1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/OpenCL.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/Operator.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 34 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), CalleeWithThisReturn(0), 45 DidCallStackSave(false), 46 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 47 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 48 CXXDefaultInitExprThis(0), 49 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 50 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 51 TerminateHandler(0), TrapBB(0) { 52 if (!suppressNewContext) 53 CGM.getCXXABI().getMangleContext().startNewFunction(); 54 55 llvm::FastMathFlags FMF; 56 if (CGM.getLangOpts().FastMath) 57 FMF.setUnsafeAlgebra(); 58 if (CGM.getLangOpts().FiniteMathOnly) { 59 FMF.setNoNaNs(); 60 FMF.setNoInfs(); 61 } 62 Builder.SetFastMathFlags(FMF); 63 } 64 65 CodeGenFunction::~CodeGenFunction() { 66 // If there are any unclaimed block infos, go ahead and destroy them 67 // now. This can happen if IR-gen gets clever and skips evaluating 68 // something. 69 if (FirstBlockInfo) 70 destroyBlockInfos(FirstBlockInfo); 71 } 72 73 74 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 75 return CGM.getTypes().ConvertTypeForMem(T); 76 } 77 78 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 79 return CGM.getTypes().ConvertType(T); 80 } 81 82 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 83 type = type.getCanonicalType(); 84 while (true) { 85 switch (type->getTypeClass()) { 86 #define TYPE(name, parent) 87 #define ABSTRACT_TYPE(name, parent) 88 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 89 #define DEPENDENT_TYPE(name, parent) case Type::name: 90 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 91 #include "clang/AST/TypeNodes.def" 92 llvm_unreachable("non-canonical or dependent type in IR-generation"); 93 94 case Type::Auto: 95 llvm_unreachable("undeduced auto type in IR-generation"); 96 97 // Various scalar types. 98 case Type::Builtin: 99 case Type::Pointer: 100 case Type::BlockPointer: 101 case Type::LValueReference: 102 case Type::RValueReference: 103 case Type::MemberPointer: 104 case Type::Vector: 105 case Type::ExtVector: 106 case Type::FunctionProto: 107 case Type::FunctionNoProto: 108 case Type::Enum: 109 case Type::ObjCObjectPointer: 110 return TEK_Scalar; 111 112 // Complexes. 113 case Type::Complex: 114 return TEK_Complex; 115 116 // Arrays, records, and Objective-C objects. 117 case Type::ConstantArray: 118 case Type::IncompleteArray: 119 case Type::VariableArray: 120 case Type::Record: 121 case Type::ObjCObject: 122 case Type::ObjCInterface: 123 return TEK_Aggregate; 124 125 // We operate on atomic values according to their underlying type. 126 case Type::Atomic: 127 type = cast<AtomicType>(type)->getValueType(); 128 continue; 129 } 130 llvm_unreachable("unknown type kind!"); 131 } 132 } 133 134 void CodeGenFunction::EmitReturnBlock() { 135 // For cleanliness, we try to avoid emitting the return block for 136 // simple cases. 137 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 138 139 if (CurBB) { 140 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 141 142 // We have a valid insert point, reuse it if it is empty or there are no 143 // explicit jumps to the return block. 144 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 145 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 146 delete ReturnBlock.getBlock(); 147 } else 148 EmitBlock(ReturnBlock.getBlock()); 149 return; 150 } 151 152 // Otherwise, if the return block is the target of a single direct 153 // branch then we can just put the code in that block instead. This 154 // cleans up functions which started with a unified return block. 155 if (ReturnBlock.getBlock()->hasOneUse()) { 156 llvm::BranchInst *BI = 157 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 158 if (BI && BI->isUnconditional() && 159 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 160 // Reset insertion point, including debug location, and delete the 161 // branch. This is really subtle and only works because the next change 162 // in location will hit the caching in CGDebugInfo::EmitLocation and not 163 // override this. 164 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 165 Builder.SetInsertPoint(BI->getParent()); 166 BI->eraseFromParent(); 167 delete ReturnBlock.getBlock(); 168 return; 169 } 170 } 171 172 // FIXME: We are at an unreachable point, there is no reason to emit the block 173 // unless it has uses. However, we still need a place to put the debug 174 // region.end for now. 175 176 EmitBlock(ReturnBlock.getBlock()); 177 } 178 179 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 180 if (!BB) return; 181 if (!BB->use_empty()) 182 return CGF.CurFn->getBasicBlockList().push_back(BB); 183 delete BB; 184 } 185 186 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 187 assert(BreakContinueStack.empty() && 188 "mismatched push/pop in break/continue stack!"); 189 190 if (CGDebugInfo *DI = getDebugInfo()) 191 DI->EmitLocation(Builder, EndLoc); 192 193 // Pop any cleanups that might have been associated with the 194 // parameters. Do this in whatever block we're currently in; it's 195 // important to do this before we enter the return block or return 196 // edges will be *really* confused. 197 if (EHStack.stable_begin() != PrologueCleanupDepth) 198 PopCleanupBlocks(PrologueCleanupDepth); 199 200 // Emit function epilog (to return). 201 EmitReturnBlock(); 202 203 if (ShouldInstrumentFunction()) 204 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 205 206 // Emit debug descriptor for function end. 207 if (CGDebugInfo *DI = getDebugInfo()) { 208 DI->EmitFunctionEnd(Builder); 209 } 210 211 EmitFunctionEpilog(*CurFnInfo); 212 EmitEndEHSpec(CurCodeDecl); 213 214 assert(EHStack.empty() && 215 "did not remove all scopes from cleanup stack!"); 216 217 // If someone did an indirect goto, emit the indirect goto block at the end of 218 // the function. 219 if (IndirectBranch) { 220 EmitBlock(IndirectBranch->getParent()); 221 Builder.ClearInsertionPoint(); 222 } 223 224 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 225 llvm::Instruction *Ptr = AllocaInsertPt; 226 AllocaInsertPt = 0; 227 Ptr->eraseFromParent(); 228 229 // If someone took the address of a label but never did an indirect goto, we 230 // made a zero entry PHI node, which is illegal, zap it now. 231 if (IndirectBranch) { 232 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 233 if (PN->getNumIncomingValues() == 0) { 234 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 235 PN->eraseFromParent(); 236 } 237 } 238 239 EmitIfUsed(*this, EHResumeBlock); 240 EmitIfUsed(*this, TerminateLandingPad); 241 EmitIfUsed(*this, TerminateHandler); 242 EmitIfUsed(*this, UnreachableBlock); 243 244 if (CGM.getCodeGenOpts().EmitDeclMetadata) 245 EmitDeclMetadata(); 246 } 247 248 /// ShouldInstrumentFunction - Return true if the current function should be 249 /// instrumented with __cyg_profile_func_* calls 250 bool CodeGenFunction::ShouldInstrumentFunction() { 251 if (!CGM.getCodeGenOpts().InstrumentFunctions) 252 return false; 253 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 254 return false; 255 return true; 256 } 257 258 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 259 /// instrumentation function with the current function and the call site, if 260 /// function instrumentation is enabled. 261 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 262 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 263 llvm::PointerType *PointerTy = Int8PtrTy; 264 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 265 llvm::FunctionType *FunctionTy = 266 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 267 268 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 269 llvm::CallInst *CallSite = Builder.CreateCall( 270 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 271 llvm::ConstantInt::get(Int32Ty, 0), 272 "callsite"); 273 274 llvm::Value *args[] = { 275 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 276 CallSite 277 }; 278 279 EmitNounwindRuntimeCall(F, args); 280 } 281 282 void CodeGenFunction::EmitMCountInstrumentation() { 283 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 284 285 llvm::Constant *MCountFn = 286 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 287 EmitNounwindRuntimeCall(MCountFn); 288 } 289 290 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 291 // information in the program executable. The argument information stored 292 // includes the argument name, its type, the address and access qualifiers used. 293 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 294 CodeGenModule &CGM,llvm::LLVMContext &Context, 295 SmallVector <llvm::Value*, 5> &kernelMDArgs, 296 CGBuilderTy& Builder, ASTContext &ASTCtx) { 297 // Create MDNodes that represent the kernel arg metadata. 298 // Each MDNode is a list in the form of "key", N number of values which is 299 // the same number of values as their are kernel arguments. 300 301 // MDNode for the kernel argument address space qualifiers. 302 SmallVector<llvm::Value*, 8> addressQuals; 303 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 304 305 // MDNode for the kernel argument access qualifiers (images only). 306 SmallVector<llvm::Value*, 8> accessQuals; 307 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 308 309 // MDNode for the kernel argument type names. 310 SmallVector<llvm::Value*, 8> argTypeNames; 311 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 312 313 // MDNode for the kernel argument type qualifiers. 314 SmallVector<llvm::Value*, 8> argTypeQuals; 315 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 316 317 // MDNode for the kernel argument names. 318 SmallVector<llvm::Value*, 8> argNames; 319 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 320 321 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 322 const ParmVarDecl *parm = FD->getParamDecl(i); 323 QualType ty = parm->getType(); 324 std::string typeQuals; 325 326 if (ty->isPointerType()) { 327 QualType pointeeTy = ty->getPointeeType(); 328 329 // Get address qualifier. 330 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 331 pointeeTy.getAddressSpace()))); 332 333 // Get argument type name. 334 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 335 336 // Turn "unsigned type" to "utype" 337 std::string::size_type pos = typeName.find("unsigned"); 338 if (pos != std::string::npos) 339 typeName.erase(pos+1, 8); 340 341 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 342 343 // Get argument type qualifiers: 344 if (ty.isRestrictQualified()) 345 typeQuals = "restrict"; 346 if (pointeeTy.isConstQualified() || 347 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 348 typeQuals += typeQuals.empty() ? "const" : " const"; 349 if (pointeeTy.isVolatileQualified()) 350 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 351 } else { 352 addressQuals.push_back(Builder.getInt32(0)); 353 354 // Get argument type name. 355 std::string typeName = ty.getUnqualifiedType().getAsString(); 356 357 // Turn "unsigned type" to "utype" 358 std::string::size_type pos = typeName.find("unsigned"); 359 if (pos != std::string::npos) 360 typeName.erase(pos+1, 8); 361 362 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 363 364 // Get argument type qualifiers: 365 if (ty.isConstQualified()) 366 typeQuals = "const"; 367 if (ty.isVolatileQualified()) 368 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 369 } 370 371 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 372 373 // Get image access qualifier: 374 if (ty->isImageType()) { 375 if (parm->hasAttr<OpenCLImageAccessAttr>() && 376 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 377 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 378 else 379 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 380 } else 381 accessQuals.push_back(llvm::MDString::get(Context, "none")); 382 383 // Get argument name. 384 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 385 } 386 387 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 388 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 389 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 390 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 391 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 392 } 393 394 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 395 llvm::Function *Fn) 396 { 397 if (!FD->hasAttr<OpenCLKernelAttr>()) 398 return; 399 400 llvm::LLVMContext &Context = getLLVMContext(); 401 402 SmallVector <llvm::Value*, 5> kernelMDArgs; 403 kernelMDArgs.push_back(Fn); 404 405 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 406 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 407 Builder, getContext()); 408 409 if (FD->hasAttr<VecTypeHintAttr>()) { 410 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 411 QualType hintQTy = attr->getTypeHint(); 412 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 413 bool isSignedInteger = 414 hintQTy->isSignedIntegerType() || 415 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 416 llvm::Value *attrMDArgs[] = { 417 llvm::MDString::get(Context, "vec_type_hint"), 418 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 419 llvm::ConstantInt::get( 420 llvm::IntegerType::get(Context, 32), 421 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 422 }; 423 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 424 } 425 426 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 427 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 428 llvm::Value *attrMDArgs[] = { 429 llvm::MDString::get(Context, "work_group_size_hint"), 430 Builder.getInt32(attr->getXDim()), 431 Builder.getInt32(attr->getYDim()), 432 Builder.getInt32(attr->getZDim()) 433 }; 434 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 435 } 436 437 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 438 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 439 llvm::Value *attrMDArgs[] = { 440 llvm::MDString::get(Context, "reqd_work_group_size"), 441 Builder.getInt32(attr->getXDim()), 442 Builder.getInt32(attr->getYDim()), 443 Builder.getInt32(attr->getZDim()) 444 }; 445 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 446 } 447 448 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 449 llvm::NamedMDNode *OpenCLKernelMetadata = 450 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 451 OpenCLKernelMetadata->addOperand(kernelMDNode); 452 } 453 454 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 455 llvm::Function *Fn, 456 const CGFunctionInfo &FnInfo, 457 const FunctionArgList &Args, 458 SourceLocation StartLoc) { 459 const Decl *D = GD.getDecl(); 460 461 DidCallStackSave = false; 462 CurCodeDecl = CurFuncDecl = D; 463 FnRetTy = RetTy; 464 CurFn = Fn; 465 CurFnInfo = &FnInfo; 466 assert(CurFn->isDeclaration() && "Function already has body?"); 467 468 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 469 SanOpts = &SanitizerOptions::Disabled; 470 SanitizePerformTypeCheck = false; 471 } 472 473 // Pass inline keyword to optimizer if it appears explicitly on any 474 // declaration. 475 if (!CGM.getCodeGenOpts().NoInline) 476 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 477 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 478 RE = FD->redecls_end(); RI != RE; ++RI) 479 if (RI->isInlineSpecified()) { 480 Fn->addFnAttr(llvm::Attribute::InlineHint); 481 break; 482 } 483 484 if (getLangOpts().OpenCL) { 485 // Add metadata for a kernel function. 486 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 487 EmitOpenCLKernelMetadata(FD, Fn); 488 } 489 490 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 491 492 // Create a marker to make it easy to insert allocas into the entryblock 493 // later. Don't create this with the builder, because we don't want it 494 // folded. 495 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 496 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 497 if (Builder.isNamePreserving()) 498 AllocaInsertPt->setName("allocapt"); 499 500 ReturnBlock = getJumpDestInCurrentScope("return"); 501 502 Builder.SetInsertPoint(EntryBB); 503 504 // Emit subprogram debug descriptor. 505 if (CGDebugInfo *DI = getDebugInfo()) { 506 SmallVector<QualType, 16> ArgTypes; 507 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 508 i != e; ++i) { 509 ArgTypes.push_back((*i)->getType()); 510 } 511 512 QualType FnType = 513 getContext().getFunctionType(RetTy, ArgTypes, 514 FunctionProtoType::ExtProtoInfo()); 515 516 DI->setLocation(StartLoc); 517 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 518 } 519 520 if (ShouldInstrumentFunction()) 521 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 522 523 if (CGM.getCodeGenOpts().InstrumentForProfiling) 524 EmitMCountInstrumentation(); 525 526 if (RetTy->isVoidType()) { 527 // Void type; nothing to return. 528 ReturnValue = 0; 529 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 530 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 531 // Indirect aggregate return; emit returned value directly into sret slot. 532 // This reduces code size, and affects correctness in C++. 533 ReturnValue = CurFn->arg_begin(); 534 } else { 535 ReturnValue = CreateIRTemp(RetTy, "retval"); 536 537 // Tell the epilog emitter to autorelease the result. We do this 538 // now so that various specialized functions can suppress it 539 // during their IR-generation. 540 if (getLangOpts().ObjCAutoRefCount && 541 !CurFnInfo->isReturnsRetained() && 542 RetTy->isObjCRetainableType()) 543 AutoreleaseResult = true; 544 } 545 546 EmitStartEHSpec(CurCodeDecl); 547 548 PrologueCleanupDepth = EHStack.stable_begin(); 549 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 550 551 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 552 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 553 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 554 if (MD->getParent()->isLambda() && 555 MD->getOverloadedOperator() == OO_Call) { 556 // We're in a lambda; figure out the captures. 557 MD->getParent()->getCaptureFields(LambdaCaptureFields, 558 LambdaThisCaptureField); 559 if (LambdaThisCaptureField) { 560 // If this lambda captures this, load it. 561 QualType LambdaTagType = 562 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 563 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 564 LambdaTagType); 565 LValue ThisLValue = EmitLValueForField(LambdaLV, 566 LambdaThisCaptureField); 567 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 568 } 569 } else { 570 // Not in a lambda; just use 'this' from the method. 571 // FIXME: Should we generate a new load for each use of 'this'? The 572 // fast register allocator would be happier... 573 CXXThisValue = CXXABIThisValue; 574 } 575 } 576 577 // If any of the arguments have a variably modified type, make sure to 578 // emit the type size. 579 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 580 i != e; ++i) { 581 const VarDecl *VD = *i; 582 583 // Dig out the type as written from ParmVarDecls; it's unclear whether 584 // the standard (C99 6.9.1p10) requires this, but we're following the 585 // precedent set by gcc. 586 QualType Ty; 587 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 588 Ty = PVD->getOriginalType(); 589 else 590 Ty = VD->getType(); 591 592 if (Ty->isVariablyModifiedType()) 593 EmitVariablyModifiedType(Ty); 594 } 595 // Emit a location at the end of the prologue. 596 if (CGDebugInfo *DI = getDebugInfo()) 597 DI->EmitLocation(Builder, StartLoc); 598 } 599 600 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 601 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 602 assert(FD->getBody()); 603 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 604 EmitCompoundStmtWithoutScope(*S); 605 else 606 EmitStmt(FD->getBody()); 607 } 608 609 /// Tries to mark the given function nounwind based on the 610 /// non-existence of any throwing calls within it. We believe this is 611 /// lightweight enough to do at -O0. 612 static void TryMarkNoThrow(llvm::Function *F) { 613 // LLVM treats 'nounwind' on a function as part of the type, so we 614 // can't do this on functions that can be overwritten. 615 if (F->mayBeOverridden()) return; 616 617 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 618 for (llvm::BasicBlock::iterator 619 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 620 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 621 if (!Call->doesNotThrow()) 622 return; 623 } else if (isa<llvm::ResumeInst>(&*BI)) { 624 return; 625 } 626 F->setDoesNotThrow(); 627 } 628 629 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 630 const CGFunctionInfo &FnInfo) { 631 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 632 633 // Check if we should generate debug info for this function. 634 if (!FD->hasAttr<NoDebugAttr>()) 635 maybeInitializeDebugInfo(); 636 637 FunctionArgList Args; 638 QualType ResTy = FD->getResultType(); 639 640 CurGD = GD; 641 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 642 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 643 644 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 645 Args.push_back(FD->getParamDecl(i)); 646 647 SourceRange BodyRange; 648 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 649 650 // CalleeWithThisReturn keeps track of the last callee inside this function 651 // that returns 'this'. Before starting the function, we set it to null. 652 CalleeWithThisReturn = 0; 653 654 // Emit the standard function prologue. 655 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 656 657 // Generate the body of the function. 658 if (isa<CXXDestructorDecl>(FD)) 659 EmitDestructorBody(Args); 660 else if (isa<CXXConstructorDecl>(FD)) 661 EmitConstructorBody(Args); 662 else if (getLangOpts().CUDA && 663 !CGM.getCodeGenOpts().CUDAIsDevice && 664 FD->hasAttr<CUDAGlobalAttr>()) 665 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 666 else if (isa<CXXConversionDecl>(FD) && 667 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 668 // The lambda conversion to block pointer is special; the semantics can't be 669 // expressed in the AST, so IRGen needs to special-case it. 670 EmitLambdaToBlockPointerBody(Args); 671 } else if (isa<CXXMethodDecl>(FD) && 672 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 673 // The lambda "__invoke" function is special, because it forwards or 674 // clones the body of the function call operator (but is actually static). 675 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 676 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 677 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 678 // Implicit copy-assignment gets the same special treatment as implicit 679 // copy-constructors. 680 emitImplicitAssignmentOperatorBody(Args); 681 } 682 else 683 EmitFunctionBody(Args); 684 685 // C++11 [stmt.return]p2: 686 // Flowing off the end of a function [...] results in undefined behavior in 687 // a value-returning function. 688 // C11 6.9.1p12: 689 // If the '}' that terminates a function is reached, and the value of the 690 // function call is used by the caller, the behavior is undefined. 691 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 692 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 693 if (SanOpts->Return) 694 EmitCheck(Builder.getFalse(), "missing_return", 695 EmitCheckSourceLocation(FD->getLocation()), 696 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 697 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 698 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 699 Builder.CreateUnreachable(); 700 Builder.ClearInsertionPoint(); 701 } 702 703 // Emit the standard function epilogue. 704 FinishFunction(BodyRange.getEnd()); 705 // CalleeWithThisReturn keeps track of the last callee inside this function 706 // that returns 'this'. After finishing the function, we set it to null. 707 CalleeWithThisReturn = 0; 708 709 // If we haven't marked the function nothrow through other means, do 710 // a quick pass now to see if we can. 711 if (!CurFn->doesNotThrow()) 712 TryMarkNoThrow(CurFn); 713 } 714 715 /// ContainsLabel - Return true if the statement contains a label in it. If 716 /// this statement is not executed normally, it not containing a label means 717 /// that we can just remove the code. 718 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 719 // Null statement, not a label! 720 if (S == 0) return false; 721 722 // If this is a label, we have to emit the code, consider something like: 723 // if (0) { ... foo: bar(); } goto foo; 724 // 725 // TODO: If anyone cared, we could track __label__'s, since we know that you 726 // can't jump to one from outside their declared region. 727 if (isa<LabelStmt>(S)) 728 return true; 729 730 // If this is a case/default statement, and we haven't seen a switch, we have 731 // to emit the code. 732 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 733 return true; 734 735 // If this is a switch statement, we want to ignore cases below it. 736 if (isa<SwitchStmt>(S)) 737 IgnoreCaseStmts = true; 738 739 // Scan subexpressions for verboten labels. 740 for (Stmt::const_child_range I = S->children(); I; ++I) 741 if (ContainsLabel(*I, IgnoreCaseStmts)) 742 return true; 743 744 return false; 745 } 746 747 /// containsBreak - Return true if the statement contains a break out of it. 748 /// If the statement (recursively) contains a switch or loop with a break 749 /// inside of it, this is fine. 750 bool CodeGenFunction::containsBreak(const Stmt *S) { 751 // Null statement, not a label! 752 if (S == 0) return false; 753 754 // If this is a switch or loop that defines its own break scope, then we can 755 // include it and anything inside of it. 756 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 757 isa<ForStmt>(S)) 758 return false; 759 760 if (isa<BreakStmt>(S)) 761 return true; 762 763 // Scan subexpressions for verboten breaks. 764 for (Stmt::const_child_range I = S->children(); I; ++I) 765 if (containsBreak(*I)) 766 return true; 767 768 return false; 769 } 770 771 772 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 773 /// to a constant, or if it does but contains a label, return false. If it 774 /// constant folds return true and set the boolean result in Result. 775 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 776 bool &ResultBool) { 777 llvm::APSInt ResultInt; 778 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 779 return false; 780 781 ResultBool = ResultInt.getBoolValue(); 782 return true; 783 } 784 785 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 786 /// to a constant, or if it does but contains a label, return false. If it 787 /// constant folds return true and set the folded value. 788 bool CodeGenFunction:: 789 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 790 // FIXME: Rename and handle conversion of other evaluatable things 791 // to bool. 792 llvm::APSInt Int; 793 if (!Cond->EvaluateAsInt(Int, getContext())) 794 return false; // Not foldable, not integer or not fully evaluatable. 795 796 if (CodeGenFunction::ContainsLabel(Cond)) 797 return false; // Contains a label. 798 799 ResultInt = Int; 800 return true; 801 } 802 803 804 805 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 806 /// statement) to the specified blocks. Based on the condition, this might try 807 /// to simplify the codegen of the conditional based on the branch. 808 /// 809 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 810 llvm::BasicBlock *TrueBlock, 811 llvm::BasicBlock *FalseBlock) { 812 Cond = Cond->IgnoreParens(); 813 814 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 815 // Handle X && Y in a condition. 816 if (CondBOp->getOpcode() == BO_LAnd) { 817 // If we have "1 && X", simplify the code. "0 && X" would have constant 818 // folded if the case was simple enough. 819 bool ConstantBool = false; 820 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 821 ConstantBool) { 822 // br(1 && X) -> br(X). 823 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 824 } 825 826 // If we have "X && 1", simplify the code to use an uncond branch. 827 // "X && 0" would have been constant folded to 0. 828 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 829 ConstantBool) { 830 // br(X && 1) -> br(X). 831 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 832 } 833 834 // Emit the LHS as a conditional. If the LHS conditional is false, we 835 // want to jump to the FalseBlock. 836 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 837 838 ConditionalEvaluation eval(*this); 839 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 840 EmitBlock(LHSTrue); 841 842 // Any temporaries created here are conditional. 843 eval.begin(*this); 844 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 845 eval.end(*this); 846 847 return; 848 } 849 850 if (CondBOp->getOpcode() == BO_LOr) { 851 // If we have "0 || X", simplify the code. "1 || X" would have constant 852 // folded if the case was simple enough. 853 bool ConstantBool = false; 854 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 855 !ConstantBool) { 856 // br(0 || X) -> br(X). 857 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 858 } 859 860 // If we have "X || 0", simplify the code to use an uncond branch. 861 // "X || 1" would have been constant folded to 1. 862 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 863 !ConstantBool) { 864 // br(X || 0) -> br(X). 865 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 866 } 867 868 // Emit the LHS as a conditional. If the LHS conditional is true, we 869 // want to jump to the TrueBlock. 870 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 871 872 ConditionalEvaluation eval(*this); 873 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 874 EmitBlock(LHSFalse); 875 876 // Any temporaries created here are conditional. 877 eval.begin(*this); 878 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 879 eval.end(*this); 880 881 return; 882 } 883 } 884 885 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 886 // br(!x, t, f) -> br(x, f, t) 887 if (CondUOp->getOpcode() == UO_LNot) 888 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 889 } 890 891 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 892 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 893 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 894 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 895 896 ConditionalEvaluation cond(*this); 897 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 898 899 cond.begin(*this); 900 EmitBlock(LHSBlock); 901 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 902 cond.end(*this); 903 904 cond.begin(*this); 905 EmitBlock(RHSBlock); 906 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 907 cond.end(*this); 908 909 return; 910 } 911 912 // Emit the code with the fully general case. 913 llvm::Value *CondV = EvaluateExprAsBool(Cond); 914 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 915 } 916 917 /// ErrorUnsupported - Print out an error that codegen doesn't support the 918 /// specified stmt yet. 919 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 920 bool OmitOnError) { 921 CGM.ErrorUnsupported(S, Type, OmitOnError); 922 } 923 924 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 925 /// variable-length array whose elements have a non-zero bit-pattern. 926 /// 927 /// \param baseType the inner-most element type of the array 928 /// \param src - a char* pointing to the bit-pattern for a single 929 /// base element of the array 930 /// \param sizeInChars - the total size of the VLA, in chars 931 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 932 llvm::Value *dest, llvm::Value *src, 933 llvm::Value *sizeInChars) { 934 std::pair<CharUnits,CharUnits> baseSizeAndAlign 935 = CGF.getContext().getTypeInfoInChars(baseType); 936 937 CGBuilderTy &Builder = CGF.Builder; 938 939 llvm::Value *baseSizeInChars 940 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 941 942 llvm::Type *i8p = Builder.getInt8PtrTy(); 943 944 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 945 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 946 947 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 948 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 949 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 950 951 // Make a loop over the VLA. C99 guarantees that the VLA element 952 // count must be nonzero. 953 CGF.EmitBlock(loopBB); 954 955 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 956 cur->addIncoming(begin, originBB); 957 958 // memcpy the individual element bit-pattern. 959 Builder.CreateMemCpy(cur, src, baseSizeInChars, 960 baseSizeAndAlign.second.getQuantity(), 961 /*volatile*/ false); 962 963 // Go to the next element. 964 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 965 966 // Leave if that's the end of the VLA. 967 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 968 Builder.CreateCondBr(done, contBB, loopBB); 969 cur->addIncoming(next, loopBB); 970 971 CGF.EmitBlock(contBB); 972 } 973 974 void 975 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 976 // Ignore empty classes in C++. 977 if (getLangOpts().CPlusPlus) { 978 if (const RecordType *RT = Ty->getAs<RecordType>()) { 979 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 980 return; 981 } 982 } 983 984 // Cast the dest ptr to the appropriate i8 pointer type. 985 unsigned DestAS = 986 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 987 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 988 if (DestPtr->getType() != BP) 989 DestPtr = Builder.CreateBitCast(DestPtr, BP); 990 991 // Get size and alignment info for this aggregate. 992 std::pair<CharUnits, CharUnits> TypeInfo = 993 getContext().getTypeInfoInChars(Ty); 994 CharUnits Size = TypeInfo.first; 995 CharUnits Align = TypeInfo.second; 996 997 llvm::Value *SizeVal; 998 const VariableArrayType *vla; 999 1000 // Don't bother emitting a zero-byte memset. 1001 if (Size.isZero()) { 1002 // But note that getTypeInfo returns 0 for a VLA. 1003 if (const VariableArrayType *vlaType = 1004 dyn_cast_or_null<VariableArrayType>( 1005 getContext().getAsArrayType(Ty))) { 1006 QualType eltType; 1007 llvm::Value *numElts; 1008 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1009 1010 SizeVal = numElts; 1011 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1012 if (!eltSize.isOne()) 1013 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1014 vla = vlaType; 1015 } else { 1016 return; 1017 } 1018 } else { 1019 SizeVal = CGM.getSize(Size); 1020 vla = 0; 1021 } 1022 1023 // If the type contains a pointer to data member we can't memset it to zero. 1024 // Instead, create a null constant and copy it to the destination. 1025 // TODO: there are other patterns besides zero that we can usefully memset, 1026 // like -1, which happens to be the pattern used by member-pointers. 1027 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1028 // For a VLA, emit a single element, then splat that over the VLA. 1029 if (vla) Ty = getContext().getBaseElementType(vla); 1030 1031 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1032 1033 llvm::GlobalVariable *NullVariable = 1034 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1035 /*isConstant=*/true, 1036 llvm::GlobalVariable::PrivateLinkage, 1037 NullConstant, Twine()); 1038 llvm::Value *SrcPtr = 1039 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1040 1041 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1042 1043 // Get and call the appropriate llvm.memcpy overload. 1044 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1045 return; 1046 } 1047 1048 // Otherwise, just memset the whole thing to zero. This is legal 1049 // because in LLVM, all default initializers (other than the ones we just 1050 // handled above) are guaranteed to have a bit pattern of all zeros. 1051 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1052 Align.getQuantity(), false); 1053 } 1054 1055 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1056 // Make sure that there is a block for the indirect goto. 1057 if (IndirectBranch == 0) 1058 GetIndirectGotoBlock(); 1059 1060 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1061 1062 // Make sure the indirect branch includes all of the address-taken blocks. 1063 IndirectBranch->addDestination(BB); 1064 return llvm::BlockAddress::get(CurFn, BB); 1065 } 1066 1067 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1068 // If we already made the indirect branch for indirect goto, return its block. 1069 if (IndirectBranch) return IndirectBranch->getParent(); 1070 1071 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1072 1073 // Create the PHI node that indirect gotos will add entries to. 1074 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1075 "indirect.goto.dest"); 1076 1077 // Create the indirect branch instruction. 1078 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1079 return IndirectBranch->getParent(); 1080 } 1081 1082 /// Computes the length of an array in elements, as well as the base 1083 /// element type and a properly-typed first element pointer. 1084 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1085 QualType &baseType, 1086 llvm::Value *&addr) { 1087 const ArrayType *arrayType = origArrayType; 1088 1089 // If it's a VLA, we have to load the stored size. Note that 1090 // this is the size of the VLA in bytes, not its size in elements. 1091 llvm::Value *numVLAElements = 0; 1092 if (isa<VariableArrayType>(arrayType)) { 1093 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1094 1095 // Walk into all VLAs. This doesn't require changes to addr, 1096 // which has type T* where T is the first non-VLA element type. 1097 do { 1098 QualType elementType = arrayType->getElementType(); 1099 arrayType = getContext().getAsArrayType(elementType); 1100 1101 // If we only have VLA components, 'addr' requires no adjustment. 1102 if (!arrayType) { 1103 baseType = elementType; 1104 return numVLAElements; 1105 } 1106 } while (isa<VariableArrayType>(arrayType)); 1107 1108 // We get out here only if we find a constant array type 1109 // inside the VLA. 1110 } 1111 1112 // We have some number of constant-length arrays, so addr should 1113 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1114 // down to the first element of addr. 1115 SmallVector<llvm::Value*, 8> gepIndices; 1116 1117 // GEP down to the array type. 1118 llvm::ConstantInt *zero = Builder.getInt32(0); 1119 gepIndices.push_back(zero); 1120 1121 uint64_t countFromCLAs = 1; 1122 QualType eltType; 1123 1124 llvm::ArrayType *llvmArrayType = 1125 dyn_cast<llvm::ArrayType>( 1126 cast<llvm::PointerType>(addr->getType())->getElementType()); 1127 while (llvmArrayType) { 1128 assert(isa<ConstantArrayType>(arrayType)); 1129 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1130 == llvmArrayType->getNumElements()); 1131 1132 gepIndices.push_back(zero); 1133 countFromCLAs *= llvmArrayType->getNumElements(); 1134 eltType = arrayType->getElementType(); 1135 1136 llvmArrayType = 1137 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1138 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1139 assert((!llvmArrayType || arrayType) && 1140 "LLVM and Clang types are out-of-synch"); 1141 } 1142 1143 if (arrayType) { 1144 // From this point onwards, the Clang array type has been emitted 1145 // as some other type (probably a packed struct). Compute the array 1146 // size, and just emit the 'begin' expression as a bitcast. 1147 while (arrayType) { 1148 countFromCLAs *= 1149 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1150 eltType = arrayType->getElementType(); 1151 arrayType = getContext().getAsArrayType(eltType); 1152 } 1153 1154 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1155 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1156 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1157 } else { 1158 // Create the actual GEP. 1159 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1160 } 1161 1162 baseType = eltType; 1163 1164 llvm::Value *numElements 1165 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1166 1167 // If we had any VLA dimensions, factor them in. 1168 if (numVLAElements) 1169 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1170 1171 return numElements; 1172 } 1173 1174 std::pair<llvm::Value*, QualType> 1175 CodeGenFunction::getVLASize(QualType type) { 1176 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1177 assert(vla && "type was not a variable array type!"); 1178 return getVLASize(vla); 1179 } 1180 1181 std::pair<llvm::Value*, QualType> 1182 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1183 // The number of elements so far; always size_t. 1184 llvm::Value *numElements = 0; 1185 1186 QualType elementType; 1187 do { 1188 elementType = type->getElementType(); 1189 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1190 assert(vlaSize && "no size for VLA!"); 1191 assert(vlaSize->getType() == SizeTy); 1192 1193 if (!numElements) { 1194 numElements = vlaSize; 1195 } else { 1196 // It's undefined behavior if this wraps around, so mark it that way. 1197 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1198 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1199 } 1200 } while ((type = getContext().getAsVariableArrayType(elementType))); 1201 1202 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1203 } 1204 1205 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1206 assert(type->isVariablyModifiedType() && 1207 "Must pass variably modified type to EmitVLASizes!"); 1208 1209 EnsureInsertPoint(); 1210 1211 // We're going to walk down into the type and look for VLA 1212 // expressions. 1213 do { 1214 assert(type->isVariablyModifiedType()); 1215 1216 const Type *ty = type.getTypePtr(); 1217 switch (ty->getTypeClass()) { 1218 1219 #define TYPE(Class, Base) 1220 #define ABSTRACT_TYPE(Class, Base) 1221 #define NON_CANONICAL_TYPE(Class, Base) 1222 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1223 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1224 #include "clang/AST/TypeNodes.def" 1225 llvm_unreachable("unexpected dependent type!"); 1226 1227 // These types are never variably-modified. 1228 case Type::Builtin: 1229 case Type::Complex: 1230 case Type::Vector: 1231 case Type::ExtVector: 1232 case Type::Record: 1233 case Type::Enum: 1234 case Type::Elaborated: 1235 case Type::TemplateSpecialization: 1236 case Type::ObjCObject: 1237 case Type::ObjCInterface: 1238 case Type::ObjCObjectPointer: 1239 llvm_unreachable("type class is never variably-modified!"); 1240 1241 case Type::Pointer: 1242 type = cast<PointerType>(ty)->getPointeeType(); 1243 break; 1244 1245 case Type::BlockPointer: 1246 type = cast<BlockPointerType>(ty)->getPointeeType(); 1247 break; 1248 1249 case Type::LValueReference: 1250 case Type::RValueReference: 1251 type = cast<ReferenceType>(ty)->getPointeeType(); 1252 break; 1253 1254 case Type::MemberPointer: 1255 type = cast<MemberPointerType>(ty)->getPointeeType(); 1256 break; 1257 1258 case Type::ConstantArray: 1259 case Type::IncompleteArray: 1260 // Losing element qualification here is fine. 1261 type = cast<ArrayType>(ty)->getElementType(); 1262 break; 1263 1264 case Type::VariableArray: { 1265 // Losing element qualification here is fine. 1266 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1267 1268 // Unknown size indication requires no size computation. 1269 // Otherwise, evaluate and record it. 1270 if (const Expr *size = vat->getSizeExpr()) { 1271 // It's possible that we might have emitted this already, 1272 // e.g. with a typedef and a pointer to it. 1273 llvm::Value *&entry = VLASizeMap[size]; 1274 if (!entry) { 1275 llvm::Value *Size = EmitScalarExpr(size); 1276 1277 // C11 6.7.6.2p5: 1278 // If the size is an expression that is not an integer constant 1279 // expression [...] each time it is evaluated it shall have a value 1280 // greater than zero. 1281 if (SanOpts->VLABound && 1282 size->getType()->isSignedIntegerType()) { 1283 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1284 llvm::Constant *StaticArgs[] = { 1285 EmitCheckSourceLocation(size->getLocStart()), 1286 EmitCheckTypeDescriptor(size->getType()) 1287 }; 1288 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1289 "vla_bound_not_positive", StaticArgs, Size, 1290 CRK_Recoverable); 1291 } 1292 1293 // Always zexting here would be wrong if it weren't 1294 // undefined behavior to have a negative bound. 1295 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1296 } 1297 } 1298 type = vat->getElementType(); 1299 break; 1300 } 1301 1302 case Type::FunctionProto: 1303 case Type::FunctionNoProto: 1304 type = cast<FunctionType>(ty)->getResultType(); 1305 break; 1306 1307 case Type::Paren: 1308 case Type::TypeOf: 1309 case Type::UnaryTransform: 1310 case Type::Attributed: 1311 case Type::SubstTemplateTypeParm: 1312 // Keep walking after single level desugaring. 1313 type = type.getSingleStepDesugaredType(getContext()); 1314 break; 1315 1316 case Type::Typedef: 1317 case Type::Decltype: 1318 case Type::Auto: 1319 // Stop walking: nothing to do. 1320 return; 1321 1322 case Type::TypeOfExpr: 1323 // Stop walking: emit typeof expression. 1324 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1325 return; 1326 1327 case Type::Atomic: 1328 type = cast<AtomicType>(ty)->getValueType(); 1329 break; 1330 } 1331 } while (type->isVariablyModifiedType()); 1332 } 1333 1334 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1335 if (getContext().getBuiltinVaListType()->isArrayType()) 1336 return EmitScalarExpr(E); 1337 return EmitLValue(E).getAddress(); 1338 } 1339 1340 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1341 llvm::Constant *Init) { 1342 assert (Init && "Invalid DeclRefExpr initializer!"); 1343 if (CGDebugInfo *Dbg = getDebugInfo()) 1344 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1345 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1346 } 1347 1348 CodeGenFunction::PeepholeProtection 1349 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1350 // At the moment, the only aggressive peephole we do in IR gen 1351 // is trunc(zext) folding, but if we add more, we can easily 1352 // extend this protection. 1353 1354 if (!rvalue.isScalar()) return PeepholeProtection(); 1355 llvm::Value *value = rvalue.getScalarVal(); 1356 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1357 1358 // Just make an extra bitcast. 1359 assert(HaveInsertPoint()); 1360 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1361 Builder.GetInsertBlock()); 1362 1363 PeepholeProtection protection; 1364 protection.Inst = inst; 1365 return protection; 1366 } 1367 1368 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1369 if (!protection.Inst) return; 1370 1371 // In theory, we could try to duplicate the peepholes now, but whatever. 1372 protection.Inst->eraseFromParent(); 1373 } 1374 1375 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1376 llvm::Value *AnnotatedVal, 1377 StringRef AnnotationStr, 1378 SourceLocation Location) { 1379 llvm::Value *Args[4] = { 1380 AnnotatedVal, 1381 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1382 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1383 CGM.EmitAnnotationLineNo(Location) 1384 }; 1385 return Builder.CreateCall(AnnotationFn, Args); 1386 } 1387 1388 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1389 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1390 // FIXME We create a new bitcast for every annotation because that's what 1391 // llvm-gcc was doing. 1392 for (specific_attr_iterator<AnnotateAttr> 1393 ai = D->specific_attr_begin<AnnotateAttr>(), 1394 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1395 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1396 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1397 (*ai)->getAnnotation(), D->getLocation()); 1398 } 1399 1400 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1401 llvm::Value *V) { 1402 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1403 llvm::Type *VTy = V->getType(); 1404 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1405 CGM.Int8PtrTy); 1406 1407 for (specific_attr_iterator<AnnotateAttr> 1408 ai = D->specific_attr_begin<AnnotateAttr>(), 1409 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1410 // FIXME Always emit the cast inst so we can differentiate between 1411 // annotation on the first field of a struct and annotation on the struct 1412 // itself. 1413 if (VTy != CGM.Int8PtrTy) 1414 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1415 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1416 V = Builder.CreateBitCast(V, VTy); 1417 } 1418 1419 return V; 1420 } 1421