1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Operator.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
34     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
35       Builder(cgm.getModule().getContext()), CapturedStmtInfo(0),
36       SanitizePerformTypeCheck(CGM.getSanOpts().Null |
37                                CGM.getSanOpts().Alignment |
38                                CGM.getSanOpts().ObjectSize |
39                                CGM.getSanOpts().Vptr),
40       SanOpts(&CGM.getSanOpts()), AutoreleaseResult(false), BlockInfo(0),
41       BlockPointer(0), LambdaThisCaptureField(0), NormalCleanupDest(0),
42       NextCleanupDestIndex(1), FirstBlockInfo(0), EHResumeBlock(0),
43       ExceptionSlot(0), EHSelectorSlot(0), DebugInfo(CGM.getModuleDebugInfo()),
44       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(0),
45       SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), NumReturnExprs(0),
46       NumSimpleReturnExprs(0), CXXABIThisDecl(0), CXXABIThisValue(0),
47       CXXThisValue(0), CXXDefaultInitExprThis(0),
48       CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
49       OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
50       TerminateHandler(0), TrapBB(0) {
51   if (!suppressNewContext)
52     CGM.getCXXABI().getMangleContext().startNewFunction();
53 
54   llvm::FastMathFlags FMF;
55   if (CGM.getLangOpts().FastMath)
56     FMF.setUnsafeAlgebra();
57   if (CGM.getLangOpts().FiniteMathOnly) {
58     FMF.setNoNaNs();
59     FMF.setNoInfs();
60   }
61   Builder.SetFastMathFlags(FMF);
62 }
63 
64 CodeGenFunction::~CodeGenFunction() {
65   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
66 
67   // If there are any unclaimed block infos, go ahead and destroy them
68   // now.  This can happen if IR-gen gets clever and skips evaluating
69   // something.
70   if (FirstBlockInfo)
71     destroyBlockInfos(FirstBlockInfo);
72 }
73 
74 
75 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
76   return CGM.getTypes().ConvertTypeForMem(T);
77 }
78 
79 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
80   return CGM.getTypes().ConvertType(T);
81 }
82 
83 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
84   type = type.getCanonicalType();
85   while (true) {
86     switch (type->getTypeClass()) {
87 #define TYPE(name, parent)
88 #define ABSTRACT_TYPE(name, parent)
89 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
90 #define DEPENDENT_TYPE(name, parent) case Type::name:
91 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
92 #include "clang/AST/TypeNodes.def"
93       llvm_unreachable("non-canonical or dependent type in IR-generation");
94 
95     case Type::Auto:
96       llvm_unreachable("undeduced auto type in IR-generation");
97 
98     // Various scalar types.
99     case Type::Builtin:
100     case Type::Pointer:
101     case Type::BlockPointer:
102     case Type::LValueReference:
103     case Type::RValueReference:
104     case Type::MemberPointer:
105     case Type::Vector:
106     case Type::ExtVector:
107     case Type::FunctionProto:
108     case Type::FunctionNoProto:
109     case Type::Enum:
110     case Type::ObjCObjectPointer:
111       return TEK_Scalar;
112 
113     // Complexes.
114     case Type::Complex:
115       return TEK_Complex;
116 
117     // Arrays, records, and Objective-C objects.
118     case Type::ConstantArray:
119     case Type::IncompleteArray:
120     case Type::VariableArray:
121     case Type::Record:
122     case Type::ObjCObject:
123     case Type::ObjCInterface:
124       return TEK_Aggregate;
125 
126     // We operate on atomic values according to their underlying type.
127     case Type::Atomic:
128       type = cast<AtomicType>(type)->getValueType();
129       continue;
130     }
131     llvm_unreachable("unknown type kind!");
132   }
133 }
134 
135 void CodeGenFunction::EmitReturnBlock() {
136   // For cleanliness, we try to avoid emitting the return block for
137   // simple cases.
138   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
139 
140   if (CurBB) {
141     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
142 
143     // We have a valid insert point, reuse it if it is empty or there are no
144     // explicit jumps to the return block.
145     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
146       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
147       delete ReturnBlock.getBlock();
148     } else
149       EmitBlock(ReturnBlock.getBlock());
150     return;
151   }
152 
153   // Otherwise, if the return block is the target of a single direct
154   // branch then we can just put the code in that block instead. This
155   // cleans up functions which started with a unified return block.
156   if (ReturnBlock.getBlock()->hasOneUse()) {
157     llvm::BranchInst *BI =
158       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
159     if (BI && BI->isUnconditional() &&
160         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
161       // Reset insertion point, including debug location, and delete the
162       // branch.  This is really subtle and only works because the next change
163       // in location will hit the caching in CGDebugInfo::EmitLocation and not
164       // override this.
165       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
166       Builder.SetInsertPoint(BI->getParent());
167       BI->eraseFromParent();
168       delete ReturnBlock.getBlock();
169       return;
170     }
171   }
172 
173   // FIXME: We are at an unreachable point, there is no reason to emit the block
174   // unless it has uses. However, we still need a place to put the debug
175   // region.end for now.
176 
177   EmitBlock(ReturnBlock.getBlock());
178 }
179 
180 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
181   if (!BB) return;
182   if (!BB->use_empty())
183     return CGF.CurFn->getBasicBlockList().push_back(BB);
184   delete BB;
185 }
186 
187 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
188   assert(BreakContinueStack.empty() &&
189          "mismatched push/pop in break/continue stack!");
190 
191   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
192     && NumSimpleReturnExprs == NumReturnExprs
193     && ReturnBlock.getBlock()->use_empty();
194   // Usually the return expression is evaluated before the cleanup
195   // code.  If the function contains only a simple return statement,
196   // such as a constant, the location before the cleanup code becomes
197   // the last useful breakpoint in the function, because the simple
198   // return expression will be evaluated after the cleanup code. To be
199   // safe, set the debug location for cleanup code to the location of
200   // the return statement.  Otherwise the cleanup code should be at the
201   // end of the function's lexical scope.
202   //
203   // If there are multiple branches to the return block, the branch
204   // instructions will get the location of the return statements and
205   // all will be fine.
206   if (CGDebugInfo *DI = getDebugInfo()) {
207     if (OnlySimpleReturnStmts)
208       DI->EmitLocation(Builder, LastStopPoint);
209     else
210       DI->EmitLocation(Builder, EndLoc);
211   }
212 
213   // Pop any cleanups that might have been associated with the
214   // parameters.  Do this in whatever block we're currently in; it's
215   // important to do this before we enter the return block or return
216   // edges will be *really* confused.
217   bool EmitRetDbgLoc = true;
218   if (EHStack.stable_begin() != PrologueCleanupDepth) {
219     PopCleanupBlocks(PrologueCleanupDepth);
220 
221     // Make sure the line table doesn't jump back into the body for
222     // the ret after it's been at EndLoc.
223     EmitRetDbgLoc = false;
224 
225     if (CGDebugInfo *DI = getDebugInfo())
226       if (OnlySimpleReturnStmts)
227         DI->EmitLocation(Builder, EndLoc);
228   }
229 
230   // Emit function epilog (to return).
231   EmitReturnBlock();
232 
233   if (ShouldInstrumentFunction())
234     EmitFunctionInstrumentation("__cyg_profile_func_exit");
235 
236   // Emit debug descriptor for function end.
237   if (CGDebugInfo *DI = getDebugInfo()) {
238     DI->EmitFunctionEnd(Builder);
239   }
240 
241   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
242   EmitEndEHSpec(CurCodeDecl);
243 
244   assert(EHStack.empty() &&
245          "did not remove all scopes from cleanup stack!");
246 
247   // If someone did an indirect goto, emit the indirect goto block at the end of
248   // the function.
249   if (IndirectBranch) {
250     EmitBlock(IndirectBranch->getParent());
251     Builder.ClearInsertionPoint();
252   }
253 
254   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
255   llvm::Instruction *Ptr = AllocaInsertPt;
256   AllocaInsertPt = 0;
257   Ptr->eraseFromParent();
258 
259   // If someone took the address of a label but never did an indirect goto, we
260   // made a zero entry PHI node, which is illegal, zap it now.
261   if (IndirectBranch) {
262     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
263     if (PN->getNumIncomingValues() == 0) {
264       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
265       PN->eraseFromParent();
266     }
267   }
268 
269   EmitIfUsed(*this, EHResumeBlock);
270   EmitIfUsed(*this, TerminateLandingPad);
271   EmitIfUsed(*this, TerminateHandler);
272   EmitIfUsed(*this, UnreachableBlock);
273 
274   if (CGM.getCodeGenOpts().EmitDeclMetadata)
275     EmitDeclMetadata();
276 }
277 
278 /// ShouldInstrumentFunction - Return true if the current function should be
279 /// instrumented with __cyg_profile_func_* calls
280 bool CodeGenFunction::ShouldInstrumentFunction() {
281   if (!CGM.getCodeGenOpts().InstrumentFunctions)
282     return false;
283   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
284     return false;
285   return true;
286 }
287 
288 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
289 /// instrumentation function with the current function and the call site, if
290 /// function instrumentation is enabled.
291 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
292   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
293   llvm::PointerType *PointerTy = Int8PtrTy;
294   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
295   llvm::FunctionType *FunctionTy =
296     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
297 
298   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
299   llvm::CallInst *CallSite = Builder.CreateCall(
300     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
301     llvm::ConstantInt::get(Int32Ty, 0),
302     "callsite");
303 
304   llvm::Value *args[] = {
305     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
306     CallSite
307   };
308 
309   EmitNounwindRuntimeCall(F, args);
310 }
311 
312 void CodeGenFunction::EmitMCountInstrumentation() {
313   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
314 
315   llvm::Constant *MCountFn =
316     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
317   EmitNounwindRuntimeCall(MCountFn);
318 }
319 
320 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
321 // information in the program executable. The argument information stored
322 // includes the argument name, its type, the address and access qualifiers used.
323 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
324                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
325                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
326                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
327   // Create MDNodes that represent the kernel arg metadata.
328   // Each MDNode is a list in the form of "key", N number of values which is
329   // the same number of values as their are kernel arguments.
330 
331   // MDNode for the kernel argument address space qualifiers.
332   SmallVector<llvm::Value*, 8> addressQuals;
333   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
334 
335   // MDNode for the kernel argument access qualifiers (images only).
336   SmallVector<llvm::Value*, 8> accessQuals;
337   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
338 
339   // MDNode for the kernel argument type names.
340   SmallVector<llvm::Value*, 8> argTypeNames;
341   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
342 
343   // MDNode for the kernel argument type qualifiers.
344   SmallVector<llvm::Value*, 8> argTypeQuals;
345   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
346 
347   // MDNode for the kernel argument names.
348   SmallVector<llvm::Value*, 8> argNames;
349   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
350 
351   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
352     const ParmVarDecl *parm = FD->getParamDecl(i);
353     QualType ty = parm->getType();
354     std::string typeQuals;
355 
356     if (ty->isPointerType()) {
357       QualType pointeeTy = ty->getPointeeType();
358 
359       // Get address qualifier.
360       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
361         pointeeTy.getAddressSpace())));
362 
363       // Get argument type name.
364       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
365 
366       // Turn "unsigned type" to "utype"
367       std::string::size_type pos = typeName.find("unsigned");
368       if (pos != std::string::npos)
369         typeName.erase(pos+1, 8);
370 
371       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
372 
373       // Get argument type qualifiers:
374       if (ty.isRestrictQualified())
375         typeQuals = "restrict";
376       if (pointeeTy.isConstQualified() ||
377           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
378         typeQuals += typeQuals.empty() ? "const" : " const";
379       if (pointeeTy.isVolatileQualified())
380         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
381     } else {
382       addressQuals.push_back(Builder.getInt32(0));
383 
384       // Get argument type name.
385       std::string typeName = ty.getUnqualifiedType().getAsString();
386 
387       // Turn "unsigned type" to "utype"
388       std::string::size_type pos = typeName.find("unsigned");
389       if (pos != std::string::npos)
390         typeName.erase(pos+1, 8);
391 
392       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
393 
394       // Get argument type qualifiers:
395       if (ty.isConstQualified())
396         typeQuals = "const";
397       if (ty.isVolatileQualified())
398         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
399     }
400 
401     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
402 
403     // Get image access qualifier:
404     if (ty->isImageType()) {
405       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
406           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
407         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
408       else
409         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
410     } else
411       accessQuals.push_back(llvm::MDString::get(Context, "none"));
412 
413     // Get argument name.
414     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
415   }
416 
417   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
418   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
419   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
420   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
421   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
422 }
423 
424 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
425                                                llvm::Function *Fn)
426 {
427   if (!FD->hasAttr<OpenCLKernelAttr>())
428     return;
429 
430   llvm::LLVMContext &Context = getLLVMContext();
431 
432   SmallVector <llvm::Value*, 5> kernelMDArgs;
433   kernelMDArgs.push_back(Fn);
434 
435   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
436     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
437                          Builder, getContext());
438 
439   if (FD->hasAttr<VecTypeHintAttr>()) {
440     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
441     QualType hintQTy = attr->getTypeHint();
442     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
443     bool isSignedInteger =
444         hintQTy->isSignedIntegerType() ||
445         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
446     llvm::Value *attrMDArgs[] = {
447       llvm::MDString::get(Context, "vec_type_hint"),
448       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
449       llvm::ConstantInt::get(
450           llvm::IntegerType::get(Context, 32),
451           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
452     };
453     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
454   }
455 
456   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
457     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
458     llvm::Value *attrMDArgs[] = {
459       llvm::MDString::get(Context, "work_group_size_hint"),
460       Builder.getInt32(attr->getXDim()),
461       Builder.getInt32(attr->getYDim()),
462       Builder.getInt32(attr->getZDim())
463     };
464     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
465   }
466 
467   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
468     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
469     llvm::Value *attrMDArgs[] = {
470       llvm::MDString::get(Context, "reqd_work_group_size"),
471       Builder.getInt32(attr->getXDim()),
472       Builder.getInt32(attr->getYDim()),
473       Builder.getInt32(attr->getZDim())
474     };
475     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
476   }
477 
478   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
479   llvm::NamedMDNode *OpenCLKernelMetadata =
480     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
481   OpenCLKernelMetadata->addOperand(kernelMDNode);
482 }
483 
484 void CodeGenFunction::StartFunction(GlobalDecl GD,
485                                     QualType RetTy,
486                                     llvm::Function *Fn,
487                                     const CGFunctionInfo &FnInfo,
488                                     const FunctionArgList &Args,
489                                     SourceLocation StartLoc) {
490   const Decl *D = GD.getDecl();
491 
492   DidCallStackSave = false;
493   CurCodeDecl = D;
494   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
495   FnRetTy = RetTy;
496   CurFn = Fn;
497   CurFnInfo = &FnInfo;
498   assert(CurFn->isDeclaration() && "Function already has body?");
499 
500   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
501     SanOpts = &SanitizerOptions::Disabled;
502     SanitizePerformTypeCheck = false;
503   }
504 
505   // Pass inline keyword to optimizer if it appears explicitly on any
506   // declaration.
507   if (!CGM.getCodeGenOpts().NoInline)
508     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
509       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
510              RE = FD->redecls_end(); RI != RE; ++RI)
511         if (RI->isInlineSpecified()) {
512           Fn->addFnAttr(llvm::Attribute::InlineHint);
513           break;
514         }
515 
516   if (getLangOpts().OpenCL) {
517     // Add metadata for a kernel function.
518     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
519       EmitOpenCLKernelMetadata(FD, Fn);
520   }
521 
522   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
523 
524   // Create a marker to make it easy to insert allocas into the entryblock
525   // later.  Don't create this with the builder, because we don't want it
526   // folded.
527   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
528   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
529   if (Builder.isNamePreserving())
530     AllocaInsertPt->setName("allocapt");
531 
532   ReturnBlock = getJumpDestInCurrentScope("return");
533 
534   Builder.SetInsertPoint(EntryBB);
535 
536   // Emit subprogram debug descriptor.
537   if (CGDebugInfo *DI = getDebugInfo()) {
538     SmallVector<QualType, 16> ArgTypes;
539     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
540 	 i != e; ++i) {
541       ArgTypes.push_back((*i)->getType());
542     }
543 
544     QualType FnType =
545       getContext().getFunctionType(RetTy, ArgTypes,
546                                    FunctionProtoType::ExtProtoInfo());
547 
548     DI->setLocation(StartLoc);
549     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
550   }
551 
552   if (ShouldInstrumentFunction())
553     EmitFunctionInstrumentation("__cyg_profile_func_enter");
554 
555   if (CGM.getCodeGenOpts().InstrumentForProfiling)
556     EmitMCountInstrumentation();
557 
558   if (RetTy->isVoidType()) {
559     // Void type; nothing to return.
560     ReturnValue = 0;
561   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
562              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
563     // Indirect aggregate return; emit returned value directly into sret slot.
564     // This reduces code size, and affects correctness in C++.
565     ReturnValue = CurFn->arg_begin();
566   } else {
567     ReturnValue = CreateIRTemp(RetTy, "retval");
568 
569     // Tell the epilog emitter to autorelease the result.  We do this
570     // now so that various specialized functions can suppress it
571     // during their IR-generation.
572     if (getLangOpts().ObjCAutoRefCount &&
573         !CurFnInfo->isReturnsRetained() &&
574         RetTy->isObjCRetainableType())
575       AutoreleaseResult = true;
576   }
577 
578   EmitStartEHSpec(CurCodeDecl);
579 
580   PrologueCleanupDepth = EHStack.stable_begin();
581   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
582 
583   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
584     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
585     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
586     if (MD->getParent()->isLambda() &&
587         MD->getOverloadedOperator() == OO_Call) {
588       // We're in a lambda; figure out the captures.
589       MD->getParent()->getCaptureFields(LambdaCaptureFields,
590                                         LambdaThisCaptureField);
591       if (LambdaThisCaptureField) {
592         // If this lambda captures this, load it.
593         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
594         CXXThisValue = EmitLoadOfLValue(ThisLValue,
595                                         SourceLocation()).getScalarVal();
596       }
597     } else {
598       // Not in a lambda; just use 'this' from the method.
599       // FIXME: Should we generate a new load for each use of 'this'?  The
600       // fast register allocator would be happier...
601       CXXThisValue = CXXABIThisValue;
602     }
603   }
604 
605   // If any of the arguments have a variably modified type, make sure to
606   // emit the type size.
607   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
608        i != e; ++i) {
609     const VarDecl *VD = *i;
610 
611     // Dig out the type as written from ParmVarDecls; it's unclear whether
612     // the standard (C99 6.9.1p10) requires this, but we're following the
613     // precedent set by gcc.
614     QualType Ty;
615     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
616       Ty = PVD->getOriginalType();
617     else
618       Ty = VD->getType();
619 
620     if (Ty->isVariablyModifiedType())
621       EmitVariablyModifiedType(Ty);
622   }
623   // Emit a location at the end of the prologue.
624   if (CGDebugInfo *DI = getDebugInfo())
625     DI->EmitLocation(Builder, StartLoc);
626 }
627 
628 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
629   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
630   assert(FD->getBody());
631   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
632     EmitCompoundStmtWithoutScope(*S);
633   else
634     EmitStmt(FD->getBody());
635 }
636 
637 /// Tries to mark the given function nounwind based on the
638 /// non-existence of any throwing calls within it.  We believe this is
639 /// lightweight enough to do at -O0.
640 static void TryMarkNoThrow(llvm::Function *F) {
641   // LLVM treats 'nounwind' on a function as part of the type, so we
642   // can't do this on functions that can be overwritten.
643   if (F->mayBeOverridden()) return;
644 
645   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
646     for (llvm::BasicBlock::iterator
647            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
648       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
649         if (!Call->doesNotThrow())
650           return;
651       } else if (isa<llvm::ResumeInst>(&*BI)) {
652         return;
653       }
654   F->setDoesNotThrow();
655 }
656 
657 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
658                                    const CGFunctionInfo &FnInfo) {
659   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
660 
661   // Check if we should generate debug info for this function.
662   if (FD->hasAttr<NoDebugAttr>())
663     DebugInfo = NULL; // disable debug info indefinitely for this function
664 
665   FunctionArgList Args;
666   QualType ResTy = FD->getResultType();
667 
668   CurGD = GD;
669   const CXXMethodDecl *MD;
670   if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) {
671     if (CGM.getCXXABI().HasThisReturn(GD))
672       ResTy = MD->getThisType(getContext());
673     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
674   }
675 
676   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
677     Args.push_back(FD->getParamDecl(i));
678 
679   SourceRange BodyRange;
680   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
681   CurEHLocation = BodyRange.getEnd();
682 
683   // Emit the standard function prologue.
684   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
685 
686   // Generate the body of the function.
687   if (isa<CXXDestructorDecl>(FD))
688     EmitDestructorBody(Args);
689   else if (isa<CXXConstructorDecl>(FD))
690     EmitConstructorBody(Args);
691   else if (getLangOpts().CUDA &&
692            !CGM.getCodeGenOpts().CUDAIsDevice &&
693            FD->hasAttr<CUDAGlobalAttr>())
694     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
695   else if (isa<CXXConversionDecl>(FD) &&
696            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
697     // The lambda conversion to block pointer is special; the semantics can't be
698     // expressed in the AST, so IRGen needs to special-case it.
699     EmitLambdaToBlockPointerBody(Args);
700   } else if (isa<CXXMethodDecl>(FD) &&
701              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
702     // The lambda static invoker function is special, because it forwards or
703     // clones the body of the function call operator (but is actually static).
704     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
705   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
706              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
707               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
708     // Implicit copy-assignment gets the same special treatment as implicit
709     // copy-constructors.
710     emitImplicitAssignmentOperatorBody(Args);
711   }
712   else
713     EmitFunctionBody(Args);
714 
715   // C++11 [stmt.return]p2:
716   //   Flowing off the end of a function [...] results in undefined behavior in
717   //   a value-returning function.
718   // C11 6.9.1p12:
719   //   If the '}' that terminates a function is reached, and the value of the
720   //   function call is used by the caller, the behavior is undefined.
721   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
722       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
723     if (SanOpts->Return)
724       EmitCheck(Builder.getFalse(), "missing_return",
725                 EmitCheckSourceLocation(FD->getLocation()),
726                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
727     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
728       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
729     Builder.CreateUnreachable();
730     Builder.ClearInsertionPoint();
731   }
732 
733   // Emit the standard function epilogue.
734   FinishFunction(BodyRange.getEnd());
735 
736   // If we haven't marked the function nothrow through other means, do
737   // a quick pass now to see if we can.
738   if (!CurFn->doesNotThrow())
739     TryMarkNoThrow(CurFn);
740 }
741 
742 /// ContainsLabel - Return true if the statement contains a label in it.  If
743 /// this statement is not executed normally, it not containing a label means
744 /// that we can just remove the code.
745 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
746   // Null statement, not a label!
747   if (S == 0) return false;
748 
749   // If this is a label, we have to emit the code, consider something like:
750   // if (0) {  ...  foo:  bar(); }  goto foo;
751   //
752   // TODO: If anyone cared, we could track __label__'s, since we know that you
753   // can't jump to one from outside their declared region.
754   if (isa<LabelStmt>(S))
755     return true;
756 
757   // If this is a case/default statement, and we haven't seen a switch, we have
758   // to emit the code.
759   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
760     return true;
761 
762   // If this is a switch statement, we want to ignore cases below it.
763   if (isa<SwitchStmt>(S))
764     IgnoreCaseStmts = true;
765 
766   // Scan subexpressions for verboten labels.
767   for (Stmt::const_child_range I = S->children(); I; ++I)
768     if (ContainsLabel(*I, IgnoreCaseStmts))
769       return true;
770 
771   return false;
772 }
773 
774 /// containsBreak - Return true if the statement contains a break out of it.
775 /// If the statement (recursively) contains a switch or loop with a break
776 /// inside of it, this is fine.
777 bool CodeGenFunction::containsBreak(const Stmt *S) {
778   // Null statement, not a label!
779   if (S == 0) return false;
780 
781   // If this is a switch or loop that defines its own break scope, then we can
782   // include it and anything inside of it.
783   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
784       isa<ForStmt>(S))
785     return false;
786 
787   if (isa<BreakStmt>(S))
788     return true;
789 
790   // Scan subexpressions for verboten breaks.
791   for (Stmt::const_child_range I = S->children(); I; ++I)
792     if (containsBreak(*I))
793       return true;
794 
795   return false;
796 }
797 
798 
799 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
800 /// to a constant, or if it does but contains a label, return false.  If it
801 /// constant folds return true and set the boolean result in Result.
802 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
803                                                    bool &ResultBool) {
804   llvm::APSInt ResultInt;
805   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
806     return false;
807 
808   ResultBool = ResultInt.getBoolValue();
809   return true;
810 }
811 
812 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
813 /// to a constant, or if it does but contains a label, return false.  If it
814 /// constant folds return true and set the folded value.
815 bool CodeGenFunction::
816 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
817   // FIXME: Rename and handle conversion of other evaluatable things
818   // to bool.
819   llvm::APSInt Int;
820   if (!Cond->EvaluateAsInt(Int, getContext()))
821     return false;  // Not foldable, not integer or not fully evaluatable.
822 
823   if (CodeGenFunction::ContainsLabel(Cond))
824     return false;  // Contains a label.
825 
826   ResultInt = Int;
827   return true;
828 }
829 
830 
831 
832 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
833 /// statement) to the specified blocks.  Based on the condition, this might try
834 /// to simplify the codegen of the conditional based on the branch.
835 ///
836 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
837                                            llvm::BasicBlock *TrueBlock,
838                                            llvm::BasicBlock *FalseBlock) {
839   Cond = Cond->IgnoreParens();
840 
841   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
842     // Handle X && Y in a condition.
843     if (CondBOp->getOpcode() == BO_LAnd) {
844       // If we have "1 && X", simplify the code.  "0 && X" would have constant
845       // folded if the case was simple enough.
846       bool ConstantBool = false;
847       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
848           ConstantBool) {
849         // br(1 && X) -> br(X).
850         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
851       }
852 
853       // If we have "X && 1", simplify the code to use an uncond branch.
854       // "X && 0" would have been constant folded to 0.
855       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
856           ConstantBool) {
857         // br(X && 1) -> br(X).
858         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
859       }
860 
861       // Emit the LHS as a conditional.  If the LHS conditional is false, we
862       // want to jump to the FalseBlock.
863       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
864 
865       ConditionalEvaluation eval(*this);
866       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
867       EmitBlock(LHSTrue);
868 
869       // Any temporaries created here are conditional.
870       eval.begin(*this);
871       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
872       eval.end(*this);
873 
874       return;
875     }
876 
877     if (CondBOp->getOpcode() == BO_LOr) {
878       // If we have "0 || X", simplify the code.  "1 || X" would have constant
879       // folded if the case was simple enough.
880       bool ConstantBool = false;
881       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
882           !ConstantBool) {
883         // br(0 || X) -> br(X).
884         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
885       }
886 
887       // If we have "X || 0", simplify the code to use an uncond branch.
888       // "X || 1" would have been constant folded to 1.
889       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
890           !ConstantBool) {
891         // br(X || 0) -> br(X).
892         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
893       }
894 
895       // Emit the LHS as a conditional.  If the LHS conditional is true, we
896       // want to jump to the TrueBlock.
897       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
898 
899       ConditionalEvaluation eval(*this);
900       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
901       EmitBlock(LHSFalse);
902 
903       // Any temporaries created here are conditional.
904       eval.begin(*this);
905       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
906       eval.end(*this);
907 
908       return;
909     }
910   }
911 
912   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
913     // br(!x, t, f) -> br(x, f, t)
914     if (CondUOp->getOpcode() == UO_LNot)
915       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
916   }
917 
918   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
919     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
920     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
921     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
922 
923     ConditionalEvaluation cond(*this);
924     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
925 
926     cond.begin(*this);
927     EmitBlock(LHSBlock);
928     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
929     cond.end(*this);
930 
931     cond.begin(*this);
932     EmitBlock(RHSBlock);
933     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
934     cond.end(*this);
935 
936     return;
937   }
938 
939   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
940     // Conditional operator handling can give us a throw expression as a
941     // condition for a case like:
942     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
943     // Fold this to:
944     //   br(c, throw x, br(y, t, f))
945     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
946     return;
947   }
948 
949   // Emit the code with the fully general case.
950   llvm::Value *CondV = EvaluateExprAsBool(Cond);
951   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
952 }
953 
954 /// ErrorUnsupported - Print out an error that codegen doesn't support the
955 /// specified stmt yet.
956 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
957   CGM.ErrorUnsupported(S, Type);
958 }
959 
960 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
961 /// variable-length array whose elements have a non-zero bit-pattern.
962 ///
963 /// \param baseType the inner-most element type of the array
964 /// \param src - a char* pointing to the bit-pattern for a single
965 /// base element of the array
966 /// \param sizeInChars - the total size of the VLA, in chars
967 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
968                                llvm::Value *dest, llvm::Value *src,
969                                llvm::Value *sizeInChars) {
970   std::pair<CharUnits,CharUnits> baseSizeAndAlign
971     = CGF.getContext().getTypeInfoInChars(baseType);
972 
973   CGBuilderTy &Builder = CGF.Builder;
974 
975   llvm::Value *baseSizeInChars
976     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
977 
978   llvm::Type *i8p = Builder.getInt8PtrTy();
979 
980   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
981   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
982 
983   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
984   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
985   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
986 
987   // Make a loop over the VLA.  C99 guarantees that the VLA element
988   // count must be nonzero.
989   CGF.EmitBlock(loopBB);
990 
991   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
992   cur->addIncoming(begin, originBB);
993 
994   // memcpy the individual element bit-pattern.
995   Builder.CreateMemCpy(cur, src, baseSizeInChars,
996                        baseSizeAndAlign.second.getQuantity(),
997                        /*volatile*/ false);
998 
999   // Go to the next element.
1000   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1001 
1002   // Leave if that's the end of the VLA.
1003   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1004   Builder.CreateCondBr(done, contBB, loopBB);
1005   cur->addIncoming(next, loopBB);
1006 
1007   CGF.EmitBlock(contBB);
1008 }
1009 
1010 void
1011 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1012   // Ignore empty classes in C++.
1013   if (getLangOpts().CPlusPlus) {
1014     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1015       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1016         return;
1017     }
1018   }
1019 
1020   // Cast the dest ptr to the appropriate i8 pointer type.
1021   unsigned DestAS =
1022     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1023   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1024   if (DestPtr->getType() != BP)
1025     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1026 
1027   // Get size and alignment info for this aggregate.
1028   std::pair<CharUnits, CharUnits> TypeInfo =
1029     getContext().getTypeInfoInChars(Ty);
1030   CharUnits Size = TypeInfo.first;
1031   CharUnits Align = TypeInfo.second;
1032 
1033   llvm::Value *SizeVal;
1034   const VariableArrayType *vla;
1035 
1036   // Don't bother emitting a zero-byte memset.
1037   if (Size.isZero()) {
1038     // But note that getTypeInfo returns 0 for a VLA.
1039     if (const VariableArrayType *vlaType =
1040           dyn_cast_or_null<VariableArrayType>(
1041                                           getContext().getAsArrayType(Ty))) {
1042       QualType eltType;
1043       llvm::Value *numElts;
1044       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1045 
1046       SizeVal = numElts;
1047       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1048       if (!eltSize.isOne())
1049         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1050       vla = vlaType;
1051     } else {
1052       return;
1053     }
1054   } else {
1055     SizeVal = CGM.getSize(Size);
1056     vla = 0;
1057   }
1058 
1059   // If the type contains a pointer to data member we can't memset it to zero.
1060   // Instead, create a null constant and copy it to the destination.
1061   // TODO: there are other patterns besides zero that we can usefully memset,
1062   // like -1, which happens to be the pattern used by member-pointers.
1063   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1064     // For a VLA, emit a single element, then splat that over the VLA.
1065     if (vla) Ty = getContext().getBaseElementType(vla);
1066 
1067     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1068 
1069     llvm::GlobalVariable *NullVariable =
1070       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1071                                /*isConstant=*/true,
1072                                llvm::GlobalVariable::PrivateLinkage,
1073                                NullConstant, Twine());
1074     llvm::Value *SrcPtr =
1075       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1076 
1077     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1078 
1079     // Get and call the appropriate llvm.memcpy overload.
1080     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1081     return;
1082   }
1083 
1084   // Otherwise, just memset the whole thing to zero.  This is legal
1085   // because in LLVM, all default initializers (other than the ones we just
1086   // handled above) are guaranteed to have a bit pattern of all zeros.
1087   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1088                        Align.getQuantity(), false);
1089 }
1090 
1091 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1092   // Make sure that there is a block for the indirect goto.
1093   if (IndirectBranch == 0)
1094     GetIndirectGotoBlock();
1095 
1096   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1097 
1098   // Make sure the indirect branch includes all of the address-taken blocks.
1099   IndirectBranch->addDestination(BB);
1100   return llvm::BlockAddress::get(CurFn, BB);
1101 }
1102 
1103 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1104   // If we already made the indirect branch for indirect goto, return its block.
1105   if (IndirectBranch) return IndirectBranch->getParent();
1106 
1107   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1108 
1109   // Create the PHI node that indirect gotos will add entries to.
1110   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1111                                               "indirect.goto.dest");
1112 
1113   // Create the indirect branch instruction.
1114   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1115   return IndirectBranch->getParent();
1116 }
1117 
1118 /// Computes the length of an array in elements, as well as the base
1119 /// element type and a properly-typed first element pointer.
1120 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1121                                               QualType &baseType,
1122                                               llvm::Value *&addr) {
1123   const ArrayType *arrayType = origArrayType;
1124 
1125   // If it's a VLA, we have to load the stored size.  Note that
1126   // this is the size of the VLA in bytes, not its size in elements.
1127   llvm::Value *numVLAElements = 0;
1128   if (isa<VariableArrayType>(arrayType)) {
1129     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1130 
1131     // Walk into all VLAs.  This doesn't require changes to addr,
1132     // which has type T* where T is the first non-VLA element type.
1133     do {
1134       QualType elementType = arrayType->getElementType();
1135       arrayType = getContext().getAsArrayType(elementType);
1136 
1137       // If we only have VLA components, 'addr' requires no adjustment.
1138       if (!arrayType) {
1139         baseType = elementType;
1140         return numVLAElements;
1141       }
1142     } while (isa<VariableArrayType>(arrayType));
1143 
1144     // We get out here only if we find a constant array type
1145     // inside the VLA.
1146   }
1147 
1148   // We have some number of constant-length arrays, so addr should
1149   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1150   // down to the first element of addr.
1151   SmallVector<llvm::Value*, 8> gepIndices;
1152 
1153   // GEP down to the array type.
1154   llvm::ConstantInt *zero = Builder.getInt32(0);
1155   gepIndices.push_back(zero);
1156 
1157   uint64_t countFromCLAs = 1;
1158   QualType eltType;
1159 
1160   llvm::ArrayType *llvmArrayType =
1161     dyn_cast<llvm::ArrayType>(
1162       cast<llvm::PointerType>(addr->getType())->getElementType());
1163   while (llvmArrayType) {
1164     assert(isa<ConstantArrayType>(arrayType));
1165     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1166              == llvmArrayType->getNumElements());
1167 
1168     gepIndices.push_back(zero);
1169     countFromCLAs *= llvmArrayType->getNumElements();
1170     eltType = arrayType->getElementType();
1171 
1172     llvmArrayType =
1173       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1174     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1175     assert((!llvmArrayType || arrayType) &&
1176            "LLVM and Clang types are out-of-synch");
1177   }
1178 
1179   if (arrayType) {
1180     // From this point onwards, the Clang array type has been emitted
1181     // as some other type (probably a packed struct). Compute the array
1182     // size, and just emit the 'begin' expression as a bitcast.
1183     while (arrayType) {
1184       countFromCLAs *=
1185           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1186       eltType = arrayType->getElementType();
1187       arrayType = getContext().getAsArrayType(eltType);
1188     }
1189 
1190     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1191     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1192     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1193   } else {
1194     // Create the actual GEP.
1195     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1196   }
1197 
1198   baseType = eltType;
1199 
1200   llvm::Value *numElements
1201     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1202 
1203   // If we had any VLA dimensions, factor them in.
1204   if (numVLAElements)
1205     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1206 
1207   return numElements;
1208 }
1209 
1210 std::pair<llvm::Value*, QualType>
1211 CodeGenFunction::getVLASize(QualType type) {
1212   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1213   assert(vla && "type was not a variable array type!");
1214   return getVLASize(vla);
1215 }
1216 
1217 std::pair<llvm::Value*, QualType>
1218 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1219   // The number of elements so far; always size_t.
1220   llvm::Value *numElements = 0;
1221 
1222   QualType elementType;
1223   do {
1224     elementType = type->getElementType();
1225     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1226     assert(vlaSize && "no size for VLA!");
1227     assert(vlaSize->getType() == SizeTy);
1228 
1229     if (!numElements) {
1230       numElements = vlaSize;
1231     } else {
1232       // It's undefined behavior if this wraps around, so mark it that way.
1233       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1234       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1235     }
1236   } while ((type = getContext().getAsVariableArrayType(elementType)));
1237 
1238   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1239 }
1240 
1241 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1242   assert(type->isVariablyModifiedType() &&
1243          "Must pass variably modified type to EmitVLASizes!");
1244 
1245   EnsureInsertPoint();
1246 
1247   // We're going to walk down into the type and look for VLA
1248   // expressions.
1249   do {
1250     assert(type->isVariablyModifiedType());
1251 
1252     const Type *ty = type.getTypePtr();
1253     switch (ty->getTypeClass()) {
1254 
1255 #define TYPE(Class, Base)
1256 #define ABSTRACT_TYPE(Class, Base)
1257 #define NON_CANONICAL_TYPE(Class, Base)
1258 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1259 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1260 #include "clang/AST/TypeNodes.def"
1261       llvm_unreachable("unexpected dependent type!");
1262 
1263     // These types are never variably-modified.
1264     case Type::Builtin:
1265     case Type::Complex:
1266     case Type::Vector:
1267     case Type::ExtVector:
1268     case Type::Record:
1269     case Type::Enum:
1270     case Type::Elaborated:
1271     case Type::TemplateSpecialization:
1272     case Type::ObjCObject:
1273     case Type::ObjCInterface:
1274     case Type::ObjCObjectPointer:
1275       llvm_unreachable("type class is never variably-modified!");
1276 
1277     case Type::Decayed:
1278       type = cast<DecayedType>(ty)->getPointeeType();
1279       break;
1280 
1281     case Type::Pointer:
1282       type = cast<PointerType>(ty)->getPointeeType();
1283       break;
1284 
1285     case Type::BlockPointer:
1286       type = cast<BlockPointerType>(ty)->getPointeeType();
1287       break;
1288 
1289     case Type::LValueReference:
1290     case Type::RValueReference:
1291       type = cast<ReferenceType>(ty)->getPointeeType();
1292       break;
1293 
1294     case Type::MemberPointer:
1295       type = cast<MemberPointerType>(ty)->getPointeeType();
1296       break;
1297 
1298     case Type::ConstantArray:
1299     case Type::IncompleteArray:
1300       // Losing element qualification here is fine.
1301       type = cast<ArrayType>(ty)->getElementType();
1302       break;
1303 
1304     case Type::VariableArray: {
1305       // Losing element qualification here is fine.
1306       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1307 
1308       // Unknown size indication requires no size computation.
1309       // Otherwise, evaluate and record it.
1310       if (const Expr *size = vat->getSizeExpr()) {
1311         // It's possible that we might have emitted this already,
1312         // e.g. with a typedef and a pointer to it.
1313         llvm::Value *&entry = VLASizeMap[size];
1314         if (!entry) {
1315           llvm::Value *Size = EmitScalarExpr(size);
1316 
1317           // C11 6.7.6.2p5:
1318           //   If the size is an expression that is not an integer constant
1319           //   expression [...] each time it is evaluated it shall have a value
1320           //   greater than zero.
1321           if (SanOpts->VLABound &&
1322               size->getType()->isSignedIntegerType()) {
1323             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1324             llvm::Constant *StaticArgs[] = {
1325               EmitCheckSourceLocation(size->getLocStart()),
1326               EmitCheckTypeDescriptor(size->getType())
1327             };
1328             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1329                       "vla_bound_not_positive", StaticArgs, Size,
1330                       CRK_Recoverable);
1331           }
1332 
1333           // Always zexting here would be wrong if it weren't
1334           // undefined behavior to have a negative bound.
1335           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1336         }
1337       }
1338       type = vat->getElementType();
1339       break;
1340     }
1341 
1342     case Type::FunctionProto:
1343     case Type::FunctionNoProto:
1344       type = cast<FunctionType>(ty)->getResultType();
1345       break;
1346 
1347     case Type::Paren:
1348     case Type::TypeOf:
1349     case Type::UnaryTransform:
1350     case Type::Attributed:
1351     case Type::SubstTemplateTypeParm:
1352     case Type::PackExpansion:
1353       // Keep walking after single level desugaring.
1354       type = type.getSingleStepDesugaredType(getContext());
1355       break;
1356 
1357     case Type::Typedef:
1358     case Type::Decltype:
1359     case Type::Auto:
1360       // Stop walking: nothing to do.
1361       return;
1362 
1363     case Type::TypeOfExpr:
1364       // Stop walking: emit typeof expression.
1365       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1366       return;
1367 
1368     case Type::Atomic:
1369       type = cast<AtomicType>(ty)->getValueType();
1370       break;
1371     }
1372   } while (type->isVariablyModifiedType());
1373 }
1374 
1375 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1376   if (getContext().getBuiltinVaListType()->isArrayType())
1377     return EmitScalarExpr(E);
1378   return EmitLValue(E).getAddress();
1379 }
1380 
1381 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1382                                               llvm::Constant *Init) {
1383   assert (Init && "Invalid DeclRefExpr initializer!");
1384   if (CGDebugInfo *Dbg = getDebugInfo())
1385     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1386       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1387 }
1388 
1389 CodeGenFunction::PeepholeProtection
1390 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1391   // At the moment, the only aggressive peephole we do in IR gen
1392   // is trunc(zext) folding, but if we add more, we can easily
1393   // extend this protection.
1394 
1395   if (!rvalue.isScalar()) return PeepholeProtection();
1396   llvm::Value *value = rvalue.getScalarVal();
1397   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1398 
1399   // Just make an extra bitcast.
1400   assert(HaveInsertPoint());
1401   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1402                                                   Builder.GetInsertBlock());
1403 
1404   PeepholeProtection protection;
1405   protection.Inst = inst;
1406   return protection;
1407 }
1408 
1409 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1410   if (!protection.Inst) return;
1411 
1412   // In theory, we could try to duplicate the peepholes now, but whatever.
1413   protection.Inst->eraseFromParent();
1414 }
1415 
1416 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1417                                                  llvm::Value *AnnotatedVal,
1418                                                  StringRef AnnotationStr,
1419                                                  SourceLocation Location) {
1420   llvm::Value *Args[4] = {
1421     AnnotatedVal,
1422     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1423     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1424     CGM.EmitAnnotationLineNo(Location)
1425   };
1426   return Builder.CreateCall(AnnotationFn, Args);
1427 }
1428 
1429 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1430   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1431   // FIXME We create a new bitcast for every annotation because that's what
1432   // llvm-gcc was doing.
1433   for (specific_attr_iterator<AnnotateAttr>
1434        ai = D->specific_attr_begin<AnnotateAttr>(),
1435        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1436     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1437                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1438                        (*ai)->getAnnotation(), D->getLocation());
1439 }
1440 
1441 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1442                                                    llvm::Value *V) {
1443   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1444   llvm::Type *VTy = V->getType();
1445   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1446                                     CGM.Int8PtrTy);
1447 
1448   for (specific_attr_iterator<AnnotateAttr>
1449        ai = D->specific_attr_begin<AnnotateAttr>(),
1450        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1451     // FIXME Always emit the cast inst so we can differentiate between
1452     // annotation on the first field of a struct and annotation on the struct
1453     // itself.
1454     if (VTy != CGM.Int8PtrTy)
1455       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1456     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1457     V = Builder.CreateBitCast(V, VTy);
1458   }
1459 
1460   return V;
1461 }
1462 
1463 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1464