1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Operator.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
41     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
42       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
43               CGBuilderInserterTy(this)),
44       CurFn(nullptr), ReturnValue(Address::invalid()),
45       CapturedStmtInfo(nullptr),
46       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
47       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
48       IsOutlinedSEHHelper(false),
49       BlockInfo(nullptr), BlockPointer(nullptr),
50       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
51       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
52       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
53       DebugInfo(CGM.getModuleDebugInfo()),
54       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
55       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
56       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
57       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
58       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
59       CXXStructorImplicitParamDecl(nullptr),
60       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
61       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
62       TerminateHandler(nullptr), TrapBB(nullptr) {
63   if (!suppressNewContext)
64     CGM.getCXXABI().getMangleContext().startNewFunction();
65 
66   llvm::FastMathFlags FMF;
67   if (CGM.getLangOpts().FastMath)
68     FMF.setUnsafeAlgebra();
69   if (CGM.getLangOpts().FiniteMathOnly) {
70     FMF.setNoNaNs();
71     FMF.setNoInfs();
72   }
73   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
74     FMF.setNoNaNs();
75   }
76   if (CGM.getCodeGenOpts().NoSignedZeros) {
77     FMF.setNoSignedZeros();
78   }
79   if (CGM.getCodeGenOpts().ReciprocalMath) {
80     FMF.setAllowReciprocal();
81   }
82   Builder.SetFastMathFlags(FMF);
83 }
84 
85 CodeGenFunction::~CodeGenFunction() {
86   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
87 
88   // If there are any unclaimed block infos, go ahead and destroy them
89   // now.  This can happen if IR-gen gets clever and skips evaluating
90   // something.
91   if (FirstBlockInfo)
92     destroyBlockInfos(FirstBlockInfo);
93 
94   if (getLangOpts().OpenMP) {
95     CGM.getOpenMPRuntime().functionFinished(*this);
96   }
97 }
98 
99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
100                                                      AlignmentSource *Source) {
101   return getNaturalTypeAlignment(T->getPointeeType(), Source,
102                                  /*forPointee*/ true);
103 }
104 
105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
106                                                    AlignmentSource *Source,
107                                                    bool forPointeeType) {
108   // Honor alignment typedef attributes even on incomplete types.
109   // We also honor them straight for C++ class types, even as pointees;
110   // there's an expressivity gap here.
111   if (auto TT = T->getAs<TypedefType>()) {
112     if (auto Align = TT->getDecl()->getMaxAlignment()) {
113       if (Source) *Source = AlignmentSource::AttributedType;
114       return getContext().toCharUnitsFromBits(Align);
115     }
116   }
117 
118   if (Source) *Source = AlignmentSource::Type;
119 
120   CharUnits Alignment;
121   if (T->isIncompleteType()) {
122     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
123   } else {
124     // For C++ class pointees, we don't know whether we're pointing at a
125     // base or a complete object, so we generally need to use the
126     // non-virtual alignment.
127     const CXXRecordDecl *RD;
128     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
129       Alignment = CGM.getClassPointerAlignment(RD);
130     } else {
131       Alignment = getContext().getTypeAlignInChars(T);
132     }
133 
134     // Cap to the global maximum type alignment unless the alignment
135     // was somehow explicit on the type.
136     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
137       if (Alignment.getQuantity() > MaxAlign &&
138           !getContext().isAlignmentRequired(T))
139         Alignment = CharUnits::fromQuantity(MaxAlign);
140     }
141   }
142   return Alignment;
143 }
144 
145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
146   AlignmentSource AlignSource;
147   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
148   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
149                           CGM.getTBAAInfo(T));
150 }
151 
152 /// Given a value of type T* that may not be to a complete object,
153 /// construct an l-value with the natural pointee alignment of T.
154 LValue
155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
156   AlignmentSource AlignSource;
157   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
158   return MakeAddrLValue(Address(V, Align), T, AlignSource);
159 }
160 
161 
162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
163   return CGM.getTypes().ConvertTypeForMem(T);
164 }
165 
166 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
167   return CGM.getTypes().ConvertType(T);
168 }
169 
170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
171   type = type.getCanonicalType();
172   while (true) {
173     switch (type->getTypeClass()) {
174 #define TYPE(name, parent)
175 #define ABSTRACT_TYPE(name, parent)
176 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
177 #define DEPENDENT_TYPE(name, parent) case Type::name:
178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
179 #include "clang/AST/TypeNodes.def"
180       llvm_unreachable("non-canonical or dependent type in IR-generation");
181 
182     case Type::Auto:
183       llvm_unreachable("undeduced auto type in IR-generation");
184 
185     // Various scalar types.
186     case Type::Builtin:
187     case Type::Pointer:
188     case Type::BlockPointer:
189     case Type::LValueReference:
190     case Type::RValueReference:
191     case Type::MemberPointer:
192     case Type::Vector:
193     case Type::ExtVector:
194     case Type::FunctionProto:
195     case Type::FunctionNoProto:
196     case Type::Enum:
197     case Type::ObjCObjectPointer:
198       return TEK_Scalar;
199 
200     // Complexes.
201     case Type::Complex:
202       return TEK_Complex;
203 
204     // Arrays, records, and Objective-C objects.
205     case Type::ConstantArray:
206     case Type::IncompleteArray:
207     case Type::VariableArray:
208     case Type::Record:
209     case Type::ObjCObject:
210     case Type::ObjCInterface:
211       return TEK_Aggregate;
212 
213     // We operate on atomic values according to their underlying type.
214     case Type::Atomic:
215       type = cast<AtomicType>(type)->getValueType();
216       continue;
217     }
218     llvm_unreachable("unknown type kind!");
219   }
220 }
221 
222 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
223   // For cleanliness, we try to avoid emitting the return block for
224   // simple cases.
225   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
226 
227   if (CurBB) {
228     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
229 
230     // We have a valid insert point, reuse it if it is empty or there are no
231     // explicit jumps to the return block.
232     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
233       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
234       delete ReturnBlock.getBlock();
235     } else
236       EmitBlock(ReturnBlock.getBlock());
237     return llvm::DebugLoc();
238   }
239 
240   // Otherwise, if the return block is the target of a single direct
241   // branch then we can just put the code in that block instead. This
242   // cleans up functions which started with a unified return block.
243   if (ReturnBlock.getBlock()->hasOneUse()) {
244     llvm::BranchInst *BI =
245       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
246     if (BI && BI->isUnconditional() &&
247         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
248       // Record/return the DebugLoc of the simple 'return' expression to be used
249       // later by the actual 'ret' instruction.
250       llvm::DebugLoc Loc = BI->getDebugLoc();
251       Builder.SetInsertPoint(BI->getParent());
252       BI->eraseFromParent();
253       delete ReturnBlock.getBlock();
254       return Loc;
255     }
256   }
257 
258   // FIXME: We are at an unreachable point, there is no reason to emit the block
259   // unless it has uses. However, we still need a place to put the debug
260   // region.end for now.
261 
262   EmitBlock(ReturnBlock.getBlock());
263   return llvm::DebugLoc();
264 }
265 
266 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
267   if (!BB) return;
268   if (!BB->use_empty())
269     return CGF.CurFn->getBasicBlockList().push_back(BB);
270   delete BB;
271 }
272 
273 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
274   assert(BreakContinueStack.empty() &&
275          "mismatched push/pop in break/continue stack!");
276 
277   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
278     && NumSimpleReturnExprs == NumReturnExprs
279     && ReturnBlock.getBlock()->use_empty();
280   // Usually the return expression is evaluated before the cleanup
281   // code.  If the function contains only a simple return statement,
282   // such as a constant, the location before the cleanup code becomes
283   // the last useful breakpoint in the function, because the simple
284   // return expression will be evaluated after the cleanup code. To be
285   // safe, set the debug location for cleanup code to the location of
286   // the return statement.  Otherwise the cleanup code should be at the
287   // end of the function's lexical scope.
288   //
289   // If there are multiple branches to the return block, the branch
290   // instructions will get the location of the return statements and
291   // all will be fine.
292   if (CGDebugInfo *DI = getDebugInfo()) {
293     if (OnlySimpleReturnStmts)
294       DI->EmitLocation(Builder, LastStopPoint);
295     else
296       DI->EmitLocation(Builder, EndLoc);
297   }
298 
299   // Pop any cleanups that might have been associated with the
300   // parameters.  Do this in whatever block we're currently in; it's
301   // important to do this before we enter the return block or return
302   // edges will be *really* confused.
303   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
304   bool HasOnlyLifetimeMarkers =
305       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
306   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
307   if (HasCleanups) {
308     // Make sure the line table doesn't jump back into the body for
309     // the ret after it's been at EndLoc.
310     if (CGDebugInfo *DI = getDebugInfo())
311       if (OnlySimpleReturnStmts)
312         DI->EmitLocation(Builder, EndLoc);
313 
314     PopCleanupBlocks(PrologueCleanupDepth);
315   }
316 
317   // Emit function epilog (to return).
318   llvm::DebugLoc Loc = EmitReturnBlock();
319 
320   if (ShouldInstrumentFunction())
321     EmitFunctionInstrumentation("__cyg_profile_func_exit");
322 
323   // Emit debug descriptor for function end.
324   if (CGDebugInfo *DI = getDebugInfo())
325     DI->EmitFunctionEnd(Builder);
326 
327   // Reset the debug location to that of the simple 'return' expression, if any
328   // rather than that of the end of the function's scope '}'.
329   ApplyDebugLocation AL(*this, Loc);
330   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
331   EmitEndEHSpec(CurCodeDecl);
332 
333   assert(EHStack.empty() &&
334          "did not remove all scopes from cleanup stack!");
335 
336   // If someone did an indirect goto, emit the indirect goto block at the end of
337   // the function.
338   if (IndirectBranch) {
339     EmitBlock(IndirectBranch->getParent());
340     Builder.ClearInsertionPoint();
341   }
342 
343   // If some of our locals escaped, insert a call to llvm.localescape in the
344   // entry block.
345   if (!EscapedLocals.empty()) {
346     // Invert the map from local to index into a simple vector. There should be
347     // no holes.
348     SmallVector<llvm::Value *, 4> EscapeArgs;
349     EscapeArgs.resize(EscapedLocals.size());
350     for (auto &Pair : EscapedLocals)
351       EscapeArgs[Pair.second] = Pair.first;
352     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
353         &CGM.getModule(), llvm::Intrinsic::localescape);
354     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
355   }
356 
357   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
358   llvm::Instruction *Ptr = AllocaInsertPt;
359   AllocaInsertPt = nullptr;
360   Ptr->eraseFromParent();
361 
362   // If someone took the address of a label but never did an indirect goto, we
363   // made a zero entry PHI node, which is illegal, zap it now.
364   if (IndirectBranch) {
365     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
366     if (PN->getNumIncomingValues() == 0) {
367       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
368       PN->eraseFromParent();
369     }
370   }
371 
372   EmitIfUsed(*this, EHResumeBlock);
373   EmitIfUsed(*this, TerminateLandingPad);
374   EmitIfUsed(*this, TerminateHandler);
375   EmitIfUsed(*this, UnreachableBlock);
376 
377   if (CGM.getCodeGenOpts().EmitDeclMetadata)
378     EmitDeclMetadata();
379 
380   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
381            I = DeferredReplacements.begin(),
382            E = DeferredReplacements.end();
383        I != E; ++I) {
384     I->first->replaceAllUsesWith(I->second);
385     I->first->eraseFromParent();
386   }
387 }
388 
389 /// ShouldInstrumentFunction - Return true if the current function should be
390 /// instrumented with __cyg_profile_func_* calls
391 bool CodeGenFunction::ShouldInstrumentFunction() {
392   if (!CGM.getCodeGenOpts().InstrumentFunctions)
393     return false;
394   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
395     return false;
396   return true;
397 }
398 
399 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
400 /// instrumentation function with the current function and the call site, if
401 /// function instrumentation is enabled.
402 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
403   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
404   llvm::PointerType *PointerTy = Int8PtrTy;
405   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
406   llvm::FunctionType *FunctionTy =
407     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
408 
409   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
410   llvm::CallInst *CallSite = Builder.CreateCall(
411     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
412     llvm::ConstantInt::get(Int32Ty, 0),
413     "callsite");
414 
415   llvm::Value *args[] = {
416     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
417     CallSite
418   };
419 
420   EmitNounwindRuntimeCall(F, args);
421 }
422 
423 void CodeGenFunction::EmitMCountInstrumentation() {
424   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
425 
426   llvm::Constant *MCountFn =
427     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
428   EmitNounwindRuntimeCall(MCountFn);
429 }
430 
431 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
432 // information in the program executable. The argument information stored
433 // includes the argument name, its type, the address and access qualifiers used.
434 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
435                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
436                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
437                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
438   // Create MDNodes that represent the kernel arg metadata.
439   // Each MDNode is a list in the form of "key", N number of values which is
440   // the same number of values as their are kernel arguments.
441 
442   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
443 
444   // MDNode for the kernel argument address space qualifiers.
445   SmallVector<llvm::Metadata *, 8> addressQuals;
446   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
447 
448   // MDNode for the kernel argument access qualifiers (images only).
449   SmallVector<llvm::Metadata *, 8> accessQuals;
450   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
451 
452   // MDNode for the kernel argument type names.
453   SmallVector<llvm::Metadata *, 8> argTypeNames;
454   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
455 
456   // MDNode for the kernel argument base type names.
457   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
458   argBaseTypeNames.push_back(
459       llvm::MDString::get(Context, "kernel_arg_base_type"));
460 
461   // MDNode for the kernel argument type qualifiers.
462   SmallVector<llvm::Metadata *, 8> argTypeQuals;
463   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
464 
465   // MDNode for the kernel argument names.
466   SmallVector<llvm::Metadata *, 8> argNames;
467   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
468 
469   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
470     const ParmVarDecl *parm = FD->getParamDecl(i);
471     QualType ty = parm->getType();
472     std::string typeQuals;
473 
474     if (ty->isPointerType()) {
475       QualType pointeeTy = ty->getPointeeType();
476 
477       // Get address qualifier.
478       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
479           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
480 
481       // Get argument type name.
482       std::string typeName =
483           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
484 
485       // Turn "unsigned type" to "utype"
486       std::string::size_type pos = typeName.find("unsigned");
487       if (pointeeTy.isCanonical() && pos != std::string::npos)
488         typeName.erase(pos+1, 8);
489 
490       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
491 
492       std::string baseTypeName =
493           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
494               Policy) +
495           "*";
496 
497       // Turn "unsigned type" to "utype"
498       pos = baseTypeName.find("unsigned");
499       if (pos != std::string::npos)
500         baseTypeName.erase(pos+1, 8);
501 
502       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
503 
504       // Get argument type qualifiers:
505       if (ty.isRestrictQualified())
506         typeQuals = "restrict";
507       if (pointeeTy.isConstQualified() ||
508           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
509         typeQuals += typeQuals.empty() ? "const" : " const";
510       if (pointeeTy.isVolatileQualified())
511         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
512     } else {
513       uint32_t AddrSpc = 0;
514       if (ty->isImageType())
515         AddrSpc =
516           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
517 
518       addressQuals.push_back(
519           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
520 
521       // Get argument type name.
522       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
523 
524       // Turn "unsigned type" to "utype"
525       std::string::size_type pos = typeName.find("unsigned");
526       if (ty.isCanonical() && pos != std::string::npos)
527         typeName.erase(pos+1, 8);
528 
529       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
530 
531       std::string baseTypeName =
532           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
533 
534       // Turn "unsigned type" to "utype"
535       pos = baseTypeName.find("unsigned");
536       if (pos != std::string::npos)
537         baseTypeName.erase(pos+1, 8);
538 
539       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
540 
541       // Get argument type qualifiers:
542       if (ty.isConstQualified())
543         typeQuals = "const";
544       if (ty.isVolatileQualified())
545         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
546     }
547 
548     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
549 
550     // Get image access qualifier:
551     if (ty->isImageType()) {
552       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
553       if (A && A->isWriteOnly())
554         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
555       else
556         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
557       // FIXME: what about read_write?
558     } else
559       accessQuals.push_back(llvm::MDString::get(Context, "none"));
560 
561     // Get argument name.
562     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
563   }
564 
565   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
566   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
567   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
568   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
569   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
570   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
571     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
572 }
573 
574 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
575                                                llvm::Function *Fn)
576 {
577   if (!FD->hasAttr<OpenCLKernelAttr>())
578     return;
579 
580   llvm::LLVMContext &Context = getLLVMContext();
581 
582   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
583   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
584 
585   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
586                        getContext());
587 
588   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
589     QualType hintQTy = A->getTypeHint();
590     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
591     bool isSignedInteger =
592         hintQTy->isSignedIntegerType() ||
593         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
594     llvm::Metadata *attrMDArgs[] = {
595         llvm::MDString::get(Context, "vec_type_hint"),
596         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
597             CGM.getTypes().ConvertType(A->getTypeHint()))),
598         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
599             llvm::IntegerType::get(Context, 32),
600             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
601     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
602   }
603 
604   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
605     llvm::Metadata *attrMDArgs[] = {
606         llvm::MDString::get(Context, "work_group_size_hint"),
607         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
608         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
609         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
610     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
611   }
612 
613   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
614     llvm::Metadata *attrMDArgs[] = {
615         llvm::MDString::get(Context, "reqd_work_group_size"),
616         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
617         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
619     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
620   }
621 
622   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
623   llvm::NamedMDNode *OpenCLKernelMetadata =
624     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
625   OpenCLKernelMetadata->addOperand(kernelMDNode);
626 }
627 
628 /// Determine whether the function F ends with a return stmt.
629 static bool endsWithReturn(const Decl* F) {
630   const Stmt *Body = nullptr;
631   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
632     Body = FD->getBody();
633   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
634     Body = OMD->getBody();
635 
636   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
637     auto LastStmt = CS->body_rbegin();
638     if (LastStmt != CS->body_rend())
639       return isa<ReturnStmt>(*LastStmt);
640   }
641   return false;
642 }
643 
644 void CodeGenFunction::StartFunction(GlobalDecl GD,
645                                     QualType RetTy,
646                                     llvm::Function *Fn,
647                                     const CGFunctionInfo &FnInfo,
648                                     const FunctionArgList &Args,
649                                     SourceLocation Loc,
650                                     SourceLocation StartLoc) {
651   assert(!CurFn &&
652          "Do not use a CodeGenFunction object for more than one function");
653 
654   const Decl *D = GD.getDecl();
655 
656   DidCallStackSave = false;
657   CurCodeDecl = D;
658   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
659   FnRetTy = RetTy;
660   CurFn = Fn;
661   CurFnInfo = &FnInfo;
662   assert(CurFn->isDeclaration() && "Function already has body?");
663 
664   if (CGM.isInSanitizerBlacklist(Fn, Loc))
665     SanOpts.clear();
666 
667   if (D) {
668     // Apply the no_sanitize* attributes to SanOpts.
669     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
670       SanOpts.Mask &= ~Attr->getMask();
671   }
672 
673   // Apply sanitizer attributes to the function.
674   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
675     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
676   if (SanOpts.has(SanitizerKind::Thread))
677     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
678   if (SanOpts.has(SanitizerKind::Memory))
679     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
680   if (SanOpts.has(SanitizerKind::SafeStack))
681     Fn->addFnAttr(llvm::Attribute::SafeStack);
682 
683   // Pass inline keyword to optimizer if it appears explicitly on any
684   // declaration. Also, in the case of -fno-inline attach NoInline
685   // attribute to all function that are not marked AlwaysInline.
686   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
687     if (!CGM.getCodeGenOpts().NoInline) {
688       for (auto RI : FD->redecls())
689         if (RI->isInlineSpecified()) {
690           Fn->addFnAttr(llvm::Attribute::InlineHint);
691           break;
692         }
693     } else if (!FD->hasAttr<AlwaysInlineAttr>())
694       Fn->addFnAttr(llvm::Attribute::NoInline);
695   }
696 
697   if (getLangOpts().OpenCL) {
698     // Add metadata for a kernel function.
699     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
700       EmitOpenCLKernelMetadata(FD, Fn);
701   }
702 
703   // If we are checking function types, emit a function type signature as
704   // prologue data.
705   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
706     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
707       if (llvm::Constant *PrologueSig =
708               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
709         llvm::Constant *FTRTTIConst =
710             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
711         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
712         llvm::Constant *PrologueStructConst =
713             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
714         Fn->setPrologueData(PrologueStructConst);
715       }
716     }
717   }
718 
719   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
720 
721   // Create a marker to make it easy to insert allocas into the entryblock
722   // later.  Don't create this with the builder, because we don't want it
723   // folded.
724   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
725   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
726   if (Builder.isNamePreserving())
727     AllocaInsertPt->setName("allocapt");
728 
729   ReturnBlock = getJumpDestInCurrentScope("return");
730 
731   Builder.SetInsertPoint(EntryBB);
732 
733   // Emit subprogram debug descriptor.
734   if (CGDebugInfo *DI = getDebugInfo()) {
735     SmallVector<QualType, 16> ArgTypes;
736     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
737 	 i != e; ++i) {
738       ArgTypes.push_back((*i)->getType());
739     }
740 
741     QualType FnType =
742       getContext().getFunctionType(RetTy, ArgTypes,
743                                    FunctionProtoType::ExtProtoInfo());
744     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
745   }
746 
747   if (ShouldInstrumentFunction())
748     EmitFunctionInstrumentation("__cyg_profile_func_enter");
749 
750   if (CGM.getCodeGenOpts().InstrumentForProfiling)
751     EmitMCountInstrumentation();
752 
753   if (RetTy->isVoidType()) {
754     // Void type; nothing to return.
755     ReturnValue = Address::invalid();
756 
757     // Count the implicit return.
758     if (!endsWithReturn(D))
759       ++NumReturnExprs;
760   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
761              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
762     // Indirect aggregate return; emit returned value directly into sret slot.
763     // This reduces code size, and affects correctness in C++.
764     auto AI = CurFn->arg_begin();
765     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
766       ++AI;
767     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
768   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
769              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
770     // Load the sret pointer from the argument struct and return into that.
771     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
772     llvm::Function::arg_iterator EI = CurFn->arg_end();
773     --EI;
774     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
775     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
776     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
777   } else {
778     ReturnValue = CreateIRTemp(RetTy, "retval");
779 
780     // Tell the epilog emitter to autorelease the result.  We do this
781     // now so that various specialized functions can suppress it
782     // during their IR-generation.
783     if (getLangOpts().ObjCAutoRefCount &&
784         !CurFnInfo->isReturnsRetained() &&
785         RetTy->isObjCRetainableType())
786       AutoreleaseResult = true;
787   }
788 
789   EmitStartEHSpec(CurCodeDecl);
790 
791   PrologueCleanupDepth = EHStack.stable_begin();
792   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
793 
794   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
795     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
796     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
797     if (MD->getParent()->isLambda() &&
798         MD->getOverloadedOperator() == OO_Call) {
799       // We're in a lambda; figure out the captures.
800       MD->getParent()->getCaptureFields(LambdaCaptureFields,
801                                         LambdaThisCaptureField);
802       if (LambdaThisCaptureField) {
803         // If this lambda captures this, load it.
804         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
805         CXXThisValue = EmitLoadOfLValue(ThisLValue,
806                                         SourceLocation()).getScalarVal();
807       }
808       for (auto *FD : MD->getParent()->fields()) {
809         if (FD->hasCapturedVLAType()) {
810           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
811                                            SourceLocation()).getScalarVal();
812           auto VAT = FD->getCapturedVLAType();
813           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
814         }
815       }
816     } else {
817       // Not in a lambda; just use 'this' from the method.
818       // FIXME: Should we generate a new load for each use of 'this'?  The
819       // fast register allocator would be happier...
820       CXXThisValue = CXXABIThisValue;
821     }
822   }
823 
824   // If any of the arguments have a variably modified type, make sure to
825   // emit the type size.
826   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
827        i != e; ++i) {
828     const VarDecl *VD = *i;
829 
830     // Dig out the type as written from ParmVarDecls; it's unclear whether
831     // the standard (C99 6.9.1p10) requires this, but we're following the
832     // precedent set by gcc.
833     QualType Ty;
834     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
835       Ty = PVD->getOriginalType();
836     else
837       Ty = VD->getType();
838 
839     if (Ty->isVariablyModifiedType())
840       EmitVariablyModifiedType(Ty);
841   }
842   // Emit a location at the end of the prologue.
843   if (CGDebugInfo *DI = getDebugInfo())
844     DI->EmitLocation(Builder, StartLoc);
845 }
846 
847 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
848                                        const Stmt *Body) {
849   incrementProfileCounter(Body);
850   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
851     EmitCompoundStmtWithoutScope(*S);
852   else
853     EmitStmt(Body);
854 }
855 
856 /// When instrumenting to collect profile data, the counts for some blocks
857 /// such as switch cases need to not include the fall-through counts, so
858 /// emit a branch around the instrumentation code. When not instrumenting,
859 /// this just calls EmitBlock().
860 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
861                                                const Stmt *S) {
862   llvm::BasicBlock *SkipCountBB = nullptr;
863   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
864     // When instrumenting for profiling, the fallthrough to certain
865     // statements needs to skip over the instrumentation code so that we
866     // get an accurate count.
867     SkipCountBB = createBasicBlock("skipcount");
868     EmitBranch(SkipCountBB);
869   }
870   EmitBlock(BB);
871   uint64_t CurrentCount = getCurrentProfileCount();
872   incrementProfileCounter(S);
873   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
874   if (SkipCountBB)
875     EmitBlock(SkipCountBB);
876 }
877 
878 /// Tries to mark the given function nounwind based on the
879 /// non-existence of any throwing calls within it.  We believe this is
880 /// lightweight enough to do at -O0.
881 static void TryMarkNoThrow(llvm::Function *F) {
882   // LLVM treats 'nounwind' on a function as part of the type, so we
883   // can't do this on functions that can be overwritten.
884   if (F->mayBeOverridden()) return;
885 
886   for (llvm::BasicBlock &BB : *F)
887     for (llvm::Instruction &I : BB)
888       if (I.mayThrow())
889         return;
890 
891   F->setDoesNotThrow();
892 }
893 
894 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
895                                    const CGFunctionInfo &FnInfo) {
896   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
897 
898   // Check if we should generate debug info for this function.
899   if (FD->hasAttr<NoDebugAttr>())
900     DebugInfo = nullptr; // disable debug info indefinitely for this function
901 
902   FunctionArgList Args;
903   QualType ResTy = FD->getReturnType();
904 
905   CurGD = GD;
906   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
907   if (MD && MD->isInstance()) {
908     if (CGM.getCXXABI().HasThisReturn(GD))
909       ResTy = MD->getThisType(getContext());
910     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
911       ResTy = CGM.getContext().VoidPtrTy;
912     CGM.getCXXABI().buildThisParam(*this, Args);
913   }
914 
915   Args.append(FD->param_begin(), FD->param_end());
916 
917   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
918     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
919 
920   SourceRange BodyRange;
921   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
922   CurEHLocation = BodyRange.getEnd();
923 
924   // Use the location of the start of the function to determine where
925   // the function definition is located. By default use the location
926   // of the declaration as the location for the subprogram. A function
927   // may lack a declaration in the source code if it is created by code
928   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
929   SourceLocation Loc = FD->getLocation();
930 
931   // If this is a function specialization then use the pattern body
932   // as the location for the function.
933   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
934     if (SpecDecl->hasBody(SpecDecl))
935       Loc = SpecDecl->getLocation();
936 
937   // Emit the standard function prologue.
938   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
939 
940   // Generate the body of the function.
941   PGO.checkGlobalDecl(GD);
942   PGO.assignRegionCounters(GD.getDecl(), CurFn);
943   if (isa<CXXDestructorDecl>(FD))
944     EmitDestructorBody(Args);
945   else if (isa<CXXConstructorDecl>(FD))
946     EmitConstructorBody(Args);
947   else if (getLangOpts().CUDA &&
948            !getLangOpts().CUDAIsDevice &&
949            FD->hasAttr<CUDAGlobalAttr>())
950     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
951   else if (isa<CXXConversionDecl>(FD) &&
952            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
953     // The lambda conversion to block pointer is special; the semantics can't be
954     // expressed in the AST, so IRGen needs to special-case it.
955     EmitLambdaToBlockPointerBody(Args);
956   } else if (isa<CXXMethodDecl>(FD) &&
957              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
958     // The lambda static invoker function is special, because it forwards or
959     // clones the body of the function call operator (but is actually static).
960     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
961   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
962              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
963               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
964     // Implicit copy-assignment gets the same special treatment as implicit
965     // copy-constructors.
966     emitImplicitAssignmentOperatorBody(Args);
967   } else if (Stmt *Body = FD->getBody()) {
968     EmitFunctionBody(Args, Body);
969   } else
970     llvm_unreachable("no definition for emitted function");
971 
972   // C++11 [stmt.return]p2:
973   //   Flowing off the end of a function [...] results in undefined behavior in
974   //   a value-returning function.
975   // C11 6.9.1p12:
976   //   If the '}' that terminates a function is reached, and the value of the
977   //   function call is used by the caller, the behavior is undefined.
978   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
979       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
980     if (SanOpts.has(SanitizerKind::Return)) {
981       SanitizerScope SanScope(this);
982       llvm::Value *IsFalse = Builder.getFalse();
983       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
984                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
985                 None);
986     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
987       EmitTrapCall(llvm::Intrinsic::trap);
988     }
989     Builder.CreateUnreachable();
990     Builder.ClearInsertionPoint();
991   }
992 
993   // Emit the standard function epilogue.
994   FinishFunction(BodyRange.getEnd());
995 
996   // If we haven't marked the function nothrow through other means, do
997   // a quick pass now to see if we can.
998   if (!CurFn->doesNotThrow())
999     TryMarkNoThrow(CurFn);
1000 }
1001 
1002 /// ContainsLabel - Return true if the statement contains a label in it.  If
1003 /// this statement is not executed normally, it not containing a label means
1004 /// that we can just remove the code.
1005 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1006   // Null statement, not a label!
1007   if (!S) return false;
1008 
1009   // If this is a label, we have to emit the code, consider something like:
1010   // if (0) {  ...  foo:  bar(); }  goto foo;
1011   //
1012   // TODO: If anyone cared, we could track __label__'s, since we know that you
1013   // can't jump to one from outside their declared region.
1014   if (isa<LabelStmt>(S))
1015     return true;
1016 
1017   // If this is a case/default statement, and we haven't seen a switch, we have
1018   // to emit the code.
1019   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1020     return true;
1021 
1022   // If this is a switch statement, we want to ignore cases below it.
1023   if (isa<SwitchStmt>(S))
1024     IgnoreCaseStmts = true;
1025 
1026   // Scan subexpressions for verboten labels.
1027   for (const Stmt *SubStmt : S->children())
1028     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1029       return true;
1030 
1031   return false;
1032 }
1033 
1034 /// containsBreak - Return true if the statement contains a break out of it.
1035 /// If the statement (recursively) contains a switch or loop with a break
1036 /// inside of it, this is fine.
1037 bool CodeGenFunction::containsBreak(const Stmt *S) {
1038   // Null statement, not a label!
1039   if (!S) return false;
1040 
1041   // If this is a switch or loop that defines its own break scope, then we can
1042   // include it and anything inside of it.
1043   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1044       isa<ForStmt>(S))
1045     return false;
1046 
1047   if (isa<BreakStmt>(S))
1048     return true;
1049 
1050   // Scan subexpressions for verboten breaks.
1051   for (const Stmt *SubStmt : S->children())
1052     if (containsBreak(SubStmt))
1053       return true;
1054 
1055   return false;
1056 }
1057 
1058 
1059 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1060 /// to a constant, or if it does but contains a label, return false.  If it
1061 /// constant folds return true and set the boolean result in Result.
1062 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1063                                                    bool &ResultBool) {
1064   llvm::APSInt ResultInt;
1065   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
1066     return false;
1067 
1068   ResultBool = ResultInt.getBoolValue();
1069   return true;
1070 }
1071 
1072 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1073 /// to a constant, or if it does but contains a label, return false.  If it
1074 /// constant folds return true and set the folded value.
1075 bool CodeGenFunction::
1076 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1077   // FIXME: Rename and handle conversion of other evaluatable things
1078   // to bool.
1079   llvm::APSInt Int;
1080   if (!Cond->EvaluateAsInt(Int, getContext()))
1081     return false;  // Not foldable, not integer or not fully evaluatable.
1082 
1083   if (CodeGenFunction::ContainsLabel(Cond))
1084     return false;  // Contains a label.
1085 
1086   ResultInt = Int;
1087   return true;
1088 }
1089 
1090 
1091 
1092 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1093 /// statement) to the specified blocks.  Based on the condition, this might try
1094 /// to simplify the codegen of the conditional based on the branch.
1095 ///
1096 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1097                                            llvm::BasicBlock *TrueBlock,
1098                                            llvm::BasicBlock *FalseBlock,
1099                                            uint64_t TrueCount) {
1100   Cond = Cond->IgnoreParens();
1101 
1102   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1103 
1104     // Handle X && Y in a condition.
1105     if (CondBOp->getOpcode() == BO_LAnd) {
1106       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1107       // folded if the case was simple enough.
1108       bool ConstantBool = false;
1109       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1110           ConstantBool) {
1111         // br(1 && X) -> br(X).
1112         incrementProfileCounter(CondBOp);
1113         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1114                                     TrueCount);
1115       }
1116 
1117       // If we have "X && 1", simplify the code to use an uncond branch.
1118       // "X && 0" would have been constant folded to 0.
1119       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1120           ConstantBool) {
1121         // br(X && 1) -> br(X).
1122         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1123                                     TrueCount);
1124       }
1125 
1126       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1127       // want to jump to the FalseBlock.
1128       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1129       // The counter tells us how often we evaluate RHS, and all of TrueCount
1130       // can be propagated to that branch.
1131       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1132 
1133       ConditionalEvaluation eval(*this);
1134       {
1135         ApplyDebugLocation DL(*this, Cond);
1136         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1137         EmitBlock(LHSTrue);
1138       }
1139 
1140       incrementProfileCounter(CondBOp);
1141       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1142 
1143       // Any temporaries created here are conditional.
1144       eval.begin(*this);
1145       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1146       eval.end(*this);
1147 
1148       return;
1149     }
1150 
1151     if (CondBOp->getOpcode() == BO_LOr) {
1152       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1153       // folded if the case was simple enough.
1154       bool ConstantBool = false;
1155       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1156           !ConstantBool) {
1157         // br(0 || X) -> br(X).
1158         incrementProfileCounter(CondBOp);
1159         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1160                                     TrueCount);
1161       }
1162 
1163       // If we have "X || 0", simplify the code to use an uncond branch.
1164       // "X || 1" would have been constant folded to 1.
1165       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1166           !ConstantBool) {
1167         // br(X || 0) -> br(X).
1168         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1169                                     TrueCount);
1170       }
1171 
1172       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1173       // want to jump to the TrueBlock.
1174       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1175       // We have the count for entry to the RHS and for the whole expression
1176       // being true, so we can divy up True count between the short circuit and
1177       // the RHS.
1178       uint64_t LHSCount =
1179           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1180       uint64_t RHSCount = TrueCount - LHSCount;
1181 
1182       ConditionalEvaluation eval(*this);
1183       {
1184         ApplyDebugLocation DL(*this, Cond);
1185         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1186         EmitBlock(LHSFalse);
1187       }
1188 
1189       incrementProfileCounter(CondBOp);
1190       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1191 
1192       // Any temporaries created here are conditional.
1193       eval.begin(*this);
1194       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1195 
1196       eval.end(*this);
1197 
1198       return;
1199     }
1200   }
1201 
1202   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1203     // br(!x, t, f) -> br(x, f, t)
1204     if (CondUOp->getOpcode() == UO_LNot) {
1205       // Negate the count.
1206       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1207       // Negate the condition and swap the destination blocks.
1208       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1209                                   FalseCount);
1210     }
1211   }
1212 
1213   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1214     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1215     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1216     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1217 
1218     ConditionalEvaluation cond(*this);
1219     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1220                          getProfileCount(CondOp));
1221 
1222     // When computing PGO branch weights, we only know the overall count for
1223     // the true block. This code is essentially doing tail duplication of the
1224     // naive code-gen, introducing new edges for which counts are not
1225     // available. Divide the counts proportionally between the LHS and RHS of
1226     // the conditional operator.
1227     uint64_t LHSScaledTrueCount = 0;
1228     if (TrueCount) {
1229       double LHSRatio =
1230           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1231       LHSScaledTrueCount = TrueCount * LHSRatio;
1232     }
1233 
1234     cond.begin(*this);
1235     EmitBlock(LHSBlock);
1236     incrementProfileCounter(CondOp);
1237     {
1238       ApplyDebugLocation DL(*this, Cond);
1239       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1240                            LHSScaledTrueCount);
1241     }
1242     cond.end(*this);
1243 
1244     cond.begin(*this);
1245     EmitBlock(RHSBlock);
1246     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1247                          TrueCount - LHSScaledTrueCount);
1248     cond.end(*this);
1249 
1250     return;
1251   }
1252 
1253   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1254     // Conditional operator handling can give us a throw expression as a
1255     // condition for a case like:
1256     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1257     // Fold this to:
1258     //   br(c, throw x, br(y, t, f))
1259     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1260     return;
1261   }
1262 
1263   // If the branch has a condition wrapped by __builtin_unpredictable,
1264   // create metadata that specifies that the branch is unpredictable.
1265   // Don't bother if not optimizing because that metadata would not be used.
1266   llvm::MDNode *Unpredictable = nullptr;
1267   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1268     if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) {
1269       const Decl *TargetDecl = Call->getCalleeDecl();
1270       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1271         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1272           llvm::MDBuilder MDHelper(getLLVMContext());
1273           Unpredictable = MDHelper.createUnpredictable();
1274         }
1275       }
1276     }
1277   }
1278 
1279   // Create branch weights based on the number of times we get here and the
1280   // number of times the condition should be true.
1281   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1282   llvm::MDNode *Weights =
1283       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1284 
1285   // Emit the code with the fully general case.
1286   llvm::Value *CondV;
1287   {
1288     ApplyDebugLocation DL(*this, Cond);
1289     CondV = EvaluateExprAsBool(Cond);
1290   }
1291   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1292 }
1293 
1294 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1295 /// specified stmt yet.
1296 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1297   CGM.ErrorUnsupported(S, Type);
1298 }
1299 
1300 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1301 /// variable-length array whose elements have a non-zero bit-pattern.
1302 ///
1303 /// \param baseType the inner-most element type of the array
1304 /// \param src - a char* pointing to the bit-pattern for a single
1305 /// base element of the array
1306 /// \param sizeInChars - the total size of the VLA, in chars
1307 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1308                                Address dest, Address src,
1309                                llvm::Value *sizeInChars) {
1310   CGBuilderTy &Builder = CGF.Builder;
1311 
1312   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1313   llvm::Value *baseSizeInChars
1314     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1315 
1316   Address begin =
1317     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1318   llvm::Value *end =
1319     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1320 
1321   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1322   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1323   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1324 
1325   // Make a loop over the VLA.  C99 guarantees that the VLA element
1326   // count must be nonzero.
1327   CGF.EmitBlock(loopBB);
1328 
1329   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1330   cur->addIncoming(begin.getPointer(), originBB);
1331 
1332   CharUnits curAlign =
1333     dest.getAlignment().alignmentOfArrayElement(baseSize);
1334 
1335   // memcpy the individual element bit-pattern.
1336   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1337                        /*volatile*/ false);
1338 
1339   // Go to the next element.
1340   llvm::Value *next =
1341     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1342 
1343   // Leave if that's the end of the VLA.
1344   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1345   Builder.CreateCondBr(done, contBB, loopBB);
1346   cur->addIncoming(next, loopBB);
1347 
1348   CGF.EmitBlock(contBB);
1349 }
1350 
1351 void
1352 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1353   // Ignore empty classes in C++.
1354   if (getLangOpts().CPlusPlus) {
1355     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1356       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1357         return;
1358     }
1359   }
1360 
1361   // Cast the dest ptr to the appropriate i8 pointer type.
1362   if (DestPtr.getElementType() != Int8Ty)
1363     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1364 
1365   // Get size and alignment info for this aggregate.
1366   CharUnits size = getContext().getTypeSizeInChars(Ty);
1367 
1368   llvm::Value *SizeVal;
1369   const VariableArrayType *vla;
1370 
1371   // Don't bother emitting a zero-byte memset.
1372   if (size.isZero()) {
1373     // But note that getTypeInfo returns 0 for a VLA.
1374     if (const VariableArrayType *vlaType =
1375           dyn_cast_or_null<VariableArrayType>(
1376                                           getContext().getAsArrayType(Ty))) {
1377       QualType eltType;
1378       llvm::Value *numElts;
1379       std::tie(numElts, eltType) = getVLASize(vlaType);
1380 
1381       SizeVal = numElts;
1382       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1383       if (!eltSize.isOne())
1384         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1385       vla = vlaType;
1386     } else {
1387       return;
1388     }
1389   } else {
1390     SizeVal = CGM.getSize(size);
1391     vla = nullptr;
1392   }
1393 
1394   // If the type contains a pointer to data member we can't memset it to zero.
1395   // Instead, create a null constant and copy it to the destination.
1396   // TODO: there are other patterns besides zero that we can usefully memset,
1397   // like -1, which happens to be the pattern used by member-pointers.
1398   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1399     // For a VLA, emit a single element, then splat that over the VLA.
1400     if (vla) Ty = getContext().getBaseElementType(vla);
1401 
1402     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1403 
1404     llvm::GlobalVariable *NullVariable =
1405       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1406                                /*isConstant=*/true,
1407                                llvm::GlobalVariable::PrivateLinkage,
1408                                NullConstant, Twine());
1409     CharUnits NullAlign = DestPtr.getAlignment();
1410     NullVariable->setAlignment(NullAlign.getQuantity());
1411     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1412                    NullAlign);
1413 
1414     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1415 
1416     // Get and call the appropriate llvm.memcpy overload.
1417     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1418     return;
1419   }
1420 
1421   // Otherwise, just memset the whole thing to zero.  This is legal
1422   // because in LLVM, all default initializers (other than the ones we just
1423   // handled above) are guaranteed to have a bit pattern of all zeros.
1424   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1425 }
1426 
1427 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1428   // Make sure that there is a block for the indirect goto.
1429   if (!IndirectBranch)
1430     GetIndirectGotoBlock();
1431 
1432   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1433 
1434   // Make sure the indirect branch includes all of the address-taken blocks.
1435   IndirectBranch->addDestination(BB);
1436   return llvm::BlockAddress::get(CurFn, BB);
1437 }
1438 
1439 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1440   // If we already made the indirect branch for indirect goto, return its block.
1441   if (IndirectBranch) return IndirectBranch->getParent();
1442 
1443   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1444 
1445   // Create the PHI node that indirect gotos will add entries to.
1446   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1447                                               "indirect.goto.dest");
1448 
1449   // Create the indirect branch instruction.
1450   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1451   return IndirectBranch->getParent();
1452 }
1453 
1454 /// Computes the length of an array in elements, as well as the base
1455 /// element type and a properly-typed first element pointer.
1456 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1457                                               QualType &baseType,
1458                                               Address &addr) {
1459   const ArrayType *arrayType = origArrayType;
1460 
1461   // If it's a VLA, we have to load the stored size.  Note that
1462   // this is the size of the VLA in bytes, not its size in elements.
1463   llvm::Value *numVLAElements = nullptr;
1464   if (isa<VariableArrayType>(arrayType)) {
1465     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1466 
1467     // Walk into all VLAs.  This doesn't require changes to addr,
1468     // which has type T* where T is the first non-VLA element type.
1469     do {
1470       QualType elementType = arrayType->getElementType();
1471       arrayType = getContext().getAsArrayType(elementType);
1472 
1473       // If we only have VLA components, 'addr' requires no adjustment.
1474       if (!arrayType) {
1475         baseType = elementType;
1476         return numVLAElements;
1477       }
1478     } while (isa<VariableArrayType>(arrayType));
1479 
1480     // We get out here only if we find a constant array type
1481     // inside the VLA.
1482   }
1483 
1484   // We have some number of constant-length arrays, so addr should
1485   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1486   // down to the first element of addr.
1487   SmallVector<llvm::Value*, 8> gepIndices;
1488 
1489   // GEP down to the array type.
1490   llvm::ConstantInt *zero = Builder.getInt32(0);
1491   gepIndices.push_back(zero);
1492 
1493   uint64_t countFromCLAs = 1;
1494   QualType eltType;
1495 
1496   llvm::ArrayType *llvmArrayType =
1497     dyn_cast<llvm::ArrayType>(addr.getElementType());
1498   while (llvmArrayType) {
1499     assert(isa<ConstantArrayType>(arrayType));
1500     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1501              == llvmArrayType->getNumElements());
1502 
1503     gepIndices.push_back(zero);
1504     countFromCLAs *= llvmArrayType->getNumElements();
1505     eltType = arrayType->getElementType();
1506 
1507     llvmArrayType =
1508       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1509     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1510     assert((!llvmArrayType || arrayType) &&
1511            "LLVM and Clang types are out-of-synch");
1512   }
1513 
1514   if (arrayType) {
1515     // From this point onwards, the Clang array type has been emitted
1516     // as some other type (probably a packed struct). Compute the array
1517     // size, and just emit the 'begin' expression as a bitcast.
1518     while (arrayType) {
1519       countFromCLAs *=
1520           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1521       eltType = arrayType->getElementType();
1522       arrayType = getContext().getAsArrayType(eltType);
1523     }
1524 
1525     llvm::Type *baseType = ConvertType(eltType);
1526     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1527   } else {
1528     // Create the actual GEP.
1529     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1530                                              gepIndices, "array.begin"),
1531                    addr.getAlignment());
1532   }
1533 
1534   baseType = eltType;
1535 
1536   llvm::Value *numElements
1537     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1538 
1539   // If we had any VLA dimensions, factor them in.
1540   if (numVLAElements)
1541     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1542 
1543   return numElements;
1544 }
1545 
1546 std::pair<llvm::Value*, QualType>
1547 CodeGenFunction::getVLASize(QualType type) {
1548   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1549   assert(vla && "type was not a variable array type!");
1550   return getVLASize(vla);
1551 }
1552 
1553 std::pair<llvm::Value*, QualType>
1554 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1555   // The number of elements so far; always size_t.
1556   llvm::Value *numElements = nullptr;
1557 
1558   QualType elementType;
1559   do {
1560     elementType = type->getElementType();
1561     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1562     assert(vlaSize && "no size for VLA!");
1563     assert(vlaSize->getType() == SizeTy);
1564 
1565     if (!numElements) {
1566       numElements = vlaSize;
1567     } else {
1568       // It's undefined behavior if this wraps around, so mark it that way.
1569       // FIXME: Teach -fsanitize=undefined to trap this.
1570       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1571     }
1572   } while ((type = getContext().getAsVariableArrayType(elementType)));
1573 
1574   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1575 }
1576 
1577 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1578   assert(type->isVariablyModifiedType() &&
1579          "Must pass variably modified type to EmitVLASizes!");
1580 
1581   EnsureInsertPoint();
1582 
1583   // We're going to walk down into the type and look for VLA
1584   // expressions.
1585   do {
1586     assert(type->isVariablyModifiedType());
1587 
1588     const Type *ty = type.getTypePtr();
1589     switch (ty->getTypeClass()) {
1590 
1591 #define TYPE(Class, Base)
1592 #define ABSTRACT_TYPE(Class, Base)
1593 #define NON_CANONICAL_TYPE(Class, Base)
1594 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1595 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1596 #include "clang/AST/TypeNodes.def"
1597       llvm_unreachable("unexpected dependent type!");
1598 
1599     // These types are never variably-modified.
1600     case Type::Builtin:
1601     case Type::Complex:
1602     case Type::Vector:
1603     case Type::ExtVector:
1604     case Type::Record:
1605     case Type::Enum:
1606     case Type::Elaborated:
1607     case Type::TemplateSpecialization:
1608     case Type::ObjCObject:
1609     case Type::ObjCInterface:
1610     case Type::ObjCObjectPointer:
1611       llvm_unreachable("type class is never variably-modified!");
1612 
1613     case Type::Adjusted:
1614       type = cast<AdjustedType>(ty)->getAdjustedType();
1615       break;
1616 
1617     case Type::Decayed:
1618       type = cast<DecayedType>(ty)->getPointeeType();
1619       break;
1620 
1621     case Type::Pointer:
1622       type = cast<PointerType>(ty)->getPointeeType();
1623       break;
1624 
1625     case Type::BlockPointer:
1626       type = cast<BlockPointerType>(ty)->getPointeeType();
1627       break;
1628 
1629     case Type::LValueReference:
1630     case Type::RValueReference:
1631       type = cast<ReferenceType>(ty)->getPointeeType();
1632       break;
1633 
1634     case Type::MemberPointer:
1635       type = cast<MemberPointerType>(ty)->getPointeeType();
1636       break;
1637 
1638     case Type::ConstantArray:
1639     case Type::IncompleteArray:
1640       // Losing element qualification here is fine.
1641       type = cast<ArrayType>(ty)->getElementType();
1642       break;
1643 
1644     case Type::VariableArray: {
1645       // Losing element qualification here is fine.
1646       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1647 
1648       // Unknown size indication requires no size computation.
1649       // Otherwise, evaluate and record it.
1650       if (const Expr *size = vat->getSizeExpr()) {
1651         // It's possible that we might have emitted this already,
1652         // e.g. with a typedef and a pointer to it.
1653         llvm::Value *&entry = VLASizeMap[size];
1654         if (!entry) {
1655           llvm::Value *Size = EmitScalarExpr(size);
1656 
1657           // C11 6.7.6.2p5:
1658           //   If the size is an expression that is not an integer constant
1659           //   expression [...] each time it is evaluated it shall have a value
1660           //   greater than zero.
1661           if (SanOpts.has(SanitizerKind::VLABound) &&
1662               size->getType()->isSignedIntegerType()) {
1663             SanitizerScope SanScope(this);
1664             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1665             llvm::Constant *StaticArgs[] = {
1666               EmitCheckSourceLocation(size->getLocStart()),
1667               EmitCheckTypeDescriptor(size->getType())
1668             };
1669             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1670                                      SanitizerKind::VLABound),
1671                       "vla_bound_not_positive", StaticArgs, Size);
1672           }
1673 
1674           // Always zexting here would be wrong if it weren't
1675           // undefined behavior to have a negative bound.
1676           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1677         }
1678       }
1679       type = vat->getElementType();
1680       break;
1681     }
1682 
1683     case Type::FunctionProto:
1684     case Type::FunctionNoProto:
1685       type = cast<FunctionType>(ty)->getReturnType();
1686       break;
1687 
1688     case Type::Paren:
1689     case Type::TypeOf:
1690     case Type::UnaryTransform:
1691     case Type::Attributed:
1692     case Type::SubstTemplateTypeParm:
1693     case Type::PackExpansion:
1694       // Keep walking after single level desugaring.
1695       type = type.getSingleStepDesugaredType(getContext());
1696       break;
1697 
1698     case Type::Typedef:
1699     case Type::Decltype:
1700     case Type::Auto:
1701       // Stop walking: nothing to do.
1702       return;
1703 
1704     case Type::TypeOfExpr:
1705       // Stop walking: emit typeof expression.
1706       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1707       return;
1708 
1709     case Type::Atomic:
1710       type = cast<AtomicType>(ty)->getValueType();
1711       break;
1712     }
1713   } while (type->isVariablyModifiedType());
1714 }
1715 
1716 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1717   if (getContext().getBuiltinVaListType()->isArrayType())
1718     return EmitPointerWithAlignment(E);
1719   return EmitLValue(E).getAddress();
1720 }
1721 
1722 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1723   return EmitLValue(E).getAddress();
1724 }
1725 
1726 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1727                                               llvm::Constant *Init) {
1728   assert (Init && "Invalid DeclRefExpr initializer!");
1729   if (CGDebugInfo *Dbg = getDebugInfo())
1730     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1731       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1732 }
1733 
1734 CodeGenFunction::PeepholeProtection
1735 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1736   // At the moment, the only aggressive peephole we do in IR gen
1737   // is trunc(zext) folding, but if we add more, we can easily
1738   // extend this protection.
1739 
1740   if (!rvalue.isScalar()) return PeepholeProtection();
1741   llvm::Value *value = rvalue.getScalarVal();
1742   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1743 
1744   // Just make an extra bitcast.
1745   assert(HaveInsertPoint());
1746   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1747                                                   Builder.GetInsertBlock());
1748 
1749   PeepholeProtection protection;
1750   protection.Inst = inst;
1751   return protection;
1752 }
1753 
1754 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1755   if (!protection.Inst) return;
1756 
1757   // In theory, we could try to duplicate the peepholes now, but whatever.
1758   protection.Inst->eraseFromParent();
1759 }
1760 
1761 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1762                                                  llvm::Value *AnnotatedVal,
1763                                                  StringRef AnnotationStr,
1764                                                  SourceLocation Location) {
1765   llvm::Value *Args[4] = {
1766     AnnotatedVal,
1767     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1768     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1769     CGM.EmitAnnotationLineNo(Location)
1770   };
1771   return Builder.CreateCall(AnnotationFn, Args);
1772 }
1773 
1774 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1775   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1776   // FIXME We create a new bitcast for every annotation because that's what
1777   // llvm-gcc was doing.
1778   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1779     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1780                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1781                        I->getAnnotation(), D->getLocation());
1782 }
1783 
1784 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1785                                               Address Addr) {
1786   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1787   llvm::Value *V = Addr.getPointer();
1788   llvm::Type *VTy = V->getType();
1789   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1790                                     CGM.Int8PtrTy);
1791 
1792   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1793     // FIXME Always emit the cast inst so we can differentiate between
1794     // annotation on the first field of a struct and annotation on the struct
1795     // itself.
1796     if (VTy != CGM.Int8PtrTy)
1797       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1798     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1799     V = Builder.CreateBitCast(V, VTy);
1800   }
1801 
1802   return Address(V, Addr.getAlignment());
1803 }
1804 
1805 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1806 
1807 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1808     : CGF(CGF) {
1809   assert(!CGF->IsSanitizerScope);
1810   CGF->IsSanitizerScope = true;
1811 }
1812 
1813 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1814   CGF->IsSanitizerScope = false;
1815 }
1816 
1817 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1818                                    const llvm::Twine &Name,
1819                                    llvm::BasicBlock *BB,
1820                                    llvm::BasicBlock::iterator InsertPt) const {
1821   LoopStack.InsertHelper(I);
1822   if (IsSanitizerScope)
1823     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1824 }
1825 
1826 template <bool PreserveNames>
1827 void CGBuilderInserter<PreserveNames>::InsertHelper(
1828     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1829     llvm::BasicBlock::iterator InsertPt) const {
1830   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1831                                                               InsertPt);
1832   if (CGF)
1833     CGF->InsertHelper(I, Name, BB, InsertPt);
1834 }
1835 
1836 #ifdef NDEBUG
1837 #define PreserveNames false
1838 #else
1839 #define PreserveNames true
1840 #endif
1841 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1842     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1843     llvm::BasicBlock::iterator InsertPt) const;
1844 #undef PreserveNames
1845 
1846 // Emits an error if we don't have a valid set of target features for the
1847 // called function.
1848 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
1849                                           const FunctionDecl *TargetDecl) {
1850   // Early exit if this is an indirect call.
1851   if (!TargetDecl)
1852     return;
1853 
1854   // Get the current enclosing function if it exists. If it doesn't
1855   // we can't check the target features anyhow.
1856   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
1857   if (!FD)
1858     return;
1859 
1860   // Grab the required features for the call. For a builtin this is listed in
1861   // the td file with the default cpu, for an always_inline function this is any
1862   // listed cpu and any listed features.
1863   unsigned BuiltinID = TargetDecl->getBuiltinID();
1864   if (BuiltinID) {
1865     SmallVector<StringRef, 1> ReqFeatures;
1866     const char *FeatureList =
1867         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1868     // Return if the builtin doesn't have any required features.
1869     if (!FeatureList || StringRef(FeatureList) == "")
1870       return;
1871     StringRef(FeatureList).split(ReqFeatures, ",");
1872 
1873     // If there aren't any required features listed then go ahead and return.
1874     if (ReqFeatures.empty())
1875       return;
1876 
1877     // Now build up the set of caller features and verify that all the required
1878     // features are there.
1879     llvm::StringMap<bool> CallerFeatureMap;
1880     CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1881 
1882     // If we have at least one of the features in the feature list return
1883     // true, otherwise return false.
1884     if (!std::all_of(
1885             ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef &Feature) {
1886               SmallVector<StringRef, 1> OrFeatures;
1887               Feature.split(OrFeatures, "|");
1888               return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1889                                  [&](StringRef &Feature) {
1890                                    return CallerFeatureMap.lookup(Feature);
1891                                  });
1892             }))
1893       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
1894           << TargetDecl->getDeclName()
1895           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1896 
1897   } else if (TargetDecl->hasAttr<TargetAttr>()) {
1898     // Get the required features for the callee.
1899     SmallVector<StringRef, 1> ReqFeatures;
1900     llvm::StringMap<bool> CalleeFeatureMap;
1901     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
1902     for (const auto &F : CalleeFeatureMap)
1903       ReqFeatures.push_back(F.getKey());
1904     // If there aren't any required features listed then go ahead and return.
1905     if (ReqFeatures.empty())
1906       return;
1907 
1908     // Now get the features that the caller provides.
1909     llvm::StringMap<bool> CallerFeatureMap;
1910     CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1911 
1912     // If we have at least one of the features in the feature list return
1913     // true, otherwise return false.
1914     if (!std::all_of(
1915             ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef &Feature) {
1916               SmallVector<StringRef, 1> OrFeatures;
1917               Feature.split(OrFeatures, "|");
1918               return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1919                                  [&](StringRef &Feature) {
1920                                    return CallerFeatureMap.lookup(Feature);
1921                                  });
1922             }))
1923       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
1924           << FD->getDeclName() << TargetDecl->getDeclName();
1925   }
1926 }
1927