, "array.begin"),
1964                    addr.getAlignment());
1965   }
1966 
1967   baseType = eltType;
1968 
1969   llvm::Value *numElements
1970     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1971 
1972   // If we had any VLA dimensions, factor them in.
1973   if (numVLAElements)
1974     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1975 
1976   return numElements;
1977 }
1978 
1979 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1980   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1981   assert(vla && "type was not a variable array type!");
1982   return getVLASize(vla);
1983 }
1984 
1985 CodeGenFunction::VlaSizePair
1986 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1987   // The number of elements so far; always size_t.
1988   llvm::Value *numElements = nullptr;
1989 
1990   QualType elementType;
1991   do {
1992     elementType = type->getElementType();
1993     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1994     assert(vlaSize && "no size for VLA!");
1995     assert(vlaSize->getType() == SizeTy);
1996 
1997     if (!numElements) {
1998       numElements = vlaSize;
1999     } else {
2000       // It's undefined behavior if this wraps around, so mark it that way.
2001       // FIXME: Teach -fsanitize=undefined to trap this.
2002       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2003     }
2004   } while ((type = getContext().getAsVariableArrayType(elementType)));
2005 
2006   return { numElements, elementType };
2007 }
2008 
2009 CodeGenFunction::VlaSizePair
2010 CodeGenFunction::getVLAElements1D(QualType type) {
2011   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2012   assert(vla && "type was not a variable array type!");
2013   return getVLAElements1D(vla);
2014 }
2015 
2016 CodeGenFunction::VlaSizePair
2017 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2018   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2019   assert(VlaSize && "no size for VLA!");
2020   assert(VlaSize->getType() == SizeTy);
2021   return { VlaSize, Vla->getElementType() };
2022 }
2023 
2024 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2025   assert(type->isVariablyModifiedType() &&
2026          "Must pass variably modified type to EmitVLASizes!");
2027 
2028   EnsureInsertPoint();
2029 
2030   // We're going to walk down into the type and look for VLA
2031   // expressions.
2032   do {
2033     assert(type->isVariablyModifiedType());
2034 
2035     const Type *ty = type.getTypePtr();
2036     switch (ty->getTypeClass()) {
2037 
2038 #define TYPE(Class, Base)
2039 #define ABSTRACT_TYPE(Class, Base)
2040 #define NON_CANONICAL_TYPE(Class, Base)
2041 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2042 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2043 #include "clang/AST/TypeNodes.def"
2044       llvm_unreachable("unexpected dependent type!");
2045 
2046     // These types are never variably-modified.
2047     case Type::Builtin:
2048     case Type::Complex:
2049     case Type::Vector:
2050     case Type::ExtVector:
2051     case Type::Record:
2052     case Type::Enum:
2053     case Type::Elaborated:
2054     case Type::TemplateSpecialization:
2055     case Type::ObjCTypeParam:
2056     case Type::ObjCObject:
2057     case Type::ObjCInterface:
2058     case Type::ObjCObjectPointer:
2059       llvm_unreachable("type class is never variably-modified!");
2060 
2061     case Type::Adjusted:
2062       type = cast<AdjustedType>(ty)->getAdjustedType();
2063       break;
2064 
2065     case Type::Decayed:
2066       type = cast<DecayedType>(ty)->getPointeeType();
2067       break;
2068 
2069     case Type::Pointer:
2070       type = cast<PointerType>(ty)->getPointeeType();
2071       break;
2072 
2073     case Type::BlockPointer:
2074       type = cast<BlockPointerType>(ty)->getPointeeType();
2075       break;
2076 
2077     case Type::LValueReference:
2078     case Type::RValueReference:
2079       type = cast<ReferenceType>(ty)->getPointeeType();
2080       break;
2081 
2082     case Type::MemberPointer:
2083       type = cast<MemberPointerType>(ty)->getPointeeType();
2084       break;
2085 
2086     case Type::ConstantArray:
2087     case Type::IncompleteArray:
2088       // Losing element qualification here is fine.
2089       type = cast<ArrayType>(ty)->getElementType();
2090       break;
2091 
2092     case Type::VariableArray: {
2093       // Losing element qualification here is fine.
2094       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2095 
2096       // Unknown size indication requires no size computation.
2097       // Otherwise, evaluate and record it.
2098       if (const Expr *size = vat->getSizeExpr()) {
2099         // It's possible that we might have emitted this already,
2100         // e.g. with a typedef and a pointer to it.
2101         llvm::Value *&entry = VLASizeMap[size];
2102         if (!entry) {
2103           llvm::Value *Size = EmitScalarExpr(size);
2104 
2105           // C11 6.7.6.2p5:
2106           //   If the size is an expression that is not an integer constant
2107           //   expression [...] each time it is evaluated it shall have a value
2108           //   greater than zero.
2109           if (SanOpts.has(SanitizerKind::VLABound) &&
2110               size->getType()->isSignedIntegerType()) {
2111             SanitizerScope SanScope(this);
2112             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2113             llvm::Constant *StaticArgs[] = {
2114                 EmitCheckSourceLocation(size->getBeginLoc()),
2115                 EmitCheckTypeDescriptor(size->getType())};
2116             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2117                                      SanitizerKind::VLABound),
2118                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2119           }
2120 
2121           // Always zexting here would be wrong if it weren't
2122           // undefined behavior to have a negative bound.
2123           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2124         }
2125       }
2126       type = vat->getElementType();
2127       break;
2128     }
2129 
2130     case Type::FunctionProto:
2131     case Type::FunctionNoProto:
2132       type = cast<FunctionType>(ty)->getReturnType();
2133       break;
2134 
2135     case Type::Paren:
2136     case Type::TypeOf:
2137     case Type::UnaryTransform:
2138     case Type::Attributed:
2139     case Type::SubstTemplateTypeParm:
2140     case Type::PackExpansion:
2141       // Keep walking after single level desugaring.
2142       type = type.getSingleStepDesugaredType(getContext());
2143       break;
2144 
2145     case Type::Typedef:
2146     case Type::Decltype:
2147     case Type::Auto:
2148     case Type::DeducedTemplateSpecialization:
2149       // Stop walking: nothing to do.
2150       return;
2151 
2152     case Type::TypeOfExpr:
2153       // Stop walking: emit typeof expression.
2154       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2155       return;
2156 
2157     case Type::Atomic:
2158       type = cast<AtomicType>(ty)->getValueType();
2159       break;
2160 
2161     case Type::Pipe:
2162       type = cast<PipeType>(ty)->getElementType();
2163       break;
2164     }
2165   } while (type->isVariablyModifiedType());
2166 }
2167 
2168 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2169   if (getContext().getBuiltinVaListType()->isArrayType())
2170     return EmitPointerWithAlignment(E);
2171   return EmitLValue(E).getAddress();
2172 }
2173 
2174 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2175   return EmitLValue(E).getAddress();
2176 }
2177 
2178 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2179                                               const APValue &Init) {
2180   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2181   if (CGDebugInfo *Dbg = getDebugInfo())
2182     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2183       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2184 }
2185 
2186 CodeGenFunction::PeepholeProtection
2187 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2188   // At the moment, the only aggressive peephole we do in IR gen
2189   // is trunc(zext) folding, but if we add more, we can easily
2190   // extend this protection.
2191 
2192   if (!rvalue.isScalar()) return PeepholeProtection();
2193   llvm::Value *value = rvalue.getScalarVal();
2194   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2195 
2196   // Just make an extra bitcast.
2197   assert(HaveInsertPoint());
2198   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2199                                                   Builder.GetInsertBlock());
2200 
2201   PeepholeProtection protection;
2202   protection.Inst = inst;
2203   return protection;
2204 }
2205 
2206 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2207   if (!protection.Inst) return;
2208 
2209   // In theory, we could try to duplicate the peepholes now, but whatever.
2210   protection.Inst->eraseFromParent();
2211 }
2212 
2213 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2214                                                  llvm::Value *AnnotatedVal,
2215                                                  StringRef AnnotationStr,
2216                                                  SourceLocation Location) {
2217   llvm::Value *Args[4] = {
2218     AnnotatedVal,
2219     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2220     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2221     CGM.EmitAnnotationLineNo(Location)
2222   };
2223   return Builder.CreateCall(AnnotationFn, Args);
2224 }
2225 
2226 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2227   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2228   // FIXME We create a new bitcast for every annotation because that's what
2229   // llvm-gcc was doing.
2230   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2231     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2232                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2233                        I->getAnnotation(), D->getLocation());
2234 }
2235 
2236 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2237                                               Address Addr) {
2238   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2239   llvm::Value *V = Addr.getPointer();
2240   llvm::Type *VTy = V->getType();
2241   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2242                                     CGM.Int8PtrTy);
2243 
2244   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2245     // FIXME Always emit the cast inst so we can differentiate between
2246     // annotation on the first field of a struct and annotation on the struct
2247     // itself.
2248     if (VTy != CGM.Int8PtrTy)
2249       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2250     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2251     V = Builder.CreateBitCast(V, VTy);
2252   }
2253 
2254   return Address(V, Addr.getAlignment());
2255 }
2256 
2257 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2258 
2259 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2260     : CGF(CGF) {
2261   assert(!CGF->IsSanitizerScope);
2262   CGF->IsSanitizerScope = true;
2263 }
2264 
2265 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2266   CGF->IsSanitizerScope = false;
2267 }
2268 
2269 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2270                                    const llvm::Twine &Name,
2271                                    llvm::BasicBlock *BB,
2272                                    llvm::BasicBlock::iterator InsertPt) const {
2273   LoopStack.InsertHelper(I);
2274   if (IsSanitizerScope)
2275     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2276 }
2277 
2278 void CGBuilderInserter::InsertHelper(
2279     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2280     llvm::BasicBlock::iterator InsertPt) const {
2281   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2282   if (CGF)
2283     CGF->InsertHelper(I, Name, BB, InsertPt);
2284 }
2285 
2286 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2287                                 CodeGenModule &CGM, const FunctionDecl *FD,
2288                                 std::string &FirstMissing) {
2289   // If there aren't any required features listed then go ahead and return.
2290   if (ReqFeatures.empty())
2291     return false;
2292 
2293   // Now build up the set of caller features and verify that all the required
2294   // features are there.
2295   llvm::StringMap<bool> CallerFeatureMap;
2296   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2297 
2298   // If we have at least one of the features in the feature list return
2299   // true, otherwise return false.
2300   return std::all_of(
2301       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2302         SmallVector<StringRef, 1> OrFeatures;
2303         Feature.split(OrFeatures, '|');
2304         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2305           if (!CallerFeatureMap.lookup(Feature)) {
2306             FirstMissing = Feature.str();
2307             return false;
2308           }
2309           return true;
2310         });
2311       });
2312 }
2313 
2314 // Emits an error if we don't have a valid set of target features for the
2315 // called function.
2316 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2317                                           const FunctionDecl *TargetDecl) {
2318   // Early exit if this is an indirect call.
2319   if (!TargetDecl)
2320     return;
2321 
2322   // Get the current enclosing function if it exists. If it doesn't
2323   // we can't check the target features anyhow.
2324   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2325   if (!FD)
2326     return;
2327 
2328   // Grab the required features for the call. For a builtin this is listed in
2329   // the td file with the default cpu, for an always_inline function this is any
2330   // listed cpu and any listed features.
2331   unsigned BuiltinID = TargetDecl->getBuiltinID();
2332   std::string MissingFeature;
2333   if (BuiltinID) {
2334     SmallVector<StringRef, 1> ReqFeatures;
2335     const char *FeatureList =
2336         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2337     // Return if the builtin doesn't have any required features.
2338     if (!FeatureList || StringRef(FeatureList) == "")
2339       return;
2340     StringRef(FeatureList).split(ReqFeatures, ',');
2341     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2342       CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2343           << TargetDecl->getDeclName()
2344           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2345 
2346   } else if (TargetDecl->hasAttr<TargetAttr>() ||
2347              TargetDecl->hasAttr<CPUSpecificAttr>()) {
2348     // Get the required features for the callee.
2349 
2350     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2351     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2352 
2353     SmallVector<StringRef, 1> ReqFeatures;
2354     llvm::StringMap<bool> CalleeFeatureMap;
2355     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2356 
2357     for (const auto &F : ParsedAttr.Features) {
2358       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2359         ReqFeatures.push_back(StringRef(F).substr(1));
2360     }
2361 
2362     for (const auto &F : CalleeFeatureMap) {
2363       // Only positive features are "required".
2364       if (F.getValue())
2365         ReqFeatures.push_back(F.getKey());
2366     }
2367     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2368       CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature)
2369           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2370   }
2371 }
2372 
2373 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2374   if (!CGM.getCodeGenOpts().SanitizeStats)
2375     return;
2376 
2377   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2378   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2379   CGM.getSanStats().create(IRB, SSK);
2380 }
2381 
2382 llvm::Value *
2383 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2384   llvm::Value *Condition = nullptr;
2385 
2386   if (!RO.Conditions.Architecture.empty())
2387     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2388 
2389   if (!RO.Conditions.Features.empty()) {
2390     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2391     Condition =
2392         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2393   }
2394   return Condition;
2395 }
2396 
2397 void CodeGenFunction::EmitMultiVersionResolver(
2398     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2399   assert((getContext().getTargetInfo().getTriple().getArch() ==
2400               llvm::Triple::x86 ||
2401           getContext().getTargetInfo().getTriple().getArch() ==
2402               llvm::Triple::x86_64) &&
2403          "Only implemented for x86 targets");
2404   // Main function's basic block.
2405   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2406   Builder.SetInsertPoint(CurBlock);
2407   EmitX86CpuInit();
2408 
2409   for (const MultiVersionResolverOption &RO : Options) {
2410     Builder.SetInsertPoint(CurBlock);
2411     llvm::Value *Condition = FormResolverCondition(RO);
2412 
2413     // The 'default' or 'generic' case.
2414     if (!Condition) {
2415       assert(&RO == Options.end() - 1 &&
2416              "Default or Generic case must be last");
2417       Builder.CreateRet(RO.Function);
2418       return;
2419     }
2420 
2421     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2422     llvm::IRBuilder<> RetBuilder(RetBlock);
2423     RetBuilder.CreateRet(RO.Function);
2424     CurBlock = createBasicBlock("resolver_else", Resolver);
2425     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2426   }
2427 
2428   // If no generic/default, emit an unreachable.
2429   Builder.SetInsertPoint(CurBlock);
2430   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2431   TrapCall->setDoesNotReturn();
2432   TrapCall->setDoesNotThrow();
2433   Builder.CreateUnreachable();
2434   Builder.ClearInsertionPoint();
2435 }
2436 
2437 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2438   if (CGDebugInfo *DI = getDebugInfo())
2439     return DI->SourceLocToDebugLoc(Location);
2440 
2441   return llvm::DebugLoc();
2442 }
2443