1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 44 /// markers. 45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 46 const LangOptions &LangOpts) { 47 if (CGOpts.DisableLifetimeMarkers) 48 return false; 49 50 // Disable lifetime markers in msan builds. 51 // FIXME: Remove this when msan works with lifetime markers. 52 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 53 return false; 54 55 // Asan uses markers for use-after-scope checks. 56 if (CGOpts.SanitizeAddressUseAfterScope) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 } 94 95 CodeGenFunction::~CodeGenFunction() { 96 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 97 98 // If there are any unclaimed block infos, go ahead and destroy them 99 // now. This can happen if IR-gen gets clever and skips evaluating 100 // something. 101 if (FirstBlockInfo) 102 destroyBlockInfos(FirstBlockInfo); 103 104 if (getLangOpts().OpenMP && CurFn) 105 CGM.getOpenMPRuntime().functionFinished(*this); 106 } 107 108 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 109 LValueBaseInfo *BaseInfo, 110 TBAAAccessInfo *TBAAInfo) { 111 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 112 /* forPointeeType= */ true); 113 } 114 115 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 116 LValueBaseInfo *BaseInfo, 117 TBAAAccessInfo *TBAAInfo, 118 bool forPointeeType) { 119 if (TBAAInfo) 120 *TBAAInfo = CGM.getTBAAAccessInfo(T); 121 122 // Honor alignment typedef attributes even on incomplete types. 123 // We also honor them straight for C++ class types, even as pointees; 124 // there's an expressivity gap here. 125 if (auto TT = T->getAs<TypedefType>()) { 126 if (auto Align = TT->getDecl()->getMaxAlignment()) { 127 if (BaseInfo) 128 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 129 return getContext().toCharUnitsFromBits(Align); 130 } 131 } 132 133 if (BaseInfo) 134 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 135 136 CharUnits Alignment; 137 if (T->isIncompleteType()) { 138 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 139 } else { 140 // For C++ class pointees, we don't know whether we're pointing at a 141 // base or a complete object, so we generally need to use the 142 // non-virtual alignment. 143 const CXXRecordDecl *RD; 144 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 145 Alignment = CGM.getClassPointerAlignment(RD); 146 } else { 147 Alignment = getContext().getTypeAlignInChars(T); 148 if (T.getQualifiers().hasUnaligned()) 149 Alignment = CharUnits::One(); 150 } 151 152 // Cap to the global maximum type alignment unless the alignment 153 // was somehow explicit on the type. 154 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 155 if (Alignment.getQuantity() > MaxAlign && 156 !getContext().isAlignmentRequired(T)) 157 Alignment = CharUnits::fromQuantity(MaxAlign); 158 } 159 } 160 return Alignment; 161 } 162 163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 164 LValueBaseInfo BaseInfo; 165 TBAAAccessInfo TBAAInfo; 166 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 167 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 168 TBAAInfo); 169 } 170 171 /// Given a value of type T* that may not be to a complete object, 172 /// construct an l-value with the natural pointee alignment of T. 173 LValue 174 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 175 LValueBaseInfo BaseInfo; 176 TBAAAccessInfo TBAAInfo; 177 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 178 /* forPointeeType= */ true); 179 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 180 } 181 182 183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 184 return CGM.getTypes().ConvertTypeForMem(T); 185 } 186 187 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 188 return CGM.getTypes().ConvertType(T); 189 } 190 191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 192 type = type.getCanonicalType(); 193 while (true) { 194 switch (type->getTypeClass()) { 195 #define TYPE(name, parent) 196 #define ABSTRACT_TYPE(name, parent) 197 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 198 #define DEPENDENT_TYPE(name, parent) case Type::name: 199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 200 #include "clang/AST/TypeNodes.def" 201 llvm_unreachable("non-canonical or dependent type in IR-generation"); 202 203 case Type::Auto: 204 case Type::DeducedTemplateSpecialization: 205 llvm_unreachable("undeduced type in IR-generation"); 206 207 // Various scalar types. 208 case Type::Builtin: 209 case Type::Pointer: 210 case Type::BlockPointer: 211 case Type::LValueReference: 212 case Type::RValueReference: 213 case Type::MemberPointer: 214 case Type::Vector: 215 case Type::ExtVector: 216 case Type::FunctionProto: 217 case Type::FunctionNoProto: 218 case Type::Enum: 219 case Type::ObjCObjectPointer: 220 case Type::Pipe: 221 return TEK_Scalar; 222 223 // Complexes. 224 case Type::Complex: 225 return TEK_Complex; 226 227 // Arrays, records, and Objective-C objects. 228 case Type::ConstantArray: 229 case Type::IncompleteArray: 230 case Type::VariableArray: 231 case Type::Record: 232 case Type::ObjCObject: 233 case Type::ObjCInterface: 234 return TEK_Aggregate; 235 236 // We operate on atomic values according to their underlying type. 237 case Type::Atomic: 238 type = cast<AtomicType>(type)->getValueType(); 239 continue; 240 } 241 llvm_unreachable("unknown type kind!"); 242 } 243 } 244 245 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 246 // For cleanliness, we try to avoid emitting the return block for 247 // simple cases. 248 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 249 250 if (CurBB) { 251 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 252 253 // We have a valid insert point, reuse it if it is empty or there are no 254 // explicit jumps to the return block. 255 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 256 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 257 delete ReturnBlock.getBlock(); 258 } else 259 EmitBlock(ReturnBlock.getBlock()); 260 return llvm::DebugLoc(); 261 } 262 263 // Otherwise, if the return block is the target of a single direct 264 // branch then we can just put the code in that block instead. This 265 // cleans up functions which started with a unified return block. 266 if (ReturnBlock.getBlock()->hasOneUse()) { 267 llvm::BranchInst *BI = 268 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 269 if (BI && BI->isUnconditional() && 270 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 271 // Record/return the DebugLoc of the simple 'return' expression to be used 272 // later by the actual 'ret' instruction. 273 llvm::DebugLoc Loc = BI->getDebugLoc(); 274 Builder.SetInsertPoint(BI->getParent()); 275 BI->eraseFromParent(); 276 delete ReturnBlock.getBlock(); 277 return Loc; 278 } 279 } 280 281 // FIXME: We are at an unreachable point, there is no reason to emit the block 282 // unless it has uses. However, we still need a place to put the debug 283 // region.end for now. 284 285 EmitBlock(ReturnBlock.getBlock()); 286 return llvm::DebugLoc(); 287 } 288 289 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 290 if (!BB) return; 291 if (!BB->use_empty()) 292 return CGF.CurFn->getBasicBlockList().push_back(BB); 293 delete BB; 294 } 295 296 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 297 assert(BreakContinueStack.empty() && 298 "mismatched push/pop in break/continue stack!"); 299 300 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 301 && NumSimpleReturnExprs == NumReturnExprs 302 && ReturnBlock.getBlock()->use_empty(); 303 // Usually the return expression is evaluated before the cleanup 304 // code. If the function contains only a simple return statement, 305 // such as a constant, the location before the cleanup code becomes 306 // the last useful breakpoint in the function, because the simple 307 // return expression will be evaluated after the cleanup code. To be 308 // safe, set the debug location for cleanup code to the location of 309 // the return statement. Otherwise the cleanup code should be at the 310 // end of the function's lexical scope. 311 // 312 // If there are multiple branches to the return block, the branch 313 // instructions will get the location of the return statements and 314 // all will be fine. 315 if (CGDebugInfo *DI = getDebugInfo()) { 316 if (OnlySimpleReturnStmts) 317 DI->EmitLocation(Builder, LastStopPoint); 318 else 319 DI->EmitLocation(Builder, EndLoc); 320 } 321 322 // Pop any cleanups that might have been associated with the 323 // parameters. Do this in whatever block we're currently in; it's 324 // important to do this before we enter the return block or return 325 // edges will be *really* confused. 326 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 327 bool HasOnlyLifetimeMarkers = 328 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 329 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 330 if (HasCleanups) { 331 // Make sure the line table doesn't jump back into the body for 332 // the ret after it's been at EndLoc. 333 if (CGDebugInfo *DI = getDebugInfo()) 334 if (OnlySimpleReturnStmts) 335 DI->EmitLocation(Builder, EndLoc); 336 337 PopCleanupBlocks(PrologueCleanupDepth); 338 } 339 340 // Emit function epilog (to return). 341 llvm::DebugLoc Loc = EmitReturnBlock(); 342 343 if (ShouldInstrumentFunction()) { 344 if (CGM.getCodeGenOpts().InstrumentFunctions) 345 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 346 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 347 CurFn->addFnAttr("instrument-function-exit-inlined", 348 "__cyg_profile_func_exit"); 349 } 350 351 // Emit debug descriptor for function end. 352 if (CGDebugInfo *DI = getDebugInfo()) 353 DI->EmitFunctionEnd(Builder, CurFn); 354 355 // Reset the debug location to that of the simple 'return' expression, if any 356 // rather than that of the end of the function's scope '}'. 357 ApplyDebugLocation AL(*this, Loc); 358 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 359 EmitEndEHSpec(CurCodeDecl); 360 361 assert(EHStack.empty() && 362 "did not remove all scopes from cleanup stack!"); 363 364 // If someone did an indirect goto, emit the indirect goto block at the end of 365 // the function. 366 if (IndirectBranch) { 367 EmitBlock(IndirectBranch->getParent()); 368 Builder.ClearInsertionPoint(); 369 } 370 371 // If some of our locals escaped, insert a call to llvm.localescape in the 372 // entry block. 373 if (!EscapedLocals.empty()) { 374 // Invert the map from local to index into a simple vector. There should be 375 // no holes. 376 SmallVector<llvm::Value *, 4> EscapeArgs; 377 EscapeArgs.resize(EscapedLocals.size()); 378 for (auto &Pair : EscapedLocals) 379 EscapeArgs[Pair.second] = Pair.first; 380 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 381 &CGM.getModule(), llvm::Intrinsic::localescape); 382 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 383 } 384 385 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 386 llvm::Instruction *Ptr = AllocaInsertPt; 387 AllocaInsertPt = nullptr; 388 Ptr->eraseFromParent(); 389 390 // If someone took the address of a label but never did an indirect goto, we 391 // made a zero entry PHI node, which is illegal, zap it now. 392 if (IndirectBranch) { 393 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 394 if (PN->getNumIncomingValues() == 0) { 395 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 396 PN->eraseFromParent(); 397 } 398 } 399 400 EmitIfUsed(*this, EHResumeBlock); 401 EmitIfUsed(*this, TerminateLandingPad); 402 EmitIfUsed(*this, TerminateHandler); 403 EmitIfUsed(*this, UnreachableBlock); 404 405 for (const auto &FuncletAndParent : TerminateFunclets) 406 EmitIfUsed(*this, FuncletAndParent.second); 407 408 if (CGM.getCodeGenOpts().EmitDeclMetadata) 409 EmitDeclMetadata(); 410 411 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 412 I = DeferredReplacements.begin(), 413 E = DeferredReplacements.end(); 414 I != E; ++I) { 415 I->first->replaceAllUsesWith(I->second); 416 I->first->eraseFromParent(); 417 } 418 419 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 420 // PHIs if the current function is a coroutine. We don't do it for all 421 // functions as it may result in slight increase in numbers of instructions 422 // if compiled with no optimizations. We do it for coroutine as the lifetime 423 // of CleanupDestSlot alloca make correct coroutine frame building very 424 // difficult. 425 if (NormalCleanupDest.isValid() && isCoroutine()) { 426 llvm::DominatorTree DT(*CurFn); 427 llvm::PromoteMemToReg( 428 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 429 NormalCleanupDest = Address::invalid(); 430 } 431 432 // Scan function arguments for vector width. 433 for (llvm::Argument &A : CurFn->args()) 434 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 435 LargestVectorWidth = std::max(LargestVectorWidth, 436 VT->getPrimitiveSizeInBits()); 437 438 // Update vector width based on return type. 439 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 440 LargestVectorWidth = std::max(LargestVectorWidth, 441 VT->getPrimitiveSizeInBits()); 442 443 // Add the required-vector-width attribute. This contains the max width from: 444 // 1. min-vector-width attribute used in the source program. 445 // 2. Any builtins used that have a vector width specified. 446 // 3. Values passed in and out of inline assembly. 447 // 4. Width of vector arguments and return types for this function. 448 // 5. Width of vector aguments and return types for functions called by this 449 // function. 450 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 451 } 452 453 /// ShouldInstrumentFunction - Return true if the current function should be 454 /// instrumented with __cyg_profile_func_* calls 455 bool CodeGenFunction::ShouldInstrumentFunction() { 456 if (!CGM.getCodeGenOpts().InstrumentFunctions && 457 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 458 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 459 return false; 460 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 461 return false; 462 return true; 463 } 464 465 /// ShouldXRayInstrument - Return true if the current function should be 466 /// instrumented with XRay nop sleds. 467 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 468 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 469 } 470 471 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 472 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 473 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 474 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 475 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 476 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 477 XRayInstrKind::Custom); 478 } 479 480 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 481 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 482 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 483 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 484 XRayInstrKind::Typed); 485 } 486 487 llvm::Constant * 488 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 489 llvm::Constant *Addr) { 490 // Addresses stored in prologue data can't require run-time fixups and must 491 // be PC-relative. Run-time fixups are undesirable because they necessitate 492 // writable text segments, which are unsafe. And absolute addresses are 493 // undesirable because they break PIE mode. 494 495 // Add a layer of indirection through a private global. Taking its address 496 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 497 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 498 /*isConstant=*/true, 499 llvm::GlobalValue::PrivateLinkage, Addr); 500 501 // Create a PC-relative address. 502 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 503 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 504 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 505 return (IntPtrTy == Int32Ty) 506 ? PCRelAsInt 507 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 508 } 509 510 llvm::Value * 511 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 512 llvm::Value *EncodedAddr) { 513 // Reconstruct the address of the global. 514 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 515 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 516 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 517 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 518 519 // Load the original pointer through the global. 520 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 521 "decoded_addr"); 522 } 523 524 static void removeImageAccessQualifier(std::string& TyName) { 525 std::string ReadOnlyQual("__read_only"); 526 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 527 if (ReadOnlyPos != std::string::npos) 528 // "+ 1" for the space after access qualifier. 529 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 530 else { 531 std::string WriteOnlyQual("__write_only"); 532 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 533 if (WriteOnlyPos != std::string::npos) 534 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 535 else { 536 std::string ReadWriteQual("__read_write"); 537 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 538 if (ReadWritePos != std::string::npos) 539 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 540 } 541 } 542 } 543 544 // Returns the address space id that should be produced to the 545 // kernel_arg_addr_space metadata. This is always fixed to the ids 546 // as specified in the SPIR 2.0 specification in order to differentiate 547 // for example in clGetKernelArgInfo() implementation between the address 548 // spaces with targets without unique mapping to the OpenCL address spaces 549 // (basically all single AS CPUs). 550 static unsigned ArgInfoAddressSpace(LangAS AS) { 551 switch (AS) { 552 case LangAS::opencl_global: return 1; 553 case LangAS::opencl_constant: return 2; 554 case LangAS::opencl_local: return 3; 555 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 556 default: 557 return 0; // Assume private. 558 } 559 } 560 561 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 562 // information in the program executable. The argument information stored 563 // includes the argument name, its type, the address and access qualifiers used. 564 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 565 CodeGenModule &CGM, llvm::LLVMContext &Context, 566 CGBuilderTy &Builder, ASTContext &ASTCtx) { 567 // Create MDNodes that represent the kernel arg metadata. 568 // Each MDNode is a list in the form of "key", N number of values which is 569 // the same number of values as their are kernel arguments. 570 571 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 572 573 // MDNode for the kernel argument address space qualifiers. 574 SmallVector<llvm::Metadata *, 8> addressQuals; 575 576 // MDNode for the kernel argument access qualifiers (images only). 577 SmallVector<llvm::Metadata *, 8> accessQuals; 578 579 // MDNode for the kernel argument type names. 580 SmallVector<llvm::Metadata *, 8> argTypeNames; 581 582 // MDNode for the kernel argument base type names. 583 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 584 585 // MDNode for the kernel argument type qualifiers. 586 SmallVector<llvm::Metadata *, 8> argTypeQuals; 587 588 // MDNode for the kernel argument names. 589 SmallVector<llvm::Metadata *, 8> argNames; 590 591 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 592 const ParmVarDecl *parm = FD->getParamDecl(i); 593 QualType ty = parm->getType(); 594 std::string typeQuals; 595 596 if (ty->isPointerType()) { 597 QualType pointeeTy = ty->getPointeeType(); 598 599 // Get address qualifier. 600 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 601 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 602 603 // Get argument type name. 604 std::string typeName = 605 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 606 607 // Turn "unsigned type" to "utype" 608 std::string::size_type pos = typeName.find("unsigned"); 609 if (pointeeTy.isCanonical() && pos != std::string::npos) 610 typeName.erase(pos+1, 8); 611 612 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 613 614 std::string baseTypeName = 615 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 616 Policy) + 617 "*"; 618 619 // Turn "unsigned type" to "utype" 620 pos = baseTypeName.find("unsigned"); 621 if (pos != std::string::npos) 622 baseTypeName.erase(pos+1, 8); 623 624 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 625 626 // Get argument type qualifiers: 627 if (ty.isRestrictQualified()) 628 typeQuals = "restrict"; 629 if (pointeeTy.isConstQualified() || 630 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 631 typeQuals += typeQuals.empty() ? "const" : " const"; 632 if (pointeeTy.isVolatileQualified()) 633 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 634 } else { 635 uint32_t AddrSpc = 0; 636 bool isPipe = ty->isPipeType(); 637 if (ty->isImageType() || isPipe) 638 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 639 640 addressQuals.push_back( 641 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 642 643 // Get argument type name. 644 std::string typeName; 645 if (isPipe) 646 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 647 .getAsString(Policy); 648 else 649 typeName = ty.getUnqualifiedType().getAsString(Policy); 650 651 // Turn "unsigned type" to "utype" 652 std::string::size_type pos = typeName.find("unsigned"); 653 if (ty.isCanonical() && pos != std::string::npos) 654 typeName.erase(pos+1, 8); 655 656 std::string baseTypeName; 657 if (isPipe) 658 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 659 ->getElementType().getCanonicalType() 660 .getAsString(Policy); 661 else 662 baseTypeName = 663 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 664 665 // Remove access qualifiers on images 666 // (as they are inseparable from type in clang implementation, 667 // but OpenCL spec provides a special query to get access qualifier 668 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 669 if (ty->isImageType()) { 670 removeImageAccessQualifier(typeName); 671 removeImageAccessQualifier(baseTypeName); 672 } 673 674 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 675 676 // Turn "unsigned type" to "utype" 677 pos = baseTypeName.find("unsigned"); 678 if (pos != std::string::npos) 679 baseTypeName.erase(pos+1, 8); 680 681 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 682 683 if (isPipe) 684 typeQuals = "pipe"; 685 } 686 687 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 688 689 // Get image and pipe access qualifier: 690 if (ty->isImageType()|| ty->isPipeType()) { 691 const Decl *PDecl = parm; 692 if (auto *TD = dyn_cast<TypedefType>(ty)) 693 PDecl = TD->getDecl(); 694 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 695 if (A && A->isWriteOnly()) 696 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 697 else if (A && A->isReadWrite()) 698 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 699 else 700 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 701 } else 702 accessQuals.push_back(llvm::MDString::get(Context, "none")); 703 704 // Get argument name. 705 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 706 } 707 708 Fn->setMetadata("kernel_arg_addr_space", 709 llvm::MDNode::get(Context, addressQuals)); 710 Fn->setMetadata("kernel_arg_access_qual", 711 llvm::MDNode::get(Context, accessQuals)); 712 Fn->setMetadata("kernel_arg_type", 713 llvm::MDNode::get(Context, argTypeNames)); 714 Fn->setMetadata("kernel_arg_base_type", 715 llvm::MDNode::get(Context, argBaseTypeNames)); 716 Fn->setMetadata("kernel_arg_type_qual", 717 llvm::MDNode::get(Context, argTypeQuals)); 718 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 719 Fn->setMetadata("kernel_arg_name", 720 llvm::MDNode::get(Context, argNames)); 721 } 722 723 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 724 llvm::Function *Fn) 725 { 726 if (!FD->hasAttr<OpenCLKernelAttr>()) 727 return; 728 729 llvm::LLVMContext &Context = getLLVMContext(); 730 731 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 732 733 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 734 QualType HintQTy = A->getTypeHint(); 735 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 736 bool IsSignedInteger = 737 HintQTy->isSignedIntegerType() || 738 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 739 llvm::Metadata *AttrMDArgs[] = { 740 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 741 CGM.getTypes().ConvertType(A->getTypeHint()))), 742 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 743 llvm::IntegerType::get(Context, 32), 744 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 745 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 746 } 747 748 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 749 llvm::Metadata *AttrMDArgs[] = { 750 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 751 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 752 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 753 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 754 } 755 756 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 757 llvm::Metadata *AttrMDArgs[] = { 758 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 759 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 760 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 761 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 762 } 763 764 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 765 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 766 llvm::Metadata *AttrMDArgs[] = { 767 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 768 Fn->setMetadata("intel_reqd_sub_group_size", 769 llvm::MDNode::get(Context, AttrMDArgs)); 770 } 771 } 772 773 /// Determine whether the function F ends with a return stmt. 774 static bool endsWithReturn(const Decl* F) { 775 const Stmt *Body = nullptr; 776 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 777 Body = FD->getBody(); 778 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 779 Body = OMD->getBody(); 780 781 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 782 auto LastStmt = CS->body_rbegin(); 783 if (LastStmt != CS->body_rend()) 784 return isa<ReturnStmt>(*LastStmt); 785 } 786 return false; 787 } 788 789 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 790 if (SanOpts.has(SanitizerKind::Thread)) { 791 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 792 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 793 } 794 } 795 796 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 797 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 798 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 799 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 800 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 801 return false; 802 803 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 804 return false; 805 806 if (MD->getNumParams() == 2) { 807 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 808 if (!PT || !PT->isVoidPointerType() || 809 !PT->getPointeeType().isConstQualified()) 810 return false; 811 } 812 813 return true; 814 } 815 816 /// Return the UBSan prologue signature for \p FD if one is available. 817 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 818 const FunctionDecl *FD) { 819 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 820 if (!MD->isStatic()) 821 return nullptr; 822 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 823 } 824 825 void CodeGenFunction::StartFunction(GlobalDecl GD, 826 QualType RetTy, 827 llvm::Function *Fn, 828 const CGFunctionInfo &FnInfo, 829 const FunctionArgList &Args, 830 SourceLocation Loc, 831 SourceLocation StartLoc) { 832 assert(!CurFn && 833 "Do not use a CodeGenFunction object for more than one function"); 834 835 const Decl *D = GD.getDecl(); 836 837 DidCallStackSave = false; 838 CurCodeDecl = D; 839 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 840 if (FD->usesSEHTry()) 841 CurSEHParent = FD; 842 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 843 FnRetTy = RetTy; 844 CurFn = Fn; 845 CurFnInfo = &FnInfo; 846 assert(CurFn->isDeclaration() && "Function already has body?"); 847 848 // If this function has been blacklisted for any of the enabled sanitizers, 849 // disable the sanitizer for the function. 850 do { 851 #define SANITIZER(NAME, ID) \ 852 if (SanOpts.empty()) \ 853 break; \ 854 if (SanOpts.has(SanitizerKind::ID)) \ 855 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 856 SanOpts.set(SanitizerKind::ID, false); 857 858 #include "clang/Basic/Sanitizers.def" 859 #undef SANITIZER 860 } while (0); 861 862 if (D) { 863 // Apply the no_sanitize* attributes to SanOpts. 864 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 865 SanitizerMask mask = Attr->getMask(); 866 SanOpts.Mask &= ~mask; 867 if (mask & SanitizerKind::Address) 868 SanOpts.set(SanitizerKind::KernelAddress, false); 869 if (mask & SanitizerKind::KernelAddress) 870 SanOpts.set(SanitizerKind::Address, false); 871 if (mask & SanitizerKind::HWAddress) 872 SanOpts.set(SanitizerKind::KernelHWAddress, false); 873 if (mask & SanitizerKind::KernelHWAddress) 874 SanOpts.set(SanitizerKind::HWAddress, false); 875 } 876 } 877 878 // Apply sanitizer attributes to the function. 879 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 880 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 881 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 882 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 883 if (SanOpts.has(SanitizerKind::Thread)) 884 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 885 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 886 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 887 if (SanOpts.has(SanitizerKind::SafeStack)) 888 Fn->addFnAttr(llvm::Attribute::SafeStack); 889 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 890 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 891 892 // Apply fuzzing attribute to the function. 893 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 894 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 895 896 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 897 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 898 if (SanOpts.has(SanitizerKind::Thread)) { 899 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 900 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 901 if (OMD->getMethodFamily() == OMF_dealloc || 902 OMD->getMethodFamily() == OMF_initialize || 903 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 904 markAsIgnoreThreadCheckingAtRuntime(Fn); 905 } 906 } 907 } 908 909 // Ignore unrelated casts in STL allocate() since the allocator must cast 910 // from void* to T* before object initialization completes. Don't match on the 911 // namespace because not all allocators are in std:: 912 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 913 if (matchesStlAllocatorFn(D, getContext())) 914 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 915 } 916 917 // Apply xray attributes to the function (as a string, for now) 918 if (D) { 919 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 920 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 921 XRayInstrKind::Function)) { 922 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 923 Fn->addFnAttr("function-instrument", "xray-always"); 924 if (XRayAttr->neverXRayInstrument()) 925 Fn->addFnAttr("function-instrument", "xray-never"); 926 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 927 if (ShouldXRayInstrumentFunction()) 928 Fn->addFnAttr("xray-log-args", 929 llvm::utostr(LogArgs->getArgumentCount())); 930 } 931 } else { 932 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 933 Fn->addFnAttr( 934 "xray-instruction-threshold", 935 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 936 } 937 } 938 939 // Add no-jump-tables value. 940 Fn->addFnAttr("no-jump-tables", 941 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 942 943 // Add profile-sample-accurate value. 944 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 945 Fn->addFnAttr("profile-sample-accurate"); 946 947 if (getLangOpts().OpenCL) { 948 // Add metadata for a kernel function. 949 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 950 EmitOpenCLKernelMetadata(FD, Fn); 951 } 952 953 // If we are checking function types, emit a function type signature as 954 // prologue data. 955 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 956 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 957 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 958 // Remove any (C++17) exception specifications, to allow calling e.g. a 959 // noexcept function through a non-noexcept pointer. 960 auto ProtoTy = 961 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 962 EST_None); 963 llvm::Constant *FTRTTIConst = 964 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 965 llvm::Constant *FTRTTIConstEncoded = 966 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 967 llvm::Constant *PrologueStructElems[] = {PrologueSig, 968 FTRTTIConstEncoded}; 969 llvm::Constant *PrologueStructConst = 970 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 971 Fn->setPrologueData(PrologueStructConst); 972 } 973 } 974 } 975 976 // If we're checking nullability, we need to know whether we can check the 977 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 978 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 979 auto Nullability = FnRetTy->getNullability(getContext()); 980 if (Nullability && *Nullability == NullabilityKind::NonNull) { 981 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 982 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 983 RetValNullabilityPrecondition = 984 llvm::ConstantInt::getTrue(getLLVMContext()); 985 } 986 } 987 988 // If we're in C++ mode and the function name is "main", it is guaranteed 989 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 990 // used within a program"). 991 if (getLangOpts().CPlusPlus) 992 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 993 if (FD->isMain()) 994 Fn->addFnAttr(llvm::Attribute::NoRecurse); 995 996 // If a custom alignment is used, force realigning to this alignment on 997 // any main function which certainly will need it. 998 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 999 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1000 CGM.getCodeGenOpts().StackAlignment) 1001 Fn->addFnAttr("stackrealign"); 1002 1003 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1004 1005 // Create a marker to make it easy to insert allocas into the entryblock 1006 // later. Don't create this with the builder, because we don't want it 1007 // folded. 1008 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1009 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1010 1011 ReturnBlock = getJumpDestInCurrentScope("return"); 1012 1013 Builder.SetInsertPoint(EntryBB); 1014 1015 // If we're checking the return value, allocate space for a pointer to a 1016 // precise source location of the checked return statement. 1017 if (requiresReturnValueCheck()) { 1018 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1019 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 1020 } 1021 1022 // Emit subprogram debug descriptor. 1023 if (CGDebugInfo *DI = getDebugInfo()) { 1024 // Reconstruct the type from the argument list so that implicit parameters, 1025 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1026 // convention. 1027 CallingConv CC = CallingConv::CC_C; 1028 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 1029 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 1030 CC = SrcFnTy->getCallConv(); 1031 SmallVector<QualType, 16> ArgTypes; 1032 for (const VarDecl *VD : Args) 1033 ArgTypes.push_back(VD->getType()); 1034 QualType FnType = getContext().getFunctionType( 1035 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1036 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 1037 Builder); 1038 } 1039 1040 if (ShouldInstrumentFunction()) { 1041 if (CGM.getCodeGenOpts().InstrumentFunctions) 1042 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1043 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1044 CurFn->addFnAttr("instrument-function-entry-inlined", 1045 "__cyg_profile_func_enter"); 1046 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1047 CurFn->addFnAttr("instrument-function-entry-inlined", 1048 "__cyg_profile_func_enter_bare"); 1049 } 1050 1051 // Since emitting the mcount call here impacts optimizations such as function 1052 // inlining, we just add an attribute to insert a mcount call in backend. 1053 // The attribute "counting-function" is set to mcount function name which is 1054 // architecture dependent. 1055 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1056 // Calls to fentry/mcount should not be generated if function has 1057 // the no_instrument_function attribute. 1058 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1059 if (CGM.getCodeGenOpts().CallFEntry) 1060 Fn->addFnAttr("fentry-call", "true"); 1061 else { 1062 Fn->addFnAttr("instrument-function-entry-inlined", 1063 getTarget().getMCountName()); 1064 } 1065 } 1066 } 1067 1068 if (RetTy->isVoidType()) { 1069 // Void type; nothing to return. 1070 ReturnValue = Address::invalid(); 1071 1072 // Count the implicit return. 1073 if (!endsWithReturn(D)) 1074 ++NumReturnExprs; 1075 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1076 // Indirect return; emit returned value directly into sret slot. 1077 // This reduces code size, and affects correctness in C++. 1078 auto AI = CurFn->arg_begin(); 1079 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1080 ++AI; 1081 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1082 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1083 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1084 // Load the sret pointer from the argument struct and return into that. 1085 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1086 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1087 --EI; 1088 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1089 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1090 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1091 } else { 1092 ReturnValue = CreateIRTemp(RetTy, "retval"); 1093 1094 // Tell the epilog emitter to autorelease the result. We do this 1095 // now so that various specialized functions can suppress it 1096 // during their IR-generation. 1097 if (getLangOpts().ObjCAutoRefCount && 1098 !CurFnInfo->isReturnsRetained() && 1099 RetTy->isObjCRetainableType()) 1100 AutoreleaseResult = true; 1101 } 1102 1103 EmitStartEHSpec(CurCodeDecl); 1104 1105 PrologueCleanupDepth = EHStack.stable_begin(); 1106 1107 // Emit OpenMP specific initialization of the device functions. 1108 if (getLangOpts().OpenMP && CurCodeDecl) 1109 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1110 1111 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1112 1113 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1114 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1115 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1116 if (MD->getParent()->isLambda() && 1117 MD->getOverloadedOperator() == OO_Call) { 1118 // We're in a lambda; figure out the captures. 1119 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1120 LambdaThisCaptureField); 1121 if (LambdaThisCaptureField) { 1122 // If the lambda captures the object referred to by '*this' - either by 1123 // value or by reference, make sure CXXThisValue points to the correct 1124 // object. 1125 1126 // Get the lvalue for the field (which is a copy of the enclosing object 1127 // or contains the address of the enclosing object). 1128 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1129 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1130 // If the enclosing object was captured by value, just use its address. 1131 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1132 } else { 1133 // Load the lvalue pointed to by the field, since '*this' was captured 1134 // by reference. 1135 CXXThisValue = 1136 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1137 } 1138 } 1139 for (auto *FD : MD->getParent()->fields()) { 1140 if (FD->hasCapturedVLAType()) { 1141 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1142 SourceLocation()).getScalarVal(); 1143 auto VAT = FD->getCapturedVLAType(); 1144 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1145 } 1146 } 1147 } else { 1148 // Not in a lambda; just use 'this' from the method. 1149 // FIXME: Should we generate a new load for each use of 'this'? The 1150 // fast register allocator would be happier... 1151 CXXThisValue = CXXABIThisValue; 1152 } 1153 1154 // Check the 'this' pointer once per function, if it's available. 1155 if (CXXABIThisValue) { 1156 SanitizerSet SkippedChecks; 1157 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1158 QualType ThisTy = MD->getThisType(); 1159 1160 // If this is the call operator of a lambda with no capture-default, it 1161 // may have a static invoker function, which may call this operator with 1162 // a null 'this' pointer. 1163 if (isLambdaCallOperator(MD) && 1164 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1165 SkippedChecks.set(SanitizerKind::Null, true); 1166 1167 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1168 : TCK_MemberCall, 1169 Loc, CXXABIThisValue, ThisTy, 1170 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1171 SkippedChecks); 1172 } 1173 } 1174 1175 // If any of the arguments have a variably modified type, make sure to 1176 // emit the type size. 1177 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1178 i != e; ++i) { 1179 const VarDecl *VD = *i; 1180 1181 // Dig out the type as written from ParmVarDecls; it's unclear whether 1182 // the standard (C99 6.9.1p10) requires this, but we're following the 1183 // precedent set by gcc. 1184 QualType Ty; 1185 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1186 Ty = PVD->getOriginalType(); 1187 else 1188 Ty = VD->getType(); 1189 1190 if (Ty->isVariablyModifiedType()) 1191 EmitVariablyModifiedType(Ty); 1192 } 1193 // Emit a location at the end of the prologue. 1194 if (CGDebugInfo *DI = getDebugInfo()) 1195 DI->EmitLocation(Builder, StartLoc); 1196 1197 // TODO: Do we need to handle this in two places like we do with 1198 // target-features/target-cpu? 1199 if (CurFuncDecl) 1200 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1201 LargestVectorWidth = VecWidth->getVectorWidth(); 1202 } 1203 1204 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1205 incrementProfileCounter(Body); 1206 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1207 EmitCompoundStmtWithoutScope(*S); 1208 else 1209 EmitStmt(Body); 1210 } 1211 1212 /// When instrumenting to collect profile data, the counts for some blocks 1213 /// such as switch cases need to not include the fall-through counts, so 1214 /// emit a branch around the instrumentation code. When not instrumenting, 1215 /// this just calls EmitBlock(). 1216 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1217 const Stmt *S) { 1218 llvm::BasicBlock *SkipCountBB = nullptr; 1219 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1220 // When instrumenting for profiling, the fallthrough to certain 1221 // statements needs to skip over the instrumentation code so that we 1222 // get an accurate count. 1223 SkipCountBB = createBasicBlock("skipcount"); 1224 EmitBranch(SkipCountBB); 1225 } 1226 EmitBlock(BB); 1227 uint64_t CurrentCount = getCurrentProfileCount(); 1228 incrementProfileCounter(S); 1229 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1230 if (SkipCountBB) 1231 EmitBlock(SkipCountBB); 1232 } 1233 1234 /// Tries to mark the given function nounwind based on the 1235 /// non-existence of any throwing calls within it. We believe this is 1236 /// lightweight enough to do at -O0. 1237 static void TryMarkNoThrow(llvm::Function *F) { 1238 // LLVM treats 'nounwind' on a function as part of the type, so we 1239 // can't do this on functions that can be overwritten. 1240 if (F->isInterposable()) return; 1241 1242 for (llvm::BasicBlock &BB : *F) 1243 for (llvm::Instruction &I : BB) 1244 if (I.mayThrow()) 1245 return; 1246 1247 F->setDoesNotThrow(); 1248 } 1249 1250 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1251 FunctionArgList &Args) { 1252 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1253 QualType ResTy = FD->getReturnType(); 1254 1255 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1256 if (MD && MD->isInstance()) { 1257 if (CGM.getCXXABI().HasThisReturn(GD)) 1258 ResTy = MD->getThisType(); 1259 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1260 ResTy = CGM.getContext().VoidPtrTy; 1261 CGM.getCXXABI().buildThisParam(*this, Args); 1262 } 1263 1264 // The base version of an inheriting constructor whose constructed base is a 1265 // virtual base is not passed any arguments (because it doesn't actually call 1266 // the inherited constructor). 1267 bool PassedParams = true; 1268 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1269 if (auto Inherited = CD->getInheritedConstructor()) 1270 PassedParams = 1271 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1272 1273 if (PassedParams) { 1274 for (auto *Param : FD->parameters()) { 1275 Args.push_back(Param); 1276 if (!Param->hasAttr<PassObjectSizeAttr>()) 1277 continue; 1278 1279 auto *Implicit = ImplicitParamDecl::Create( 1280 getContext(), Param->getDeclContext(), Param->getLocation(), 1281 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1282 SizeArguments[Param] = Implicit; 1283 Args.push_back(Implicit); 1284 } 1285 } 1286 1287 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1288 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1289 1290 return ResTy; 1291 } 1292 1293 static bool 1294 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1295 const ASTContext &Context) { 1296 QualType T = FD->getReturnType(); 1297 // Avoid the optimization for functions that return a record type with a 1298 // trivial destructor or another trivially copyable type. 1299 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1300 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1301 return !ClassDecl->hasTrivialDestructor(); 1302 } 1303 return !T.isTriviallyCopyableType(Context); 1304 } 1305 1306 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1307 const CGFunctionInfo &FnInfo) { 1308 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1309 CurGD = GD; 1310 1311 FunctionArgList Args; 1312 QualType ResTy = BuildFunctionArgList(GD, Args); 1313 1314 // Check if we should generate debug info for this function. 1315 if (FD->hasAttr<NoDebugAttr>()) 1316 DebugInfo = nullptr; // disable debug info indefinitely for this function 1317 1318 // The function might not have a body if we're generating thunks for a 1319 // function declaration. 1320 SourceRange BodyRange; 1321 if (Stmt *Body = FD->getBody()) 1322 BodyRange = Body->getSourceRange(); 1323 else 1324 BodyRange = FD->getLocation(); 1325 CurEHLocation = BodyRange.getEnd(); 1326 1327 // Use the location of the start of the function to determine where 1328 // the function definition is located. By default use the location 1329 // of the declaration as the location for the subprogram. A function 1330 // may lack a declaration in the source code if it is created by code 1331 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1332 SourceLocation Loc = FD->getLocation(); 1333 1334 // If this is a function specialization then use the pattern body 1335 // as the location for the function. 1336 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1337 if (SpecDecl->hasBody(SpecDecl)) 1338 Loc = SpecDecl->getLocation(); 1339 1340 Stmt *Body = FD->getBody(); 1341 1342 // Initialize helper which will detect jumps which can cause invalid lifetime 1343 // markers. 1344 if (Body && ShouldEmitLifetimeMarkers) 1345 Bypasses.Init(Body); 1346 1347 // Emit the standard function prologue. 1348 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1349 1350 // Generate the body of the function. 1351 PGO.assignRegionCounters(GD, CurFn); 1352 if (isa<CXXDestructorDecl>(FD)) 1353 EmitDestructorBody(Args); 1354 else if (isa<CXXConstructorDecl>(FD)) 1355 EmitConstructorBody(Args); 1356 else if (getLangOpts().CUDA && 1357 !getLangOpts().CUDAIsDevice && 1358 FD->hasAttr<CUDAGlobalAttr>()) 1359 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1360 else if (isa<CXXMethodDecl>(FD) && 1361 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1362 // The lambda static invoker function is special, because it forwards or 1363 // clones the body of the function call operator (but is actually static). 1364 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1365 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1366 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1367 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1368 // Implicit copy-assignment gets the same special treatment as implicit 1369 // copy-constructors. 1370 emitImplicitAssignmentOperatorBody(Args); 1371 } else if (Body) { 1372 EmitFunctionBody(Body); 1373 } else 1374 llvm_unreachable("no definition for emitted function"); 1375 1376 // C++11 [stmt.return]p2: 1377 // Flowing off the end of a function [...] results in undefined behavior in 1378 // a value-returning function. 1379 // C11 6.9.1p12: 1380 // If the '}' that terminates a function is reached, and the value of the 1381 // function call is used by the caller, the behavior is undefined. 1382 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1383 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1384 bool ShouldEmitUnreachable = 1385 CGM.getCodeGenOpts().StrictReturn || 1386 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1387 if (SanOpts.has(SanitizerKind::Return)) { 1388 SanitizerScope SanScope(this); 1389 llvm::Value *IsFalse = Builder.getFalse(); 1390 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1391 SanitizerHandler::MissingReturn, 1392 EmitCheckSourceLocation(FD->getLocation()), None); 1393 } else if (ShouldEmitUnreachable) { 1394 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1395 EmitTrapCall(llvm::Intrinsic::trap); 1396 } 1397 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1398 Builder.CreateUnreachable(); 1399 Builder.ClearInsertionPoint(); 1400 } 1401 } 1402 1403 // Emit the standard function epilogue. 1404 FinishFunction(BodyRange.getEnd()); 1405 1406 // If we haven't marked the function nothrow through other means, do 1407 // a quick pass now to see if we can. 1408 if (!CurFn->doesNotThrow()) 1409 TryMarkNoThrow(CurFn); 1410 } 1411 1412 /// ContainsLabel - Return true if the statement contains a label in it. If 1413 /// this statement is not executed normally, it not containing a label means 1414 /// that we can just remove the code. 1415 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1416 // Null statement, not a label! 1417 if (!S) return false; 1418 1419 // If this is a label, we have to emit the code, consider something like: 1420 // if (0) { ... foo: bar(); } goto foo; 1421 // 1422 // TODO: If anyone cared, we could track __label__'s, since we know that you 1423 // can't jump to one from outside their declared region. 1424 if (isa<LabelStmt>(S)) 1425 return true; 1426 1427 // If this is a case/default statement, and we haven't seen a switch, we have 1428 // to emit the code. 1429 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1430 return true; 1431 1432 // If this is a switch statement, we want to ignore cases below it. 1433 if (isa<SwitchStmt>(S)) 1434 IgnoreCaseStmts = true; 1435 1436 // Scan subexpressions for verboten labels. 1437 for (const Stmt *SubStmt : S->children()) 1438 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1439 return true; 1440 1441 return false; 1442 } 1443 1444 /// containsBreak - Return true if the statement contains a break out of it. 1445 /// If the statement (recursively) contains a switch or loop with a break 1446 /// inside of it, this is fine. 1447 bool CodeGenFunction::containsBreak(const Stmt *S) { 1448 // Null statement, not a label! 1449 if (!S) return false; 1450 1451 // If this is a switch or loop that defines its own break scope, then we can 1452 // include it and anything inside of it. 1453 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1454 isa<ForStmt>(S)) 1455 return false; 1456 1457 if (isa<BreakStmt>(S)) 1458 return true; 1459 1460 // Scan subexpressions for verboten breaks. 1461 for (const Stmt *SubStmt : S->children()) 1462 if (containsBreak(SubStmt)) 1463 return true; 1464 1465 return false; 1466 } 1467 1468 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1469 if (!S) return false; 1470 1471 // Some statement kinds add a scope and thus never add a decl to the current 1472 // scope. Note, this list is longer than the list of statements that might 1473 // have an unscoped decl nested within them, but this way is conservatively 1474 // correct even if more statement kinds are added. 1475 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1476 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1477 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1478 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1479 return false; 1480 1481 if (isa<DeclStmt>(S)) 1482 return true; 1483 1484 for (const Stmt *SubStmt : S->children()) 1485 if (mightAddDeclToScope(SubStmt)) 1486 return true; 1487 1488 return false; 1489 } 1490 1491 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1492 /// to a constant, or if it does but contains a label, return false. If it 1493 /// constant folds return true and set the boolean result in Result. 1494 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1495 bool &ResultBool, 1496 bool AllowLabels) { 1497 llvm::APSInt ResultInt; 1498 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1499 return false; 1500 1501 ResultBool = ResultInt.getBoolValue(); 1502 return true; 1503 } 1504 1505 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1506 /// to a constant, or if it does but contains a label, return false. If it 1507 /// constant folds return true and set the folded value. 1508 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1509 llvm::APSInt &ResultInt, 1510 bool AllowLabels) { 1511 // FIXME: Rename and handle conversion of other evaluatable things 1512 // to bool. 1513 Expr::EvalResult Result; 1514 if (!Cond->EvaluateAsInt(Result, getContext())) 1515 return false; // Not foldable, not integer or not fully evaluatable. 1516 1517 llvm::APSInt Int = Result.Val.getInt(); 1518 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1519 return false; // Contains a label. 1520 1521 ResultInt = Int; 1522 return true; 1523 } 1524 1525 1526 1527 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1528 /// statement) to the specified blocks. Based on the condition, this might try 1529 /// to simplify the codegen of the conditional based on the branch. 1530 /// 1531 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1532 llvm::BasicBlock *TrueBlock, 1533 llvm::BasicBlock *FalseBlock, 1534 uint64_t TrueCount) { 1535 Cond = Cond->IgnoreParens(); 1536 1537 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1538 1539 // Handle X && Y in a condition. 1540 if (CondBOp->getOpcode() == BO_LAnd) { 1541 // If we have "1 && X", simplify the code. "0 && X" would have constant 1542 // folded if the case was simple enough. 1543 bool ConstantBool = false; 1544 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1545 ConstantBool) { 1546 // br(1 && X) -> br(X). 1547 incrementProfileCounter(CondBOp); 1548 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1549 TrueCount); 1550 } 1551 1552 // If we have "X && 1", simplify the code to use an uncond branch. 1553 // "X && 0" would have been constant folded to 0. 1554 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1555 ConstantBool) { 1556 // br(X && 1) -> br(X). 1557 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1558 TrueCount); 1559 } 1560 1561 // Emit the LHS as a conditional. If the LHS conditional is false, we 1562 // want to jump to the FalseBlock. 1563 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1564 // The counter tells us how often we evaluate RHS, and all of TrueCount 1565 // can be propagated to that branch. 1566 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1567 1568 ConditionalEvaluation eval(*this); 1569 { 1570 ApplyDebugLocation DL(*this, Cond); 1571 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1572 EmitBlock(LHSTrue); 1573 } 1574 1575 incrementProfileCounter(CondBOp); 1576 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1577 1578 // Any temporaries created here are conditional. 1579 eval.begin(*this); 1580 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1581 eval.end(*this); 1582 1583 return; 1584 } 1585 1586 if (CondBOp->getOpcode() == BO_LOr) { 1587 // If we have "0 || X", simplify the code. "1 || X" would have constant 1588 // folded if the case was simple enough. 1589 bool ConstantBool = false; 1590 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1591 !ConstantBool) { 1592 // br(0 || X) -> br(X). 1593 incrementProfileCounter(CondBOp); 1594 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1595 TrueCount); 1596 } 1597 1598 // If we have "X || 0", simplify the code to use an uncond branch. 1599 // "X || 1" would have been constant folded to 1. 1600 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1601 !ConstantBool) { 1602 // br(X || 0) -> br(X). 1603 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1604 TrueCount); 1605 } 1606 1607 // Emit the LHS as a conditional. If the LHS conditional is true, we 1608 // want to jump to the TrueBlock. 1609 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1610 // We have the count for entry to the RHS and for the whole expression 1611 // being true, so we can divy up True count between the short circuit and 1612 // the RHS. 1613 uint64_t LHSCount = 1614 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1615 uint64_t RHSCount = TrueCount - LHSCount; 1616 1617 ConditionalEvaluation eval(*this); 1618 { 1619 ApplyDebugLocation DL(*this, Cond); 1620 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1621 EmitBlock(LHSFalse); 1622 } 1623 1624 incrementProfileCounter(CondBOp); 1625 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1626 1627 // Any temporaries created here are conditional. 1628 eval.begin(*this); 1629 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1630 1631 eval.end(*this); 1632 1633 return; 1634 } 1635 } 1636 1637 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1638 // br(!x, t, f) -> br(x, f, t) 1639 if (CondUOp->getOpcode() == UO_LNot) { 1640 // Negate the count. 1641 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1642 // Negate the condition and swap the destination blocks. 1643 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1644 FalseCount); 1645 } 1646 } 1647 1648 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1649 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1650 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1651 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1652 1653 ConditionalEvaluation cond(*this); 1654 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1655 getProfileCount(CondOp)); 1656 1657 // When computing PGO branch weights, we only know the overall count for 1658 // the true block. This code is essentially doing tail duplication of the 1659 // naive code-gen, introducing new edges for which counts are not 1660 // available. Divide the counts proportionally between the LHS and RHS of 1661 // the conditional operator. 1662 uint64_t LHSScaledTrueCount = 0; 1663 if (TrueCount) { 1664 double LHSRatio = 1665 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1666 LHSScaledTrueCount = TrueCount * LHSRatio; 1667 } 1668 1669 cond.begin(*this); 1670 EmitBlock(LHSBlock); 1671 incrementProfileCounter(CondOp); 1672 { 1673 ApplyDebugLocation DL(*this, Cond); 1674 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1675 LHSScaledTrueCount); 1676 } 1677 cond.end(*this); 1678 1679 cond.begin(*this); 1680 EmitBlock(RHSBlock); 1681 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1682 TrueCount - LHSScaledTrueCount); 1683 cond.end(*this); 1684 1685 return; 1686 } 1687 1688 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1689 // Conditional operator handling can give us a throw expression as a 1690 // condition for a case like: 1691 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1692 // Fold this to: 1693 // br(c, throw x, br(y, t, f)) 1694 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1695 return; 1696 } 1697 1698 // If the branch has a condition wrapped by __builtin_unpredictable, 1699 // create metadata that specifies that the branch is unpredictable. 1700 // Don't bother if not optimizing because that metadata would not be used. 1701 llvm::MDNode *Unpredictable = nullptr; 1702 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1703 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1704 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1705 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1706 llvm::MDBuilder MDHelper(getLLVMContext()); 1707 Unpredictable = MDHelper.createUnpredictable(); 1708 } 1709 } 1710 1711 // Create branch weights based on the number of times we get here and the 1712 // number of times the condition should be true. 1713 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1714 llvm::MDNode *Weights = 1715 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1716 1717 // Emit the code with the fully general case. 1718 llvm::Value *CondV; 1719 { 1720 ApplyDebugLocation DL(*this, Cond); 1721 CondV = EvaluateExprAsBool(Cond); 1722 } 1723 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1724 } 1725 1726 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1727 /// specified stmt yet. 1728 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1729 CGM.ErrorUnsupported(S, Type); 1730 } 1731 1732 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1733 /// variable-length array whose elements have a non-zero bit-pattern. 1734 /// 1735 /// \param baseType the inner-most element type of the array 1736 /// \param src - a char* pointing to the bit-pattern for a single 1737 /// base element of the array 1738 /// \param sizeInChars - the total size of the VLA, in chars 1739 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1740 Address dest, Address src, 1741 llvm::Value *sizeInChars) { 1742 CGBuilderTy &Builder = CGF.Builder; 1743 1744 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1745 llvm::Value *baseSizeInChars 1746 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1747 1748 Address begin = 1749 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1750 llvm::Value *end = 1751 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1752 1753 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1754 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1755 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1756 1757 // Make a loop over the VLA. C99 guarantees that the VLA element 1758 // count must be nonzero. 1759 CGF.EmitBlock(loopBB); 1760 1761 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1762 cur->addIncoming(begin.getPointer(), originBB); 1763 1764 CharUnits curAlign = 1765 dest.getAlignment().alignmentOfArrayElement(baseSize); 1766 1767 // memcpy the individual element bit-pattern. 1768 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1769 /*volatile*/ false); 1770 1771 // Go to the next element. 1772 llvm::Value *next = 1773 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1774 1775 // Leave if that's the end of the VLA. 1776 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1777 Builder.CreateCondBr(done, contBB, loopBB); 1778 cur->addIncoming(next, loopBB); 1779 1780 CGF.EmitBlock(contBB); 1781 } 1782 1783 void 1784 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1785 // Ignore empty classes in C++. 1786 if (getLangOpts().CPlusPlus) { 1787 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1788 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1789 return; 1790 } 1791 } 1792 1793 // Cast the dest ptr to the appropriate i8 pointer type. 1794 if (DestPtr.getElementType() != Int8Ty) 1795 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1796 1797 // Get size and alignment info for this aggregate. 1798 CharUnits size = getContext().getTypeSizeInChars(Ty); 1799 1800 llvm::Value *SizeVal; 1801 const VariableArrayType *vla; 1802 1803 // Don't bother emitting a zero-byte memset. 1804 if (size.isZero()) { 1805 // But note that getTypeInfo returns 0 for a VLA. 1806 if (const VariableArrayType *vlaType = 1807 dyn_cast_or_null<VariableArrayType>( 1808 getContext().getAsArrayType(Ty))) { 1809 auto VlaSize = getVLASize(vlaType); 1810 SizeVal = VlaSize.NumElts; 1811 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1812 if (!eltSize.isOne()) 1813 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1814 vla = vlaType; 1815 } else { 1816 return; 1817 } 1818 } else { 1819 SizeVal = CGM.getSize(size); 1820 vla = nullptr; 1821 } 1822 1823 // If the type contains a pointer to data member we can't memset it to zero. 1824 // Instead, create a null constant and copy it to the destination. 1825 // TODO: there are other patterns besides zero that we can usefully memset, 1826 // like -1, which happens to be the pattern used by member-pointers. 1827 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1828 // For a VLA, emit a single element, then splat that over the VLA. 1829 if (vla) Ty = getContext().getBaseElementType(vla); 1830 1831 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1832 1833 llvm::GlobalVariable *NullVariable = 1834 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1835 /*isConstant=*/true, 1836 llvm::GlobalVariable::PrivateLinkage, 1837 NullConstant, Twine()); 1838 CharUnits NullAlign = DestPtr.getAlignment(); 1839 NullVariable->setAlignment(NullAlign.getQuantity()); 1840 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1841 NullAlign); 1842 1843 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1844 1845 // Get and call the appropriate llvm.memcpy overload. 1846 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1847 return; 1848 } 1849 1850 // Otherwise, just memset the whole thing to zero. This is legal 1851 // because in LLVM, all default initializers (other than the ones we just 1852 // handled above) are guaranteed to have a bit pattern of all zeros. 1853 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1854 } 1855 1856 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1857 // Make sure that there is a block for the indirect goto. 1858 if (!IndirectBranch) 1859 GetIndirectGotoBlock(); 1860 1861 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1862 1863 // Make sure the indirect branch includes all of the address-taken blocks. 1864 IndirectBranch->addDestination(BB); 1865 return llvm::BlockAddress::get(CurFn, BB); 1866 } 1867 1868 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1869 // If we already made the indirect branch for indirect goto, return its block. 1870 if (IndirectBranch) return IndirectBranch->getParent(); 1871 1872 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1873 1874 // Create the PHI node that indirect gotos will add entries to. 1875 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1876 "indirect.goto.dest"); 1877 1878 // Create the indirect branch instruction. 1879 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1880 return IndirectBranch->getParent(); 1881 } 1882 1883 /// Computes the length of an array in elements, as well as the base 1884 /// element type and a properly-typed first element pointer. 1885 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1886 QualType &baseType, 1887 Address &addr) { 1888 const ArrayType *arrayType = origArrayType; 1889 1890 // If it's a VLA, we have to load the stored size. Note that 1891 // this is the size of the VLA in bytes, not its size in elements. 1892 llvm::Value *numVLAElements = nullptr; 1893 if (isa<VariableArrayType>(arrayType)) { 1894 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1895 1896 // Walk into all VLAs. This doesn't require changes to addr, 1897 // which has type T* where T is the first non-VLA element type. 1898 do { 1899 QualType elementType = arrayType->getElementType(); 1900 arrayType = getContext().getAsArrayType(elementType); 1901 1902 // If we only have VLA components, 'addr' requires no adjustment. 1903 if (!arrayType) { 1904 baseType = elementType; 1905 return numVLAElements; 1906 } 1907 } while (isa<VariableArrayType>(arrayType)); 1908 1909 // We get out here only if we find a constant array type 1910 // inside the VLA. 1911 } 1912 1913 // We have some number of constant-length arrays, so addr should 1914 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1915 // down to the first element of addr. 1916 SmallVector<llvm::Value*, 8> gepIndices; 1917 1918 // GEP down to the array type. 1919 llvm::ConstantInt *zero = Builder.getInt32(0); 1920 gepIndices.push_back(zero); 1921 1922 uint64_t countFromCLAs = 1; 1923 QualType eltType; 1924 1925 llvm::ArrayType *llvmArrayType = 1926 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1927 while (llvmArrayType) { 1928 assert(isa<ConstantArrayType>(arrayType)); 1929 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1930 == llvmArrayType->getNumElements()); 1931 1932 gepIndices.push_back(zero); 1933 countFromCLAs *= llvmArrayType->getNumElements(); 1934 eltType = arrayType->getElementType(); 1935 1936 llvmArrayType = 1937 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1938 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1939 assert((!llvmArrayType || arrayType) && 1940 "LLVM and Clang types are out-of-synch"); 1941 } 1942 1943 if (arrayType) { 1944 // From this point onwards, the Clang array type has been emitted 1945 // as some other type (probably a packed struct). Compute the array 1946 // size, and just emit the 'begin' expression as a bitcast. 1947 while (arrayType) { 1948 countFromCLAs *= 1949 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1950 eltType = arrayType->getElementType(); 1951 arrayType = getContext().getAsArrayType(eltType); 1952 } 1953 1954 llvm::Type *baseType = ConvertType(eltType); 1955 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1956 } else { 1957 // Create the actual GEP. 1958 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1959 gepIndices, "array.begin"), 1960 addr.getAlignment()); 1961 } 1962 1963 baseType = eltType; 1964 1965 llvm::Value *numElements 1966 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1967 1968 // If we had any VLA dimensions, factor them in. 1969 if (numVLAElements) 1970 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1971 1972 return numElements; 1973 } 1974 1975 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1976 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1977 assert(vla && "type was not a variable array type!"); 1978 return getVLASize(vla); 1979 } 1980 1981 CodeGenFunction::VlaSizePair 1982 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1983 // The number of elements so far; always size_t. 1984 llvm::Value *numElements = nullptr; 1985 1986 QualType elementType; 1987 do { 1988 elementType = type->getElementType(); 1989 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1990 assert(vlaSize && "no size for VLA!"); 1991 assert(vlaSize->getType() == SizeTy); 1992 1993 if (!numElements) { 1994 numElements = vlaSize; 1995 } else { 1996 // It's undefined behavior if this wraps around, so mark it that way. 1997 // FIXME: Teach -fsanitize=undefined to trap this. 1998 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1999 } 2000 } while ((type = getContext().getAsVariableArrayType(elementType))); 2001 2002 return { numElements, elementType }; 2003 } 2004 2005 CodeGenFunction::VlaSizePair 2006 CodeGenFunction::getVLAElements1D(QualType type) { 2007 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2008 assert(vla && "type was not a variable array type!"); 2009 return getVLAElements1D(vla); 2010 } 2011 2012 CodeGenFunction::VlaSizePair 2013 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2014 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2015 assert(VlaSize && "no size for VLA!"); 2016 assert(VlaSize->getType() == SizeTy); 2017 return { VlaSize, Vla->getElementType() }; 2018 } 2019 2020 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2021 assert(type->isVariablyModifiedType() && 2022 "Must pass variably modified type to EmitVLASizes!"); 2023 2024 EnsureInsertPoint(); 2025 2026 // We're going to walk down into the type and look for VLA 2027 // expressions. 2028 do { 2029 assert(type->isVariablyModifiedType()); 2030 2031 const Type *ty = type.getTypePtr(); 2032 switch (ty->getTypeClass()) { 2033 2034 #define TYPE(Class, Base) 2035 #define ABSTRACT_TYPE(Class, Base) 2036 #define NON_CANONICAL_TYPE(Class, Base) 2037 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2038 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2039 #include "clang/AST/TypeNodes.def" 2040 llvm_unreachable("unexpected dependent type!"); 2041 2042 // These types are never variably-modified. 2043 case Type::Builtin: 2044 case Type::Complex: 2045 case Type::Vector: 2046 case Type::ExtVector: 2047 case Type::Record: 2048 case Type::Enum: 2049 case Type::Elaborated: 2050 case Type::TemplateSpecialization: 2051 case Type::ObjCTypeParam: 2052 case Type::ObjCObject: 2053 case Type::ObjCInterface: 2054 case Type::ObjCObjectPointer: 2055 llvm_unreachable("type class is never variably-modified!"); 2056 2057 case Type::Adjusted: 2058 type = cast<AdjustedType>(ty)->getAdjustedType(); 2059 break; 2060 2061 case Type::Decayed: 2062 type = cast<DecayedType>(ty)->getPointeeType(); 2063 break; 2064 2065 case Type::Pointer: 2066 type = cast<PointerType>(ty)->getPointeeType(); 2067 break; 2068 2069 case Type::BlockPointer: 2070 type = cast<BlockPointerType>(ty)->getPointeeType(); 2071 break; 2072 2073 case Type::LValueReference: 2074 case Type::RValueReference: 2075 type = cast<ReferenceType>(ty)->getPointeeType(); 2076 break; 2077 2078 case Type::MemberPointer: 2079 type = cast<MemberPointerType>(ty)->getPointeeType(); 2080 break; 2081 2082 case Type::ConstantArray: 2083 case Type::IncompleteArray: 2084 // Losing element qualification here is fine. 2085 type = cast<ArrayType>(ty)->getElementType(); 2086 break; 2087 2088 case Type::VariableArray: { 2089 // Losing element qualification here is fine. 2090 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2091 2092 // Unknown size indication requires no size computation. 2093 // Otherwise, evaluate and record it. 2094 if (const Expr *size = vat->getSizeExpr()) { 2095 // It's possible that we might have emitted this already, 2096 // e.g. with a typedef and a pointer to it. 2097 llvm::Value *&entry = VLASizeMap[size]; 2098 if (!entry) { 2099 llvm::Value *Size = EmitScalarExpr(size); 2100 2101 // C11 6.7.6.2p5: 2102 // If the size is an expression that is not an integer constant 2103 // expression [...] each time it is evaluated it shall have a value 2104 // greater than zero. 2105 if (SanOpts.has(SanitizerKind::VLABound) && 2106 size->getType()->isSignedIntegerType()) { 2107 SanitizerScope SanScope(this); 2108 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2109 llvm::Constant *StaticArgs[] = { 2110 EmitCheckSourceLocation(size->getBeginLoc()), 2111 EmitCheckTypeDescriptor(size->getType())}; 2112 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2113 SanitizerKind::VLABound), 2114 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2115 } 2116 2117 // Always zexting here would be wrong if it weren't 2118 // undefined behavior to have a negative bound. 2119 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2120 } 2121 } 2122 type = vat->getElementType(); 2123 break; 2124 } 2125 2126 case Type::FunctionProto: 2127 case Type::FunctionNoProto: 2128 type = cast<FunctionType>(ty)->getReturnType(); 2129 break; 2130 2131 case Type::Paren: 2132 case Type::TypeOf: 2133 case Type::UnaryTransform: 2134 case Type::Attributed: 2135 case Type::SubstTemplateTypeParm: 2136 case Type::PackExpansion: 2137 // Keep walking after single level desugaring. 2138 type = type.getSingleStepDesugaredType(getContext()); 2139 break; 2140 2141 case Type::Typedef: 2142 case Type::Decltype: 2143 case Type::Auto: 2144 case Type::DeducedTemplateSpecialization: 2145 // Stop walking: nothing to do. 2146 return; 2147 2148 case Type::TypeOfExpr: 2149 // Stop walking: emit typeof expression. 2150 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2151 return; 2152 2153 case Type::Atomic: 2154 type = cast<AtomicType>(ty)->getValueType(); 2155 break; 2156 2157 case Type::Pipe: 2158 type = cast<PipeType>(ty)->getElementType(); 2159 break; 2160 } 2161 } while (type->isVariablyModifiedType()); 2162 } 2163 2164 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2165 if (getContext().getBuiltinVaListType()->isArrayType()) 2166 return EmitPointerWithAlignment(E); 2167 return EmitLValue(E).getAddress(); 2168 } 2169 2170 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2171 return EmitLValue(E).getAddress(); 2172 } 2173 2174 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2175 const APValue &Init) { 2176 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2177 if (CGDebugInfo *Dbg = getDebugInfo()) 2178 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2179 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2180 } 2181 2182 CodeGenFunction::PeepholeProtection 2183 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2184 // At the moment, the only aggressive peephole we do in IR gen 2185 // is trunc(zext) folding, but if we add more, we can easily 2186 // extend this protection. 2187 2188 if (!rvalue.isScalar()) return PeepholeProtection(); 2189 llvm::Value *value = rvalue.getScalarVal(); 2190 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2191 2192 // Just make an extra bitcast. 2193 assert(HaveInsertPoint()); 2194 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2195 Builder.GetInsertBlock()); 2196 2197 PeepholeProtection protection; 2198 protection.Inst = inst; 2199 return protection; 2200 } 2201 2202 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2203 if (!protection.Inst) return; 2204 2205 // In theory, we could try to duplicate the peepholes now, but whatever. 2206 protection.Inst->eraseFromParent(); 2207 } 2208 2209 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2210 QualType Ty, SourceLocation Loc, 2211 SourceLocation AssumptionLoc, 2212 llvm::Value *Alignment, 2213 llvm::Value *OffsetValue) { 2214 llvm::Value *TheCheck; 2215 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2216 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2217 if (SanOpts.has(SanitizerKind::Alignment)) { 2218 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2219 OffsetValue, TheCheck, Assumption); 2220 } 2221 } 2222 2223 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2224 QualType Ty, SourceLocation Loc, 2225 SourceLocation AssumptionLoc, 2226 unsigned Alignment, 2227 llvm::Value *OffsetValue) { 2228 llvm::Value *TheCheck; 2229 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2230 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2231 if (SanOpts.has(SanitizerKind::Alignment)) { 2232 llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment); 2233 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal, 2234 OffsetValue, TheCheck, Assumption); 2235 } 2236 } 2237 2238 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2239 const Expr *E, 2240 SourceLocation AssumptionLoc, 2241 unsigned Alignment, 2242 llvm::Value *OffsetValue) { 2243 if (auto *CE = dyn_cast<CastExpr>(E)) 2244 E = CE->getSubExprAsWritten(); 2245 QualType Ty = E->getType(); 2246 SourceLocation Loc = E->getExprLoc(); 2247 2248 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2249 OffsetValue); 2250 } 2251 2252 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2253 llvm::Value *AnnotatedVal, 2254 StringRef AnnotationStr, 2255 SourceLocation Location) { 2256 llvm::Value *Args[4] = { 2257 AnnotatedVal, 2258 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2259 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2260 CGM.EmitAnnotationLineNo(Location) 2261 }; 2262 return Builder.CreateCall(AnnotationFn, Args); 2263 } 2264 2265 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2266 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2267 // FIXME We create a new bitcast for every annotation because that's what 2268 // llvm-gcc was doing. 2269 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2270 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2271 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2272 I->getAnnotation(), D->getLocation()); 2273 } 2274 2275 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2276 Address Addr) { 2277 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2278 llvm::Value *V = Addr.getPointer(); 2279 llvm::Type *VTy = V->getType(); 2280 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2281 CGM.Int8PtrTy); 2282 2283 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2284 // FIXME Always emit the cast inst so we can differentiate between 2285 // annotation on the first field of a struct and annotation on the struct 2286 // itself. 2287 if (VTy != CGM.Int8PtrTy) 2288 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2289 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2290 V = Builder.CreateBitCast(V, VTy); 2291 } 2292 2293 return Address(V, Addr.getAlignment()); 2294 } 2295 2296 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2297 2298 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2299 : CGF(CGF) { 2300 assert(!CGF->IsSanitizerScope); 2301 CGF->IsSanitizerScope = true; 2302 } 2303 2304 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2305 CGF->IsSanitizerScope = false; 2306 } 2307 2308 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2309 const llvm::Twine &Name, 2310 llvm::BasicBlock *BB, 2311 llvm::BasicBlock::iterator InsertPt) const { 2312 LoopStack.InsertHelper(I); 2313 if (IsSanitizerScope) 2314 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2315 } 2316 2317 void CGBuilderInserter::InsertHelper( 2318 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2319 llvm::BasicBlock::iterator InsertPt) const { 2320 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2321 if (CGF) 2322 CGF->InsertHelper(I, Name, BB, InsertPt); 2323 } 2324 2325 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2326 CodeGenModule &CGM, const FunctionDecl *FD, 2327 std::string &FirstMissing) { 2328 // If there aren't any required features listed then go ahead and return. 2329 if (ReqFeatures.empty()) 2330 return false; 2331 2332 // Now build up the set of caller features and verify that all the required 2333 // features are there. 2334 llvm::StringMap<bool> CallerFeatureMap; 2335 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2336 2337 // If we have at least one of the features in the feature list return 2338 // true, otherwise return false. 2339 return std::all_of( 2340 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2341 SmallVector<StringRef, 1> OrFeatures; 2342 Feature.split(OrFeatures, '|'); 2343 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2344 if (!CallerFeatureMap.lookup(Feature)) { 2345 FirstMissing = Feature.str(); 2346 return false; 2347 } 2348 return true; 2349 }); 2350 }); 2351 } 2352 2353 // Emits an error if we don't have a valid set of target features for the 2354 // called function. 2355 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2356 const FunctionDecl *TargetDecl) { 2357 // Early exit if this is an indirect call. 2358 if (!TargetDecl) 2359 return; 2360 2361 // Get the current enclosing function if it exists. If it doesn't 2362 // we can't check the target features anyhow. 2363 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2364 if (!FD) 2365 return; 2366 2367 // Grab the required features for the call. For a builtin this is listed in 2368 // the td file with the default cpu, for an always_inline function this is any 2369 // listed cpu and any listed features. 2370 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2371 std::string MissingFeature; 2372 if (BuiltinID) { 2373 SmallVector<StringRef, 1> ReqFeatures; 2374 const char *FeatureList = 2375 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2376 // Return if the builtin doesn't have any required features. 2377 if (!FeatureList || StringRef(FeatureList) == "") 2378 return; 2379 StringRef(FeatureList).split(ReqFeatures, ','); 2380 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2381 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2382 << TargetDecl->getDeclName() 2383 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2384 2385 } else if (TargetDecl->hasAttr<TargetAttr>() || 2386 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2387 // Get the required features for the callee. 2388 2389 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2390 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2391 2392 SmallVector<StringRef, 1> ReqFeatures; 2393 llvm::StringMap<bool> CalleeFeatureMap; 2394 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2395 2396 for (const auto &F : ParsedAttr.Features) { 2397 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2398 ReqFeatures.push_back(StringRef(F).substr(1)); 2399 } 2400 2401 for (const auto &F : CalleeFeatureMap) { 2402 // Only positive features are "required". 2403 if (F.getValue()) 2404 ReqFeatures.push_back(F.getKey()); 2405 } 2406 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2407 CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature) 2408 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2409 } 2410 } 2411 2412 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2413 if (!CGM.getCodeGenOpts().SanitizeStats) 2414 return; 2415 2416 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2417 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2418 CGM.getSanStats().create(IRB, SSK); 2419 } 2420 2421 llvm::Value * 2422 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2423 llvm::Value *Condition = nullptr; 2424 2425 if (!RO.Conditions.Architecture.empty()) 2426 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2427 2428 if (!RO.Conditions.Features.empty()) { 2429 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2430 Condition = 2431 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2432 } 2433 return Condition; 2434 } 2435 2436 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2437 llvm::Function *Resolver, 2438 CGBuilderTy &Builder, 2439 llvm::Function *FuncToReturn, 2440 bool SupportsIFunc) { 2441 if (SupportsIFunc) { 2442 Builder.CreateRet(FuncToReturn); 2443 return; 2444 } 2445 2446 llvm::SmallVector<llvm::Value *, 10> Args; 2447 llvm::for_each(Resolver->args(), 2448 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2449 2450 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2451 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2452 2453 if (Resolver->getReturnType()->isVoidTy()) 2454 Builder.CreateRetVoid(); 2455 else 2456 Builder.CreateRet(Result); 2457 } 2458 2459 void CodeGenFunction::EmitMultiVersionResolver( 2460 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2461 assert((getContext().getTargetInfo().getTriple().getArch() == 2462 llvm::Triple::x86 || 2463 getContext().getTargetInfo().getTriple().getArch() == 2464 llvm::Triple::x86_64) && 2465 "Only implemented for x86 targets"); 2466 2467 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2468 2469 // Main function's basic block. 2470 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2471 Builder.SetInsertPoint(CurBlock); 2472 EmitX86CpuInit(); 2473 2474 for (const MultiVersionResolverOption &RO : Options) { 2475 Builder.SetInsertPoint(CurBlock); 2476 llvm::Value *Condition = FormResolverCondition(RO); 2477 2478 // The 'default' or 'generic' case. 2479 if (!Condition) { 2480 assert(&RO == Options.end() - 1 && 2481 "Default or Generic case must be last"); 2482 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2483 SupportsIFunc); 2484 return; 2485 } 2486 2487 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2488 CGBuilderTy RetBuilder(*this, RetBlock); 2489 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2490 SupportsIFunc); 2491 CurBlock = createBasicBlock("resolver_else", Resolver); 2492 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2493 } 2494 2495 // If no generic/default, emit an unreachable. 2496 Builder.SetInsertPoint(CurBlock); 2497 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2498 TrapCall->setDoesNotReturn(); 2499 TrapCall->setDoesNotThrow(); 2500 Builder.CreateUnreachable(); 2501 Builder.ClearInsertionPoint(); 2502 } 2503 2504 // Loc - where the diagnostic will point, where in the source code this 2505 // alignment has failed. 2506 // SecondaryLoc - if present (will be present if sufficiently different from 2507 // Loc), the diagnostic will additionally point a "Note:" to this location. 2508 // It should be the location where the __attribute__((assume_aligned)) 2509 // was written e.g. 2510 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2511 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2512 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2513 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2514 llvm::Instruction *Assumption) { 2515 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2516 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2517 llvm::Intrinsic::getDeclaration( 2518 Builder.GetInsertBlock()->getParent()->getParent(), 2519 llvm::Intrinsic::assume) && 2520 "Assumption should be a call to llvm.assume()."); 2521 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2522 "Assumption should be the last instruction of the basic block, " 2523 "since the basic block is still being generated."); 2524 2525 if (!SanOpts.has(SanitizerKind::Alignment)) 2526 return; 2527 2528 // Don't check pointers to volatile data. The behavior here is implementation- 2529 // defined. 2530 if (Ty->getPointeeType().isVolatileQualified()) 2531 return; 2532 2533 // We need to temorairly remove the assumption so we can insert the 2534 // sanitizer check before it, else the check will be dropped by optimizations. 2535 Assumption->removeFromParent(); 2536 2537 { 2538 SanitizerScope SanScope(this); 2539 2540 if (!OffsetValue) 2541 OffsetValue = Builder.getInt1(0); // no offset. 2542 2543 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2544 EmitCheckSourceLocation(SecondaryLoc), 2545 EmitCheckTypeDescriptor(Ty)}; 2546 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2547 EmitCheckValue(Alignment), 2548 EmitCheckValue(OffsetValue)}; 2549 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2550 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2551 } 2552 2553 // We are now in the (new, empty) "cont" basic block. 2554 // Reintroduce the assumption. 2555 Builder.Insert(Assumption); 2556 // FIXME: Assumption still has it's original basic block as it's Parent. 2557 } 2558 2559 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2560 if (CGDebugInfo *DI = getDebugInfo()) 2561 return DI->SourceLocToDebugLoc(Location); 2562 2563 return llvm::DebugLoc(); 2564 } 2565