1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGDebugInfo.h" 17 #include "CGException.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/AST/APValue.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/Intrinsics.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 31 : BlockFunction(cgm, *this, Builder), CGM(cgm), 32 Target(CGM.getContext().Target), 33 Builder(cgm.getModule().getContext()), 34 ExceptionSlot(0), DebugInfo(0), IndirectBranch(0), 35 SwitchInsn(0), CaseRangeBlock(0), InvokeDest(0), 36 DidCallStackSave(false), UnreachableBlock(0), 37 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 38 ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0), 39 TrapBB(0) { 40 41 // Get some frequently used types. 42 LLVMPointerWidth = Target.getPointerWidth(0); 43 llvm::LLVMContext &LLVMContext = CGM.getLLVMContext(); 44 IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth); 45 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 46 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 47 48 Exceptions = getContext().getLangOptions().Exceptions; 49 CatchUndefined = getContext().getLangOptions().CatchUndefined; 50 CGM.getMangleContext().startNewFunction(); 51 } 52 53 ASTContext &CodeGenFunction::getContext() const { 54 return CGM.getContext(); 55 } 56 57 58 llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) { 59 llvm::Value *Res = LocalDeclMap[VD]; 60 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 61 return Res; 62 } 63 64 llvm::Constant * 65 CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) { 66 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 67 } 68 69 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 70 return CGM.getTypes().ConvertTypeForMem(T); 71 } 72 73 const llvm::Type *CodeGenFunction::ConvertType(QualType T) { 74 return CGM.getTypes().ConvertType(T); 75 } 76 77 bool CodeGenFunction::hasAggregateLLVMType(QualType T) { 78 return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() || 79 T->isMemberFunctionPointerType(); 80 } 81 82 void CodeGenFunction::EmitReturnBlock() { 83 // For cleanliness, we try to avoid emitting the return block for 84 // simple cases. 85 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 86 87 if (CurBB) { 88 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 89 90 // We have a valid insert point, reuse it if it is empty or there are no 91 // explicit jumps to the return block. 92 if (CurBB->empty() || ReturnBlock.Block->use_empty()) { 93 ReturnBlock.Block->replaceAllUsesWith(CurBB); 94 delete ReturnBlock.Block; 95 } else 96 EmitBlock(ReturnBlock.Block); 97 return; 98 } 99 100 // Otherwise, if the return block is the target of a single direct 101 // branch then we can just put the code in that block instead. This 102 // cleans up functions which started with a unified return block. 103 if (ReturnBlock.Block->hasOneUse()) { 104 llvm::BranchInst *BI = 105 dyn_cast<llvm::BranchInst>(*ReturnBlock.Block->use_begin()); 106 if (BI && BI->isUnconditional() && 107 BI->getSuccessor(0) == ReturnBlock.Block) { 108 // Reset insertion point and delete the branch. 109 Builder.SetInsertPoint(BI->getParent()); 110 BI->eraseFromParent(); 111 delete ReturnBlock.Block; 112 return; 113 } 114 } 115 116 // FIXME: We are at an unreachable point, there is no reason to emit the block 117 // unless it has uses. However, we still need a place to put the debug 118 // region.end for now. 119 120 EmitBlock(ReturnBlock.Block); 121 } 122 123 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 124 if (!BB) return; 125 if (!BB->use_empty()) 126 return CGF.CurFn->getBasicBlockList().push_back(BB); 127 delete BB; 128 } 129 130 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 131 assert(BreakContinueStack.empty() && 132 "mismatched push/pop in break/continue stack!"); 133 134 // Emit function epilog (to return). 135 EmitReturnBlock(); 136 137 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 138 139 // Emit debug descriptor for function end. 140 if (CGDebugInfo *DI = getDebugInfo()) { 141 DI->setLocation(EndLoc); 142 DI->EmitRegionEnd(CurFn, Builder); 143 } 144 145 EmitFunctionEpilog(*CurFnInfo); 146 EmitEndEHSpec(CurCodeDecl); 147 148 assert(EHStack.empty() && 149 "did not remove all scopes from cleanup stack!"); 150 151 // If someone did an indirect goto, emit the indirect goto block at the end of 152 // the function. 153 if (IndirectBranch) { 154 EmitBlock(IndirectBranch->getParent()); 155 Builder.ClearInsertionPoint(); 156 } 157 158 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 159 llvm::Instruction *Ptr = AllocaInsertPt; 160 AllocaInsertPt = 0; 161 Ptr->eraseFromParent(); 162 163 // If someone took the address of a label but never did an indirect goto, we 164 // made a zero entry PHI node, which is illegal, zap it now. 165 if (IndirectBranch) { 166 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 167 if (PN->getNumIncomingValues() == 0) { 168 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 169 PN->eraseFromParent(); 170 } 171 } 172 173 EmitIfUsed(*this, TerminateLandingPad); 174 EmitIfUsed(*this, TerminateHandler); 175 EmitIfUsed(*this, UnreachableBlock); 176 } 177 178 /// ShouldInstrumentFunction - Return true if the current function should be 179 /// instrumented with __cyg_profile_func_* calls 180 bool CodeGenFunction::ShouldInstrumentFunction() { 181 if (!CGM.getCodeGenOpts().InstrumentFunctions) 182 return false; 183 if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 184 return false; 185 return true; 186 } 187 188 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 189 /// instrumentation function with the current function and the call site, if 190 /// function instrumentation is enabled. 191 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 192 if (!ShouldInstrumentFunction()) 193 return; 194 195 const llvm::PointerType *PointerTy; 196 const llvm::FunctionType *FunctionTy; 197 std::vector<const llvm::Type*> ProfileFuncArgs; 198 199 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 200 PointerTy = llvm::Type::getInt8PtrTy(VMContext); 201 ProfileFuncArgs.push_back(PointerTy); 202 ProfileFuncArgs.push_back(PointerTy); 203 FunctionTy = llvm::FunctionType::get( 204 llvm::Type::getVoidTy(VMContext), 205 ProfileFuncArgs, false); 206 207 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 208 llvm::CallInst *CallSite = Builder.CreateCall( 209 CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0), 210 llvm::ConstantInt::get(Int32Ty, 0), 211 "callsite"); 212 213 Builder.CreateCall2(F, 214 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 215 CallSite); 216 } 217 218 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 219 llvm::Function *Fn, 220 const FunctionArgList &Args, 221 SourceLocation StartLoc) { 222 const Decl *D = GD.getDecl(); 223 224 DidCallStackSave = false; 225 CurCodeDecl = CurFuncDecl = D; 226 FnRetTy = RetTy; 227 CurFn = Fn; 228 assert(CurFn->isDeclaration() && "Function already has body?"); 229 230 // Pass inline keyword to optimizer if it appears explicitly on any 231 // declaration. 232 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 233 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 234 RE = FD->redecls_end(); RI != RE; ++RI) 235 if (RI->isInlineSpecified()) { 236 Fn->addFnAttr(llvm::Attribute::InlineHint); 237 break; 238 } 239 240 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 241 242 // Create a marker to make it easy to insert allocas into the entryblock 243 // later. Don't create this with the builder, because we don't want it 244 // folded. 245 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 246 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 247 if (Builder.isNamePreserving()) 248 AllocaInsertPt->setName("allocapt"); 249 250 ReturnBlock = getJumpDestInCurrentScope("return"); 251 252 Builder.SetInsertPoint(EntryBB); 253 254 QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0, 255 false, false, 0, 0, 256 /*FIXME?*/ 257 FunctionType::ExtInfo()); 258 259 // Emit subprogram debug descriptor. 260 if (CGDebugInfo *DI = getDebugInfo()) { 261 DI->setLocation(StartLoc); 262 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 263 } 264 265 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 266 267 // FIXME: Leaked. 268 // CC info is ignored, hopefully? 269 CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args, 270 FunctionType::ExtInfo()); 271 272 if (RetTy->isVoidType()) { 273 // Void type; nothing to return. 274 ReturnValue = 0; 275 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 276 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 277 // Indirect aggregate return; emit returned value directly into sret slot. 278 // This reduces code size, and affects correctness in C++. 279 ReturnValue = CurFn->arg_begin(); 280 } else { 281 ReturnValue = CreateIRTemp(RetTy, "retval"); 282 } 283 284 EmitStartEHSpec(CurCodeDecl); 285 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 286 287 if (CXXThisDecl) 288 CXXThisValue = Builder.CreateLoad(LocalDeclMap[CXXThisDecl], "this"); 289 if (CXXVTTDecl) 290 CXXVTTValue = Builder.CreateLoad(LocalDeclMap[CXXVTTDecl], "vtt"); 291 292 // If any of the arguments have a variably modified type, make sure to 293 // emit the type size. 294 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 295 i != e; ++i) { 296 QualType Ty = i->second; 297 298 if (Ty->isVariablyModifiedType()) 299 EmitVLASize(Ty); 300 } 301 } 302 303 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 304 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 305 assert(FD->getBody()); 306 EmitStmt(FD->getBody()); 307 } 308 309 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) { 310 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 311 312 // Check if we should generate debug info for this function. 313 if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 314 DebugInfo = CGM.getDebugInfo(); 315 316 FunctionArgList Args; 317 318 CurGD = GD; 319 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 320 if (MD->isInstance()) { 321 // Create the implicit 'this' decl. 322 // FIXME: I'm not entirely sure I like using a fake decl just for code 323 // generation. Maybe we can come up with a better way? 324 CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0, 325 FD->getLocation(), 326 &getContext().Idents.get("this"), 327 MD->getThisType(getContext())); 328 Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType())); 329 330 // Check if we need a VTT parameter as well. 331 if (CodeGenVTables::needsVTTParameter(GD)) { 332 // FIXME: The comment about using a fake decl above applies here too. 333 QualType T = getContext().getPointerType(getContext().VoidPtrTy); 334 CXXVTTDecl = 335 ImplicitParamDecl::Create(getContext(), 0, FD->getLocation(), 336 &getContext().Idents.get("vtt"), T); 337 Args.push_back(std::make_pair(CXXVTTDecl, CXXVTTDecl->getType())); 338 } 339 } 340 } 341 342 if (FD->getNumParams()) { 343 const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>(); 344 assert(FProto && "Function def must have prototype!"); 345 346 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 347 Args.push_back(std::make_pair(FD->getParamDecl(i), 348 FProto->getArgType(i))); 349 } 350 351 SourceRange BodyRange; 352 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 353 354 // Emit the standard function prologue. 355 StartFunction(GD, FD->getResultType(), Fn, Args, BodyRange.getBegin()); 356 357 // Generate the body of the function. 358 if (isa<CXXDestructorDecl>(FD)) 359 EmitDestructorBody(Args); 360 else if (isa<CXXConstructorDecl>(FD)) 361 EmitConstructorBody(Args); 362 else 363 EmitFunctionBody(Args); 364 365 // Emit the standard function epilogue. 366 FinishFunction(BodyRange.getEnd()); 367 368 // Destroy the 'this' declaration. 369 if (CXXThisDecl) 370 CXXThisDecl->Destroy(getContext()); 371 372 // Destroy the VTT declaration. 373 if (CXXVTTDecl) 374 CXXVTTDecl->Destroy(getContext()); 375 } 376 377 /// ContainsLabel - Return true if the statement contains a label in it. If 378 /// this statement is not executed normally, it not containing a label means 379 /// that we can just remove the code. 380 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 381 // Null statement, not a label! 382 if (S == 0) return false; 383 384 // If this is a label, we have to emit the code, consider something like: 385 // if (0) { ... foo: bar(); } goto foo; 386 if (isa<LabelStmt>(S)) 387 return true; 388 389 // If this is a case/default statement, and we haven't seen a switch, we have 390 // to emit the code. 391 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 392 return true; 393 394 // If this is a switch statement, we want to ignore cases below it. 395 if (isa<SwitchStmt>(S)) 396 IgnoreCaseStmts = true; 397 398 // Scan subexpressions for verboten labels. 399 for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); 400 I != E; ++I) 401 if (ContainsLabel(*I, IgnoreCaseStmts)) 402 return true; 403 404 return false; 405 } 406 407 408 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to 409 /// a constant, or if it does but contains a label, return 0. If it constant 410 /// folds to 'true' and does not contain a label, return 1, if it constant folds 411 /// to 'false' and does not contain a label, return -1. 412 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { 413 // FIXME: Rename and handle conversion of other evaluatable things 414 // to bool. 415 Expr::EvalResult Result; 416 if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || 417 Result.HasSideEffects) 418 return 0; // Not foldable, not integer or not fully evaluatable. 419 420 if (CodeGenFunction::ContainsLabel(Cond)) 421 return 0; // Contains a label. 422 423 return Result.Val.getInt().getBoolValue() ? 1 : -1; 424 } 425 426 427 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 428 /// statement) to the specified blocks. Based on the condition, this might try 429 /// to simplify the codegen of the conditional based on the branch. 430 /// 431 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 432 llvm::BasicBlock *TrueBlock, 433 llvm::BasicBlock *FalseBlock) { 434 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) 435 return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); 436 437 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 438 // Handle X && Y in a condition. 439 if (CondBOp->getOpcode() == BinaryOperator::LAnd) { 440 // If we have "1 && X", simplify the code. "0 && X" would have constant 441 // folded if the case was simple enough. 442 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { 443 // br(1 && X) -> br(X). 444 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 445 } 446 447 // If we have "X && 1", simplify the code to use an uncond branch. 448 // "X && 0" would have been constant folded to 0. 449 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { 450 // br(X && 1) -> br(X). 451 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 452 } 453 454 // Emit the LHS as a conditional. If the LHS conditional is false, we 455 // want to jump to the FalseBlock. 456 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 457 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 458 EmitBlock(LHSTrue); 459 460 // Any temporaries created here are conditional. 461 BeginConditionalBranch(); 462 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 463 EndConditionalBranch(); 464 465 return; 466 } else if (CondBOp->getOpcode() == BinaryOperator::LOr) { 467 // If we have "0 || X", simplify the code. "1 || X" would have constant 468 // folded if the case was simple enough. 469 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { 470 // br(0 || X) -> br(X). 471 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 472 } 473 474 // If we have "X || 0", simplify the code to use an uncond branch. 475 // "X || 1" would have been constant folded to 1. 476 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { 477 // br(X || 0) -> br(X). 478 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 479 } 480 481 // Emit the LHS as a conditional. If the LHS conditional is true, we 482 // want to jump to the TrueBlock. 483 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 484 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 485 EmitBlock(LHSFalse); 486 487 // Any temporaries created here are conditional. 488 BeginConditionalBranch(); 489 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 490 EndConditionalBranch(); 491 492 return; 493 } 494 } 495 496 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 497 // br(!x, t, f) -> br(x, f, t) 498 if (CondUOp->getOpcode() == UnaryOperator::LNot) 499 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 500 } 501 502 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 503 // Handle ?: operator. 504 505 // Just ignore GNU ?: extension. 506 if (CondOp->getLHS()) { 507 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 508 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 509 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 510 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 511 EmitBlock(LHSBlock); 512 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 513 EmitBlock(RHSBlock); 514 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 515 return; 516 } 517 } 518 519 // Emit the code with the fully general case. 520 llvm::Value *CondV = EvaluateExprAsBool(Cond); 521 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 522 } 523 524 /// ErrorUnsupported - Print out an error that codegen doesn't support the 525 /// specified stmt yet. 526 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 527 bool OmitOnError) { 528 CGM.ErrorUnsupported(S, Type, OmitOnError); 529 } 530 531 void 532 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 533 // If the type contains a pointer to data member we can't memset it to zero. 534 // Instead, create a null constant and copy it to the destination. 535 if (CGM.getTypes().ContainsPointerToDataMember(Ty)) { 536 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 537 538 llvm::GlobalVariable *NullVariable = 539 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 540 /*isConstant=*/true, 541 llvm::GlobalVariable::PrivateLinkage, 542 NullConstant, llvm::Twine()); 543 EmitAggregateCopy(DestPtr, NullVariable, Ty, /*isVolatile=*/false); 544 return; 545 } 546 547 548 // Ignore empty classes in C++. 549 if (getContext().getLangOptions().CPlusPlus) { 550 if (const RecordType *RT = Ty->getAs<RecordType>()) { 551 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 552 return; 553 } 554 } 555 556 // Otherwise, just memset the whole thing to zero. This is legal 557 // because in LLVM, all default initializers (other than the ones we just 558 // handled above) are guaranteed to have a bit pattern of all zeros. 559 const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext); 560 if (DestPtr->getType() != BP) 561 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 562 563 // Get size and alignment info for this aggregate. 564 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 565 566 // Don't bother emitting a zero-byte memset. 567 if (TypeInfo.first == 0) 568 return; 569 570 // FIXME: Handle variable sized types. 571 Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr, 572 llvm::Constant::getNullValue(llvm::Type::getInt8Ty(VMContext)), 573 // TypeInfo.first describes size in bits. 574 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 575 llvm::ConstantInt::get(Int32Ty, TypeInfo.second/8), 576 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 577 0)); 578 } 579 580 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) { 581 // Make sure that there is a block for the indirect goto. 582 if (IndirectBranch == 0) 583 GetIndirectGotoBlock(); 584 585 llvm::BasicBlock *BB = getJumpDestForLabel(L).Block; 586 587 // Make sure the indirect branch includes all of the address-taken blocks. 588 IndirectBranch->addDestination(BB); 589 return llvm::BlockAddress::get(CurFn, BB); 590 } 591 592 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 593 // If we already made the indirect branch for indirect goto, return its block. 594 if (IndirectBranch) return IndirectBranch->getParent(); 595 596 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 597 598 const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); 599 600 // Create the PHI node that indirect gotos will add entries to. 601 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest"); 602 603 // Create the indirect branch instruction. 604 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 605 return IndirectBranch->getParent(); 606 } 607 608 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { 609 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 610 611 assert(SizeEntry && "Did not emit size for type"); 612 return SizeEntry; 613 } 614 615 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { 616 assert(Ty->isVariablyModifiedType() && 617 "Must pass variably modified type to EmitVLASizes!"); 618 619 EnsureInsertPoint(); 620 621 if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { 622 llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; 623 624 if (!SizeEntry) { 625 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 626 627 // Get the element size; 628 QualType ElemTy = VAT->getElementType(); 629 llvm::Value *ElemSize; 630 if (ElemTy->isVariableArrayType()) 631 ElemSize = EmitVLASize(ElemTy); 632 else 633 ElemSize = llvm::ConstantInt::get(SizeTy, 634 getContext().getTypeSizeInChars(ElemTy).getQuantity()); 635 636 llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); 637 NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); 638 639 SizeEntry = Builder.CreateMul(ElemSize, NumElements); 640 } 641 642 return SizeEntry; 643 } 644 645 if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 646 EmitVLASize(AT->getElementType()); 647 return 0; 648 } 649 650 const PointerType *PT = Ty->getAs<PointerType>(); 651 assert(PT && "unknown VM type!"); 652 EmitVLASize(PT->getPointeeType()); 653 return 0; 654 } 655 656 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 657 if (CGM.getContext().getBuiltinVaListType()->isArrayType()) 658 return EmitScalarExpr(E); 659 return EmitLValue(E).getAddress(); 660 } 661 662 /// Pops cleanup blocks until the given savepoint is reached. 663 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) { 664 assert(Old.isValid()); 665 666 EHScopeStack::iterator E = EHStack.find(Old); 667 while (EHStack.begin() != E) 668 PopCleanupBlock(); 669 } 670 671 /// Destroys a cleanup if it was unused. 672 static void DestroyCleanup(CodeGenFunction &CGF, 673 llvm::BasicBlock *Entry, 674 llvm::BasicBlock *Exit) { 675 assert(Entry->use_empty() && "destroying cleanup with uses!"); 676 assert(Exit->getTerminator() == 0 && 677 "exit has terminator but entry has no predecessors!"); 678 679 // This doesn't always remove the entire cleanup, but it's much 680 // safer as long as we don't know what blocks belong to the cleanup. 681 // A *much* better approach if we care about this inefficiency would 682 // be to lazily emit the cleanup. 683 684 // If the exit block is distinct from the entry, give it a branch to 685 // an unreachable destination. This preserves the well-formedness 686 // of the IR. 687 if (Entry != Exit) 688 llvm::BranchInst::Create(CGF.getUnreachableBlock(), Exit); 689 690 assert(!Entry->getParent() && "cleanup entry already positioned?"); 691 // We can't just delete the entry; we have to kill any references to 692 // its instructions in other blocks. 693 for (llvm::BasicBlock::iterator I = Entry->begin(), E = Entry->end(); 694 I != E; ++I) 695 if (!I->use_empty()) 696 I->replaceAllUsesWith(llvm::UndefValue::get(I->getType())); 697 delete Entry; 698 } 699 700 /// Creates a switch instruction to thread branches out of the given 701 /// block (which is the exit block of a cleanup). 702 static void CreateCleanupSwitch(CodeGenFunction &CGF, 703 llvm::BasicBlock *Block) { 704 if (Block->getTerminator()) { 705 assert(isa<llvm::SwitchInst>(Block->getTerminator()) && 706 "cleanup block already has a terminator, but it isn't a switch"); 707 return; 708 } 709 710 llvm::Value *DestCodePtr 711 = CGF.CreateTempAlloca(CGF.Builder.getInt32Ty(), "cleanup.dst"); 712 CGBuilderTy Builder(Block); 713 llvm::Value *DestCode = Builder.CreateLoad(DestCodePtr, "tmp"); 714 715 // Create a switch instruction to determine where to jump next. 716 Builder.CreateSwitch(DestCode, CGF.getUnreachableBlock()); 717 } 718 719 /// Attempts to reduce a cleanup's entry block to a fallthrough. This 720 /// is basically llvm::MergeBlockIntoPredecessor, except 721 /// simplified/optimized for the tighter constraints on cleanup 722 /// blocks. 723 static void SimplifyCleanupEntry(CodeGenFunction &CGF, 724 llvm::BasicBlock *Entry) { 725 llvm::BasicBlock *Pred = Entry->getSinglePredecessor(); 726 if (!Pred) return; 727 728 llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator()); 729 if (!Br || Br->isConditional()) return; 730 assert(Br->getSuccessor(0) == Entry); 731 732 // If we were previously inserting at the end of the cleanup entry 733 // block, we'll need to continue inserting at the end of the 734 // predecessor. 735 bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry; 736 assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end()); 737 738 // Kill the branch. 739 Br->eraseFromParent(); 740 741 // Merge the blocks. 742 Pred->getInstList().splice(Pred->end(), Entry->getInstList()); 743 744 // Kill the entry block. 745 Entry->eraseFromParent(); 746 747 if (WasInsertBlock) 748 CGF.Builder.SetInsertPoint(Pred); 749 } 750 751 /// Attempts to reduce an cleanup's exit switch to an unconditional 752 /// branch. 753 static void SimplifyCleanupExit(llvm::BasicBlock *Exit) { 754 llvm::TerminatorInst *Terminator = Exit->getTerminator(); 755 assert(Terminator && "completed cleanup exit has no terminator"); 756 757 llvm::SwitchInst *Switch = dyn_cast<llvm::SwitchInst>(Terminator); 758 if (!Switch) return; 759 if (Switch->getNumCases() != 2) return; // default + 1 760 761 llvm::LoadInst *Cond = cast<llvm::LoadInst>(Switch->getCondition()); 762 llvm::AllocaInst *CondVar = cast<llvm::AllocaInst>(Cond->getPointerOperand()); 763 764 // Replace the switch instruction with an unconditional branch. 765 llvm::BasicBlock *Dest = Switch->getSuccessor(1); // default is 0 766 Switch->eraseFromParent(); 767 llvm::BranchInst::Create(Dest, Exit); 768 769 // Delete all uses of the condition variable. 770 Cond->eraseFromParent(); 771 while (!CondVar->use_empty()) 772 cast<llvm::StoreInst>(*CondVar->use_begin())->eraseFromParent(); 773 774 // Delete the condition variable itself. 775 CondVar->eraseFromParent(); 776 } 777 778 /// Threads a branch fixup through a cleanup block. 779 static void ThreadFixupThroughCleanup(CodeGenFunction &CGF, 780 BranchFixup &Fixup, 781 llvm::BasicBlock *Entry, 782 llvm::BasicBlock *Exit) { 783 if (!Exit->getTerminator()) 784 CreateCleanupSwitch(CGF, Exit); 785 786 // Find the switch and its destination index alloca. 787 llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Exit->getTerminator()); 788 llvm::Value *DestCodePtr = 789 cast<llvm::LoadInst>(Switch->getCondition())->getPointerOperand(); 790 791 // Compute the index of the new case we're adding to the switch. 792 unsigned Index = Switch->getNumCases(); 793 794 const llvm::IntegerType *i32 = llvm::Type::getInt32Ty(CGF.getLLVMContext()); 795 llvm::ConstantInt *IndexV = llvm::ConstantInt::get(i32, Index); 796 797 // Set the index in the origin block. 798 new llvm::StoreInst(IndexV, DestCodePtr, Fixup.Origin); 799 800 // Add a case to the switch. 801 Switch->addCase(IndexV, Fixup.Destination); 802 803 // Change the last branch to point to the cleanup entry block. 804 Fixup.LatestBranch->setSuccessor(Fixup.LatestBranchIndex, Entry); 805 806 // And finally, update the fixup. 807 Fixup.LatestBranch = Switch; 808 Fixup.LatestBranchIndex = Index; 809 } 810 811 /// Try to simplify both the entry and exit edges of a cleanup. 812 static void SimplifyCleanupEdges(CodeGenFunction &CGF, 813 llvm::BasicBlock *Entry, 814 llvm::BasicBlock *Exit) { 815 816 // Given their current implementations, it's important to run these 817 // in this order: SimplifyCleanupEntry will delete Entry if it can 818 // be merged into its predecessor, which will then break 819 // SimplifyCleanupExit if (as is common) Entry == Exit. 820 821 SimplifyCleanupExit(Exit); 822 SimplifyCleanupEntry(CGF, Entry); 823 } 824 825 /// Pops a cleanup block. If the block includes a normal cleanup, the 826 /// current insertion point is threaded through the cleanup, as are 827 /// any branch fixups on the cleanup. 828 void CodeGenFunction::PopCleanupBlock() { 829 assert(!EHStack.empty() && "cleanup stack is empty!"); 830 assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!"); 831 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 832 assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups()); 833 834 // Handle the EH cleanup if (1) there is one and (2) it's different 835 // from the normal cleanup. 836 if (Scope.isEHCleanup() && 837 Scope.getEHEntry() != Scope.getNormalEntry()) { 838 llvm::BasicBlock *EHEntry = Scope.getEHEntry(); 839 llvm::BasicBlock *EHExit = Scope.getEHExit(); 840 841 if (EHEntry->use_empty()) { 842 DestroyCleanup(*this, EHEntry, EHExit); 843 } else { 844 // TODO: this isn't really the ideal location to put this EH 845 // cleanup, but lazy emission is a better solution than trying 846 // to pick a better spot. 847 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 848 EmitBlock(EHEntry); 849 Builder.restoreIP(SavedIP); 850 851 SimplifyCleanupEdges(*this, EHEntry, EHExit); 852 } 853 } 854 855 // If we only have an EH cleanup, we don't really need to do much 856 // here. Branch fixups just naturally drop down to the enclosing 857 // cleanup scope. 858 if (!Scope.isNormalCleanup()) { 859 EHStack.popCleanup(); 860 assert(EHStack.getNumBranchFixups() == 0 || EHStack.hasNormalCleanups()); 861 return; 862 } 863 864 // Check whether the scope has any fixups that need to be threaded. 865 unsigned FixupDepth = Scope.getFixupDepth(); 866 bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth; 867 868 // Grab the entry and exit blocks. 869 llvm::BasicBlock *Entry = Scope.getNormalEntry(); 870 llvm::BasicBlock *Exit = Scope.getNormalExit(); 871 872 // Check whether anything's been threaded through the cleanup already. 873 assert((Exit->getTerminator() == 0) == Entry->use_empty() && 874 "cleanup entry/exit mismatch"); 875 bool HasExistingBranches = !Entry->use_empty(); 876 877 // Check whether we need to emit a "fallthrough" branch through the 878 // cleanup for the current insertion point. 879 llvm::BasicBlock *FallThrough = Builder.GetInsertBlock(); 880 if (FallThrough && FallThrough->getTerminator()) 881 FallThrough = 0; 882 883 // If *nothing* is using the cleanup, kill it. 884 if (!FallThrough && !HasFixups && !HasExistingBranches) { 885 EHStack.popCleanup(); 886 DestroyCleanup(*this, Entry, Exit); 887 return; 888 } 889 890 // Otherwise, add the block to the function. 891 EmitBlock(Entry); 892 893 if (FallThrough) 894 Builder.SetInsertPoint(Exit); 895 else 896 Builder.ClearInsertionPoint(); 897 898 // Fast case: if we don't have to add any fixups, and either 899 // we don't have a fallthrough or the cleanup wasn't previously 900 // used, then the setup above is sufficient. 901 if (!HasFixups) { 902 if (!FallThrough) { 903 assert(HasExistingBranches && "no reason for cleanup but didn't kill before"); 904 EHStack.popCleanup(); 905 SimplifyCleanupEdges(*this, Entry, Exit); 906 return; 907 } else if (!HasExistingBranches) { 908 assert(FallThrough && "no reason for cleanup but didn't kill before"); 909 // We can't simplify the exit edge in this case because we're 910 // already inserting at the end of the exit block. 911 EHStack.popCleanup(); 912 SimplifyCleanupEntry(*this, Entry); 913 return; 914 } 915 } 916 917 // Otherwise we're going to have to thread things through the cleanup. 918 llvm::SmallVector<BranchFixup*, 8> Fixups; 919 920 // Synthesize a fixup for the current insertion point. 921 BranchFixup Cur; 922 if (FallThrough) { 923 Cur.Destination = createBasicBlock("cleanup.cont"); 924 Cur.LatestBranch = FallThrough->getTerminator(); 925 Cur.LatestBranchIndex = 0; 926 Cur.Origin = Cur.LatestBranch; 927 928 // Restore fixup invariant. EmitBlock added a branch to the cleanup 929 // which we need to redirect to the destination. 930 cast<llvm::BranchInst>(Cur.LatestBranch)->setSuccessor(0, Cur.Destination); 931 932 Fixups.push_back(&Cur); 933 } else { 934 Cur.Destination = 0; 935 } 936 937 // Collect any "real" fixups we need to thread. 938 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 939 I != E; ++I) 940 if (EHStack.getBranchFixup(I).Destination) 941 Fixups.push_back(&EHStack.getBranchFixup(I)); 942 943 assert(!Fixups.empty() && "no fixups, invariants broken!"); 944 945 // If there's only a single fixup to thread through, do so with 946 // unconditional branches. This only happens if there's a single 947 // branch and no fallthrough. 948 if (Fixups.size() == 1 && !HasExistingBranches) { 949 Fixups[0]->LatestBranch->setSuccessor(Fixups[0]->LatestBranchIndex, Entry); 950 llvm::BranchInst *Br = 951 llvm::BranchInst::Create(Fixups[0]->Destination, Exit); 952 Fixups[0]->LatestBranch = Br; 953 Fixups[0]->LatestBranchIndex = 0; 954 955 // Otherwise, force a switch statement and thread everything through 956 // the switch. 957 } else { 958 CreateCleanupSwitch(*this, Exit); 959 for (unsigned I = 0, E = Fixups.size(); I != E; ++I) 960 ThreadFixupThroughCleanup(*this, *Fixups[I], Entry, Exit); 961 } 962 963 // Emit the fallthrough destination block if necessary. 964 if (Cur.Destination) 965 EmitBlock(Cur.Destination); 966 967 // We're finally done with the cleanup. 968 EHStack.popCleanup(); 969 } 970 971 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) { 972 if (!HaveInsertPoint()) 973 return; 974 975 // Create the branch. 976 llvm::BranchInst *BI = Builder.CreateBr(Dest.Block); 977 978 // If we're not in a cleanup scope, we don't need to worry about 979 // fixups. 980 if (!EHStack.hasNormalCleanups()) { 981 Builder.ClearInsertionPoint(); 982 return; 983 } 984 985 // Initialize a fixup. 986 BranchFixup Fixup; 987 Fixup.Destination = Dest.Block; 988 Fixup.Origin = BI; 989 Fixup.LatestBranch = BI; 990 Fixup.LatestBranchIndex = 0; 991 992 // If we can't resolve the destination cleanup scope, just add this 993 // to the current cleanup scope. 994 if (!Dest.ScopeDepth.isValid()) { 995 EHStack.addBranchFixup() = Fixup; 996 Builder.ClearInsertionPoint(); 997 return; 998 } 999 1000 for (EHScopeStack::iterator I = EHStack.begin(), 1001 E = EHStack.find(Dest.ScopeDepth); I != E; ++I) { 1002 if (isa<EHCleanupScope>(*I)) { 1003 EHCleanupScope &Scope = cast<EHCleanupScope>(*I); 1004 if (Scope.isNormalCleanup()) 1005 ThreadFixupThroughCleanup(*this, Fixup, Scope.getNormalEntry(), 1006 Scope.getNormalExit()); 1007 } 1008 } 1009 1010 Builder.ClearInsertionPoint(); 1011 } 1012 1013 void CodeGenFunction::EmitBranchThroughEHCleanup(JumpDest Dest) { 1014 if (!HaveInsertPoint()) 1015 return; 1016 1017 // Create the branch. 1018 llvm::BranchInst *BI = Builder.CreateBr(Dest.Block); 1019 1020 // If we're not in a cleanup scope, we don't need to worry about 1021 // fixups. 1022 if (!EHStack.hasEHCleanups()) { 1023 Builder.ClearInsertionPoint(); 1024 return; 1025 } 1026 1027 // Initialize a fixup. 1028 BranchFixup Fixup; 1029 Fixup.Destination = Dest.Block; 1030 Fixup.Origin = BI; 1031 Fixup.LatestBranch = BI; 1032 Fixup.LatestBranchIndex = 0; 1033 1034 // We should never get invalid scope depths for these: invalid scope 1035 // depths only arise for as-yet-unemitted labels, and we can't do an 1036 // EH-unwind to one of those. 1037 assert(Dest.ScopeDepth.isValid() && "invalid scope depth on EH dest?"); 1038 1039 for (EHScopeStack::iterator I = EHStack.begin(), 1040 E = EHStack.find(Dest.ScopeDepth); I != E; ++I) { 1041 if (isa<EHCleanupScope>(*I)) { 1042 EHCleanupScope &Scope = cast<EHCleanupScope>(*I); 1043 if (Scope.isEHCleanup()) 1044 ThreadFixupThroughCleanup(*this, Fixup, Scope.getEHEntry(), 1045 Scope.getEHExit()); 1046 } 1047 } 1048 1049 Builder.ClearInsertionPoint(); 1050 } 1051