1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 CurFn(nullptr), ReturnValue(Address::invalid()), 69 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 70 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 71 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 72 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 73 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 74 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 75 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 76 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 77 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 78 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 79 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 80 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 81 CXXStructorImplicitParamDecl(nullptr), 82 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 83 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 84 TerminateHandler(nullptr), TrapBB(nullptr), 85 ShouldEmitLifetimeMarkers( 86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 87 if (!suppressNewContext) 88 CGM.getCXXABI().getMangleContext().startNewFunction(); 89 90 llvm::FastMathFlags FMF; 91 if (CGM.getLangOpts().FastMath) 92 FMF.setFast(); 93 if (CGM.getLangOpts().FiniteMathOnly) { 94 FMF.setNoNaNs(); 95 FMF.setNoInfs(); 96 } 97 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 98 FMF.setNoNaNs(); 99 } 100 if (CGM.getCodeGenOpts().NoSignedZeros) { 101 FMF.setNoSignedZeros(); 102 } 103 if (CGM.getCodeGenOpts().ReciprocalMath) { 104 FMF.setAllowReciprocal(); 105 } 106 if (CGM.getCodeGenOpts().Reassociate) { 107 FMF.setAllowReassoc(); 108 } 109 Builder.setFastMathFlags(FMF); 110 } 111 112 CodeGenFunction::~CodeGenFunction() { 113 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 114 115 // If there are any unclaimed block infos, go ahead and destroy them 116 // now. This can happen if IR-gen gets clever and skips evaluating 117 // something. 118 if (FirstBlockInfo) 119 destroyBlockInfos(FirstBlockInfo); 120 121 if (getLangOpts().OpenMP && CurFn) 122 CGM.getOpenMPRuntime().functionFinished(*this); 123 } 124 125 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 TBAAAccessInfo *TBAAInfo) { 128 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 129 /* forPointeeType= */ true); 130 } 131 132 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 133 LValueBaseInfo *BaseInfo, 134 TBAAAccessInfo *TBAAInfo, 135 bool forPointeeType) { 136 if (TBAAInfo) 137 *TBAAInfo = CGM.getTBAAAccessInfo(T); 138 139 // Honor alignment typedef attributes even on incomplete types. 140 // We also honor them straight for C++ class types, even as pointees; 141 // there's an expressivity gap here. 142 if (auto TT = T->getAs<TypedefType>()) { 143 if (auto Align = TT->getDecl()->getMaxAlignment()) { 144 if (BaseInfo) 145 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 146 return getContext().toCharUnitsFromBits(Align); 147 } 148 } 149 150 if (BaseInfo) 151 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 152 153 CharUnits Alignment; 154 if (T->isIncompleteType()) { 155 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 156 } else { 157 // For C++ class pointees, we don't know whether we're pointing at a 158 // base or a complete object, so we generally need to use the 159 // non-virtual alignment. 160 const CXXRecordDecl *RD; 161 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 162 Alignment = CGM.getClassPointerAlignment(RD); 163 } else { 164 Alignment = getContext().getTypeAlignInChars(T); 165 if (T.getQualifiers().hasUnaligned()) 166 Alignment = CharUnits::One(); 167 } 168 169 // Cap to the global maximum type alignment unless the alignment 170 // was somehow explicit on the type. 171 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 172 if (Alignment.getQuantity() > MaxAlign && 173 !getContext().isAlignmentRequired(T)) 174 Alignment = CharUnits::fromQuantity(MaxAlign); 175 } 176 } 177 return Alignment; 178 } 179 180 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 TBAAAccessInfo TBAAInfo; 183 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 184 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 185 TBAAInfo); 186 } 187 188 /// Given a value of type T* that may not be to a complete object, 189 /// construct an l-value with the natural pointee alignment of T. 190 LValue 191 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 195 /* forPointeeType= */ true); 196 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 197 } 198 199 200 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 201 return CGM.getTypes().ConvertTypeForMem(T); 202 } 203 204 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 205 return CGM.getTypes().ConvertType(T); 206 } 207 208 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 209 type = type.getCanonicalType(); 210 while (true) { 211 switch (type->getTypeClass()) { 212 #define TYPE(name, parent) 213 #define ABSTRACT_TYPE(name, parent) 214 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 215 #define DEPENDENT_TYPE(name, parent) case Type::name: 216 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 217 #include "clang/AST/TypeNodes.def" 218 llvm_unreachable("non-canonical or dependent type in IR-generation"); 219 220 case Type::Auto: 221 case Type::DeducedTemplateSpecialization: 222 llvm_unreachable("undeduced type in IR-generation"); 223 224 // Various scalar types. 225 case Type::Builtin: 226 case Type::Pointer: 227 case Type::BlockPointer: 228 case Type::LValueReference: 229 case Type::RValueReference: 230 case Type::MemberPointer: 231 case Type::Vector: 232 case Type::ExtVector: 233 case Type::FunctionProto: 234 case Type::FunctionNoProto: 235 case Type::Enum: 236 case Type::ObjCObjectPointer: 237 case Type::Pipe: 238 return TEK_Scalar; 239 240 // Complexes. 241 case Type::Complex: 242 return TEK_Complex; 243 244 // Arrays, records, and Objective-C objects. 245 case Type::ConstantArray: 246 case Type::IncompleteArray: 247 case Type::VariableArray: 248 case Type::Record: 249 case Type::ObjCObject: 250 case Type::ObjCInterface: 251 return TEK_Aggregate; 252 253 // We operate on atomic values according to their underlying type. 254 case Type::Atomic: 255 type = cast<AtomicType>(type)->getValueType(); 256 continue; 257 } 258 llvm_unreachable("unknown type kind!"); 259 } 260 } 261 262 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 263 // For cleanliness, we try to avoid emitting the return block for 264 // simple cases. 265 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 266 267 if (CurBB) { 268 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 269 270 // We have a valid insert point, reuse it if it is empty or there are no 271 // explicit jumps to the return block. 272 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 273 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 274 delete ReturnBlock.getBlock(); 275 } else 276 EmitBlock(ReturnBlock.getBlock()); 277 return llvm::DebugLoc(); 278 } 279 280 // Otherwise, if the return block is the target of a single direct 281 // branch then we can just put the code in that block instead. This 282 // cleans up functions which started with a unified return block. 283 if (ReturnBlock.getBlock()->hasOneUse()) { 284 llvm::BranchInst *BI = 285 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 286 if (BI && BI->isUnconditional() && 287 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 288 // Record/return the DebugLoc of the simple 'return' expression to be used 289 // later by the actual 'ret' instruction. 290 llvm::DebugLoc Loc = BI->getDebugLoc(); 291 Builder.SetInsertPoint(BI->getParent()); 292 BI->eraseFromParent(); 293 delete ReturnBlock.getBlock(); 294 return Loc; 295 } 296 } 297 298 // FIXME: We are at an unreachable point, there is no reason to emit the block 299 // unless it has uses. However, we still need a place to put the debug 300 // region.end for now. 301 302 EmitBlock(ReturnBlock.getBlock()); 303 return llvm::DebugLoc(); 304 } 305 306 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 307 if (!BB) return; 308 if (!BB->use_empty()) 309 return CGF.CurFn->getBasicBlockList().push_back(BB); 310 delete BB; 311 } 312 313 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 314 assert(BreakContinueStack.empty() && 315 "mismatched push/pop in break/continue stack!"); 316 317 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 318 && NumSimpleReturnExprs == NumReturnExprs 319 && ReturnBlock.getBlock()->use_empty(); 320 // Usually the return expression is evaluated before the cleanup 321 // code. If the function contains only a simple return statement, 322 // such as a constant, the location before the cleanup code becomes 323 // the last useful breakpoint in the function, because the simple 324 // return expression will be evaluated after the cleanup code. To be 325 // safe, set the debug location for cleanup code to the location of 326 // the return statement. Otherwise the cleanup code should be at the 327 // end of the function's lexical scope. 328 // 329 // If there are multiple branches to the return block, the branch 330 // instructions will get the location of the return statements and 331 // all will be fine. 332 if (CGDebugInfo *DI = getDebugInfo()) { 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, LastStopPoint); 335 else 336 DI->EmitLocation(Builder, EndLoc); 337 } 338 339 // Pop any cleanups that might have been associated with the 340 // parameters. Do this in whatever block we're currently in; it's 341 // important to do this before we enter the return block or return 342 // edges will be *really* confused. 343 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 344 bool HasOnlyLifetimeMarkers = 345 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 346 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 347 if (HasCleanups) { 348 // Make sure the line table doesn't jump back into the body for 349 // the ret after it's been at EndLoc. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, EndLoc); 353 354 PopCleanupBlocks(PrologueCleanupDepth); 355 } 356 357 // Emit function epilog (to return). 358 llvm::DebugLoc Loc = EmitReturnBlock(); 359 360 if (ShouldInstrumentFunction()) { 361 if (CGM.getCodeGenOpts().InstrumentFunctions) 362 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 363 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 364 CurFn->addFnAttr("instrument-function-exit-inlined", 365 "__cyg_profile_func_exit"); 366 } 367 368 // Emit debug descriptor for function end. 369 if (CGDebugInfo *DI = getDebugInfo()) 370 DI->EmitFunctionEnd(Builder, CurFn); 371 372 // Reset the debug location to that of the simple 'return' expression, if any 373 // rather than that of the end of the function's scope '}'. 374 ApplyDebugLocation AL(*this, Loc); 375 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 376 EmitEndEHSpec(CurCodeDecl); 377 378 assert(EHStack.empty() && 379 "did not remove all scopes from cleanup stack!"); 380 381 // If someone did an indirect goto, emit the indirect goto block at the end of 382 // the function. 383 if (IndirectBranch) { 384 EmitBlock(IndirectBranch->getParent()); 385 Builder.ClearInsertionPoint(); 386 } 387 388 // If some of our locals escaped, insert a call to llvm.localescape in the 389 // entry block. 390 if (!EscapedLocals.empty()) { 391 // Invert the map from local to index into a simple vector. There should be 392 // no holes. 393 SmallVector<llvm::Value *, 4> EscapeArgs; 394 EscapeArgs.resize(EscapedLocals.size()); 395 for (auto &Pair : EscapedLocals) 396 EscapeArgs[Pair.second] = Pair.first; 397 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 398 &CGM.getModule(), llvm::Intrinsic::localescape); 399 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 400 } 401 402 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 403 llvm::Instruction *Ptr = AllocaInsertPt; 404 AllocaInsertPt = nullptr; 405 Ptr->eraseFromParent(); 406 407 // If someone took the address of a label but never did an indirect goto, we 408 // made a zero entry PHI node, which is illegal, zap it now. 409 if (IndirectBranch) { 410 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 411 if (PN->getNumIncomingValues() == 0) { 412 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 413 PN->eraseFromParent(); 414 } 415 } 416 417 EmitIfUsed(*this, EHResumeBlock); 418 EmitIfUsed(*this, TerminateLandingPad); 419 EmitIfUsed(*this, TerminateHandler); 420 EmitIfUsed(*this, UnreachableBlock); 421 422 if (CGM.getCodeGenOpts().EmitDeclMetadata) 423 EmitDeclMetadata(); 424 425 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 426 I = DeferredReplacements.begin(), 427 E = DeferredReplacements.end(); 428 I != E; ++I) { 429 I->first->replaceAllUsesWith(I->second); 430 I->first->eraseFromParent(); 431 } 432 433 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 434 // PHIs if the current function is a coroutine. We don't do it for all 435 // functions as it may result in slight increase in numbers of instructions 436 // if compiled with no optimizations. We do it for coroutine as the lifetime 437 // of CleanupDestSlot alloca make correct coroutine frame building very 438 // difficult. 439 if (NormalCleanupDest && isCoroutine()) { 440 llvm::DominatorTree DT(*CurFn); 441 llvm::PromoteMemToReg(NormalCleanupDest, DT); 442 NormalCleanupDest = nullptr; 443 } 444 } 445 446 /// ShouldInstrumentFunction - Return true if the current function should be 447 /// instrumented with __cyg_profile_func_* calls 448 bool CodeGenFunction::ShouldInstrumentFunction() { 449 if (!CGM.getCodeGenOpts().InstrumentFunctions && 450 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 451 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 452 return false; 453 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 454 return false; 455 return true; 456 } 457 458 /// ShouldXRayInstrument - Return true if the current function should be 459 /// instrumented with XRay nop sleds. 460 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 461 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 462 } 463 464 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 465 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation. 466 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 467 return CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents; 468 } 469 470 llvm::Constant * 471 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 472 llvm::Constant *Addr) { 473 // Addresses stored in prologue data can't require run-time fixups and must 474 // be PC-relative. Run-time fixups are undesirable because they necessitate 475 // writable text segments, which are unsafe. And absolute addresses are 476 // undesirable because they break PIE mode. 477 478 // Add a layer of indirection through a private global. Taking its address 479 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 480 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 481 /*isConstant=*/true, 482 llvm::GlobalValue::PrivateLinkage, Addr); 483 484 // Create a PC-relative address. 485 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 486 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 487 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 488 return (IntPtrTy == Int32Ty) 489 ? PCRelAsInt 490 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 491 } 492 493 llvm::Value * 494 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 495 llvm::Value *EncodedAddr) { 496 // Reconstruct the address of the global. 497 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 498 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 499 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 500 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 501 502 // Load the original pointer through the global. 503 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 504 "decoded_addr"); 505 } 506 507 static void removeImageAccessQualifier(std::string& TyName) { 508 std::string ReadOnlyQual("__read_only"); 509 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 510 if (ReadOnlyPos != std::string::npos) 511 // "+ 1" for the space after access qualifier. 512 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 513 else { 514 std::string WriteOnlyQual("__write_only"); 515 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 516 if (WriteOnlyPos != std::string::npos) 517 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 518 else { 519 std::string ReadWriteQual("__read_write"); 520 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 521 if (ReadWritePos != std::string::npos) 522 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 523 } 524 } 525 } 526 527 // Returns the address space id that should be produced to the 528 // kernel_arg_addr_space metadata. This is always fixed to the ids 529 // as specified in the SPIR 2.0 specification in order to differentiate 530 // for example in clGetKernelArgInfo() implementation between the address 531 // spaces with targets without unique mapping to the OpenCL address spaces 532 // (basically all single AS CPUs). 533 static unsigned ArgInfoAddressSpace(LangAS AS) { 534 switch (AS) { 535 case LangAS::opencl_global: return 1; 536 case LangAS::opencl_constant: return 2; 537 case LangAS::opencl_local: return 3; 538 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 539 default: 540 return 0; // Assume private. 541 } 542 } 543 544 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 545 // information in the program executable. The argument information stored 546 // includes the argument name, its type, the address and access qualifiers used. 547 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 548 CodeGenModule &CGM, llvm::LLVMContext &Context, 549 CGBuilderTy &Builder, ASTContext &ASTCtx) { 550 // Create MDNodes that represent the kernel arg metadata. 551 // Each MDNode is a list in the form of "key", N number of values which is 552 // the same number of values as their are kernel arguments. 553 554 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 555 556 // MDNode for the kernel argument address space qualifiers. 557 SmallVector<llvm::Metadata *, 8> addressQuals; 558 559 // MDNode for the kernel argument access qualifiers (images only). 560 SmallVector<llvm::Metadata *, 8> accessQuals; 561 562 // MDNode for the kernel argument type names. 563 SmallVector<llvm::Metadata *, 8> argTypeNames; 564 565 // MDNode for the kernel argument base type names. 566 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 567 568 // MDNode for the kernel argument type qualifiers. 569 SmallVector<llvm::Metadata *, 8> argTypeQuals; 570 571 // MDNode for the kernel argument names. 572 SmallVector<llvm::Metadata *, 8> argNames; 573 574 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 575 const ParmVarDecl *parm = FD->getParamDecl(i); 576 QualType ty = parm->getType(); 577 std::string typeQuals; 578 579 if (ty->isPointerType()) { 580 QualType pointeeTy = ty->getPointeeType(); 581 582 // Get address qualifier. 583 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 584 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 585 586 // Get argument type name. 587 std::string typeName = 588 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 589 590 // Turn "unsigned type" to "utype" 591 std::string::size_type pos = typeName.find("unsigned"); 592 if (pointeeTy.isCanonical() && pos != std::string::npos) 593 typeName.erase(pos+1, 8); 594 595 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 596 597 std::string baseTypeName = 598 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 599 Policy) + 600 "*"; 601 602 // Turn "unsigned type" to "utype" 603 pos = baseTypeName.find("unsigned"); 604 if (pos != std::string::npos) 605 baseTypeName.erase(pos+1, 8); 606 607 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 608 609 // Get argument type qualifiers: 610 if (ty.isRestrictQualified()) 611 typeQuals = "restrict"; 612 if (pointeeTy.isConstQualified() || 613 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 614 typeQuals += typeQuals.empty() ? "const" : " const"; 615 if (pointeeTy.isVolatileQualified()) 616 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 617 } else { 618 uint32_t AddrSpc = 0; 619 bool isPipe = ty->isPipeType(); 620 if (ty->isImageType() || isPipe) 621 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 622 623 addressQuals.push_back( 624 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 625 626 // Get argument type name. 627 std::string typeName; 628 if (isPipe) 629 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 630 .getAsString(Policy); 631 else 632 typeName = ty.getUnqualifiedType().getAsString(Policy); 633 634 // Turn "unsigned type" to "utype" 635 std::string::size_type pos = typeName.find("unsigned"); 636 if (ty.isCanonical() && pos != std::string::npos) 637 typeName.erase(pos+1, 8); 638 639 std::string baseTypeName; 640 if (isPipe) 641 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 642 ->getElementType().getCanonicalType() 643 .getAsString(Policy); 644 else 645 baseTypeName = 646 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 647 648 // Remove access qualifiers on images 649 // (as they are inseparable from type in clang implementation, 650 // but OpenCL spec provides a special query to get access qualifier 651 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 652 if (ty->isImageType()) { 653 removeImageAccessQualifier(typeName); 654 removeImageAccessQualifier(baseTypeName); 655 } 656 657 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 658 659 // Turn "unsigned type" to "utype" 660 pos = baseTypeName.find("unsigned"); 661 if (pos != std::string::npos) 662 baseTypeName.erase(pos+1, 8); 663 664 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 665 666 if (isPipe) 667 typeQuals = "pipe"; 668 } 669 670 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 671 672 // Get image and pipe access qualifier: 673 if (ty->isImageType()|| ty->isPipeType()) { 674 const Decl *PDecl = parm; 675 if (auto *TD = dyn_cast<TypedefType>(ty)) 676 PDecl = TD->getDecl(); 677 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 678 if (A && A->isWriteOnly()) 679 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 680 else if (A && A->isReadWrite()) 681 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 682 else 683 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 684 } else 685 accessQuals.push_back(llvm::MDString::get(Context, "none")); 686 687 // Get argument name. 688 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 689 } 690 691 Fn->setMetadata("kernel_arg_addr_space", 692 llvm::MDNode::get(Context, addressQuals)); 693 Fn->setMetadata("kernel_arg_access_qual", 694 llvm::MDNode::get(Context, accessQuals)); 695 Fn->setMetadata("kernel_arg_type", 696 llvm::MDNode::get(Context, argTypeNames)); 697 Fn->setMetadata("kernel_arg_base_type", 698 llvm::MDNode::get(Context, argBaseTypeNames)); 699 Fn->setMetadata("kernel_arg_type_qual", 700 llvm::MDNode::get(Context, argTypeQuals)); 701 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 702 Fn->setMetadata("kernel_arg_name", 703 llvm::MDNode::get(Context, argNames)); 704 } 705 706 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 707 llvm::Function *Fn) 708 { 709 if (!FD->hasAttr<OpenCLKernelAttr>()) 710 return; 711 712 llvm::LLVMContext &Context = getLLVMContext(); 713 714 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 715 716 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 717 QualType HintQTy = A->getTypeHint(); 718 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 719 bool IsSignedInteger = 720 HintQTy->isSignedIntegerType() || 721 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 722 llvm::Metadata *AttrMDArgs[] = { 723 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 724 CGM.getTypes().ConvertType(A->getTypeHint()))), 725 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 726 llvm::IntegerType::get(Context, 32), 727 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 728 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 729 } 730 731 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 732 llvm::Metadata *AttrMDArgs[] = { 733 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 734 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 735 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 736 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 737 } 738 739 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 740 llvm::Metadata *AttrMDArgs[] = { 741 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 742 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 743 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 744 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 745 } 746 747 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 748 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 749 llvm::Metadata *AttrMDArgs[] = { 750 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 751 Fn->setMetadata("intel_reqd_sub_group_size", 752 llvm::MDNode::get(Context, AttrMDArgs)); 753 } 754 } 755 756 /// Determine whether the function F ends with a return stmt. 757 static bool endsWithReturn(const Decl* F) { 758 const Stmt *Body = nullptr; 759 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 760 Body = FD->getBody(); 761 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 762 Body = OMD->getBody(); 763 764 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 765 auto LastStmt = CS->body_rbegin(); 766 if (LastStmt != CS->body_rend()) 767 return isa<ReturnStmt>(*LastStmt); 768 } 769 return false; 770 } 771 772 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 773 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 774 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 775 } 776 777 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 778 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 779 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 780 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 781 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 782 return false; 783 784 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 785 return false; 786 787 if (MD->getNumParams() == 2) { 788 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 789 if (!PT || !PT->isVoidPointerType() || 790 !PT->getPointeeType().isConstQualified()) 791 return false; 792 } 793 794 return true; 795 } 796 797 /// Return the UBSan prologue signature for \p FD if one is available. 798 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 799 const FunctionDecl *FD) { 800 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 801 if (!MD->isStatic()) 802 return nullptr; 803 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 804 } 805 806 void CodeGenFunction::StartFunction(GlobalDecl GD, 807 QualType RetTy, 808 llvm::Function *Fn, 809 const CGFunctionInfo &FnInfo, 810 const FunctionArgList &Args, 811 SourceLocation Loc, 812 SourceLocation StartLoc) { 813 assert(!CurFn && 814 "Do not use a CodeGenFunction object for more than one function"); 815 816 const Decl *D = GD.getDecl(); 817 818 DidCallStackSave = false; 819 CurCodeDecl = D; 820 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 821 if (FD->usesSEHTry()) 822 CurSEHParent = FD; 823 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 824 FnRetTy = RetTy; 825 CurFn = Fn; 826 CurFnInfo = &FnInfo; 827 assert(CurFn->isDeclaration() && "Function already has body?"); 828 829 // If this function has been blacklisted for any of the enabled sanitizers, 830 // disable the sanitizer for the function. 831 do { 832 #define SANITIZER(NAME, ID) \ 833 if (SanOpts.empty()) \ 834 break; \ 835 if (SanOpts.has(SanitizerKind::ID)) \ 836 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 837 SanOpts.set(SanitizerKind::ID, false); 838 839 #include "clang/Basic/Sanitizers.def" 840 #undef SANITIZER 841 } while (0); 842 843 if (D) { 844 // Apply the no_sanitize* attributes to SanOpts. 845 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 846 SanOpts.Mask &= ~Attr->getMask(); 847 } 848 849 // Apply sanitizer attributes to the function. 850 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 851 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 852 if (SanOpts.hasOneOf(SanitizerKind::HWAddress)) 853 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 854 if (SanOpts.has(SanitizerKind::Thread)) 855 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 856 if (SanOpts.has(SanitizerKind::Memory)) 857 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 858 if (SanOpts.has(SanitizerKind::SafeStack)) 859 Fn->addFnAttr(llvm::Attribute::SafeStack); 860 861 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 862 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 863 if (SanOpts.has(SanitizerKind::Thread)) { 864 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 865 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 866 if (OMD->getMethodFamily() == OMF_dealloc || 867 OMD->getMethodFamily() == OMF_initialize || 868 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 869 markAsIgnoreThreadCheckingAtRuntime(Fn); 870 } 871 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 872 IdentifierInfo *II = FD->getIdentifier(); 873 if (II && II->isStr("__destroy_helper_block_")) 874 markAsIgnoreThreadCheckingAtRuntime(Fn); 875 } 876 } 877 878 // Ignore unrelated casts in STL allocate() since the allocator must cast 879 // from void* to T* before object initialization completes. Don't match on the 880 // namespace because not all allocators are in std:: 881 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 882 if (matchesStlAllocatorFn(D, getContext())) 883 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 884 } 885 886 // Apply xray attributes to the function (as a string, for now) 887 if (D && ShouldXRayInstrumentFunction()) { 888 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 889 if (XRayAttr->alwaysXRayInstrument()) 890 Fn->addFnAttr("function-instrument", "xray-always"); 891 if (XRayAttr->neverXRayInstrument()) 892 Fn->addFnAttr("function-instrument", "xray-never"); 893 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 894 Fn->addFnAttr("xray-log-args", 895 llvm::utostr(LogArgs->getArgumentCount())); 896 } 897 } else { 898 if (!CGM.imbueXRayAttrs(Fn, Loc)) 899 Fn->addFnAttr( 900 "xray-instruction-threshold", 901 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 902 } 903 } 904 905 // Add no-jump-tables value. 906 Fn->addFnAttr("no-jump-tables", 907 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 908 909 // Add profile-sample-accurate value. 910 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 911 Fn->addFnAttr("profile-sample-accurate"); 912 913 if (getLangOpts().OpenCL) { 914 // Add metadata for a kernel function. 915 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 916 EmitOpenCLKernelMetadata(FD, Fn); 917 } 918 919 // If we are checking function types, emit a function type signature as 920 // prologue data. 921 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 922 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 923 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 924 llvm::Constant *FTRTTIConst = 925 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 926 llvm::Constant *FTRTTIConstEncoded = 927 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 928 llvm::Constant *PrologueStructElems[] = {PrologueSig, 929 FTRTTIConstEncoded}; 930 llvm::Constant *PrologueStructConst = 931 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 932 Fn->setPrologueData(PrologueStructConst); 933 } 934 } 935 } 936 937 // If we're checking nullability, we need to know whether we can check the 938 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 939 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 940 auto Nullability = FnRetTy->getNullability(getContext()); 941 if (Nullability && *Nullability == NullabilityKind::NonNull) { 942 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 943 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 944 RetValNullabilityPrecondition = 945 llvm::ConstantInt::getTrue(getLLVMContext()); 946 } 947 } 948 949 // If we're in C++ mode and the function name is "main", it is guaranteed 950 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 951 // used within a program"). 952 if (getLangOpts().CPlusPlus) 953 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 954 if (FD->isMain()) 955 Fn->addFnAttr(llvm::Attribute::NoRecurse); 956 957 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 958 959 // Create a marker to make it easy to insert allocas into the entryblock 960 // later. Don't create this with the builder, because we don't want it 961 // folded. 962 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 963 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 964 965 ReturnBlock = getJumpDestInCurrentScope("return"); 966 967 Builder.SetInsertPoint(EntryBB); 968 969 // If we're checking the return value, allocate space for a pointer to a 970 // precise source location of the checked return statement. 971 if (requiresReturnValueCheck()) { 972 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 973 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 974 } 975 976 // Emit subprogram debug descriptor. 977 if (CGDebugInfo *DI = getDebugInfo()) { 978 // Reconstruct the type from the argument list so that implicit parameters, 979 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 980 // convention. 981 CallingConv CC = CallingConv::CC_C; 982 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 983 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 984 CC = SrcFnTy->getCallConv(); 985 SmallVector<QualType, 16> ArgTypes; 986 for (const VarDecl *VD : Args) 987 ArgTypes.push_back(VD->getType()); 988 QualType FnType = getContext().getFunctionType( 989 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 990 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 991 } 992 993 if (ShouldInstrumentFunction()) { 994 if (CGM.getCodeGenOpts().InstrumentFunctions) 995 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 996 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 997 CurFn->addFnAttr("instrument-function-entry-inlined", 998 "__cyg_profile_func_enter"); 999 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1000 CurFn->addFnAttr("instrument-function-entry-inlined", 1001 "__cyg_profile_func_enter_bare"); 1002 } 1003 1004 // Since emitting the mcount call here impacts optimizations such as function 1005 // inlining, we just add an attribute to insert a mcount call in backend. 1006 // The attribute "counting-function" is set to mcount function name which is 1007 // architecture dependent. 1008 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1009 if (CGM.getCodeGenOpts().CallFEntry) 1010 Fn->addFnAttr("fentry-call", "true"); 1011 else { 1012 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1013 Fn->addFnAttr("instrument-function-entry-inlined", 1014 getTarget().getMCountName()); 1015 } 1016 } 1017 } 1018 1019 if (RetTy->isVoidType()) { 1020 // Void type; nothing to return. 1021 ReturnValue = Address::invalid(); 1022 1023 // Count the implicit return. 1024 if (!endsWithReturn(D)) 1025 ++NumReturnExprs; 1026 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1027 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1028 // Indirect aggregate return; emit returned value directly into sret slot. 1029 // This reduces code size, and affects correctness in C++. 1030 auto AI = CurFn->arg_begin(); 1031 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1032 ++AI; 1033 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1034 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1035 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1036 // Load the sret pointer from the argument struct and return into that. 1037 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1038 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1039 --EI; 1040 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1041 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1042 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1043 } else { 1044 ReturnValue = CreateIRTemp(RetTy, "retval"); 1045 1046 // Tell the epilog emitter to autorelease the result. We do this 1047 // now so that various specialized functions can suppress it 1048 // during their IR-generation. 1049 if (getLangOpts().ObjCAutoRefCount && 1050 !CurFnInfo->isReturnsRetained() && 1051 RetTy->isObjCRetainableType()) 1052 AutoreleaseResult = true; 1053 } 1054 1055 EmitStartEHSpec(CurCodeDecl); 1056 1057 PrologueCleanupDepth = EHStack.stable_begin(); 1058 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1059 1060 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1061 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1062 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1063 if (MD->getParent()->isLambda() && 1064 MD->getOverloadedOperator() == OO_Call) { 1065 // We're in a lambda; figure out the captures. 1066 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1067 LambdaThisCaptureField); 1068 if (LambdaThisCaptureField) { 1069 // If the lambda captures the object referred to by '*this' - either by 1070 // value or by reference, make sure CXXThisValue points to the correct 1071 // object. 1072 1073 // Get the lvalue for the field (which is a copy of the enclosing object 1074 // or contains the address of the enclosing object). 1075 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1076 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1077 // If the enclosing object was captured by value, just use its address. 1078 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1079 } else { 1080 // Load the lvalue pointed to by the field, since '*this' was captured 1081 // by reference. 1082 CXXThisValue = 1083 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1084 } 1085 } 1086 for (auto *FD : MD->getParent()->fields()) { 1087 if (FD->hasCapturedVLAType()) { 1088 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1089 SourceLocation()).getScalarVal(); 1090 auto VAT = FD->getCapturedVLAType(); 1091 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1092 } 1093 } 1094 } else { 1095 // Not in a lambda; just use 'this' from the method. 1096 // FIXME: Should we generate a new load for each use of 'this'? The 1097 // fast register allocator would be happier... 1098 CXXThisValue = CXXABIThisValue; 1099 } 1100 1101 // Check the 'this' pointer once per function, if it's available. 1102 if (CXXABIThisValue) { 1103 SanitizerSet SkippedChecks; 1104 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1105 QualType ThisTy = MD->getThisType(getContext()); 1106 1107 // If this is the call operator of a lambda with no capture-default, it 1108 // may have a static invoker function, which may call this operator with 1109 // a null 'this' pointer. 1110 if (isLambdaCallOperator(MD) && 1111 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1112 LCD_None) 1113 SkippedChecks.set(SanitizerKind::Null, true); 1114 1115 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1116 : TCK_MemberCall, 1117 Loc, CXXABIThisValue, ThisTy, 1118 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1119 SkippedChecks); 1120 } 1121 } 1122 1123 // If any of the arguments have a variably modified type, make sure to 1124 // emit the type size. 1125 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1126 i != e; ++i) { 1127 const VarDecl *VD = *i; 1128 1129 // Dig out the type as written from ParmVarDecls; it's unclear whether 1130 // the standard (C99 6.9.1p10) requires this, but we're following the 1131 // precedent set by gcc. 1132 QualType Ty; 1133 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1134 Ty = PVD->getOriginalType(); 1135 else 1136 Ty = VD->getType(); 1137 1138 if (Ty->isVariablyModifiedType()) 1139 EmitVariablyModifiedType(Ty); 1140 } 1141 // Emit a location at the end of the prologue. 1142 if (CGDebugInfo *DI = getDebugInfo()) 1143 DI->EmitLocation(Builder, StartLoc); 1144 } 1145 1146 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1147 const Stmt *Body) { 1148 incrementProfileCounter(Body); 1149 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1150 EmitCompoundStmtWithoutScope(*S); 1151 else 1152 EmitStmt(Body); 1153 } 1154 1155 /// When instrumenting to collect profile data, the counts for some blocks 1156 /// such as switch cases need to not include the fall-through counts, so 1157 /// emit a branch around the instrumentation code. When not instrumenting, 1158 /// this just calls EmitBlock(). 1159 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1160 const Stmt *S) { 1161 llvm::BasicBlock *SkipCountBB = nullptr; 1162 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1163 // When instrumenting for profiling, the fallthrough to certain 1164 // statements needs to skip over the instrumentation code so that we 1165 // get an accurate count. 1166 SkipCountBB = createBasicBlock("skipcount"); 1167 EmitBranch(SkipCountBB); 1168 } 1169 EmitBlock(BB); 1170 uint64_t CurrentCount = getCurrentProfileCount(); 1171 incrementProfileCounter(S); 1172 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1173 if (SkipCountBB) 1174 EmitBlock(SkipCountBB); 1175 } 1176 1177 /// Tries to mark the given function nounwind based on the 1178 /// non-existence of any throwing calls within it. We believe this is 1179 /// lightweight enough to do at -O0. 1180 static void TryMarkNoThrow(llvm::Function *F) { 1181 // LLVM treats 'nounwind' on a function as part of the type, so we 1182 // can't do this on functions that can be overwritten. 1183 if (F->isInterposable()) return; 1184 1185 for (llvm::BasicBlock &BB : *F) 1186 for (llvm::Instruction &I : BB) 1187 if (I.mayThrow()) 1188 return; 1189 1190 F->setDoesNotThrow(); 1191 } 1192 1193 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1194 FunctionArgList &Args) { 1195 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1196 QualType ResTy = FD->getReturnType(); 1197 1198 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1199 if (MD && MD->isInstance()) { 1200 if (CGM.getCXXABI().HasThisReturn(GD)) 1201 ResTy = MD->getThisType(getContext()); 1202 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1203 ResTy = CGM.getContext().VoidPtrTy; 1204 CGM.getCXXABI().buildThisParam(*this, Args); 1205 } 1206 1207 // The base version of an inheriting constructor whose constructed base is a 1208 // virtual base is not passed any arguments (because it doesn't actually call 1209 // the inherited constructor). 1210 bool PassedParams = true; 1211 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1212 if (auto Inherited = CD->getInheritedConstructor()) 1213 PassedParams = 1214 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1215 1216 if (PassedParams) { 1217 for (auto *Param : FD->parameters()) { 1218 Args.push_back(Param); 1219 if (!Param->hasAttr<PassObjectSizeAttr>()) 1220 continue; 1221 1222 auto *Implicit = ImplicitParamDecl::Create( 1223 getContext(), Param->getDeclContext(), Param->getLocation(), 1224 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1225 SizeArguments[Param] = Implicit; 1226 Args.push_back(Implicit); 1227 } 1228 } 1229 1230 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1231 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1232 1233 return ResTy; 1234 } 1235 1236 static bool 1237 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1238 const ASTContext &Context) { 1239 QualType T = FD->getReturnType(); 1240 // Avoid the optimization for functions that return a record type with a 1241 // trivial destructor or another trivially copyable type. 1242 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1243 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1244 return !ClassDecl->hasTrivialDestructor(); 1245 } 1246 return !T.isTriviallyCopyableType(Context); 1247 } 1248 1249 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1250 const CGFunctionInfo &FnInfo) { 1251 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1252 CurGD = GD; 1253 1254 FunctionArgList Args; 1255 QualType ResTy = BuildFunctionArgList(GD, Args); 1256 1257 // Check if we should generate debug info for this function. 1258 if (FD->hasAttr<NoDebugAttr>()) 1259 DebugInfo = nullptr; // disable debug info indefinitely for this function 1260 1261 // The function might not have a body if we're generating thunks for a 1262 // function declaration. 1263 SourceRange BodyRange; 1264 if (Stmt *Body = FD->getBody()) 1265 BodyRange = Body->getSourceRange(); 1266 else 1267 BodyRange = FD->getLocation(); 1268 CurEHLocation = BodyRange.getEnd(); 1269 1270 // Use the location of the start of the function to determine where 1271 // the function definition is located. By default use the location 1272 // of the declaration as the location for the subprogram. A function 1273 // may lack a declaration in the source code if it is created by code 1274 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1275 SourceLocation Loc = FD->getLocation(); 1276 1277 // If this is a function specialization then use the pattern body 1278 // as the location for the function. 1279 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1280 if (SpecDecl->hasBody(SpecDecl)) 1281 Loc = SpecDecl->getLocation(); 1282 1283 Stmt *Body = FD->getBody(); 1284 1285 // Initialize helper which will detect jumps which can cause invalid lifetime 1286 // markers. 1287 if (Body && ShouldEmitLifetimeMarkers) 1288 Bypasses.Init(Body); 1289 1290 // Emit the standard function prologue. 1291 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1292 1293 // Generate the body of the function. 1294 PGO.assignRegionCounters(GD, CurFn); 1295 if (isa<CXXDestructorDecl>(FD)) 1296 EmitDestructorBody(Args); 1297 else if (isa<CXXConstructorDecl>(FD)) 1298 EmitConstructorBody(Args); 1299 else if (getLangOpts().CUDA && 1300 !getLangOpts().CUDAIsDevice && 1301 FD->hasAttr<CUDAGlobalAttr>()) 1302 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1303 else if (isa<CXXMethodDecl>(FD) && 1304 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1305 // The lambda static invoker function is special, because it forwards or 1306 // clones the body of the function call operator (but is actually static). 1307 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1308 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1309 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1310 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1311 // Implicit copy-assignment gets the same special treatment as implicit 1312 // copy-constructors. 1313 emitImplicitAssignmentOperatorBody(Args); 1314 } else if (Body) { 1315 EmitFunctionBody(Args, Body); 1316 } else 1317 llvm_unreachable("no definition for emitted function"); 1318 1319 // C++11 [stmt.return]p2: 1320 // Flowing off the end of a function [...] results in undefined behavior in 1321 // a value-returning function. 1322 // C11 6.9.1p12: 1323 // If the '}' that terminates a function is reached, and the value of the 1324 // function call is used by the caller, the behavior is undefined. 1325 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1326 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1327 bool ShouldEmitUnreachable = 1328 CGM.getCodeGenOpts().StrictReturn || 1329 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1330 if (SanOpts.has(SanitizerKind::Return)) { 1331 SanitizerScope SanScope(this); 1332 llvm::Value *IsFalse = Builder.getFalse(); 1333 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1334 SanitizerHandler::MissingReturn, 1335 EmitCheckSourceLocation(FD->getLocation()), None); 1336 } else if (ShouldEmitUnreachable) { 1337 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1338 EmitTrapCall(llvm::Intrinsic::trap); 1339 } 1340 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1341 Builder.CreateUnreachable(); 1342 Builder.ClearInsertionPoint(); 1343 } 1344 } 1345 1346 // Emit the standard function epilogue. 1347 FinishFunction(BodyRange.getEnd()); 1348 1349 // If we haven't marked the function nothrow through other means, do 1350 // a quick pass now to see if we can. 1351 if (!CurFn->doesNotThrow()) 1352 TryMarkNoThrow(CurFn); 1353 } 1354 1355 /// ContainsLabel - Return true if the statement contains a label in it. If 1356 /// this statement is not executed normally, it not containing a label means 1357 /// that we can just remove the code. 1358 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1359 // Null statement, not a label! 1360 if (!S) return false; 1361 1362 // If this is a label, we have to emit the code, consider something like: 1363 // if (0) { ... foo: bar(); } goto foo; 1364 // 1365 // TODO: If anyone cared, we could track __label__'s, since we know that you 1366 // can't jump to one from outside their declared region. 1367 if (isa<LabelStmt>(S)) 1368 return true; 1369 1370 // If this is a case/default statement, and we haven't seen a switch, we have 1371 // to emit the code. 1372 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1373 return true; 1374 1375 // If this is a switch statement, we want to ignore cases below it. 1376 if (isa<SwitchStmt>(S)) 1377 IgnoreCaseStmts = true; 1378 1379 // Scan subexpressions for verboten labels. 1380 for (const Stmt *SubStmt : S->children()) 1381 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1382 return true; 1383 1384 return false; 1385 } 1386 1387 /// containsBreak - Return true if the statement contains a break out of it. 1388 /// If the statement (recursively) contains a switch or loop with a break 1389 /// inside of it, this is fine. 1390 bool CodeGenFunction::containsBreak(const Stmt *S) { 1391 // Null statement, not a label! 1392 if (!S) return false; 1393 1394 // If this is a switch or loop that defines its own break scope, then we can 1395 // include it and anything inside of it. 1396 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1397 isa<ForStmt>(S)) 1398 return false; 1399 1400 if (isa<BreakStmt>(S)) 1401 return true; 1402 1403 // Scan subexpressions for verboten breaks. 1404 for (const Stmt *SubStmt : S->children()) 1405 if (containsBreak(SubStmt)) 1406 return true; 1407 1408 return false; 1409 } 1410 1411 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1412 if (!S) return false; 1413 1414 // Some statement kinds add a scope and thus never add a decl to the current 1415 // scope. Note, this list is longer than the list of statements that might 1416 // have an unscoped decl nested within them, but this way is conservatively 1417 // correct even if more statement kinds are added. 1418 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1419 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1420 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1421 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1422 return false; 1423 1424 if (isa<DeclStmt>(S)) 1425 return true; 1426 1427 for (const Stmt *SubStmt : S->children()) 1428 if (mightAddDeclToScope(SubStmt)) 1429 return true; 1430 1431 return false; 1432 } 1433 1434 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1435 /// to a constant, or if it does but contains a label, return false. If it 1436 /// constant folds return true and set the boolean result in Result. 1437 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1438 bool &ResultBool, 1439 bool AllowLabels) { 1440 llvm::APSInt ResultInt; 1441 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1442 return false; 1443 1444 ResultBool = ResultInt.getBoolValue(); 1445 return true; 1446 } 1447 1448 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1449 /// to a constant, or if it does but contains a label, return false. If it 1450 /// constant folds return true and set the folded value. 1451 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1452 llvm::APSInt &ResultInt, 1453 bool AllowLabels) { 1454 // FIXME: Rename and handle conversion of other evaluatable things 1455 // to bool. 1456 llvm::APSInt Int; 1457 if (!Cond->EvaluateAsInt(Int, getContext())) 1458 return false; // Not foldable, not integer or not fully evaluatable. 1459 1460 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1461 return false; // Contains a label. 1462 1463 ResultInt = Int; 1464 return true; 1465 } 1466 1467 1468 1469 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1470 /// statement) to the specified blocks. Based on the condition, this might try 1471 /// to simplify the codegen of the conditional based on the branch. 1472 /// 1473 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1474 llvm::BasicBlock *TrueBlock, 1475 llvm::BasicBlock *FalseBlock, 1476 uint64_t TrueCount) { 1477 Cond = Cond->IgnoreParens(); 1478 1479 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1480 1481 // Handle X && Y in a condition. 1482 if (CondBOp->getOpcode() == BO_LAnd) { 1483 // If we have "1 && X", simplify the code. "0 && X" would have constant 1484 // folded if the case was simple enough. 1485 bool ConstantBool = false; 1486 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1487 ConstantBool) { 1488 // br(1 && X) -> br(X). 1489 incrementProfileCounter(CondBOp); 1490 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1491 TrueCount); 1492 } 1493 1494 // If we have "X && 1", simplify the code to use an uncond branch. 1495 // "X && 0" would have been constant folded to 0. 1496 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1497 ConstantBool) { 1498 // br(X && 1) -> br(X). 1499 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1500 TrueCount); 1501 } 1502 1503 // Emit the LHS as a conditional. If the LHS conditional is false, we 1504 // want to jump to the FalseBlock. 1505 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1506 // The counter tells us how often we evaluate RHS, and all of TrueCount 1507 // can be propagated to that branch. 1508 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1509 1510 ConditionalEvaluation eval(*this); 1511 { 1512 ApplyDebugLocation DL(*this, Cond); 1513 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1514 EmitBlock(LHSTrue); 1515 } 1516 1517 incrementProfileCounter(CondBOp); 1518 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1519 1520 // Any temporaries created here are conditional. 1521 eval.begin(*this); 1522 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1523 eval.end(*this); 1524 1525 return; 1526 } 1527 1528 if (CondBOp->getOpcode() == BO_LOr) { 1529 // If we have "0 || X", simplify the code. "1 || X" would have constant 1530 // folded if the case was simple enough. 1531 bool ConstantBool = false; 1532 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1533 !ConstantBool) { 1534 // br(0 || X) -> br(X). 1535 incrementProfileCounter(CondBOp); 1536 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1537 TrueCount); 1538 } 1539 1540 // If we have "X || 0", simplify the code to use an uncond branch. 1541 // "X || 1" would have been constant folded to 1. 1542 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1543 !ConstantBool) { 1544 // br(X || 0) -> br(X). 1545 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1546 TrueCount); 1547 } 1548 1549 // Emit the LHS as a conditional. If the LHS conditional is true, we 1550 // want to jump to the TrueBlock. 1551 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1552 // We have the count for entry to the RHS and for the whole expression 1553 // being true, so we can divy up True count between the short circuit and 1554 // the RHS. 1555 uint64_t LHSCount = 1556 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1557 uint64_t RHSCount = TrueCount - LHSCount; 1558 1559 ConditionalEvaluation eval(*this); 1560 { 1561 ApplyDebugLocation DL(*this, Cond); 1562 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1563 EmitBlock(LHSFalse); 1564 } 1565 1566 incrementProfileCounter(CondBOp); 1567 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1568 1569 // Any temporaries created here are conditional. 1570 eval.begin(*this); 1571 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1572 1573 eval.end(*this); 1574 1575 return; 1576 } 1577 } 1578 1579 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1580 // br(!x, t, f) -> br(x, f, t) 1581 if (CondUOp->getOpcode() == UO_LNot) { 1582 // Negate the count. 1583 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1584 // Negate the condition and swap the destination blocks. 1585 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1586 FalseCount); 1587 } 1588 } 1589 1590 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1591 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1592 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1593 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1594 1595 ConditionalEvaluation cond(*this); 1596 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1597 getProfileCount(CondOp)); 1598 1599 // When computing PGO branch weights, we only know the overall count for 1600 // the true block. This code is essentially doing tail duplication of the 1601 // naive code-gen, introducing new edges for which counts are not 1602 // available. Divide the counts proportionally between the LHS and RHS of 1603 // the conditional operator. 1604 uint64_t LHSScaledTrueCount = 0; 1605 if (TrueCount) { 1606 double LHSRatio = 1607 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1608 LHSScaledTrueCount = TrueCount * LHSRatio; 1609 } 1610 1611 cond.begin(*this); 1612 EmitBlock(LHSBlock); 1613 incrementProfileCounter(CondOp); 1614 { 1615 ApplyDebugLocation DL(*this, Cond); 1616 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1617 LHSScaledTrueCount); 1618 } 1619 cond.end(*this); 1620 1621 cond.begin(*this); 1622 EmitBlock(RHSBlock); 1623 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1624 TrueCount - LHSScaledTrueCount); 1625 cond.end(*this); 1626 1627 return; 1628 } 1629 1630 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1631 // Conditional operator handling can give us a throw expression as a 1632 // condition for a case like: 1633 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1634 // Fold this to: 1635 // br(c, throw x, br(y, t, f)) 1636 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1637 return; 1638 } 1639 1640 // If the branch has a condition wrapped by __builtin_unpredictable, 1641 // create metadata that specifies that the branch is unpredictable. 1642 // Don't bother if not optimizing because that metadata would not be used. 1643 llvm::MDNode *Unpredictable = nullptr; 1644 auto *Call = dyn_cast<CallExpr>(Cond); 1645 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1646 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1647 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1648 llvm::MDBuilder MDHelper(getLLVMContext()); 1649 Unpredictable = MDHelper.createUnpredictable(); 1650 } 1651 } 1652 1653 // Create branch weights based on the number of times we get here and the 1654 // number of times the condition should be true. 1655 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1656 llvm::MDNode *Weights = 1657 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1658 1659 // Emit the code with the fully general case. 1660 llvm::Value *CondV; 1661 { 1662 ApplyDebugLocation DL(*this, Cond); 1663 CondV = EvaluateExprAsBool(Cond); 1664 } 1665 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1666 } 1667 1668 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1669 /// specified stmt yet. 1670 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1671 CGM.ErrorUnsupported(S, Type); 1672 } 1673 1674 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1675 /// variable-length array whose elements have a non-zero bit-pattern. 1676 /// 1677 /// \param baseType the inner-most element type of the array 1678 /// \param src - a char* pointing to the bit-pattern for a single 1679 /// base element of the array 1680 /// \param sizeInChars - the total size of the VLA, in chars 1681 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1682 Address dest, Address src, 1683 llvm::Value *sizeInChars) { 1684 CGBuilderTy &Builder = CGF.Builder; 1685 1686 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1687 llvm::Value *baseSizeInChars 1688 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1689 1690 Address begin = 1691 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1692 llvm::Value *end = 1693 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1694 1695 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1696 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1697 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1698 1699 // Make a loop over the VLA. C99 guarantees that the VLA element 1700 // count must be nonzero. 1701 CGF.EmitBlock(loopBB); 1702 1703 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1704 cur->addIncoming(begin.getPointer(), originBB); 1705 1706 CharUnits curAlign = 1707 dest.getAlignment().alignmentOfArrayElement(baseSize); 1708 1709 // memcpy the individual element bit-pattern. 1710 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1711 /*volatile*/ false); 1712 1713 // Go to the next element. 1714 llvm::Value *next = 1715 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1716 1717 // Leave if that's the end of the VLA. 1718 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1719 Builder.CreateCondBr(done, contBB, loopBB); 1720 cur->addIncoming(next, loopBB); 1721 1722 CGF.EmitBlock(contBB); 1723 } 1724 1725 void 1726 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1727 // Ignore empty classes in C++. 1728 if (getLangOpts().CPlusPlus) { 1729 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1730 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1731 return; 1732 } 1733 } 1734 1735 // Cast the dest ptr to the appropriate i8 pointer type. 1736 if (DestPtr.getElementType() != Int8Ty) 1737 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1738 1739 // Get size and alignment info for this aggregate. 1740 CharUnits size = getContext().getTypeSizeInChars(Ty); 1741 1742 llvm::Value *SizeVal; 1743 const VariableArrayType *vla; 1744 1745 // Don't bother emitting a zero-byte memset. 1746 if (size.isZero()) { 1747 // But note that getTypeInfo returns 0 for a VLA. 1748 if (const VariableArrayType *vlaType = 1749 dyn_cast_or_null<VariableArrayType>( 1750 getContext().getAsArrayType(Ty))) { 1751 QualType eltType; 1752 llvm::Value *numElts; 1753 std::tie(numElts, eltType) = getVLASize(vlaType); 1754 1755 SizeVal = numElts; 1756 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1757 if (!eltSize.isOne()) 1758 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1759 vla = vlaType; 1760 } else { 1761 return; 1762 } 1763 } else { 1764 SizeVal = CGM.getSize(size); 1765 vla = nullptr; 1766 } 1767 1768 // If the type contains a pointer to data member we can't memset it to zero. 1769 // Instead, create a null constant and copy it to the destination. 1770 // TODO: there are other patterns besides zero that we can usefully memset, 1771 // like -1, which happens to be the pattern used by member-pointers. 1772 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1773 // For a VLA, emit a single element, then splat that over the VLA. 1774 if (vla) Ty = getContext().getBaseElementType(vla); 1775 1776 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1777 1778 llvm::GlobalVariable *NullVariable = 1779 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1780 /*isConstant=*/true, 1781 llvm::GlobalVariable::PrivateLinkage, 1782 NullConstant, Twine()); 1783 CharUnits NullAlign = DestPtr.getAlignment(); 1784 NullVariable->setAlignment(NullAlign.getQuantity()); 1785 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1786 NullAlign); 1787 1788 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1789 1790 // Get and call the appropriate llvm.memcpy overload. 1791 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1792 return; 1793 } 1794 1795 // Otherwise, just memset the whole thing to zero. This is legal 1796 // because in LLVM, all default initializers (other than the ones we just 1797 // handled above) are guaranteed to have a bit pattern of all zeros. 1798 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1799 } 1800 1801 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1802 // Make sure that there is a block for the indirect goto. 1803 if (!IndirectBranch) 1804 GetIndirectGotoBlock(); 1805 1806 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1807 1808 // Make sure the indirect branch includes all of the address-taken blocks. 1809 IndirectBranch->addDestination(BB); 1810 return llvm::BlockAddress::get(CurFn, BB); 1811 } 1812 1813 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1814 // If we already made the indirect branch for indirect goto, return its block. 1815 if (IndirectBranch) return IndirectBranch->getParent(); 1816 1817 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1818 1819 // Create the PHI node that indirect gotos will add entries to. 1820 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1821 "indirect.goto.dest"); 1822 1823 // Create the indirect branch instruction. 1824 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1825 return IndirectBranch->getParent(); 1826 } 1827 1828 /// Computes the length of an array in elements, as well as the base 1829 /// element type and a properly-typed first element pointer. 1830 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1831 QualType &baseType, 1832 Address &addr) { 1833 const ArrayType *arrayType = origArrayType; 1834 1835 // If it's a VLA, we have to load the stored size. Note that 1836 // this is the size of the VLA in bytes, not its size in elements. 1837 llvm::Value *numVLAElements = nullptr; 1838 if (isa<VariableArrayType>(arrayType)) { 1839 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1840 1841 // Walk into all VLAs. This doesn't require changes to addr, 1842 // which has type T* where T is the first non-VLA element type. 1843 do { 1844 QualType elementType = arrayType->getElementType(); 1845 arrayType = getContext().getAsArrayType(elementType); 1846 1847 // If we only have VLA components, 'addr' requires no adjustment. 1848 if (!arrayType) { 1849 baseType = elementType; 1850 return numVLAElements; 1851 } 1852 } while (isa<VariableArrayType>(arrayType)); 1853 1854 // We get out here only if we find a constant array type 1855 // inside the VLA. 1856 } 1857 1858 // We have some number of constant-length arrays, so addr should 1859 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1860 // down to the first element of addr. 1861 SmallVector<llvm::Value*, 8> gepIndices; 1862 1863 // GEP down to the array type. 1864 llvm::ConstantInt *zero = Builder.getInt32(0); 1865 gepIndices.push_back(zero); 1866 1867 uint64_t countFromCLAs = 1; 1868 QualType eltType; 1869 1870 llvm::ArrayType *llvmArrayType = 1871 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1872 while (llvmArrayType) { 1873 assert(isa<ConstantArrayType>(arrayType)); 1874 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1875 == llvmArrayType->getNumElements()); 1876 1877 gepIndices.push_back(zero); 1878 countFromCLAs *= llvmArrayType->getNumElements(); 1879 eltType = arrayType->getElementType(); 1880 1881 llvmArrayType = 1882 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1883 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1884 assert((!llvmArrayType || arrayType) && 1885 "LLVM and Clang types are out-of-synch"); 1886 } 1887 1888 if (arrayType) { 1889 // From this point onwards, the Clang array type has been emitted 1890 // as some other type (probably a packed struct). Compute the array 1891 // size, and just emit the 'begin' expression as a bitcast. 1892 while (arrayType) { 1893 countFromCLAs *= 1894 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1895 eltType = arrayType->getElementType(); 1896 arrayType = getContext().getAsArrayType(eltType); 1897 } 1898 1899 llvm::Type *baseType = ConvertType(eltType); 1900 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1901 } else { 1902 // Create the actual GEP. 1903 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1904 gepIndices, "array.begin"), 1905 addr.getAlignment()); 1906 } 1907 1908 baseType = eltType; 1909 1910 llvm::Value *numElements 1911 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1912 1913 // If we had any VLA dimensions, factor them in. 1914 if (numVLAElements) 1915 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1916 1917 return numElements; 1918 } 1919 1920 std::pair<llvm::Value*, QualType> 1921 CodeGenFunction::getVLASize(QualType type) { 1922 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1923 assert(vla && "type was not a variable array type!"); 1924 return getVLASize(vla); 1925 } 1926 1927 std::pair<llvm::Value*, QualType> 1928 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1929 // The number of elements so far; always size_t. 1930 llvm::Value *numElements = nullptr; 1931 1932 QualType elementType; 1933 do { 1934 elementType = type->getElementType(); 1935 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1936 assert(vlaSize && "no size for VLA!"); 1937 assert(vlaSize->getType() == SizeTy); 1938 1939 if (!numElements) { 1940 numElements = vlaSize; 1941 } else { 1942 // It's undefined behavior if this wraps around, so mark it that way. 1943 // FIXME: Teach -fsanitize=undefined to trap this. 1944 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1945 } 1946 } while ((type = getContext().getAsVariableArrayType(elementType))); 1947 1948 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1949 } 1950 1951 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1952 assert(type->isVariablyModifiedType() && 1953 "Must pass variably modified type to EmitVLASizes!"); 1954 1955 EnsureInsertPoint(); 1956 1957 // We're going to walk down into the type and look for VLA 1958 // expressions. 1959 do { 1960 assert(type->isVariablyModifiedType()); 1961 1962 const Type *ty = type.getTypePtr(); 1963 switch (ty->getTypeClass()) { 1964 1965 #define TYPE(Class, Base) 1966 #define ABSTRACT_TYPE(Class, Base) 1967 #define NON_CANONICAL_TYPE(Class, Base) 1968 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1969 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1970 #include "clang/AST/TypeNodes.def" 1971 llvm_unreachable("unexpected dependent type!"); 1972 1973 // These types are never variably-modified. 1974 case Type::Builtin: 1975 case Type::Complex: 1976 case Type::Vector: 1977 case Type::ExtVector: 1978 case Type::Record: 1979 case Type::Enum: 1980 case Type::Elaborated: 1981 case Type::TemplateSpecialization: 1982 case Type::ObjCTypeParam: 1983 case Type::ObjCObject: 1984 case Type::ObjCInterface: 1985 case Type::ObjCObjectPointer: 1986 llvm_unreachable("type class is never variably-modified!"); 1987 1988 case Type::Adjusted: 1989 type = cast<AdjustedType>(ty)->getAdjustedType(); 1990 break; 1991 1992 case Type::Decayed: 1993 type = cast<DecayedType>(ty)->getPointeeType(); 1994 break; 1995 1996 case Type::Pointer: 1997 type = cast<PointerType>(ty)->getPointeeType(); 1998 break; 1999 2000 case Type::BlockPointer: 2001 type = cast<BlockPointerType>(ty)->getPointeeType(); 2002 break; 2003 2004 case Type::LValueReference: 2005 case Type::RValueReference: 2006 type = cast<ReferenceType>(ty)->getPointeeType(); 2007 break; 2008 2009 case Type::MemberPointer: 2010 type = cast<MemberPointerType>(ty)->getPointeeType(); 2011 break; 2012 2013 case Type::ConstantArray: 2014 case Type::IncompleteArray: 2015 // Losing element qualification here is fine. 2016 type = cast<ArrayType>(ty)->getElementType(); 2017 break; 2018 2019 case Type::VariableArray: { 2020 // Losing element qualification here is fine. 2021 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2022 2023 // Unknown size indication requires no size computation. 2024 // Otherwise, evaluate and record it. 2025 if (const Expr *size = vat->getSizeExpr()) { 2026 // It's possible that we might have emitted this already, 2027 // e.g. with a typedef and a pointer to it. 2028 llvm::Value *&entry = VLASizeMap[size]; 2029 if (!entry) { 2030 llvm::Value *Size = EmitScalarExpr(size); 2031 2032 // C11 6.7.6.2p5: 2033 // If the size is an expression that is not an integer constant 2034 // expression [...] each time it is evaluated it shall have a value 2035 // greater than zero. 2036 if (SanOpts.has(SanitizerKind::VLABound) && 2037 size->getType()->isSignedIntegerType()) { 2038 SanitizerScope SanScope(this); 2039 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2040 llvm::Constant *StaticArgs[] = { 2041 EmitCheckSourceLocation(size->getLocStart()), 2042 EmitCheckTypeDescriptor(size->getType()) 2043 }; 2044 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2045 SanitizerKind::VLABound), 2046 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2047 } 2048 2049 // Always zexting here would be wrong if it weren't 2050 // undefined behavior to have a negative bound. 2051 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2052 } 2053 } 2054 type = vat->getElementType(); 2055 break; 2056 } 2057 2058 case Type::FunctionProto: 2059 case Type::FunctionNoProto: 2060 type = cast<FunctionType>(ty)->getReturnType(); 2061 break; 2062 2063 case Type::Paren: 2064 case Type::TypeOf: 2065 case Type::UnaryTransform: 2066 case Type::Attributed: 2067 case Type::SubstTemplateTypeParm: 2068 case Type::PackExpansion: 2069 // Keep walking after single level desugaring. 2070 type = type.getSingleStepDesugaredType(getContext()); 2071 break; 2072 2073 case Type::Typedef: 2074 case Type::Decltype: 2075 case Type::Auto: 2076 case Type::DeducedTemplateSpecialization: 2077 // Stop walking: nothing to do. 2078 return; 2079 2080 case Type::TypeOfExpr: 2081 // Stop walking: emit typeof expression. 2082 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2083 return; 2084 2085 case Type::Atomic: 2086 type = cast<AtomicType>(ty)->getValueType(); 2087 break; 2088 2089 case Type::Pipe: 2090 type = cast<PipeType>(ty)->getElementType(); 2091 break; 2092 } 2093 } while (type->isVariablyModifiedType()); 2094 } 2095 2096 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2097 if (getContext().getBuiltinVaListType()->isArrayType()) 2098 return EmitPointerWithAlignment(E); 2099 return EmitLValue(E).getAddress(); 2100 } 2101 2102 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2103 return EmitLValue(E).getAddress(); 2104 } 2105 2106 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2107 const APValue &Init) { 2108 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2109 if (CGDebugInfo *Dbg = getDebugInfo()) 2110 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2111 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2112 } 2113 2114 CodeGenFunction::PeepholeProtection 2115 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2116 // At the moment, the only aggressive peephole we do in IR gen 2117 // is trunc(zext) folding, but if we add more, we can easily 2118 // extend this protection. 2119 2120 if (!rvalue.isScalar()) return PeepholeProtection(); 2121 llvm::Value *value = rvalue.getScalarVal(); 2122 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2123 2124 // Just make an extra bitcast. 2125 assert(HaveInsertPoint()); 2126 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2127 Builder.GetInsertBlock()); 2128 2129 PeepholeProtection protection; 2130 protection.Inst = inst; 2131 return protection; 2132 } 2133 2134 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2135 if (!protection.Inst) return; 2136 2137 // In theory, we could try to duplicate the peepholes now, but whatever. 2138 protection.Inst->eraseFromParent(); 2139 } 2140 2141 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2142 llvm::Value *AnnotatedVal, 2143 StringRef AnnotationStr, 2144 SourceLocation Location) { 2145 llvm::Value *Args[4] = { 2146 AnnotatedVal, 2147 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2148 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2149 CGM.EmitAnnotationLineNo(Location) 2150 }; 2151 return Builder.CreateCall(AnnotationFn, Args); 2152 } 2153 2154 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2155 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2156 // FIXME We create a new bitcast for every annotation because that's what 2157 // llvm-gcc was doing. 2158 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2159 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2160 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2161 I->getAnnotation(), D->getLocation()); 2162 } 2163 2164 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2165 Address Addr) { 2166 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2167 llvm::Value *V = Addr.getPointer(); 2168 llvm::Type *VTy = V->getType(); 2169 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2170 CGM.Int8PtrTy); 2171 2172 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2173 // FIXME Always emit the cast inst so we can differentiate between 2174 // annotation on the first field of a struct and annotation on the struct 2175 // itself. 2176 if (VTy != CGM.Int8PtrTy) 2177 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2178 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2179 V = Builder.CreateBitCast(V, VTy); 2180 } 2181 2182 return Address(V, Addr.getAlignment()); 2183 } 2184 2185 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2186 2187 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2188 : CGF(CGF) { 2189 assert(!CGF->IsSanitizerScope); 2190 CGF->IsSanitizerScope = true; 2191 } 2192 2193 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2194 CGF->IsSanitizerScope = false; 2195 } 2196 2197 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2198 const llvm::Twine &Name, 2199 llvm::BasicBlock *BB, 2200 llvm::BasicBlock::iterator InsertPt) const { 2201 LoopStack.InsertHelper(I); 2202 if (IsSanitizerScope) 2203 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2204 } 2205 2206 void CGBuilderInserter::InsertHelper( 2207 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2208 llvm::BasicBlock::iterator InsertPt) const { 2209 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2210 if (CGF) 2211 CGF->InsertHelper(I, Name, BB, InsertPt); 2212 } 2213 2214 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2215 CodeGenModule &CGM, const FunctionDecl *FD, 2216 std::string &FirstMissing) { 2217 // If there aren't any required features listed then go ahead and return. 2218 if (ReqFeatures.empty()) 2219 return false; 2220 2221 // Now build up the set of caller features and verify that all the required 2222 // features are there. 2223 llvm::StringMap<bool> CallerFeatureMap; 2224 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2225 2226 // If we have at least one of the features in the feature list return 2227 // true, otherwise return false. 2228 return std::all_of( 2229 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2230 SmallVector<StringRef, 1> OrFeatures; 2231 Feature.split(OrFeatures, "|"); 2232 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2233 [&](StringRef Feature) { 2234 if (!CallerFeatureMap.lookup(Feature)) { 2235 FirstMissing = Feature.str(); 2236 return false; 2237 } 2238 return true; 2239 }); 2240 }); 2241 } 2242 2243 // Emits an error if we don't have a valid set of target features for the 2244 // called function. 2245 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2246 const FunctionDecl *TargetDecl) { 2247 // Early exit if this is an indirect call. 2248 if (!TargetDecl) 2249 return; 2250 2251 // Get the current enclosing function if it exists. If it doesn't 2252 // we can't check the target features anyhow. 2253 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2254 if (!FD) 2255 return; 2256 2257 // Grab the required features for the call. For a builtin this is listed in 2258 // the td file with the default cpu, for an always_inline function this is any 2259 // listed cpu and any listed features. 2260 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2261 std::string MissingFeature; 2262 if (BuiltinID) { 2263 SmallVector<StringRef, 1> ReqFeatures; 2264 const char *FeatureList = 2265 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2266 // Return if the builtin doesn't have any required features. 2267 if (!FeatureList || StringRef(FeatureList) == "") 2268 return; 2269 StringRef(FeatureList).split(ReqFeatures, ","); 2270 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2271 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2272 << TargetDecl->getDeclName() 2273 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2274 2275 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2276 // Get the required features for the callee. 2277 SmallVector<StringRef, 1> ReqFeatures; 2278 llvm::StringMap<bool> CalleeFeatureMap; 2279 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2280 for (const auto &F : CalleeFeatureMap) { 2281 // Only positive features are "required". 2282 if (F.getValue()) 2283 ReqFeatures.push_back(F.getKey()); 2284 } 2285 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2286 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2287 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2288 } 2289 } 2290 2291 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2292 if (!CGM.getCodeGenOpts().SanitizeStats) 2293 return; 2294 2295 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2296 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2297 CGM.getSanStats().create(IRB, SSK); 2298 } 2299 2300 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2301 if (CGDebugInfo *DI = getDebugInfo()) 2302 return DI->SourceLocToDebugLoc(Location); 2303 2304 return llvm::DebugLoc(); 2305 } 2306