1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Operator.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
42 /// markers.
43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
44                                       const LangOptions &LangOpts) {
45   if (CGOpts.DisableLifetimeMarkers)
46     return false;
47 
48   // Asan uses markers for use-after-scope checks.
49   if (CGOpts.SanitizeAddressUseAfterScope)
50     return true;
51 
52   // Disable lifetime markers in msan builds.
53   // FIXME: Remove this when msan works with lifetime markers.
54   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
55     return false;
56 
57   // For now, only in optimized builds.
58   return CGOpts.OptimizationLevel != 0;
59 }
60 
61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
62     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
63       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
64               CGBuilderInserterTy(this)),
65       CurFn(nullptr), ReturnValue(Address::invalid()),
66       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
67       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
68       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
69       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
70       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
71       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
72       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
73       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
74       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
75       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
76       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
77       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
78       CXXStructorImplicitParamDecl(nullptr),
79       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
80       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
81       TerminateHandler(nullptr), TrapBB(nullptr),
82       ShouldEmitLifetimeMarkers(
83           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
84   if (!suppressNewContext)
85     CGM.getCXXABI().getMangleContext().startNewFunction();
86 
87   llvm::FastMathFlags FMF;
88   if (CGM.getLangOpts().FastMath)
89     FMF.setUnsafeAlgebra();
90   if (CGM.getLangOpts().FiniteMathOnly) {
91     FMF.setNoNaNs();
92     FMF.setNoInfs();
93   }
94   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
95     FMF.setNoNaNs();
96   }
97   if (CGM.getCodeGenOpts().NoSignedZeros) {
98     FMF.setNoSignedZeros();
99   }
100   if (CGM.getCodeGenOpts().ReciprocalMath) {
101     FMF.setAllowReciprocal();
102   }
103   Builder.setFastMathFlags(FMF);
104 }
105 
106 CodeGenFunction::~CodeGenFunction() {
107   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
108 
109   // If there are any unclaimed block infos, go ahead and destroy them
110   // now.  This can happen if IR-gen gets clever and skips evaluating
111   // something.
112   if (FirstBlockInfo)
113     destroyBlockInfos(FirstBlockInfo);
114 
115   if (getLangOpts().OpenMP && CurFn)
116     CGM.getOpenMPRuntime().functionFinished(*this);
117 }
118 
119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
120                                                      AlignmentSource *Source) {
121   return getNaturalTypeAlignment(T->getPointeeType(), Source,
122                                  /*forPointee*/ true);
123 }
124 
125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
126                                                    AlignmentSource *Source,
127                                                    bool forPointeeType) {
128   // Honor alignment typedef attributes even on incomplete types.
129   // We also honor them straight for C++ class types, even as pointees;
130   // there's an expressivity gap here.
131   if (auto TT = T->getAs<TypedefType>()) {
132     if (auto Align = TT->getDecl()->getMaxAlignment()) {
133       if (Source) *Source = AlignmentSource::AttributedType;
134       return getContext().toCharUnitsFromBits(Align);
135     }
136   }
137 
138   if (Source) *Source = AlignmentSource::Type;
139 
140   CharUnits Alignment;
141   if (T->isIncompleteType()) {
142     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
143   } else {
144     // For C++ class pointees, we don't know whether we're pointing at a
145     // base or a complete object, so we generally need to use the
146     // non-virtual alignment.
147     const CXXRecordDecl *RD;
148     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
149       Alignment = CGM.getClassPointerAlignment(RD);
150     } else {
151       Alignment = getContext().getTypeAlignInChars(T);
152     }
153 
154     // Cap to the global maximum type alignment unless the alignment
155     // was somehow explicit on the type.
156     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
157       if (Alignment.getQuantity() > MaxAlign &&
158           !getContext().isAlignmentRequired(T))
159         Alignment = CharUnits::fromQuantity(MaxAlign);
160     }
161   }
162   return Alignment;
163 }
164 
165 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
166   AlignmentSource AlignSource;
167   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
168   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
169                           CGM.getTBAAInfo(T));
170 }
171 
172 /// Given a value of type T* that may not be to a complete object,
173 /// construct an l-value with the natural pointee alignment of T.
174 LValue
175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
176   AlignmentSource AlignSource;
177   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
178   return MakeAddrLValue(Address(V, Align), T, AlignSource);
179 }
180 
181 
182 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
183   return CGM.getTypes().ConvertTypeForMem(T);
184 }
185 
186 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
187   return CGM.getTypes().ConvertType(T);
188 }
189 
190 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
191   type = type.getCanonicalType();
192   while (true) {
193     switch (type->getTypeClass()) {
194 #define TYPE(name, parent)
195 #define ABSTRACT_TYPE(name, parent)
196 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
197 #define DEPENDENT_TYPE(name, parent) case Type::name:
198 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
199 #include "clang/AST/TypeNodes.def"
200       llvm_unreachable("non-canonical or dependent type in IR-generation");
201 
202     case Type::Auto:
203     case Type::DeducedTemplateSpecialization:
204       llvm_unreachable("undeduced type in IR-generation");
205 
206     // Various scalar types.
207     case Type::Builtin:
208     case Type::Pointer:
209     case Type::BlockPointer:
210     case Type::LValueReference:
211     case Type::RValueReference:
212     case Type::MemberPointer:
213     case Type::Vector:
214     case Type::ExtVector:
215     case Type::FunctionProto:
216     case Type::FunctionNoProto:
217     case Type::Enum:
218     case Type::ObjCObjectPointer:
219     case Type::Pipe:
220       return TEK_Scalar;
221 
222     // Complexes.
223     case Type::Complex:
224       return TEK_Complex;
225 
226     // Arrays, records, and Objective-C objects.
227     case Type::ConstantArray:
228     case Type::IncompleteArray:
229     case Type::VariableArray:
230     case Type::Record:
231     case Type::ObjCObject:
232     case Type::ObjCInterface:
233       return TEK_Aggregate;
234 
235     // We operate on atomic values according to their underlying type.
236     case Type::Atomic:
237       type = cast<AtomicType>(type)->getValueType();
238       continue;
239     }
240     llvm_unreachable("unknown type kind!");
241   }
242 }
243 
244 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
245   // For cleanliness, we try to avoid emitting the return block for
246   // simple cases.
247   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
248 
249   if (CurBB) {
250     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
251 
252     // We have a valid insert point, reuse it if it is empty or there are no
253     // explicit jumps to the return block.
254     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
255       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
256       delete ReturnBlock.getBlock();
257     } else
258       EmitBlock(ReturnBlock.getBlock());
259     return llvm::DebugLoc();
260   }
261 
262   // Otherwise, if the return block is the target of a single direct
263   // branch then we can just put the code in that block instead. This
264   // cleans up functions which started with a unified return block.
265   if (ReturnBlock.getBlock()->hasOneUse()) {
266     llvm::BranchInst *BI =
267       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
268     if (BI && BI->isUnconditional() &&
269         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
270       // Record/return the DebugLoc of the simple 'return' expression to be used
271       // later by the actual 'ret' instruction.
272       llvm::DebugLoc Loc = BI->getDebugLoc();
273       Builder.SetInsertPoint(BI->getParent());
274       BI->eraseFromParent();
275       delete ReturnBlock.getBlock();
276       return Loc;
277     }
278   }
279 
280   // FIXME: We are at an unreachable point, there is no reason to emit the block
281   // unless it has uses. However, we still need a place to put the debug
282   // region.end for now.
283 
284   EmitBlock(ReturnBlock.getBlock());
285   return llvm::DebugLoc();
286 }
287 
288 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
289   if (!BB) return;
290   if (!BB->use_empty())
291     return CGF.CurFn->getBasicBlockList().push_back(BB);
292   delete BB;
293 }
294 
295 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
296   assert(BreakContinueStack.empty() &&
297          "mismatched push/pop in break/continue stack!");
298 
299   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
300     && NumSimpleReturnExprs == NumReturnExprs
301     && ReturnBlock.getBlock()->use_empty();
302   // Usually the return expression is evaluated before the cleanup
303   // code.  If the function contains only a simple return statement,
304   // such as a constant, the location before the cleanup code becomes
305   // the last useful breakpoint in the function, because the simple
306   // return expression will be evaluated after the cleanup code. To be
307   // safe, set the debug location for cleanup code to the location of
308   // the return statement.  Otherwise the cleanup code should be at the
309   // end of the function's lexical scope.
310   //
311   // If there are multiple branches to the return block, the branch
312   // instructions will get the location of the return statements and
313   // all will be fine.
314   if (CGDebugInfo *DI = getDebugInfo()) {
315     if (OnlySimpleReturnStmts)
316       DI->EmitLocation(Builder, LastStopPoint);
317     else
318       DI->EmitLocation(Builder, EndLoc);
319   }
320 
321   // Pop any cleanups that might have been associated with the
322   // parameters.  Do this in whatever block we're currently in; it's
323   // important to do this before we enter the return block or return
324   // edges will be *really* confused.
325   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
326   bool HasOnlyLifetimeMarkers =
327       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
328   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
329   if (HasCleanups) {
330     // Make sure the line table doesn't jump back into the body for
331     // the ret after it's been at EndLoc.
332     if (CGDebugInfo *DI = getDebugInfo())
333       if (OnlySimpleReturnStmts)
334         DI->EmitLocation(Builder, EndLoc);
335 
336     PopCleanupBlocks(PrologueCleanupDepth);
337   }
338 
339   // Emit function epilog (to return).
340   llvm::DebugLoc Loc = EmitReturnBlock();
341 
342   if (ShouldInstrumentFunction())
343     EmitFunctionInstrumentation("__cyg_profile_func_exit");
344 
345   // Emit debug descriptor for function end.
346   if (CGDebugInfo *DI = getDebugInfo())
347     DI->EmitFunctionEnd(Builder);
348 
349   // Reset the debug location to that of the simple 'return' expression, if any
350   // rather than that of the end of the function's scope '}'.
351   ApplyDebugLocation AL(*this, Loc);
352   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
353   EmitEndEHSpec(CurCodeDecl);
354 
355   assert(EHStack.empty() &&
356          "did not remove all scopes from cleanup stack!");
357 
358   // If someone did an indirect goto, emit the indirect goto block at the end of
359   // the function.
360   if (IndirectBranch) {
361     EmitBlock(IndirectBranch->getParent());
362     Builder.ClearInsertionPoint();
363   }
364 
365   // If some of our locals escaped, insert a call to llvm.localescape in the
366   // entry block.
367   if (!EscapedLocals.empty()) {
368     // Invert the map from local to index into a simple vector. There should be
369     // no holes.
370     SmallVector<llvm::Value *, 4> EscapeArgs;
371     EscapeArgs.resize(EscapedLocals.size());
372     for (auto &Pair : EscapedLocals)
373       EscapeArgs[Pair.second] = Pair.first;
374     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
375         &CGM.getModule(), llvm::Intrinsic::localescape);
376     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
377   }
378 
379   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
380   llvm::Instruction *Ptr = AllocaInsertPt;
381   AllocaInsertPt = nullptr;
382   Ptr->eraseFromParent();
383 
384   // If someone took the address of a label but never did an indirect goto, we
385   // made a zero entry PHI node, which is illegal, zap it now.
386   if (IndirectBranch) {
387     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
388     if (PN->getNumIncomingValues() == 0) {
389       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
390       PN->eraseFromParent();
391     }
392   }
393 
394   EmitIfUsed(*this, EHResumeBlock);
395   EmitIfUsed(*this, TerminateLandingPad);
396   EmitIfUsed(*this, TerminateHandler);
397   EmitIfUsed(*this, UnreachableBlock);
398 
399   if (CGM.getCodeGenOpts().EmitDeclMetadata)
400     EmitDeclMetadata();
401 
402   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
403            I = DeferredReplacements.begin(),
404            E = DeferredReplacements.end();
405        I != E; ++I) {
406     I->first->replaceAllUsesWith(I->second);
407     I->first->eraseFromParent();
408   }
409 }
410 
411 /// ShouldInstrumentFunction - Return true if the current function should be
412 /// instrumented with __cyg_profile_func_* calls
413 bool CodeGenFunction::ShouldInstrumentFunction() {
414   if (!CGM.getCodeGenOpts().InstrumentFunctions)
415     return false;
416   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
417     return false;
418   return true;
419 }
420 
421 /// ShouldXRayInstrument - Return true if the current function should be
422 /// instrumented with XRay nop sleds.
423 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
424   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
425 }
426 
427 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
428 /// instrumentation function with the current function and the call site, if
429 /// function instrumentation is enabled.
430 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
431   auto NL = ApplyDebugLocation::CreateArtificial(*this);
432   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
433   llvm::PointerType *PointerTy = Int8PtrTy;
434   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
435   llvm::FunctionType *FunctionTy =
436     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
437 
438   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
439   llvm::CallInst *CallSite = Builder.CreateCall(
440     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
441     llvm::ConstantInt::get(Int32Ty, 0),
442     "callsite");
443 
444   llvm::Value *args[] = {
445     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
446     CallSite
447   };
448 
449   EmitNounwindRuntimeCall(F, args);
450 }
451 
452 static void removeImageAccessQualifier(std::string& TyName) {
453   std::string ReadOnlyQual("__read_only");
454   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
455   if (ReadOnlyPos != std::string::npos)
456     // "+ 1" for the space after access qualifier.
457     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
458   else {
459     std::string WriteOnlyQual("__write_only");
460     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
461     if (WriteOnlyPos != std::string::npos)
462       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
463     else {
464       std::string ReadWriteQual("__read_write");
465       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
466       if (ReadWritePos != std::string::npos)
467         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
468     }
469   }
470 }
471 
472 // Returns the address space id that should be produced to the
473 // kernel_arg_addr_space metadata. This is always fixed to the ids
474 // as specified in the SPIR 2.0 specification in order to differentiate
475 // for example in clGetKernelArgInfo() implementation between the address
476 // spaces with targets without unique mapping to the OpenCL address spaces
477 // (basically all single AS CPUs).
478 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
479   switch (LangAS) {
480   case LangAS::opencl_global:   return 1;
481   case LangAS::opencl_constant: return 2;
482   case LangAS::opencl_local:    return 3;
483   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
484   default:
485     return 0; // Assume private.
486   }
487 }
488 
489 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
490 // information in the program executable. The argument information stored
491 // includes the argument name, its type, the address and access qualifiers used.
492 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
493                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
494                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
495   // Create MDNodes that represent the kernel arg metadata.
496   // Each MDNode is a list in the form of "key", N number of values which is
497   // the same number of values as their are kernel arguments.
498 
499   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
500 
501   // MDNode for the kernel argument address space qualifiers.
502   SmallVector<llvm::Metadata *, 8> addressQuals;
503 
504   // MDNode for the kernel argument access qualifiers (images only).
505   SmallVector<llvm::Metadata *, 8> accessQuals;
506 
507   // MDNode for the kernel argument type names.
508   SmallVector<llvm::Metadata *, 8> argTypeNames;
509 
510   // MDNode for the kernel argument base type names.
511   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
512 
513   // MDNode for the kernel argument type qualifiers.
514   SmallVector<llvm::Metadata *, 8> argTypeQuals;
515 
516   // MDNode for the kernel argument names.
517   SmallVector<llvm::Metadata *, 8> argNames;
518 
519   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
520     const ParmVarDecl *parm = FD->getParamDecl(i);
521     QualType ty = parm->getType();
522     std::string typeQuals;
523 
524     if (ty->isPointerType()) {
525       QualType pointeeTy = ty->getPointeeType();
526 
527       // Get address qualifier.
528       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
529         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
530 
531       // Get argument type name.
532       std::string typeName =
533           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
534 
535       // Turn "unsigned type" to "utype"
536       std::string::size_type pos = typeName.find("unsigned");
537       if (pointeeTy.isCanonical() && pos != std::string::npos)
538         typeName.erase(pos+1, 8);
539 
540       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
541 
542       std::string baseTypeName =
543           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
544               Policy) +
545           "*";
546 
547       // Turn "unsigned type" to "utype"
548       pos = baseTypeName.find("unsigned");
549       if (pos != std::string::npos)
550         baseTypeName.erase(pos+1, 8);
551 
552       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
553 
554       // Get argument type qualifiers:
555       if (ty.isRestrictQualified())
556         typeQuals = "restrict";
557       if (pointeeTy.isConstQualified() ||
558           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
559         typeQuals += typeQuals.empty() ? "const" : " const";
560       if (pointeeTy.isVolatileQualified())
561         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
562     } else {
563       uint32_t AddrSpc = 0;
564       bool isPipe = ty->isPipeType();
565       if (ty->isImageType() || isPipe)
566         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
567 
568       addressQuals.push_back(
569           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
570 
571       // Get argument type name.
572       std::string typeName;
573       if (isPipe)
574         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
575                      .getAsString(Policy);
576       else
577         typeName = ty.getUnqualifiedType().getAsString(Policy);
578 
579       // Turn "unsigned type" to "utype"
580       std::string::size_type pos = typeName.find("unsigned");
581       if (ty.isCanonical() && pos != std::string::npos)
582         typeName.erase(pos+1, 8);
583 
584       std::string baseTypeName;
585       if (isPipe)
586         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
587                           ->getElementType().getCanonicalType()
588                           .getAsString(Policy);
589       else
590         baseTypeName =
591           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
592 
593       // Remove access qualifiers on images
594       // (as they are inseparable from type in clang implementation,
595       // but OpenCL spec provides a special query to get access qualifier
596       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
597       if (ty->isImageType()) {
598         removeImageAccessQualifier(typeName);
599         removeImageAccessQualifier(baseTypeName);
600       }
601 
602       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
603 
604       // Turn "unsigned type" to "utype"
605       pos = baseTypeName.find("unsigned");
606       if (pos != std::string::npos)
607         baseTypeName.erase(pos+1, 8);
608 
609       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
610 
611       // Get argument type qualifiers:
612       if (ty.isConstQualified())
613         typeQuals = "const";
614       if (ty.isVolatileQualified())
615         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
616       if (isPipe)
617         typeQuals = "pipe";
618     }
619 
620     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
621 
622     // Get image and pipe access qualifier:
623     if (ty->isImageType()|| ty->isPipeType()) {
624       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
625       if (A && A->isWriteOnly())
626         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
627       else if (A && A->isReadWrite())
628         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
629       else
630         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
631     } else
632       accessQuals.push_back(llvm::MDString::get(Context, "none"));
633 
634     // Get argument name.
635     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
636   }
637 
638   Fn->setMetadata("kernel_arg_addr_space",
639                   llvm::MDNode::get(Context, addressQuals));
640   Fn->setMetadata("kernel_arg_access_qual",
641                   llvm::MDNode::get(Context, accessQuals));
642   Fn->setMetadata("kernel_arg_type",
643                   llvm::MDNode::get(Context, argTypeNames));
644   Fn->setMetadata("kernel_arg_base_type",
645                   llvm::MDNode::get(Context, argBaseTypeNames));
646   Fn->setMetadata("kernel_arg_type_qual",
647                   llvm::MDNode::get(Context, argTypeQuals));
648   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
649     Fn->setMetadata("kernel_arg_name",
650                     llvm::MDNode::get(Context, argNames));
651 }
652 
653 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
654                                                llvm::Function *Fn)
655 {
656   if (!FD->hasAttr<OpenCLKernelAttr>())
657     return;
658 
659   llvm::LLVMContext &Context = getLLVMContext();
660 
661   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
662 
663   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
664     QualType hintQTy = A->getTypeHint();
665     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
666     bool isSignedInteger =
667         hintQTy->isSignedIntegerType() ||
668         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
669     llvm::Metadata *attrMDArgs[] = {
670         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
671             CGM.getTypes().ConvertType(A->getTypeHint()))),
672         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
673             llvm::IntegerType::get(Context, 32),
674             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
675     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
676   }
677 
678   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
679     llvm::Metadata *attrMDArgs[] = {
680         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
681         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
682         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
683     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
684   }
685 
686   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
687     llvm::Metadata *attrMDArgs[] = {
688         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
689         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
690         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
691     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
692   }
693 }
694 
695 /// Determine whether the function F ends with a return stmt.
696 static bool endsWithReturn(const Decl* F) {
697   const Stmt *Body = nullptr;
698   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
699     Body = FD->getBody();
700   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
701     Body = OMD->getBody();
702 
703   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
704     auto LastStmt = CS->body_rbegin();
705     if (LastStmt != CS->body_rend())
706       return isa<ReturnStmt>(*LastStmt);
707   }
708   return false;
709 }
710 
711 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
712   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
713   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
714 }
715 
716 void CodeGenFunction::StartFunction(GlobalDecl GD,
717                                     QualType RetTy,
718                                     llvm::Function *Fn,
719                                     const CGFunctionInfo &FnInfo,
720                                     const FunctionArgList &Args,
721                                     SourceLocation Loc,
722                                     SourceLocation StartLoc) {
723   assert(!CurFn &&
724          "Do not use a CodeGenFunction object for more than one function");
725 
726   const Decl *D = GD.getDecl();
727 
728   DidCallStackSave = false;
729   CurCodeDecl = D;
730   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
731     if (FD->usesSEHTry())
732       CurSEHParent = FD;
733   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
734   FnRetTy = RetTy;
735   CurFn = Fn;
736   CurFnInfo = &FnInfo;
737   assert(CurFn->isDeclaration() && "Function already has body?");
738 
739   if (CGM.isInSanitizerBlacklist(Fn, Loc))
740     SanOpts.clear();
741 
742   if (D) {
743     // Apply the no_sanitize* attributes to SanOpts.
744     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
745       SanOpts.Mask &= ~Attr->getMask();
746   }
747 
748   // Apply sanitizer attributes to the function.
749   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
750     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
751   if (SanOpts.has(SanitizerKind::Thread))
752     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
753   if (SanOpts.has(SanitizerKind::Memory))
754     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
755   if (SanOpts.has(SanitizerKind::SafeStack))
756     Fn->addFnAttr(llvm::Attribute::SafeStack);
757 
758   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
759   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
760   if (SanOpts.has(SanitizerKind::Thread)) {
761     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
762       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
763       if (OMD->getMethodFamily() == OMF_dealloc ||
764           OMD->getMethodFamily() == OMF_initialize ||
765           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
766         markAsIgnoreThreadCheckingAtRuntime(Fn);
767       }
768     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
769       IdentifierInfo *II = FD->getIdentifier();
770       if (II && II->isStr("__destroy_helper_block_"))
771         markAsIgnoreThreadCheckingAtRuntime(Fn);
772     }
773   }
774 
775   // Apply xray attributes to the function (as a string, for now)
776   if (D && ShouldXRayInstrumentFunction()) {
777     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
778       if (XRayAttr->alwaysXRayInstrument())
779         Fn->addFnAttr("function-instrument", "xray-always");
780       if (XRayAttr->neverXRayInstrument())
781         Fn->addFnAttr("function-instrument", "xray-never");
782     } else {
783       Fn->addFnAttr(
784           "xray-instruction-threshold",
785           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
786     }
787   }
788 
789   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
790     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
791       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
792 
793   // Add no-jump-tables value.
794   Fn->addFnAttr("no-jump-tables",
795                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
796 
797   if (getLangOpts().OpenCL) {
798     // Add metadata for a kernel function.
799     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
800       EmitOpenCLKernelMetadata(FD, Fn);
801   }
802 
803   // If we are checking function types, emit a function type signature as
804   // prologue data.
805   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
806     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
807       if (llvm::Constant *PrologueSig =
808               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
809         llvm::Constant *FTRTTIConst =
810             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
811         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
812         llvm::Constant *PrologueStructConst =
813             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
814         Fn->setPrologueData(PrologueStructConst);
815       }
816     }
817   }
818 
819   // If we're in C++ mode and the function name is "main", it is guaranteed
820   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
821   // used within a program").
822   if (getLangOpts().CPlusPlus)
823     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
824       if (FD->isMain())
825         Fn->addFnAttr(llvm::Attribute::NoRecurse);
826 
827   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
828 
829   // Create a marker to make it easy to insert allocas into the entryblock
830   // later.  Don't create this with the builder, because we don't want it
831   // folded.
832   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
833   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
834 
835   ReturnBlock = getJumpDestInCurrentScope("return");
836 
837   Builder.SetInsertPoint(EntryBB);
838 
839   // Emit subprogram debug descriptor.
840   if (CGDebugInfo *DI = getDebugInfo()) {
841     // Reconstruct the type from the argument list so that implicit parameters,
842     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
843     // convention.
844     CallingConv CC = CallingConv::CC_C;
845     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
846       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
847         CC = SrcFnTy->getCallConv();
848     SmallVector<QualType, 16> ArgTypes;
849     for (const VarDecl *VD : Args)
850       ArgTypes.push_back(VD->getType());
851     QualType FnType = getContext().getFunctionType(
852         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
853     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
854   }
855 
856   if (ShouldInstrumentFunction())
857     EmitFunctionInstrumentation("__cyg_profile_func_enter");
858 
859   // Since emitting the mcount call here impacts optimizations such as function
860   // inlining, we just add an attribute to insert a mcount call in backend.
861   // The attribute "counting-function" is set to mcount function name which is
862   // architecture dependent.
863   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
864     if (CGM.getCodeGenOpts().CallFEntry)
865       Fn->addFnAttr("fentry-call", "true");
866     else
867       Fn->addFnAttr("counting-function", getTarget().getMCountName());
868   }
869 
870   if (RetTy->isVoidType()) {
871     // Void type; nothing to return.
872     ReturnValue = Address::invalid();
873 
874     // Count the implicit return.
875     if (!endsWithReturn(D))
876       ++NumReturnExprs;
877   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
878              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
879     // Indirect aggregate return; emit returned value directly into sret slot.
880     // This reduces code size, and affects correctness in C++.
881     auto AI = CurFn->arg_begin();
882     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
883       ++AI;
884     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
885   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
886              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
887     // Load the sret pointer from the argument struct and return into that.
888     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
889     llvm::Function::arg_iterator EI = CurFn->arg_end();
890     --EI;
891     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
892     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
893     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
894   } else {
895     ReturnValue = CreateIRTemp(RetTy, "retval");
896 
897     // Tell the epilog emitter to autorelease the result.  We do this
898     // now so that various specialized functions can suppress it
899     // during their IR-generation.
900     if (getLangOpts().ObjCAutoRefCount &&
901         !CurFnInfo->isReturnsRetained() &&
902         RetTy->isObjCRetainableType())
903       AutoreleaseResult = true;
904   }
905 
906   EmitStartEHSpec(CurCodeDecl);
907 
908   PrologueCleanupDepth = EHStack.stable_begin();
909   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
910 
911   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
912     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
913     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
914     if (MD->getParent()->isLambda() &&
915         MD->getOverloadedOperator() == OO_Call) {
916       // We're in a lambda; figure out the captures.
917       MD->getParent()->getCaptureFields(LambdaCaptureFields,
918                                         LambdaThisCaptureField);
919       if (LambdaThisCaptureField) {
920         // If the lambda captures the object referred to by '*this' - either by
921         // value or by reference, make sure CXXThisValue points to the correct
922         // object.
923 
924         // Get the lvalue for the field (which is a copy of the enclosing object
925         // or contains the address of the enclosing object).
926         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
927         if (!LambdaThisCaptureField->getType()->isPointerType()) {
928           // If the enclosing object was captured by value, just use its address.
929           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
930         } else {
931           // Load the lvalue pointed to by the field, since '*this' was captured
932           // by reference.
933           CXXThisValue =
934               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
935         }
936       }
937       for (auto *FD : MD->getParent()->fields()) {
938         if (FD->hasCapturedVLAType()) {
939           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
940                                            SourceLocation()).getScalarVal();
941           auto VAT = FD->getCapturedVLAType();
942           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
943         }
944       }
945     } else {
946       // Not in a lambda; just use 'this' from the method.
947       // FIXME: Should we generate a new load for each use of 'this'?  The
948       // fast register allocator would be happier...
949       CXXThisValue = CXXABIThisValue;
950     }
951   }
952 
953   // If any of the arguments have a variably modified type, make sure to
954   // emit the type size.
955   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
956        i != e; ++i) {
957     const VarDecl *VD = *i;
958 
959     // Dig out the type as written from ParmVarDecls; it's unclear whether
960     // the standard (C99 6.9.1p10) requires this, but we're following the
961     // precedent set by gcc.
962     QualType Ty;
963     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
964       Ty = PVD->getOriginalType();
965     else
966       Ty = VD->getType();
967 
968     if (Ty->isVariablyModifiedType())
969       EmitVariablyModifiedType(Ty);
970   }
971   // Emit a location at the end of the prologue.
972   if (CGDebugInfo *DI = getDebugInfo())
973     DI->EmitLocation(Builder, StartLoc);
974 }
975 
976 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
977                                        const Stmt *Body) {
978   incrementProfileCounter(Body);
979   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
980     EmitCompoundStmtWithoutScope(*S);
981   else
982     EmitStmt(Body);
983 }
984 
985 /// When instrumenting to collect profile data, the counts for some blocks
986 /// such as switch cases need to not include the fall-through counts, so
987 /// emit a branch around the instrumentation code. When not instrumenting,
988 /// this just calls EmitBlock().
989 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
990                                                const Stmt *S) {
991   llvm::BasicBlock *SkipCountBB = nullptr;
992   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
993     // When instrumenting for profiling, the fallthrough to certain
994     // statements needs to skip over the instrumentation code so that we
995     // get an accurate count.
996     SkipCountBB = createBasicBlock("skipcount");
997     EmitBranch(SkipCountBB);
998   }
999   EmitBlock(BB);
1000   uint64_t CurrentCount = getCurrentProfileCount();
1001   incrementProfileCounter(S);
1002   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1003   if (SkipCountBB)
1004     EmitBlock(SkipCountBB);
1005 }
1006 
1007 /// Tries to mark the given function nounwind based on the
1008 /// non-existence of any throwing calls within it.  We believe this is
1009 /// lightweight enough to do at -O0.
1010 static void TryMarkNoThrow(llvm::Function *F) {
1011   // LLVM treats 'nounwind' on a function as part of the type, so we
1012   // can't do this on functions that can be overwritten.
1013   if (F->isInterposable()) return;
1014 
1015   for (llvm::BasicBlock &BB : *F)
1016     for (llvm::Instruction &I : BB)
1017       if (I.mayThrow())
1018         return;
1019 
1020   F->setDoesNotThrow();
1021 }
1022 
1023 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1024                                                FunctionArgList &Args) {
1025   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1026   QualType ResTy = FD->getReturnType();
1027 
1028   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1029   if (MD && MD->isInstance()) {
1030     if (CGM.getCXXABI().HasThisReturn(GD))
1031       ResTy = MD->getThisType(getContext());
1032     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1033       ResTy = CGM.getContext().VoidPtrTy;
1034     CGM.getCXXABI().buildThisParam(*this, Args);
1035   }
1036 
1037   // The base version of an inheriting constructor whose constructed base is a
1038   // virtual base is not passed any arguments (because it doesn't actually call
1039   // the inherited constructor).
1040   bool PassedParams = true;
1041   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1042     if (auto Inherited = CD->getInheritedConstructor())
1043       PassedParams =
1044           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1045 
1046   if (PassedParams) {
1047     for (auto *Param : FD->parameters()) {
1048       Args.push_back(Param);
1049       if (!Param->hasAttr<PassObjectSizeAttr>())
1050         continue;
1051 
1052       IdentifierInfo *NoID = nullptr;
1053       auto *Implicit = ImplicitParamDecl::Create(
1054           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
1055           getContext().getSizeType());
1056       SizeArguments[Param] = Implicit;
1057       Args.push_back(Implicit);
1058     }
1059   }
1060 
1061   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1062     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1063 
1064   return ResTy;
1065 }
1066 
1067 static bool
1068 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1069                                              const ASTContext &Context) {
1070   QualType T = FD->getReturnType();
1071   // Avoid the optimization for functions that return a record type with a
1072   // trivial destructor or another trivially copyable type.
1073   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1074     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1075       return !ClassDecl->hasTrivialDestructor();
1076   }
1077   return !T.isTriviallyCopyableType(Context);
1078 }
1079 
1080 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1081                                    const CGFunctionInfo &FnInfo) {
1082   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1083   CurGD = GD;
1084 
1085   FunctionArgList Args;
1086   QualType ResTy = BuildFunctionArgList(GD, Args);
1087 
1088   // Check if we should generate debug info for this function.
1089   if (FD->hasAttr<NoDebugAttr>())
1090     DebugInfo = nullptr; // disable debug info indefinitely for this function
1091 
1092   // The function might not have a body if we're generating thunks for a
1093   // function declaration.
1094   SourceRange BodyRange;
1095   if (Stmt *Body = FD->getBody())
1096     BodyRange = Body->getSourceRange();
1097   else
1098     BodyRange = FD->getLocation();
1099   CurEHLocation = BodyRange.getEnd();
1100 
1101   // Use the location of the start of the function to determine where
1102   // the function definition is located. By default use the location
1103   // of the declaration as the location for the subprogram. A function
1104   // may lack a declaration in the source code if it is created by code
1105   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1106   SourceLocation Loc = FD->getLocation();
1107 
1108   // If this is a function specialization then use the pattern body
1109   // as the location for the function.
1110   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1111     if (SpecDecl->hasBody(SpecDecl))
1112       Loc = SpecDecl->getLocation();
1113 
1114   Stmt *Body = FD->getBody();
1115 
1116   // Initialize helper which will detect jumps which can cause invalid lifetime
1117   // markers.
1118   if (Body && ShouldEmitLifetimeMarkers)
1119     Bypasses.Init(Body);
1120 
1121   // Emit the standard function prologue.
1122   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1123 
1124   // Generate the body of the function.
1125   PGO.assignRegionCounters(GD, CurFn);
1126   if (isa<CXXDestructorDecl>(FD))
1127     EmitDestructorBody(Args);
1128   else if (isa<CXXConstructorDecl>(FD))
1129     EmitConstructorBody(Args);
1130   else if (getLangOpts().CUDA &&
1131            !getLangOpts().CUDAIsDevice &&
1132            FD->hasAttr<CUDAGlobalAttr>())
1133     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1134   else if (isa<CXXConversionDecl>(FD) &&
1135            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1136     // The lambda conversion to block pointer is special; the semantics can't be
1137     // expressed in the AST, so IRGen needs to special-case it.
1138     EmitLambdaToBlockPointerBody(Args);
1139   } else if (isa<CXXMethodDecl>(FD) &&
1140              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1141     // The lambda static invoker function is special, because it forwards or
1142     // clones the body of the function call operator (but is actually static).
1143     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1144   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1145              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1146               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1147     // Implicit copy-assignment gets the same special treatment as implicit
1148     // copy-constructors.
1149     emitImplicitAssignmentOperatorBody(Args);
1150   } else if (Body) {
1151     EmitFunctionBody(Args, Body);
1152   } else
1153     llvm_unreachable("no definition for emitted function");
1154 
1155   // C++11 [stmt.return]p2:
1156   //   Flowing off the end of a function [...] results in undefined behavior in
1157   //   a value-returning function.
1158   // C11 6.9.1p12:
1159   //   If the '}' that terminates a function is reached, and the value of the
1160   //   function call is used by the caller, the behavior is undefined.
1161   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1162       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1163     bool ShouldEmitUnreachable =
1164         CGM.getCodeGenOpts().StrictReturn ||
1165         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1166     if (SanOpts.has(SanitizerKind::Return)) {
1167       SanitizerScope SanScope(this);
1168       llvm::Value *IsFalse = Builder.getFalse();
1169       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1170                 SanitizerHandler::MissingReturn,
1171                 EmitCheckSourceLocation(FD->getLocation()), None);
1172     } else if (ShouldEmitUnreachable) {
1173       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1174         EmitTrapCall(llvm::Intrinsic::trap);
1175     }
1176     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1177       Builder.CreateUnreachable();
1178       Builder.ClearInsertionPoint();
1179     }
1180   }
1181 
1182   // Emit the standard function epilogue.
1183   FinishFunction(BodyRange.getEnd());
1184 
1185   // If we haven't marked the function nothrow through other means, do
1186   // a quick pass now to see if we can.
1187   if (!CurFn->doesNotThrow())
1188     TryMarkNoThrow(CurFn);
1189 }
1190 
1191 /// ContainsLabel - Return true if the statement contains a label in it.  If
1192 /// this statement is not executed normally, it not containing a label means
1193 /// that we can just remove the code.
1194 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1195   // Null statement, not a label!
1196   if (!S) return false;
1197 
1198   // If this is a label, we have to emit the code, consider something like:
1199   // if (0) {  ...  foo:  bar(); }  goto foo;
1200   //
1201   // TODO: If anyone cared, we could track __label__'s, since we know that you
1202   // can't jump to one from outside their declared region.
1203   if (isa<LabelStmt>(S))
1204     return true;
1205 
1206   // If this is a case/default statement, and we haven't seen a switch, we have
1207   // to emit the code.
1208   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1209     return true;
1210 
1211   // If this is a switch statement, we want to ignore cases below it.
1212   if (isa<SwitchStmt>(S))
1213     IgnoreCaseStmts = true;
1214 
1215   // Scan subexpressions for verboten labels.
1216   for (const Stmt *SubStmt : S->children())
1217     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1218       return true;
1219 
1220   return false;
1221 }
1222 
1223 /// containsBreak - Return true if the statement contains a break out of it.
1224 /// If the statement (recursively) contains a switch or loop with a break
1225 /// inside of it, this is fine.
1226 bool CodeGenFunction::containsBreak(const Stmt *S) {
1227   // Null statement, not a label!
1228   if (!S) return false;
1229 
1230   // If this is a switch or loop that defines its own break scope, then we can
1231   // include it and anything inside of it.
1232   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1233       isa<ForStmt>(S))
1234     return false;
1235 
1236   if (isa<BreakStmt>(S))
1237     return true;
1238 
1239   // Scan subexpressions for verboten breaks.
1240   for (const Stmt *SubStmt : S->children())
1241     if (containsBreak(SubStmt))
1242       return true;
1243 
1244   return false;
1245 }
1246 
1247 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1248   if (!S) return false;
1249 
1250   // Some statement kinds add a scope and thus never add a decl to the current
1251   // scope. Note, this list is longer than the list of statements that might
1252   // have an unscoped decl nested within them, but this way is conservatively
1253   // correct even if more statement kinds are added.
1254   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1255       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1256       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1257       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1258     return false;
1259 
1260   if (isa<DeclStmt>(S))
1261     return true;
1262 
1263   for (const Stmt *SubStmt : S->children())
1264     if (mightAddDeclToScope(SubStmt))
1265       return true;
1266 
1267   return false;
1268 }
1269 
1270 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1271 /// to a constant, or if it does but contains a label, return false.  If it
1272 /// constant folds return true and set the boolean result in Result.
1273 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1274                                                    bool &ResultBool,
1275                                                    bool AllowLabels) {
1276   llvm::APSInt ResultInt;
1277   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1278     return false;
1279 
1280   ResultBool = ResultInt.getBoolValue();
1281   return true;
1282 }
1283 
1284 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1285 /// to a constant, or if it does but contains a label, return false.  If it
1286 /// constant folds return true and set the folded value.
1287 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1288                                                    llvm::APSInt &ResultInt,
1289                                                    bool AllowLabels) {
1290   // FIXME: Rename and handle conversion of other evaluatable things
1291   // to bool.
1292   llvm::APSInt Int;
1293   if (!Cond->EvaluateAsInt(Int, getContext()))
1294     return false;  // Not foldable, not integer or not fully evaluatable.
1295 
1296   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1297     return false;  // Contains a label.
1298 
1299   ResultInt = Int;
1300   return true;
1301 }
1302 
1303 
1304 
1305 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1306 /// statement) to the specified blocks.  Based on the condition, this might try
1307 /// to simplify the codegen of the conditional based on the branch.
1308 ///
1309 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1310                                            llvm::BasicBlock *TrueBlock,
1311                                            llvm::BasicBlock *FalseBlock,
1312                                            uint64_t TrueCount) {
1313   Cond = Cond->IgnoreParens();
1314 
1315   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1316 
1317     // Handle X && Y in a condition.
1318     if (CondBOp->getOpcode() == BO_LAnd) {
1319       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1320       // folded if the case was simple enough.
1321       bool ConstantBool = false;
1322       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1323           ConstantBool) {
1324         // br(1 && X) -> br(X).
1325         incrementProfileCounter(CondBOp);
1326         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1327                                     TrueCount);
1328       }
1329 
1330       // If we have "X && 1", simplify the code to use an uncond branch.
1331       // "X && 0" would have been constant folded to 0.
1332       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1333           ConstantBool) {
1334         // br(X && 1) -> br(X).
1335         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1336                                     TrueCount);
1337       }
1338 
1339       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1340       // want to jump to the FalseBlock.
1341       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1342       // The counter tells us how often we evaluate RHS, and all of TrueCount
1343       // can be propagated to that branch.
1344       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1345 
1346       ConditionalEvaluation eval(*this);
1347       {
1348         ApplyDebugLocation DL(*this, Cond);
1349         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1350         EmitBlock(LHSTrue);
1351       }
1352 
1353       incrementProfileCounter(CondBOp);
1354       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1355 
1356       // Any temporaries created here are conditional.
1357       eval.begin(*this);
1358       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1359       eval.end(*this);
1360 
1361       return;
1362     }
1363 
1364     if (CondBOp->getOpcode() == BO_LOr) {
1365       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1366       // folded if the case was simple enough.
1367       bool ConstantBool = false;
1368       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1369           !ConstantBool) {
1370         // br(0 || X) -> br(X).
1371         incrementProfileCounter(CondBOp);
1372         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1373                                     TrueCount);
1374       }
1375 
1376       // If we have "X || 0", simplify the code to use an uncond branch.
1377       // "X || 1" would have been constant folded to 1.
1378       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1379           !ConstantBool) {
1380         // br(X || 0) -> br(X).
1381         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1382                                     TrueCount);
1383       }
1384 
1385       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1386       // want to jump to the TrueBlock.
1387       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1388       // We have the count for entry to the RHS and for the whole expression
1389       // being true, so we can divy up True count between the short circuit and
1390       // the RHS.
1391       uint64_t LHSCount =
1392           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1393       uint64_t RHSCount = TrueCount - LHSCount;
1394 
1395       ConditionalEvaluation eval(*this);
1396       {
1397         ApplyDebugLocation DL(*this, Cond);
1398         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1399         EmitBlock(LHSFalse);
1400       }
1401 
1402       incrementProfileCounter(CondBOp);
1403       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1404 
1405       // Any temporaries created here are conditional.
1406       eval.begin(*this);
1407       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1408 
1409       eval.end(*this);
1410 
1411       return;
1412     }
1413   }
1414 
1415   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1416     // br(!x, t, f) -> br(x, f, t)
1417     if (CondUOp->getOpcode() == UO_LNot) {
1418       // Negate the count.
1419       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1420       // Negate the condition and swap the destination blocks.
1421       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1422                                   FalseCount);
1423     }
1424   }
1425 
1426   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1427     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1428     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1429     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1430 
1431     ConditionalEvaluation cond(*this);
1432     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1433                          getProfileCount(CondOp));
1434 
1435     // When computing PGO branch weights, we only know the overall count for
1436     // the true block. This code is essentially doing tail duplication of the
1437     // naive code-gen, introducing new edges for which counts are not
1438     // available. Divide the counts proportionally between the LHS and RHS of
1439     // the conditional operator.
1440     uint64_t LHSScaledTrueCount = 0;
1441     if (TrueCount) {
1442       double LHSRatio =
1443           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1444       LHSScaledTrueCount = TrueCount * LHSRatio;
1445     }
1446 
1447     cond.begin(*this);
1448     EmitBlock(LHSBlock);
1449     incrementProfileCounter(CondOp);
1450     {
1451       ApplyDebugLocation DL(*this, Cond);
1452       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1453                            LHSScaledTrueCount);
1454     }
1455     cond.end(*this);
1456 
1457     cond.begin(*this);
1458     EmitBlock(RHSBlock);
1459     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1460                          TrueCount - LHSScaledTrueCount);
1461     cond.end(*this);
1462 
1463     return;
1464   }
1465 
1466   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1467     // Conditional operator handling can give us a throw expression as a
1468     // condition for a case like:
1469     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1470     // Fold this to:
1471     //   br(c, throw x, br(y, t, f))
1472     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1473     return;
1474   }
1475 
1476   // If the branch has a condition wrapped by __builtin_unpredictable,
1477   // create metadata that specifies that the branch is unpredictable.
1478   // Don't bother if not optimizing because that metadata would not be used.
1479   llvm::MDNode *Unpredictable = nullptr;
1480   auto *Call = dyn_cast<CallExpr>(Cond);
1481   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1482     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1483     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1484       llvm::MDBuilder MDHelper(getLLVMContext());
1485       Unpredictable = MDHelper.createUnpredictable();
1486     }
1487   }
1488 
1489   // Create branch weights based on the number of times we get here and the
1490   // number of times the condition should be true.
1491   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1492   llvm::MDNode *Weights =
1493       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1494 
1495   // Emit the code with the fully general case.
1496   llvm::Value *CondV;
1497   {
1498     ApplyDebugLocation DL(*this, Cond);
1499     CondV = EvaluateExprAsBool(Cond);
1500   }
1501   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1502 }
1503 
1504 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1505 /// specified stmt yet.
1506 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1507   CGM.ErrorUnsupported(S, Type);
1508 }
1509 
1510 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1511 /// variable-length array whose elements have a non-zero bit-pattern.
1512 ///
1513 /// \param baseType the inner-most element type of the array
1514 /// \param src - a char* pointing to the bit-pattern for a single
1515 /// base element of the array
1516 /// \param sizeInChars - the total size of the VLA, in chars
1517 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1518                                Address dest, Address src,
1519                                llvm::Value *sizeInChars) {
1520   CGBuilderTy &Builder = CGF.Builder;
1521 
1522   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1523   llvm::Value *baseSizeInChars
1524     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1525 
1526   Address begin =
1527     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1528   llvm::Value *end =
1529     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1530 
1531   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1532   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1533   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1534 
1535   // Make a loop over the VLA.  C99 guarantees that the VLA element
1536   // count must be nonzero.
1537   CGF.EmitBlock(loopBB);
1538 
1539   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1540   cur->addIncoming(begin.getPointer(), originBB);
1541 
1542   CharUnits curAlign =
1543     dest.getAlignment().alignmentOfArrayElement(baseSize);
1544 
1545   // memcpy the individual element bit-pattern.
1546   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1547                        /*volatile*/ false);
1548 
1549   // Go to the next element.
1550   llvm::Value *next =
1551     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1552 
1553   // Leave if that's the end of the VLA.
1554   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1555   Builder.CreateCondBr(done, contBB, loopBB);
1556   cur->addIncoming(next, loopBB);
1557 
1558   CGF.EmitBlock(contBB);
1559 }
1560 
1561 void
1562 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1563   // Ignore empty classes in C++.
1564   if (getLangOpts().CPlusPlus) {
1565     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1566       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1567         return;
1568     }
1569   }
1570 
1571   // Cast the dest ptr to the appropriate i8 pointer type.
1572   if (DestPtr.getElementType() != Int8Ty)
1573     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1574 
1575   // Get size and alignment info for this aggregate.
1576   CharUnits size = getContext().getTypeSizeInChars(Ty);
1577 
1578   llvm::Value *SizeVal;
1579   const VariableArrayType *vla;
1580 
1581   // Don't bother emitting a zero-byte memset.
1582   if (size.isZero()) {
1583     // But note that getTypeInfo returns 0 for a VLA.
1584     if (const VariableArrayType *vlaType =
1585           dyn_cast_or_null<VariableArrayType>(
1586                                           getContext().getAsArrayType(Ty))) {
1587       QualType eltType;
1588       llvm::Value *numElts;
1589       std::tie(numElts, eltType) = getVLASize(vlaType);
1590 
1591       SizeVal = numElts;
1592       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1593       if (!eltSize.isOne())
1594         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1595       vla = vlaType;
1596     } else {
1597       return;
1598     }
1599   } else {
1600     SizeVal = CGM.getSize(size);
1601     vla = nullptr;
1602   }
1603 
1604   // If the type contains a pointer to data member we can't memset it to zero.
1605   // Instead, create a null constant and copy it to the destination.
1606   // TODO: there are other patterns besides zero that we can usefully memset,
1607   // like -1, which happens to be the pattern used by member-pointers.
1608   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1609     // For a VLA, emit a single element, then splat that over the VLA.
1610     if (vla) Ty = getContext().getBaseElementType(vla);
1611 
1612     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1613 
1614     llvm::GlobalVariable *NullVariable =
1615       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1616                                /*isConstant=*/true,
1617                                llvm::GlobalVariable::PrivateLinkage,
1618                                NullConstant, Twine());
1619     CharUnits NullAlign = DestPtr.getAlignment();
1620     NullVariable->setAlignment(NullAlign.getQuantity());
1621     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1622                    NullAlign);
1623 
1624     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1625 
1626     // Get and call the appropriate llvm.memcpy overload.
1627     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1628     return;
1629   }
1630 
1631   // Otherwise, just memset the whole thing to zero.  This is legal
1632   // because in LLVM, all default initializers (other than the ones we just
1633   // handled above) are guaranteed to have a bit pattern of all zeros.
1634   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1635 }
1636 
1637 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1638   // Make sure that there is a block for the indirect goto.
1639   if (!IndirectBranch)
1640     GetIndirectGotoBlock();
1641 
1642   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1643 
1644   // Make sure the indirect branch includes all of the address-taken blocks.
1645   IndirectBranch->addDestination(BB);
1646   return llvm::BlockAddress::get(CurFn, BB);
1647 }
1648 
1649 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1650   // If we already made the indirect branch for indirect goto, return its block.
1651   if (IndirectBranch) return IndirectBranch->getParent();
1652 
1653   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1654 
1655   // Create the PHI node that indirect gotos will add entries to.
1656   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1657                                               "indirect.goto.dest");
1658 
1659   // Create the indirect branch instruction.
1660   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1661   return IndirectBranch->getParent();
1662 }
1663 
1664 /// Computes the length of an array in elements, as well as the base
1665 /// element type and a properly-typed first element pointer.
1666 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1667                                               QualType &baseType,
1668                                               Address &addr) {
1669   const ArrayType *arrayType = origArrayType;
1670 
1671   // If it's a VLA, we have to load the stored size.  Note that
1672   // this is the size of the VLA in bytes, not its size in elements.
1673   llvm::Value *numVLAElements = nullptr;
1674   if (isa<VariableArrayType>(arrayType)) {
1675     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1676 
1677     // Walk into all VLAs.  This doesn't require changes to addr,
1678     // which has type T* where T is the first non-VLA element type.
1679     do {
1680       QualType elementType = arrayType->getElementType();
1681       arrayType = getContext().getAsArrayType(elementType);
1682 
1683       // If we only have VLA components, 'addr' requires no adjustment.
1684       if (!arrayType) {
1685         baseType = elementType;
1686         return numVLAElements;
1687       }
1688     } while (isa<VariableArrayType>(arrayType));
1689 
1690     // We get out here only if we find a constant array type
1691     // inside the VLA.
1692   }
1693 
1694   // We have some number of constant-length arrays, so addr should
1695   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1696   // down to the first element of addr.
1697   SmallVector<llvm::Value*, 8> gepIndices;
1698 
1699   // GEP down to the array type.
1700   llvm::ConstantInt *zero = Builder.getInt32(0);
1701   gepIndices.push_back(zero);
1702 
1703   uint64_t countFromCLAs = 1;
1704   QualType eltType;
1705 
1706   llvm::ArrayType *llvmArrayType =
1707     dyn_cast<llvm::ArrayType>(addr.getElementType());
1708   while (llvmArrayType) {
1709     assert(isa<ConstantArrayType>(arrayType));
1710     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1711              == llvmArrayType->getNumElements());
1712 
1713     gepIndices.push_back(zero);
1714     countFromCLAs *= llvmArrayType->getNumElements();
1715     eltType = arrayType->getElementType();
1716 
1717     llvmArrayType =
1718       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1719     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1720     assert((!llvmArrayType || arrayType) &&
1721            "LLVM and Clang types are out-of-synch");
1722   }
1723 
1724   if (arrayType) {
1725     // From this point onwards, the Clang array type has been emitted
1726     // as some other type (probably a packed struct). Compute the array
1727     // size, and just emit the 'begin' expression as a bitcast.
1728     while (arrayType) {
1729       countFromCLAs *=
1730           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1731       eltType = arrayType->getElementType();
1732       arrayType = getContext().getAsArrayType(eltType);
1733     }
1734 
1735     llvm::Type *baseType = ConvertType(eltType);
1736     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1737   } else {
1738     // Create the actual GEP.
1739     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1740                                              gepIndices, "array.begin"),
1741                    addr.getAlignment());
1742   }
1743 
1744   baseType = eltType;
1745 
1746   llvm::Value *numElements
1747     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1748 
1749   // If we had any VLA dimensions, factor them in.
1750   if (numVLAElements)
1751     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1752 
1753   return numElements;
1754 }
1755 
1756 std::pair<llvm::Value*, QualType>
1757 CodeGenFunction::getVLASize(QualType type) {
1758   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1759   assert(vla && "type was not a variable array type!");
1760   return getVLASize(vla);
1761 }
1762 
1763 std::pair<llvm::Value*, QualType>
1764 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1765   // The number of elements so far; always size_t.
1766   llvm::Value *numElements = nullptr;
1767 
1768   QualType elementType;
1769   do {
1770     elementType = type->getElementType();
1771     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1772     assert(vlaSize && "no size for VLA!");
1773     assert(vlaSize->getType() == SizeTy);
1774 
1775     if (!numElements) {
1776       numElements = vlaSize;
1777     } else {
1778       // It's undefined behavior if this wraps around, so mark it that way.
1779       // FIXME: Teach -fsanitize=undefined to trap this.
1780       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1781     }
1782   } while ((type = getContext().getAsVariableArrayType(elementType)));
1783 
1784   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1785 }
1786 
1787 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1788   assert(type->isVariablyModifiedType() &&
1789          "Must pass variably modified type to EmitVLASizes!");
1790 
1791   EnsureInsertPoint();
1792 
1793   // We're going to walk down into the type and look for VLA
1794   // expressions.
1795   do {
1796     assert(type->isVariablyModifiedType());
1797 
1798     const Type *ty = type.getTypePtr();
1799     switch (ty->getTypeClass()) {
1800 
1801 #define TYPE(Class, Base)
1802 #define ABSTRACT_TYPE(Class, Base)
1803 #define NON_CANONICAL_TYPE(Class, Base)
1804 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1805 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1806 #include "clang/AST/TypeNodes.def"
1807       llvm_unreachable("unexpected dependent type!");
1808 
1809     // These types are never variably-modified.
1810     case Type::Builtin:
1811     case Type::Complex:
1812     case Type::Vector:
1813     case Type::ExtVector:
1814     case Type::Record:
1815     case Type::Enum:
1816     case Type::Elaborated:
1817     case Type::TemplateSpecialization:
1818     case Type::ObjCTypeParam:
1819     case Type::ObjCObject:
1820     case Type::ObjCInterface:
1821     case Type::ObjCObjectPointer:
1822       llvm_unreachable("type class is never variably-modified!");
1823 
1824     case Type::Adjusted:
1825       type = cast<AdjustedType>(ty)->getAdjustedType();
1826       break;
1827 
1828     case Type::Decayed:
1829       type = cast<DecayedType>(ty)->getPointeeType();
1830       break;
1831 
1832     case Type::Pointer:
1833       type = cast<PointerType>(ty)->getPointeeType();
1834       break;
1835 
1836     case Type::BlockPointer:
1837       type = cast<BlockPointerType>(ty)->getPointeeType();
1838       break;
1839 
1840     case Type::LValueReference:
1841     case Type::RValueReference:
1842       type = cast<ReferenceType>(ty)->getPointeeType();
1843       break;
1844 
1845     case Type::MemberPointer:
1846       type = cast<MemberPointerType>(ty)->getPointeeType();
1847       break;
1848 
1849     case Type::ConstantArray:
1850     case Type::IncompleteArray:
1851       // Losing element qualification here is fine.
1852       type = cast<ArrayType>(ty)->getElementType();
1853       break;
1854 
1855     case Type::VariableArray: {
1856       // Losing element qualification here is fine.
1857       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1858 
1859       // Unknown size indication requires no size computation.
1860       // Otherwise, evaluate and record it.
1861       if (const Expr *size = vat->getSizeExpr()) {
1862         // It's possible that we might have emitted this already,
1863         // e.g. with a typedef and a pointer to it.
1864         llvm::Value *&entry = VLASizeMap[size];
1865         if (!entry) {
1866           llvm::Value *Size = EmitScalarExpr(size);
1867 
1868           // C11 6.7.6.2p5:
1869           //   If the size is an expression that is not an integer constant
1870           //   expression [...] each time it is evaluated it shall have a value
1871           //   greater than zero.
1872           if (SanOpts.has(SanitizerKind::VLABound) &&
1873               size->getType()->isSignedIntegerType()) {
1874             SanitizerScope SanScope(this);
1875             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1876             llvm::Constant *StaticArgs[] = {
1877               EmitCheckSourceLocation(size->getLocStart()),
1878               EmitCheckTypeDescriptor(size->getType())
1879             };
1880             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1881                                      SanitizerKind::VLABound),
1882                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1883           }
1884 
1885           // Always zexting here would be wrong if it weren't
1886           // undefined behavior to have a negative bound.
1887           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1888         }
1889       }
1890       type = vat->getElementType();
1891       break;
1892     }
1893 
1894     case Type::FunctionProto:
1895     case Type::FunctionNoProto:
1896       type = cast<FunctionType>(ty)->getReturnType();
1897       break;
1898 
1899     case Type::Paren:
1900     case Type::TypeOf:
1901     case Type::UnaryTransform:
1902     case Type::Attributed:
1903     case Type::SubstTemplateTypeParm:
1904     case Type::PackExpansion:
1905       // Keep walking after single level desugaring.
1906       type = type.getSingleStepDesugaredType(getContext());
1907       break;
1908 
1909     case Type::Typedef:
1910     case Type::Decltype:
1911     case Type::Auto:
1912     case Type::DeducedTemplateSpecialization:
1913       // Stop walking: nothing to do.
1914       return;
1915 
1916     case Type::TypeOfExpr:
1917       // Stop walking: emit typeof expression.
1918       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1919       return;
1920 
1921     case Type::Atomic:
1922       type = cast<AtomicType>(ty)->getValueType();
1923       break;
1924 
1925     case Type::Pipe:
1926       type = cast<PipeType>(ty)->getElementType();
1927       break;
1928     }
1929   } while (type->isVariablyModifiedType());
1930 }
1931 
1932 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1933   if (getContext().getBuiltinVaListType()->isArrayType())
1934     return EmitPointerWithAlignment(E);
1935   return EmitLValue(E).getAddress();
1936 }
1937 
1938 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1939   return EmitLValue(E).getAddress();
1940 }
1941 
1942 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1943                                               const APValue &Init) {
1944   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
1945   if (CGDebugInfo *Dbg = getDebugInfo())
1946     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1947       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1948 }
1949 
1950 CodeGenFunction::PeepholeProtection
1951 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1952   // At the moment, the only aggressive peephole we do in IR gen
1953   // is trunc(zext) folding, but if we add more, we can easily
1954   // extend this protection.
1955 
1956   if (!rvalue.isScalar()) return PeepholeProtection();
1957   llvm::Value *value = rvalue.getScalarVal();
1958   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1959 
1960   // Just make an extra bitcast.
1961   assert(HaveInsertPoint());
1962   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1963                                                   Builder.GetInsertBlock());
1964 
1965   PeepholeProtection protection;
1966   protection.Inst = inst;
1967   return protection;
1968 }
1969 
1970 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1971   if (!protection.Inst) return;
1972 
1973   // In theory, we could try to duplicate the peepholes now, but whatever.
1974   protection.Inst->eraseFromParent();
1975 }
1976 
1977 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1978                                                  llvm::Value *AnnotatedVal,
1979                                                  StringRef AnnotationStr,
1980                                                  SourceLocation Location) {
1981   llvm::Value *Args[4] = {
1982     AnnotatedVal,
1983     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1984     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1985     CGM.EmitAnnotationLineNo(Location)
1986   };
1987   return Builder.CreateCall(AnnotationFn, Args);
1988 }
1989 
1990 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1991   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1992   // FIXME We create a new bitcast for every annotation because that's what
1993   // llvm-gcc was doing.
1994   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1995     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1996                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1997                        I->getAnnotation(), D->getLocation());
1998 }
1999 
2000 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2001                                               Address Addr) {
2002   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2003   llvm::Value *V = Addr.getPointer();
2004   llvm::Type *VTy = V->getType();
2005   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2006                                     CGM.Int8PtrTy);
2007 
2008   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2009     // FIXME Always emit the cast inst so we can differentiate between
2010     // annotation on the first field of a struct and annotation on the struct
2011     // itself.
2012     if (VTy != CGM.Int8PtrTy)
2013       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2014     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2015     V = Builder.CreateBitCast(V, VTy);
2016   }
2017 
2018   return Address(V, Addr.getAlignment());
2019 }
2020 
2021 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2022 
2023 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2024     : CGF(CGF) {
2025   assert(!CGF->IsSanitizerScope);
2026   CGF->IsSanitizerScope = true;
2027 }
2028 
2029 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2030   CGF->IsSanitizerScope = false;
2031 }
2032 
2033 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2034                                    const llvm::Twine &Name,
2035                                    llvm::BasicBlock *BB,
2036                                    llvm::BasicBlock::iterator InsertPt) const {
2037   LoopStack.InsertHelper(I);
2038   if (IsSanitizerScope)
2039     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2040 }
2041 
2042 void CGBuilderInserter::InsertHelper(
2043     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2044     llvm::BasicBlock::iterator InsertPt) const {
2045   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2046   if (CGF)
2047     CGF->InsertHelper(I, Name, BB, InsertPt);
2048 }
2049 
2050 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2051                                 CodeGenModule &CGM, const FunctionDecl *FD,
2052                                 std::string &FirstMissing) {
2053   // If there aren't any required features listed then go ahead and return.
2054   if (ReqFeatures.empty())
2055     return false;
2056 
2057   // Now build up the set of caller features and verify that all the required
2058   // features are there.
2059   llvm::StringMap<bool> CallerFeatureMap;
2060   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2061 
2062   // If we have at least one of the features in the feature list return
2063   // true, otherwise return false.
2064   return std::all_of(
2065       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2066         SmallVector<StringRef, 1> OrFeatures;
2067         Feature.split(OrFeatures, "|");
2068         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2069                            [&](StringRef Feature) {
2070                              if (!CallerFeatureMap.lookup(Feature)) {
2071                                FirstMissing = Feature.str();
2072                                return false;
2073                              }
2074                              return true;
2075                            });
2076       });
2077 }
2078 
2079 // Emits an error if we don't have a valid set of target features for the
2080 // called function.
2081 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2082                                           const FunctionDecl *TargetDecl) {
2083   // Early exit if this is an indirect call.
2084   if (!TargetDecl)
2085     return;
2086 
2087   // Get the current enclosing function if it exists. If it doesn't
2088   // we can't check the target features anyhow.
2089   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2090   if (!FD)
2091     return;
2092 
2093   // Grab the required features for the call. For a builtin this is listed in
2094   // the td file with the default cpu, for an always_inline function this is any
2095   // listed cpu and any listed features.
2096   unsigned BuiltinID = TargetDecl->getBuiltinID();
2097   std::string MissingFeature;
2098   if (BuiltinID) {
2099     SmallVector<StringRef, 1> ReqFeatures;
2100     const char *FeatureList =
2101         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2102     // Return if the builtin doesn't have any required features.
2103     if (!FeatureList || StringRef(FeatureList) == "")
2104       return;
2105     StringRef(FeatureList).split(ReqFeatures, ",");
2106     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2107       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2108           << TargetDecl->getDeclName()
2109           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2110 
2111   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2112     // Get the required features for the callee.
2113     SmallVector<StringRef, 1> ReqFeatures;
2114     llvm::StringMap<bool> CalleeFeatureMap;
2115     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2116     for (const auto &F : CalleeFeatureMap) {
2117       // Only positive features are "required".
2118       if (F.getValue())
2119         ReqFeatures.push_back(F.getKey());
2120     }
2121     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2122       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2123           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2124   }
2125 }
2126 
2127 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2128   if (!CGM.getCodeGenOpts().SanitizeStats)
2129     return;
2130 
2131   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2132   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2133   CGM.getSanStats().create(IRB, SSK);
2134 }
2135 
2136 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2137   if (CGDebugInfo *DI = getDebugInfo())
2138     return DI->SourceLocToDebugLoc(Location);
2139 
2140   return llvm::DebugLoc();
2141 }
2142