1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Operator.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 41 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 42 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 43 CGBuilderInserterTy(this)), 44 CurFn(nullptr), ReturnValue(Address::invalid()), 45 CapturedStmtInfo(nullptr), 46 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 47 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 48 IsOutlinedSEHHelper(false), 49 BlockInfo(nullptr), BlockPointer(nullptr), 50 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 51 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 52 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 53 DebugInfo(CGM.getModuleDebugInfo()), 54 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 55 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 56 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 57 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 58 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 59 CXXStructorImplicitParamDecl(nullptr), 60 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 61 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 62 TerminateHandler(nullptr), TrapBB(nullptr) { 63 if (!suppressNewContext) 64 CGM.getCXXABI().getMangleContext().startNewFunction(); 65 66 llvm::FastMathFlags FMF; 67 if (CGM.getLangOpts().FastMath) 68 FMF.setUnsafeAlgebra(); 69 if (CGM.getLangOpts().FiniteMathOnly) { 70 FMF.setNoNaNs(); 71 FMF.setNoInfs(); 72 } 73 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 74 FMF.setNoNaNs(); 75 } 76 if (CGM.getCodeGenOpts().NoSignedZeros) { 77 FMF.setNoSignedZeros(); 78 } 79 if (CGM.getCodeGenOpts().ReciprocalMath) { 80 FMF.setAllowReciprocal(); 81 } 82 Builder.SetFastMathFlags(FMF); 83 } 84 85 CodeGenFunction::~CodeGenFunction() { 86 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 87 88 // If there are any unclaimed block infos, go ahead and destroy them 89 // now. This can happen if IR-gen gets clever and skips evaluating 90 // something. 91 if (FirstBlockInfo) 92 destroyBlockInfos(FirstBlockInfo); 93 94 if (getLangOpts().OpenMP) { 95 CGM.getOpenMPRuntime().functionFinished(*this); 96 } 97 } 98 99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 100 AlignmentSource *Source) { 101 return getNaturalTypeAlignment(T->getPointeeType(), Source, 102 /*forPointee*/ true); 103 } 104 105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 106 AlignmentSource *Source, 107 bool forPointeeType) { 108 // Honor alignment typedef attributes even on incomplete types. 109 // We also honor them straight for C++ class types, even as pointees; 110 // there's an expressivity gap here. 111 if (auto TT = T->getAs<TypedefType>()) { 112 if (auto Align = TT->getDecl()->getMaxAlignment()) { 113 if (Source) *Source = AlignmentSource::AttributedType; 114 return getContext().toCharUnitsFromBits(Align); 115 } 116 } 117 118 if (Source) *Source = AlignmentSource::Type; 119 120 CharUnits Alignment; 121 if (T->isIncompleteType()) { 122 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 123 } else { 124 // For C++ class pointees, we don't know whether we're pointing at a 125 // base or a complete object, so we generally need to use the 126 // non-virtual alignment. 127 const CXXRecordDecl *RD; 128 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 129 Alignment = CGM.getClassPointerAlignment(RD); 130 } else { 131 Alignment = getContext().getTypeAlignInChars(T); 132 } 133 134 // Cap to the global maximum type alignment unless the alignment 135 // was somehow explicit on the type. 136 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 137 if (Alignment.getQuantity() > MaxAlign && 138 !getContext().isAlignmentRequired(T)) 139 Alignment = CharUnits::fromQuantity(MaxAlign); 140 } 141 } 142 return Alignment; 143 } 144 145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 146 AlignmentSource AlignSource; 147 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 148 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 149 CGM.getTBAAInfo(T)); 150 } 151 152 /// Given a value of type T* that may not be to a complete object, 153 /// construct an l-value with the natural pointee alignment of T. 154 LValue 155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 156 AlignmentSource AlignSource; 157 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 158 return MakeAddrLValue(Address(V, Align), T, AlignSource); 159 } 160 161 162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 163 return CGM.getTypes().ConvertTypeForMem(T); 164 } 165 166 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 167 return CGM.getTypes().ConvertType(T); 168 } 169 170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 171 type = type.getCanonicalType(); 172 while (true) { 173 switch (type->getTypeClass()) { 174 #define TYPE(name, parent) 175 #define ABSTRACT_TYPE(name, parent) 176 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 177 #define DEPENDENT_TYPE(name, parent) case Type::name: 178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 179 #include "clang/AST/TypeNodes.def" 180 llvm_unreachable("non-canonical or dependent type in IR-generation"); 181 182 case Type::Auto: 183 llvm_unreachable("undeduced auto type in IR-generation"); 184 185 // Various scalar types. 186 case Type::Builtin: 187 case Type::Pointer: 188 case Type::BlockPointer: 189 case Type::LValueReference: 190 case Type::RValueReference: 191 case Type::MemberPointer: 192 case Type::Vector: 193 case Type::ExtVector: 194 case Type::FunctionProto: 195 case Type::FunctionNoProto: 196 case Type::Enum: 197 case Type::ObjCObjectPointer: 198 return TEK_Scalar; 199 200 // Complexes. 201 case Type::Complex: 202 return TEK_Complex; 203 204 // Arrays, records, and Objective-C objects. 205 case Type::ConstantArray: 206 case Type::IncompleteArray: 207 case Type::VariableArray: 208 case Type::Record: 209 case Type::ObjCObject: 210 case Type::ObjCInterface: 211 return TEK_Aggregate; 212 213 // We operate on atomic values according to their underlying type. 214 case Type::Atomic: 215 type = cast<AtomicType>(type)->getValueType(); 216 continue; 217 } 218 llvm_unreachable("unknown type kind!"); 219 } 220 } 221 222 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 223 // For cleanliness, we try to avoid emitting the return block for 224 // simple cases. 225 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 226 227 if (CurBB) { 228 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 229 230 // We have a valid insert point, reuse it if it is empty or there are no 231 // explicit jumps to the return block. 232 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 233 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 234 delete ReturnBlock.getBlock(); 235 } else 236 EmitBlock(ReturnBlock.getBlock()); 237 return llvm::DebugLoc(); 238 } 239 240 // Otherwise, if the return block is the target of a single direct 241 // branch then we can just put the code in that block instead. This 242 // cleans up functions which started with a unified return block. 243 if (ReturnBlock.getBlock()->hasOneUse()) { 244 llvm::BranchInst *BI = 245 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 246 if (BI && BI->isUnconditional() && 247 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 248 // Record/return the DebugLoc of the simple 'return' expression to be used 249 // later by the actual 'ret' instruction. 250 llvm::DebugLoc Loc = BI->getDebugLoc(); 251 Builder.SetInsertPoint(BI->getParent()); 252 BI->eraseFromParent(); 253 delete ReturnBlock.getBlock(); 254 return Loc; 255 } 256 } 257 258 // FIXME: We are at an unreachable point, there is no reason to emit the block 259 // unless it has uses. However, we still need a place to put the debug 260 // region.end for now. 261 262 EmitBlock(ReturnBlock.getBlock()); 263 return llvm::DebugLoc(); 264 } 265 266 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 267 if (!BB) return; 268 if (!BB->use_empty()) 269 return CGF.CurFn->getBasicBlockList().push_back(BB); 270 delete BB; 271 } 272 273 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 274 assert(BreakContinueStack.empty() && 275 "mismatched push/pop in break/continue stack!"); 276 277 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 278 && NumSimpleReturnExprs == NumReturnExprs 279 && ReturnBlock.getBlock()->use_empty(); 280 // Usually the return expression is evaluated before the cleanup 281 // code. If the function contains only a simple return statement, 282 // such as a constant, the location before the cleanup code becomes 283 // the last useful breakpoint in the function, because the simple 284 // return expression will be evaluated after the cleanup code. To be 285 // safe, set the debug location for cleanup code to the location of 286 // the return statement. Otherwise the cleanup code should be at the 287 // end of the function's lexical scope. 288 // 289 // If there are multiple branches to the return block, the branch 290 // instructions will get the location of the return statements and 291 // all will be fine. 292 if (CGDebugInfo *DI = getDebugInfo()) { 293 if (OnlySimpleReturnStmts) 294 DI->EmitLocation(Builder, LastStopPoint); 295 else 296 DI->EmitLocation(Builder, EndLoc); 297 } 298 299 // Pop any cleanups that might have been associated with the 300 // parameters. Do this in whatever block we're currently in; it's 301 // important to do this before we enter the return block or return 302 // edges will be *really* confused. 303 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 304 bool HasOnlyLifetimeMarkers = 305 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 306 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 307 if (HasCleanups) { 308 // Make sure the line table doesn't jump back into the body for 309 // the ret after it's been at EndLoc. 310 if (CGDebugInfo *DI = getDebugInfo()) 311 if (OnlySimpleReturnStmts) 312 DI->EmitLocation(Builder, EndLoc); 313 314 PopCleanupBlocks(PrologueCleanupDepth); 315 } 316 317 // Emit function epilog (to return). 318 llvm::DebugLoc Loc = EmitReturnBlock(); 319 320 if (ShouldInstrumentFunction()) 321 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 322 323 // Emit debug descriptor for function end. 324 if (CGDebugInfo *DI = getDebugInfo()) 325 DI->EmitFunctionEnd(Builder); 326 327 // Reset the debug location to that of the simple 'return' expression, if any 328 // rather than that of the end of the function's scope '}'. 329 ApplyDebugLocation AL(*this, Loc); 330 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 331 EmitEndEHSpec(CurCodeDecl); 332 333 assert(EHStack.empty() && 334 "did not remove all scopes from cleanup stack!"); 335 336 // If someone did an indirect goto, emit the indirect goto block at the end of 337 // the function. 338 if (IndirectBranch) { 339 EmitBlock(IndirectBranch->getParent()); 340 Builder.ClearInsertionPoint(); 341 } 342 343 // If some of our locals escaped, insert a call to llvm.localescape in the 344 // entry block. 345 if (!EscapedLocals.empty()) { 346 // Invert the map from local to index into a simple vector. There should be 347 // no holes. 348 SmallVector<llvm::Value *, 4> EscapeArgs; 349 EscapeArgs.resize(EscapedLocals.size()); 350 for (auto &Pair : EscapedLocals) 351 EscapeArgs[Pair.second] = Pair.first; 352 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 353 &CGM.getModule(), llvm::Intrinsic::localescape); 354 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 355 } 356 357 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 358 llvm::Instruction *Ptr = AllocaInsertPt; 359 AllocaInsertPt = nullptr; 360 Ptr->eraseFromParent(); 361 362 // If someone took the address of a label but never did an indirect goto, we 363 // made a zero entry PHI node, which is illegal, zap it now. 364 if (IndirectBranch) { 365 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 366 if (PN->getNumIncomingValues() == 0) { 367 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 368 PN->eraseFromParent(); 369 } 370 } 371 372 EmitIfUsed(*this, EHResumeBlock); 373 EmitIfUsed(*this, TerminateLandingPad); 374 EmitIfUsed(*this, TerminateHandler); 375 EmitIfUsed(*this, UnreachableBlock); 376 377 if (CGM.getCodeGenOpts().EmitDeclMetadata) 378 EmitDeclMetadata(); 379 380 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 381 I = DeferredReplacements.begin(), 382 E = DeferredReplacements.end(); 383 I != E; ++I) { 384 I->first->replaceAllUsesWith(I->second); 385 I->first->eraseFromParent(); 386 } 387 } 388 389 /// ShouldInstrumentFunction - Return true if the current function should be 390 /// instrumented with __cyg_profile_func_* calls 391 bool CodeGenFunction::ShouldInstrumentFunction() { 392 if (!CGM.getCodeGenOpts().InstrumentFunctions) 393 return false; 394 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 395 return false; 396 return true; 397 } 398 399 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 400 /// instrumentation function with the current function and the call site, if 401 /// function instrumentation is enabled. 402 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 403 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 404 llvm::PointerType *PointerTy = Int8PtrTy; 405 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 406 llvm::FunctionType *FunctionTy = 407 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 408 409 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 410 llvm::CallInst *CallSite = Builder.CreateCall( 411 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 412 llvm::ConstantInt::get(Int32Ty, 0), 413 "callsite"); 414 415 llvm::Value *args[] = { 416 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 417 CallSite 418 }; 419 420 EmitNounwindRuntimeCall(F, args); 421 } 422 423 void CodeGenFunction::EmitMCountInstrumentation() { 424 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 425 426 llvm::Constant *MCountFn = 427 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 428 EmitNounwindRuntimeCall(MCountFn); 429 } 430 431 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 432 // information in the program executable. The argument information stored 433 // includes the argument name, its type, the address and access qualifiers used. 434 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 435 CodeGenModule &CGM, llvm::LLVMContext &Context, 436 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 437 CGBuilderTy &Builder, ASTContext &ASTCtx) { 438 // Create MDNodes that represent the kernel arg metadata. 439 // Each MDNode is a list in the form of "key", N number of values which is 440 // the same number of values as their are kernel arguments. 441 442 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 443 444 // MDNode for the kernel argument address space qualifiers. 445 SmallVector<llvm::Metadata *, 8> addressQuals; 446 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 447 448 // MDNode for the kernel argument access qualifiers (images only). 449 SmallVector<llvm::Metadata *, 8> accessQuals; 450 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 451 452 // MDNode for the kernel argument type names. 453 SmallVector<llvm::Metadata *, 8> argTypeNames; 454 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 455 456 // MDNode for the kernel argument base type names. 457 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 458 argBaseTypeNames.push_back( 459 llvm::MDString::get(Context, "kernel_arg_base_type")); 460 461 // MDNode for the kernel argument type qualifiers. 462 SmallVector<llvm::Metadata *, 8> argTypeQuals; 463 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 464 465 // MDNode for the kernel argument names. 466 SmallVector<llvm::Metadata *, 8> argNames; 467 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 468 469 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 470 const ParmVarDecl *parm = FD->getParamDecl(i); 471 QualType ty = parm->getType(); 472 std::string typeQuals; 473 474 if (ty->isPointerType()) { 475 QualType pointeeTy = ty->getPointeeType(); 476 477 // Get address qualifier. 478 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 479 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 480 481 // Get argument type name. 482 std::string typeName = 483 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 484 485 // Turn "unsigned type" to "utype" 486 std::string::size_type pos = typeName.find("unsigned"); 487 if (pointeeTy.isCanonical() && pos != std::string::npos) 488 typeName.erase(pos+1, 8); 489 490 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 491 492 std::string baseTypeName = 493 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 494 Policy) + 495 "*"; 496 497 // Turn "unsigned type" to "utype" 498 pos = baseTypeName.find("unsigned"); 499 if (pos != std::string::npos) 500 baseTypeName.erase(pos+1, 8); 501 502 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 503 504 // Get argument type qualifiers: 505 if (ty.isRestrictQualified()) 506 typeQuals = "restrict"; 507 if (pointeeTy.isConstQualified() || 508 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 509 typeQuals += typeQuals.empty() ? "const" : " const"; 510 if (pointeeTy.isVolatileQualified()) 511 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 512 } else { 513 uint32_t AddrSpc = 0; 514 if (ty->isImageType()) 515 AddrSpc = 516 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 517 518 addressQuals.push_back( 519 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 520 521 // Get argument type name. 522 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 523 524 // Turn "unsigned type" to "utype" 525 std::string::size_type pos = typeName.find("unsigned"); 526 if (ty.isCanonical() && pos != std::string::npos) 527 typeName.erase(pos+1, 8); 528 529 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 530 531 std::string baseTypeName = 532 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 533 534 // Turn "unsigned type" to "utype" 535 pos = baseTypeName.find("unsigned"); 536 if (pos != std::string::npos) 537 baseTypeName.erase(pos+1, 8); 538 539 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 540 541 // Get argument type qualifiers: 542 if (ty.isConstQualified()) 543 typeQuals = "const"; 544 if (ty.isVolatileQualified()) 545 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 546 } 547 548 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 549 550 // Get image access qualifier: 551 if (ty->isImageType()) { 552 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 553 if (A && A->isWriteOnly()) 554 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 555 else 556 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 557 // FIXME: what about read_write? 558 } else 559 accessQuals.push_back(llvm::MDString::get(Context, "none")); 560 561 // Get argument name. 562 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 563 } 564 565 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 566 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 567 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 568 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 569 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 570 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 571 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 572 } 573 574 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 575 llvm::Function *Fn) 576 { 577 if (!FD->hasAttr<OpenCLKernelAttr>()) 578 return; 579 580 llvm::LLVMContext &Context = getLLVMContext(); 581 582 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 583 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 584 585 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 586 getContext()); 587 588 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 589 QualType hintQTy = A->getTypeHint(); 590 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 591 bool isSignedInteger = 592 hintQTy->isSignedIntegerType() || 593 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 594 llvm::Metadata *attrMDArgs[] = { 595 llvm::MDString::get(Context, "vec_type_hint"), 596 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 597 CGM.getTypes().ConvertType(A->getTypeHint()))), 598 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 599 llvm::IntegerType::get(Context, 32), 600 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 601 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 602 } 603 604 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 605 llvm::Metadata *attrMDArgs[] = { 606 llvm::MDString::get(Context, "work_group_size_hint"), 607 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 608 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 609 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 610 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 611 } 612 613 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 614 llvm::Metadata *attrMDArgs[] = { 615 llvm::MDString::get(Context, "reqd_work_group_size"), 616 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 617 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 619 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 620 } 621 622 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 623 llvm::NamedMDNode *OpenCLKernelMetadata = 624 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 625 OpenCLKernelMetadata->addOperand(kernelMDNode); 626 } 627 628 /// Determine whether the function F ends with a return stmt. 629 static bool endsWithReturn(const Decl* F) { 630 const Stmt *Body = nullptr; 631 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 632 Body = FD->getBody(); 633 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 634 Body = OMD->getBody(); 635 636 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 637 auto LastStmt = CS->body_rbegin(); 638 if (LastStmt != CS->body_rend()) 639 return isa<ReturnStmt>(*LastStmt); 640 } 641 return false; 642 } 643 644 void CodeGenFunction::StartFunction(GlobalDecl GD, 645 QualType RetTy, 646 llvm::Function *Fn, 647 const CGFunctionInfo &FnInfo, 648 const FunctionArgList &Args, 649 SourceLocation Loc, 650 SourceLocation StartLoc) { 651 assert(!CurFn && 652 "Do not use a CodeGenFunction object for more than one function"); 653 654 const Decl *D = GD.getDecl(); 655 656 DidCallStackSave = false; 657 CurCodeDecl = D; 658 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 659 FnRetTy = RetTy; 660 CurFn = Fn; 661 CurFnInfo = &FnInfo; 662 assert(CurFn->isDeclaration() && "Function already has body?"); 663 664 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 665 SanOpts.clear(); 666 667 if (D) { 668 // Apply the no_sanitize* attributes to SanOpts. 669 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 670 SanOpts.Mask &= ~Attr->getMask(); 671 } 672 673 // Apply sanitizer attributes to the function. 674 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 675 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 676 if (SanOpts.has(SanitizerKind::Thread)) 677 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 678 if (SanOpts.has(SanitizerKind::Memory)) 679 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 680 if (SanOpts.has(SanitizerKind::SafeStack)) 681 Fn->addFnAttr(llvm::Attribute::SafeStack); 682 683 // Pass inline keyword to optimizer if it appears explicitly on any 684 // declaration. Also, in the case of -fno-inline attach NoInline 685 // attribute to all function that are not marked AlwaysInline. 686 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 687 if (!CGM.getCodeGenOpts().NoInline) { 688 for (auto RI : FD->redecls()) 689 if (RI->isInlineSpecified()) { 690 Fn->addFnAttr(llvm::Attribute::InlineHint); 691 break; 692 } 693 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 694 Fn->addFnAttr(llvm::Attribute::NoInline); 695 } 696 697 if (getLangOpts().OpenCL) { 698 // Add metadata for a kernel function. 699 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 700 EmitOpenCLKernelMetadata(FD, Fn); 701 } 702 703 // If we are checking function types, emit a function type signature as 704 // prologue data. 705 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 706 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 707 if (llvm::Constant *PrologueSig = 708 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 709 llvm::Constant *FTRTTIConst = 710 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 711 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 712 llvm::Constant *PrologueStructConst = 713 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 714 Fn->setPrologueData(PrologueStructConst); 715 } 716 } 717 } 718 719 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 720 721 // Create a marker to make it easy to insert allocas into the entryblock 722 // later. Don't create this with the builder, because we don't want it 723 // folded. 724 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 725 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 726 if (Builder.isNamePreserving()) 727 AllocaInsertPt->setName("allocapt"); 728 729 ReturnBlock = getJumpDestInCurrentScope("return"); 730 731 Builder.SetInsertPoint(EntryBB); 732 733 // Emit subprogram debug descriptor. 734 if (CGDebugInfo *DI = getDebugInfo()) { 735 SmallVector<QualType, 16> ArgTypes; 736 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 737 i != e; ++i) { 738 ArgTypes.push_back((*i)->getType()); 739 } 740 741 QualType FnType = 742 getContext().getFunctionType(RetTy, ArgTypes, 743 FunctionProtoType::ExtProtoInfo()); 744 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 745 } 746 747 if (ShouldInstrumentFunction()) 748 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 749 750 if (CGM.getCodeGenOpts().InstrumentForProfiling) 751 EmitMCountInstrumentation(); 752 753 if (RetTy->isVoidType()) { 754 // Void type; nothing to return. 755 ReturnValue = Address::invalid(); 756 757 // Count the implicit return. 758 if (!endsWithReturn(D)) 759 ++NumReturnExprs; 760 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 761 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 762 // Indirect aggregate return; emit returned value directly into sret slot. 763 // This reduces code size, and affects correctness in C++. 764 auto AI = CurFn->arg_begin(); 765 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 766 ++AI; 767 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 768 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 769 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 770 // Load the sret pointer from the argument struct and return into that. 771 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 772 llvm::Function::arg_iterator EI = CurFn->arg_end(); 773 --EI; 774 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 775 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 776 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 777 } else { 778 ReturnValue = CreateIRTemp(RetTy, "retval"); 779 780 // Tell the epilog emitter to autorelease the result. We do this 781 // now so that various specialized functions can suppress it 782 // during their IR-generation. 783 if (getLangOpts().ObjCAutoRefCount && 784 !CurFnInfo->isReturnsRetained() && 785 RetTy->isObjCRetainableType()) 786 AutoreleaseResult = true; 787 } 788 789 EmitStartEHSpec(CurCodeDecl); 790 791 PrologueCleanupDepth = EHStack.stable_begin(); 792 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 793 794 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 795 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 796 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 797 if (MD->getParent()->isLambda() && 798 MD->getOverloadedOperator() == OO_Call) { 799 // We're in a lambda; figure out the captures. 800 MD->getParent()->getCaptureFields(LambdaCaptureFields, 801 LambdaThisCaptureField); 802 if (LambdaThisCaptureField) { 803 // If this lambda captures this, load it. 804 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 805 CXXThisValue = EmitLoadOfLValue(ThisLValue, 806 SourceLocation()).getScalarVal(); 807 } 808 for (auto *FD : MD->getParent()->fields()) { 809 if (FD->hasCapturedVLAType()) { 810 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 811 SourceLocation()).getScalarVal(); 812 auto VAT = FD->getCapturedVLAType(); 813 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 814 } 815 } 816 } else { 817 // Not in a lambda; just use 'this' from the method. 818 // FIXME: Should we generate a new load for each use of 'this'? The 819 // fast register allocator would be happier... 820 CXXThisValue = CXXABIThisValue; 821 } 822 } 823 824 // If any of the arguments have a variably modified type, make sure to 825 // emit the type size. 826 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 827 i != e; ++i) { 828 const VarDecl *VD = *i; 829 830 // Dig out the type as written from ParmVarDecls; it's unclear whether 831 // the standard (C99 6.9.1p10) requires this, but we're following the 832 // precedent set by gcc. 833 QualType Ty; 834 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 835 Ty = PVD->getOriginalType(); 836 else 837 Ty = VD->getType(); 838 839 if (Ty->isVariablyModifiedType()) 840 EmitVariablyModifiedType(Ty); 841 } 842 // Emit a location at the end of the prologue. 843 if (CGDebugInfo *DI = getDebugInfo()) 844 DI->EmitLocation(Builder, StartLoc); 845 } 846 847 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 848 const Stmt *Body) { 849 incrementProfileCounter(Body); 850 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 851 EmitCompoundStmtWithoutScope(*S); 852 else 853 EmitStmt(Body); 854 } 855 856 /// When instrumenting to collect profile data, the counts for some blocks 857 /// such as switch cases need to not include the fall-through counts, so 858 /// emit a branch around the instrumentation code. When not instrumenting, 859 /// this just calls EmitBlock(). 860 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 861 const Stmt *S) { 862 llvm::BasicBlock *SkipCountBB = nullptr; 863 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 864 // When instrumenting for profiling, the fallthrough to certain 865 // statements needs to skip over the instrumentation code so that we 866 // get an accurate count. 867 SkipCountBB = createBasicBlock("skipcount"); 868 EmitBranch(SkipCountBB); 869 } 870 EmitBlock(BB); 871 uint64_t CurrentCount = getCurrentProfileCount(); 872 incrementProfileCounter(S); 873 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 874 if (SkipCountBB) 875 EmitBlock(SkipCountBB); 876 } 877 878 /// Tries to mark the given function nounwind based on the 879 /// non-existence of any throwing calls within it. We believe this is 880 /// lightweight enough to do at -O0. 881 static void TryMarkNoThrow(llvm::Function *F) { 882 // LLVM treats 'nounwind' on a function as part of the type, so we 883 // can't do this on functions that can be overwritten. 884 if (F->mayBeOverridden()) return; 885 886 for (llvm::BasicBlock &BB : *F) 887 for (llvm::Instruction &I : BB) 888 if (I.mayThrow()) 889 return; 890 891 F->setDoesNotThrow(); 892 } 893 894 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 895 const CGFunctionInfo &FnInfo) { 896 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 897 898 // Check if we should generate debug info for this function. 899 if (FD->hasAttr<NoDebugAttr>()) 900 DebugInfo = nullptr; // disable debug info indefinitely for this function 901 902 FunctionArgList Args; 903 QualType ResTy = FD->getReturnType(); 904 905 CurGD = GD; 906 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 907 if (MD && MD->isInstance()) { 908 if (CGM.getCXXABI().HasThisReturn(GD)) 909 ResTy = MD->getThisType(getContext()); 910 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 911 ResTy = CGM.getContext().VoidPtrTy; 912 CGM.getCXXABI().buildThisParam(*this, Args); 913 } 914 915 Args.append(FD->param_begin(), FD->param_end()); 916 917 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 918 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 919 920 SourceRange BodyRange; 921 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 922 CurEHLocation = BodyRange.getEnd(); 923 924 // Use the location of the start of the function to determine where 925 // the function definition is located. By default use the location 926 // of the declaration as the location for the subprogram. A function 927 // may lack a declaration in the source code if it is created by code 928 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 929 SourceLocation Loc = FD->getLocation(); 930 931 // If this is a function specialization then use the pattern body 932 // as the location for the function. 933 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 934 if (SpecDecl->hasBody(SpecDecl)) 935 Loc = SpecDecl->getLocation(); 936 937 // Emit the standard function prologue. 938 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 939 940 // Generate the body of the function. 941 PGO.checkGlobalDecl(GD); 942 PGO.assignRegionCounters(GD.getDecl(), CurFn); 943 if (isa<CXXDestructorDecl>(FD)) 944 EmitDestructorBody(Args); 945 else if (isa<CXXConstructorDecl>(FD)) 946 EmitConstructorBody(Args); 947 else if (getLangOpts().CUDA && 948 !getLangOpts().CUDAIsDevice && 949 FD->hasAttr<CUDAGlobalAttr>()) 950 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 951 else if (isa<CXXConversionDecl>(FD) && 952 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 953 // The lambda conversion to block pointer is special; the semantics can't be 954 // expressed in the AST, so IRGen needs to special-case it. 955 EmitLambdaToBlockPointerBody(Args); 956 } else if (isa<CXXMethodDecl>(FD) && 957 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 958 // The lambda static invoker function is special, because it forwards or 959 // clones the body of the function call operator (but is actually static). 960 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 961 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 962 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 963 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 964 // Implicit copy-assignment gets the same special treatment as implicit 965 // copy-constructors. 966 emitImplicitAssignmentOperatorBody(Args); 967 } else if (Stmt *Body = FD->getBody()) { 968 EmitFunctionBody(Args, Body); 969 } else 970 llvm_unreachable("no definition for emitted function"); 971 972 // C++11 [stmt.return]p2: 973 // Flowing off the end of a function [...] results in undefined behavior in 974 // a value-returning function. 975 // C11 6.9.1p12: 976 // If the '}' that terminates a function is reached, and the value of the 977 // function call is used by the caller, the behavior is undefined. 978 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 979 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 980 if (SanOpts.has(SanitizerKind::Return)) { 981 SanitizerScope SanScope(this); 982 llvm::Value *IsFalse = Builder.getFalse(); 983 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 984 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 985 None); 986 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 987 EmitTrapCall(llvm::Intrinsic::trap); 988 } 989 Builder.CreateUnreachable(); 990 Builder.ClearInsertionPoint(); 991 } 992 993 // Emit the standard function epilogue. 994 FinishFunction(BodyRange.getEnd()); 995 996 // If we haven't marked the function nothrow through other means, do 997 // a quick pass now to see if we can. 998 if (!CurFn->doesNotThrow()) 999 TryMarkNoThrow(CurFn); 1000 } 1001 1002 /// ContainsLabel - Return true if the statement contains a label in it. If 1003 /// this statement is not executed normally, it not containing a label means 1004 /// that we can just remove the code. 1005 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1006 // Null statement, not a label! 1007 if (!S) return false; 1008 1009 // If this is a label, we have to emit the code, consider something like: 1010 // if (0) { ... foo: bar(); } goto foo; 1011 // 1012 // TODO: If anyone cared, we could track __label__'s, since we know that you 1013 // can't jump to one from outside their declared region. 1014 if (isa<LabelStmt>(S)) 1015 return true; 1016 1017 // If this is a case/default statement, and we haven't seen a switch, we have 1018 // to emit the code. 1019 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1020 return true; 1021 1022 // If this is a switch statement, we want to ignore cases below it. 1023 if (isa<SwitchStmt>(S)) 1024 IgnoreCaseStmts = true; 1025 1026 // Scan subexpressions for verboten labels. 1027 for (const Stmt *SubStmt : S->children()) 1028 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1029 return true; 1030 1031 return false; 1032 } 1033 1034 /// containsBreak - Return true if the statement contains a break out of it. 1035 /// If the statement (recursively) contains a switch or loop with a break 1036 /// inside of it, this is fine. 1037 bool CodeGenFunction::containsBreak(const Stmt *S) { 1038 // Null statement, not a label! 1039 if (!S) return false; 1040 1041 // If this is a switch or loop that defines its own break scope, then we can 1042 // include it and anything inside of it. 1043 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1044 isa<ForStmt>(S)) 1045 return false; 1046 1047 if (isa<BreakStmt>(S)) 1048 return true; 1049 1050 // Scan subexpressions for verboten breaks. 1051 for (const Stmt *SubStmt : S->children()) 1052 if (containsBreak(SubStmt)) 1053 return true; 1054 1055 return false; 1056 } 1057 1058 1059 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1060 /// to a constant, or if it does but contains a label, return false. If it 1061 /// constant folds return true and set the boolean result in Result. 1062 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1063 bool &ResultBool) { 1064 llvm::APSInt ResultInt; 1065 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 1066 return false; 1067 1068 ResultBool = ResultInt.getBoolValue(); 1069 return true; 1070 } 1071 1072 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1073 /// to a constant, or if it does but contains a label, return false. If it 1074 /// constant folds return true and set the folded value. 1075 bool CodeGenFunction:: 1076 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1077 // FIXME: Rename and handle conversion of other evaluatable things 1078 // to bool. 1079 llvm::APSInt Int; 1080 if (!Cond->EvaluateAsInt(Int, getContext())) 1081 return false; // Not foldable, not integer or not fully evaluatable. 1082 1083 if (CodeGenFunction::ContainsLabel(Cond)) 1084 return false; // Contains a label. 1085 1086 ResultInt = Int; 1087 return true; 1088 } 1089 1090 1091 1092 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1093 /// statement) to the specified blocks. Based on the condition, this might try 1094 /// to simplify the codegen of the conditional based on the branch. 1095 /// 1096 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1097 llvm::BasicBlock *TrueBlock, 1098 llvm::BasicBlock *FalseBlock, 1099 uint64_t TrueCount) { 1100 Cond = Cond->IgnoreParens(); 1101 1102 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1103 1104 // Handle X && Y in a condition. 1105 if (CondBOp->getOpcode() == BO_LAnd) { 1106 // If we have "1 && X", simplify the code. "0 && X" would have constant 1107 // folded if the case was simple enough. 1108 bool ConstantBool = false; 1109 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1110 ConstantBool) { 1111 // br(1 && X) -> br(X). 1112 incrementProfileCounter(CondBOp); 1113 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1114 TrueCount); 1115 } 1116 1117 // If we have "X && 1", simplify the code to use an uncond branch. 1118 // "X && 0" would have been constant folded to 0. 1119 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1120 ConstantBool) { 1121 // br(X && 1) -> br(X). 1122 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1123 TrueCount); 1124 } 1125 1126 // Emit the LHS as a conditional. If the LHS conditional is false, we 1127 // want to jump to the FalseBlock. 1128 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1129 // The counter tells us how often we evaluate RHS, and all of TrueCount 1130 // can be propagated to that branch. 1131 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1132 1133 ConditionalEvaluation eval(*this); 1134 { 1135 ApplyDebugLocation DL(*this, Cond); 1136 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1137 EmitBlock(LHSTrue); 1138 } 1139 1140 incrementProfileCounter(CondBOp); 1141 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1142 1143 // Any temporaries created here are conditional. 1144 eval.begin(*this); 1145 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1146 eval.end(*this); 1147 1148 return; 1149 } 1150 1151 if (CondBOp->getOpcode() == BO_LOr) { 1152 // If we have "0 || X", simplify the code. "1 || X" would have constant 1153 // folded if the case was simple enough. 1154 bool ConstantBool = false; 1155 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1156 !ConstantBool) { 1157 // br(0 || X) -> br(X). 1158 incrementProfileCounter(CondBOp); 1159 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1160 TrueCount); 1161 } 1162 1163 // If we have "X || 0", simplify the code to use an uncond branch. 1164 // "X || 1" would have been constant folded to 1. 1165 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1166 !ConstantBool) { 1167 // br(X || 0) -> br(X). 1168 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1169 TrueCount); 1170 } 1171 1172 // Emit the LHS as a conditional. If the LHS conditional is true, we 1173 // want to jump to the TrueBlock. 1174 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1175 // We have the count for entry to the RHS and for the whole expression 1176 // being true, so we can divy up True count between the short circuit and 1177 // the RHS. 1178 uint64_t LHSCount = 1179 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1180 uint64_t RHSCount = TrueCount - LHSCount; 1181 1182 ConditionalEvaluation eval(*this); 1183 { 1184 ApplyDebugLocation DL(*this, Cond); 1185 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1186 EmitBlock(LHSFalse); 1187 } 1188 1189 incrementProfileCounter(CondBOp); 1190 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1191 1192 // Any temporaries created here are conditional. 1193 eval.begin(*this); 1194 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1195 1196 eval.end(*this); 1197 1198 return; 1199 } 1200 } 1201 1202 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1203 // br(!x, t, f) -> br(x, f, t) 1204 if (CondUOp->getOpcode() == UO_LNot) { 1205 // Negate the count. 1206 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1207 // Negate the condition and swap the destination blocks. 1208 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1209 FalseCount); 1210 } 1211 } 1212 1213 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1214 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1215 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1216 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1217 1218 ConditionalEvaluation cond(*this); 1219 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1220 getProfileCount(CondOp)); 1221 1222 // When computing PGO branch weights, we only know the overall count for 1223 // the true block. This code is essentially doing tail duplication of the 1224 // naive code-gen, introducing new edges for which counts are not 1225 // available. Divide the counts proportionally between the LHS and RHS of 1226 // the conditional operator. 1227 uint64_t LHSScaledTrueCount = 0; 1228 if (TrueCount) { 1229 double LHSRatio = 1230 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1231 LHSScaledTrueCount = TrueCount * LHSRatio; 1232 } 1233 1234 cond.begin(*this); 1235 EmitBlock(LHSBlock); 1236 incrementProfileCounter(CondOp); 1237 { 1238 ApplyDebugLocation DL(*this, Cond); 1239 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1240 LHSScaledTrueCount); 1241 } 1242 cond.end(*this); 1243 1244 cond.begin(*this); 1245 EmitBlock(RHSBlock); 1246 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1247 TrueCount - LHSScaledTrueCount); 1248 cond.end(*this); 1249 1250 return; 1251 } 1252 1253 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1254 // Conditional operator handling can give us a throw expression as a 1255 // condition for a case like: 1256 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1257 // Fold this to: 1258 // br(c, throw x, br(y, t, f)) 1259 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1260 return; 1261 } 1262 1263 // If the branch has a condition wrapped by __builtin_unpredictable, 1264 // create metadata that specifies that the branch is unpredictable. 1265 // Don't bother if not optimizing because that metadata would not be used. 1266 llvm::MDNode *Unpredictable = nullptr; 1267 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 1268 if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) { 1269 const Decl *TargetDecl = Call->getCalleeDecl(); 1270 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 1271 if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1272 llvm::MDBuilder MDHelper(getLLVMContext()); 1273 Unpredictable = MDHelper.createUnpredictable(); 1274 } 1275 } 1276 } 1277 } 1278 1279 // Create branch weights based on the number of times we get here and the 1280 // number of times the condition should be true. 1281 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1282 llvm::MDNode *Weights = 1283 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1284 1285 // Emit the code with the fully general case. 1286 llvm::Value *CondV; 1287 { 1288 ApplyDebugLocation DL(*this, Cond); 1289 CondV = EvaluateExprAsBool(Cond); 1290 } 1291 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1292 } 1293 1294 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1295 /// specified stmt yet. 1296 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1297 CGM.ErrorUnsupported(S, Type); 1298 } 1299 1300 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1301 /// variable-length array whose elements have a non-zero bit-pattern. 1302 /// 1303 /// \param baseType the inner-most element type of the array 1304 /// \param src - a char* pointing to the bit-pattern for a single 1305 /// base element of the array 1306 /// \param sizeInChars - the total size of the VLA, in chars 1307 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1308 Address dest, Address src, 1309 llvm::Value *sizeInChars) { 1310 CGBuilderTy &Builder = CGF.Builder; 1311 1312 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1313 llvm::Value *baseSizeInChars 1314 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1315 1316 Address begin = 1317 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1318 llvm::Value *end = 1319 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1320 1321 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1322 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1323 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1324 1325 // Make a loop over the VLA. C99 guarantees that the VLA element 1326 // count must be nonzero. 1327 CGF.EmitBlock(loopBB); 1328 1329 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1330 cur->addIncoming(begin.getPointer(), originBB); 1331 1332 CharUnits curAlign = 1333 dest.getAlignment().alignmentOfArrayElement(baseSize); 1334 1335 // memcpy the individual element bit-pattern. 1336 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1337 /*volatile*/ false); 1338 1339 // Go to the next element. 1340 llvm::Value *next = 1341 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1342 1343 // Leave if that's the end of the VLA. 1344 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1345 Builder.CreateCondBr(done, contBB, loopBB); 1346 cur->addIncoming(next, loopBB); 1347 1348 CGF.EmitBlock(contBB); 1349 } 1350 1351 void 1352 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1353 // Ignore empty classes in C++. 1354 if (getLangOpts().CPlusPlus) { 1355 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1356 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1357 return; 1358 } 1359 } 1360 1361 // Cast the dest ptr to the appropriate i8 pointer type. 1362 if (DestPtr.getElementType() != Int8Ty) 1363 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1364 1365 // Get size and alignment info for this aggregate. 1366 CharUnits size = getContext().getTypeSizeInChars(Ty); 1367 1368 llvm::Value *SizeVal; 1369 const VariableArrayType *vla; 1370 1371 // Don't bother emitting a zero-byte memset. 1372 if (size.isZero()) { 1373 // But note that getTypeInfo returns 0 for a VLA. 1374 if (const VariableArrayType *vlaType = 1375 dyn_cast_or_null<VariableArrayType>( 1376 getContext().getAsArrayType(Ty))) { 1377 QualType eltType; 1378 llvm::Value *numElts; 1379 std::tie(numElts, eltType) = getVLASize(vlaType); 1380 1381 SizeVal = numElts; 1382 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1383 if (!eltSize.isOne()) 1384 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1385 vla = vlaType; 1386 } else { 1387 return; 1388 } 1389 } else { 1390 SizeVal = CGM.getSize(size); 1391 vla = nullptr; 1392 } 1393 1394 // If the type contains a pointer to data member we can't memset it to zero. 1395 // Instead, create a null constant and copy it to the destination. 1396 // TODO: there are other patterns besides zero that we can usefully memset, 1397 // like -1, which happens to be the pattern used by member-pointers. 1398 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1399 // For a VLA, emit a single element, then splat that over the VLA. 1400 if (vla) Ty = getContext().getBaseElementType(vla); 1401 1402 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1403 1404 llvm::GlobalVariable *NullVariable = 1405 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1406 /*isConstant=*/true, 1407 llvm::GlobalVariable::PrivateLinkage, 1408 NullConstant, Twine()); 1409 CharUnits NullAlign = DestPtr.getAlignment(); 1410 NullVariable->setAlignment(NullAlign.getQuantity()); 1411 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1412 NullAlign); 1413 1414 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1415 1416 // Get and call the appropriate llvm.memcpy overload. 1417 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1418 return; 1419 } 1420 1421 // Otherwise, just memset the whole thing to zero. This is legal 1422 // because in LLVM, all default initializers (other than the ones we just 1423 // handled above) are guaranteed to have a bit pattern of all zeros. 1424 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1425 } 1426 1427 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1428 // Make sure that there is a block for the indirect goto. 1429 if (!IndirectBranch) 1430 GetIndirectGotoBlock(); 1431 1432 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1433 1434 // Make sure the indirect branch includes all of the address-taken blocks. 1435 IndirectBranch->addDestination(BB); 1436 return llvm::BlockAddress::get(CurFn, BB); 1437 } 1438 1439 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1440 // If we already made the indirect branch for indirect goto, return its block. 1441 if (IndirectBranch) return IndirectBranch->getParent(); 1442 1443 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1444 1445 // Create the PHI node that indirect gotos will add entries to. 1446 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1447 "indirect.goto.dest"); 1448 1449 // Create the indirect branch instruction. 1450 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1451 return IndirectBranch->getParent(); 1452 } 1453 1454 /// Computes the length of an array in elements, as well as the base 1455 /// element type and a properly-typed first element pointer. 1456 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1457 QualType &baseType, 1458 Address &addr) { 1459 const ArrayType *arrayType = origArrayType; 1460 1461 // If it's a VLA, we have to load the stored size. Note that 1462 // this is the size of the VLA in bytes, not its size in elements. 1463 llvm::Value *numVLAElements = nullptr; 1464 if (isa<VariableArrayType>(arrayType)) { 1465 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1466 1467 // Walk into all VLAs. This doesn't require changes to addr, 1468 // which has type T* where T is the first non-VLA element type. 1469 do { 1470 QualType elementType = arrayType->getElementType(); 1471 arrayType = getContext().getAsArrayType(elementType); 1472 1473 // If we only have VLA components, 'addr' requires no adjustment. 1474 if (!arrayType) { 1475 baseType = elementType; 1476 return numVLAElements; 1477 } 1478 } while (isa<VariableArrayType>(arrayType)); 1479 1480 // We get out here only if we find a constant array type 1481 // inside the VLA. 1482 } 1483 1484 // We have some number of constant-length arrays, so addr should 1485 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1486 // down to the first element of addr. 1487 SmallVector<llvm::Value*, 8> gepIndices; 1488 1489 // GEP down to the array type. 1490 llvm::ConstantInt *zero = Builder.getInt32(0); 1491 gepIndices.push_back(zero); 1492 1493 uint64_t countFromCLAs = 1; 1494 QualType eltType; 1495 1496 llvm::ArrayType *llvmArrayType = 1497 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1498 while (llvmArrayType) { 1499 assert(isa<ConstantArrayType>(arrayType)); 1500 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1501 == llvmArrayType->getNumElements()); 1502 1503 gepIndices.push_back(zero); 1504 countFromCLAs *= llvmArrayType->getNumElements(); 1505 eltType = arrayType->getElementType(); 1506 1507 llvmArrayType = 1508 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1509 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1510 assert((!llvmArrayType || arrayType) && 1511 "LLVM and Clang types are out-of-synch"); 1512 } 1513 1514 if (arrayType) { 1515 // From this point onwards, the Clang array type has been emitted 1516 // as some other type (probably a packed struct). Compute the array 1517 // size, and just emit the 'begin' expression as a bitcast. 1518 while (arrayType) { 1519 countFromCLAs *= 1520 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1521 eltType = arrayType->getElementType(); 1522 arrayType = getContext().getAsArrayType(eltType); 1523 } 1524 1525 llvm::Type *baseType = ConvertType(eltType); 1526 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1527 } else { 1528 // Create the actual GEP. 1529 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1530 gepIndices, "array.begin"), 1531 addr.getAlignment()); 1532 } 1533 1534 baseType = eltType; 1535 1536 llvm::Value *numElements 1537 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1538 1539 // If we had any VLA dimensions, factor them in. 1540 if (numVLAElements) 1541 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1542 1543 return numElements; 1544 } 1545 1546 std::pair<llvm::Value*, QualType> 1547 CodeGenFunction::getVLASize(QualType type) { 1548 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1549 assert(vla && "type was not a variable array type!"); 1550 return getVLASize(vla); 1551 } 1552 1553 std::pair<llvm::Value*, QualType> 1554 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1555 // The number of elements so far; always size_t. 1556 llvm::Value *numElements = nullptr; 1557 1558 QualType elementType; 1559 do { 1560 elementType = type->getElementType(); 1561 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1562 assert(vlaSize && "no size for VLA!"); 1563 assert(vlaSize->getType() == SizeTy); 1564 1565 if (!numElements) { 1566 numElements = vlaSize; 1567 } else { 1568 // It's undefined behavior if this wraps around, so mark it that way. 1569 // FIXME: Teach -fsanitize=undefined to trap this. 1570 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1571 } 1572 } while ((type = getContext().getAsVariableArrayType(elementType))); 1573 1574 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1575 } 1576 1577 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1578 assert(type->isVariablyModifiedType() && 1579 "Must pass variably modified type to EmitVLASizes!"); 1580 1581 EnsureInsertPoint(); 1582 1583 // We're going to walk down into the type and look for VLA 1584 // expressions. 1585 do { 1586 assert(type->isVariablyModifiedType()); 1587 1588 const Type *ty = type.getTypePtr(); 1589 switch (ty->getTypeClass()) { 1590 1591 #define TYPE(Class, Base) 1592 #define ABSTRACT_TYPE(Class, Base) 1593 #define NON_CANONICAL_TYPE(Class, Base) 1594 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1595 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1596 #include "clang/AST/TypeNodes.def" 1597 llvm_unreachable("unexpected dependent type!"); 1598 1599 // These types are never variably-modified. 1600 case Type::Builtin: 1601 case Type::Complex: 1602 case Type::Vector: 1603 case Type::ExtVector: 1604 case Type::Record: 1605 case Type::Enum: 1606 case Type::Elaborated: 1607 case Type::TemplateSpecialization: 1608 case Type::ObjCObject: 1609 case Type::ObjCInterface: 1610 case Type::ObjCObjectPointer: 1611 llvm_unreachable("type class is never variably-modified!"); 1612 1613 case Type::Adjusted: 1614 type = cast<AdjustedType>(ty)->getAdjustedType(); 1615 break; 1616 1617 case Type::Decayed: 1618 type = cast<DecayedType>(ty)->getPointeeType(); 1619 break; 1620 1621 case Type::Pointer: 1622 type = cast<PointerType>(ty)->getPointeeType(); 1623 break; 1624 1625 case Type::BlockPointer: 1626 type = cast<BlockPointerType>(ty)->getPointeeType(); 1627 break; 1628 1629 case Type::LValueReference: 1630 case Type::RValueReference: 1631 type = cast<ReferenceType>(ty)->getPointeeType(); 1632 break; 1633 1634 case Type::MemberPointer: 1635 type = cast<MemberPointerType>(ty)->getPointeeType(); 1636 break; 1637 1638 case Type::ConstantArray: 1639 case Type::IncompleteArray: 1640 // Losing element qualification here is fine. 1641 type = cast<ArrayType>(ty)->getElementType(); 1642 break; 1643 1644 case Type::VariableArray: { 1645 // Losing element qualification here is fine. 1646 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1647 1648 // Unknown size indication requires no size computation. 1649 // Otherwise, evaluate and record it. 1650 if (const Expr *size = vat->getSizeExpr()) { 1651 // It's possible that we might have emitted this already, 1652 // e.g. with a typedef and a pointer to it. 1653 llvm::Value *&entry = VLASizeMap[size]; 1654 if (!entry) { 1655 llvm::Value *Size = EmitScalarExpr(size); 1656 1657 // C11 6.7.6.2p5: 1658 // If the size is an expression that is not an integer constant 1659 // expression [...] each time it is evaluated it shall have a value 1660 // greater than zero. 1661 if (SanOpts.has(SanitizerKind::VLABound) && 1662 size->getType()->isSignedIntegerType()) { 1663 SanitizerScope SanScope(this); 1664 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1665 llvm::Constant *StaticArgs[] = { 1666 EmitCheckSourceLocation(size->getLocStart()), 1667 EmitCheckTypeDescriptor(size->getType()) 1668 }; 1669 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1670 SanitizerKind::VLABound), 1671 "vla_bound_not_positive", StaticArgs, Size); 1672 } 1673 1674 // Always zexting here would be wrong if it weren't 1675 // undefined behavior to have a negative bound. 1676 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1677 } 1678 } 1679 type = vat->getElementType(); 1680 break; 1681 } 1682 1683 case Type::FunctionProto: 1684 case Type::FunctionNoProto: 1685 type = cast<FunctionType>(ty)->getReturnType(); 1686 break; 1687 1688 case Type::Paren: 1689 case Type::TypeOf: 1690 case Type::UnaryTransform: 1691 case Type::Attributed: 1692 case Type::SubstTemplateTypeParm: 1693 case Type::PackExpansion: 1694 // Keep walking after single level desugaring. 1695 type = type.getSingleStepDesugaredType(getContext()); 1696 break; 1697 1698 case Type::Typedef: 1699 case Type::Decltype: 1700 case Type::Auto: 1701 // Stop walking: nothing to do. 1702 return; 1703 1704 case Type::TypeOfExpr: 1705 // Stop walking: emit typeof expression. 1706 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1707 return; 1708 1709 case Type::Atomic: 1710 type = cast<AtomicType>(ty)->getValueType(); 1711 break; 1712 } 1713 } while (type->isVariablyModifiedType()); 1714 } 1715 1716 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1717 if (getContext().getBuiltinVaListType()->isArrayType()) 1718 return EmitPointerWithAlignment(E); 1719 return EmitLValue(E).getAddress(); 1720 } 1721 1722 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1723 return EmitLValue(E).getAddress(); 1724 } 1725 1726 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1727 llvm::Constant *Init) { 1728 assert (Init && "Invalid DeclRefExpr initializer!"); 1729 if (CGDebugInfo *Dbg = getDebugInfo()) 1730 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1731 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1732 } 1733 1734 CodeGenFunction::PeepholeProtection 1735 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1736 // At the moment, the only aggressive peephole we do in IR gen 1737 // is trunc(zext) folding, but if we add more, we can easily 1738 // extend this protection. 1739 1740 if (!rvalue.isScalar()) return PeepholeProtection(); 1741 llvm::Value *value = rvalue.getScalarVal(); 1742 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1743 1744 // Just make an extra bitcast. 1745 assert(HaveInsertPoint()); 1746 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1747 Builder.GetInsertBlock()); 1748 1749 PeepholeProtection protection; 1750 protection.Inst = inst; 1751 return protection; 1752 } 1753 1754 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1755 if (!protection.Inst) return; 1756 1757 // In theory, we could try to duplicate the peepholes now, but whatever. 1758 protection.Inst->eraseFromParent(); 1759 } 1760 1761 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1762 llvm::Value *AnnotatedVal, 1763 StringRef AnnotationStr, 1764 SourceLocation Location) { 1765 llvm::Value *Args[4] = { 1766 AnnotatedVal, 1767 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1768 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1769 CGM.EmitAnnotationLineNo(Location) 1770 }; 1771 return Builder.CreateCall(AnnotationFn, Args); 1772 } 1773 1774 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1775 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1776 // FIXME We create a new bitcast for every annotation because that's what 1777 // llvm-gcc was doing. 1778 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1779 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1780 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1781 I->getAnnotation(), D->getLocation()); 1782 } 1783 1784 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1785 Address Addr) { 1786 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1787 llvm::Value *V = Addr.getPointer(); 1788 llvm::Type *VTy = V->getType(); 1789 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1790 CGM.Int8PtrTy); 1791 1792 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1793 // FIXME Always emit the cast inst so we can differentiate between 1794 // annotation on the first field of a struct and annotation on the struct 1795 // itself. 1796 if (VTy != CGM.Int8PtrTy) 1797 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1798 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1799 V = Builder.CreateBitCast(V, VTy); 1800 } 1801 1802 return Address(V, Addr.getAlignment()); 1803 } 1804 1805 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1806 1807 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1808 : CGF(CGF) { 1809 assert(!CGF->IsSanitizerScope); 1810 CGF->IsSanitizerScope = true; 1811 } 1812 1813 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1814 CGF->IsSanitizerScope = false; 1815 } 1816 1817 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1818 const llvm::Twine &Name, 1819 llvm::BasicBlock *BB, 1820 llvm::BasicBlock::iterator InsertPt) const { 1821 LoopStack.InsertHelper(I); 1822 if (IsSanitizerScope) 1823 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1824 } 1825 1826 template <bool PreserveNames> 1827 void CGBuilderInserter<PreserveNames>::InsertHelper( 1828 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1829 llvm::BasicBlock::iterator InsertPt) const { 1830 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1831 InsertPt); 1832 if (CGF) 1833 CGF->InsertHelper(I, Name, BB, InsertPt); 1834 } 1835 1836 #ifdef NDEBUG 1837 #define PreserveNames false 1838 #else 1839 #define PreserveNames true 1840 #endif 1841 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1842 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1843 llvm::BasicBlock::iterator InsertPt) const; 1844 #undef PreserveNames 1845 1846 // Emits an error if we don't have a valid set of target features for the 1847 // called function. 1848 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1849 const FunctionDecl *TargetDecl) { 1850 // Early exit if this is an indirect call. 1851 if (!TargetDecl) 1852 return; 1853 1854 // Get the current enclosing function if it exists. If it doesn't 1855 // we can't check the target features anyhow. 1856 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 1857 if (!FD) 1858 return; 1859 1860 // Grab the required features for the call. For a builtin this is listed in 1861 // the td file with the default cpu, for an always_inline function this is any 1862 // listed cpu and any listed features. 1863 unsigned BuiltinID = TargetDecl->getBuiltinID(); 1864 if (BuiltinID) { 1865 SmallVector<StringRef, 1> ReqFeatures; 1866 const char *FeatureList = 1867 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1868 // Return if the builtin doesn't have any required features. 1869 if (!FeatureList || StringRef(FeatureList) == "") 1870 return; 1871 StringRef(FeatureList).split(ReqFeatures, ","); 1872 1873 // If there aren't any required features listed then go ahead and return. 1874 if (ReqFeatures.empty()) 1875 return; 1876 1877 // Now build up the set of caller features and verify that all the required 1878 // features are there. 1879 llvm::StringMap<bool> CallerFeatureMap; 1880 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1881 1882 // If we have at least one of the features in the feature list return 1883 // true, otherwise return false. 1884 if (!std::all_of( 1885 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef &Feature) { 1886 SmallVector<StringRef, 1> OrFeatures; 1887 Feature.split(OrFeatures, "|"); 1888 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1889 [&](StringRef &Feature) { 1890 return CallerFeatureMap.lookup(Feature); 1891 }); 1892 })) 1893 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 1894 << TargetDecl->getDeclName() 1895 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1896 1897 } else if (TargetDecl->hasAttr<TargetAttr>()) { 1898 // Get the required features for the callee. 1899 SmallVector<StringRef, 1> ReqFeatures; 1900 llvm::StringMap<bool> CalleeFeatureMap; 1901 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 1902 for (const auto &F : CalleeFeatureMap) 1903 ReqFeatures.push_back(F.getKey()); 1904 // If there aren't any required features listed then go ahead and return. 1905 if (ReqFeatures.empty()) 1906 return; 1907 1908 // Now get the features that the caller provides. 1909 llvm::StringMap<bool> CallerFeatureMap; 1910 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1911 1912 // If we have at least one of the features in the feature list return 1913 // true, otherwise return false. 1914 if (!std::all_of( 1915 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef &Feature) { 1916 SmallVector<StringRef, 1> OrFeatures; 1917 Feature.split(OrFeatures, "|"); 1918 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1919 [&](StringRef &Feature) { 1920 return CallerFeatureMap.lookup(Feature); 1921 }); 1922 })) 1923 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 1924 << FD->getDeclName() << TargetDecl->getDeclName(); 1925 } 1926 } 1927