1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
43 /// markers.
44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
45                                       const LangOptions &LangOpts) {
46   if (CGOpts.DisableLifetimeMarkers)
47     return false;
48 
49   // Disable lifetime markers in msan builds.
50   // FIXME: Remove this when msan works with lifetime markers.
51   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
52     return false;
53 
54   // Asan uses markers for use-after-scope checks.
55   if (CGOpts.SanitizeAddressUseAfterScope)
56     return true;
57 
58   // For now, only in optimized builds.
59   return CGOpts.OptimizationLevel != 0;
60 }
61 
62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
63     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
64       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
65               CGBuilderInserterTy(this)),
66       CurFn(nullptr), ReturnValue(Address::invalid()),
67       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
68       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
69       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
70       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
71       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
72       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
73       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
74       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
75       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
76       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
77       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
78       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
79       CXXStructorImplicitParamDecl(nullptr),
80       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
81       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
82       TerminateHandler(nullptr), TrapBB(nullptr),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87 
88   llvm::FastMathFlags FMF;
89   if (CGM.getLangOpts().FastMath)
90     FMF.setUnsafeAlgebra();
91   if (CGM.getLangOpts().FiniteMathOnly) {
92     FMF.setNoNaNs();
93     FMF.setNoInfs();
94   }
95   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
96     FMF.setNoNaNs();
97   }
98   if (CGM.getCodeGenOpts().NoSignedZeros) {
99     FMF.setNoSignedZeros();
100   }
101   if (CGM.getCodeGenOpts().ReciprocalMath) {
102     FMF.setAllowReciprocal();
103   }
104   Builder.setFastMathFlags(FMF);
105 }
106 
107 CodeGenFunction::~CodeGenFunction() {
108   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
109 
110   // If there are any unclaimed block infos, go ahead and destroy them
111   // now.  This can happen if IR-gen gets clever and skips evaluating
112   // something.
113   if (FirstBlockInfo)
114     destroyBlockInfos(FirstBlockInfo);
115 
116   if (getLangOpts().OpenMP && CurFn)
117     CGM.getOpenMPRuntime().functionFinished(*this);
118 }
119 
120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
121                                                     LValueBaseInfo *BaseInfo) {
122   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo,
123                                  /*forPointee*/ true);
124 }
125 
126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
127                                                    LValueBaseInfo *BaseInfo,
128                                                    bool forPointeeType) {
129   // Honor alignment typedef attributes even on incomplete types.
130   // We also honor them straight for C++ class types, even as pointees;
131   // there's an expressivity gap here.
132   if (auto TT = T->getAs<TypedefType>()) {
133     if (auto Align = TT->getDecl()->getMaxAlignment()) {
134       if (BaseInfo)
135         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false);
136       return getContext().toCharUnitsFromBits(Align);
137     }
138   }
139 
140   if (BaseInfo)
141     *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false);
142 
143   CharUnits Alignment;
144   if (T->isIncompleteType()) {
145     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
146   } else {
147     // For C++ class pointees, we don't know whether we're pointing at a
148     // base or a complete object, so we generally need to use the
149     // non-virtual alignment.
150     const CXXRecordDecl *RD;
151     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
152       Alignment = CGM.getClassPointerAlignment(RD);
153     } else {
154       Alignment = getContext().getTypeAlignInChars(T);
155       if (T.getQualifiers().hasUnaligned())
156         Alignment = CharUnits::One();
157     }
158 
159     // Cap to the global maximum type alignment unless the alignment
160     // was somehow explicit on the type.
161     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
162       if (Alignment.getQuantity() > MaxAlign &&
163           !getContext().isAlignmentRequired(T))
164         Alignment = CharUnits::fromQuantity(MaxAlign);
165     }
166   }
167   return Alignment;
168 }
169 
170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
171   LValueBaseInfo BaseInfo;
172   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo);
173   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
174                           CGM.getTBAAInfo(T));
175 }
176 
177 /// Given a value of type T* that may not be to a complete object,
178 /// construct an l-value with the natural pointee alignment of T.
179 LValue
180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
181   LValueBaseInfo BaseInfo;
182   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true);
183   return MakeAddrLValue(Address(V, Align), T, BaseInfo);
184 }
185 
186 
187 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
188   return CGM.getTypes().ConvertTypeForMem(T);
189 }
190 
191 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
192   return CGM.getTypes().ConvertType(T);
193 }
194 
195 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
196   type = type.getCanonicalType();
197   while (true) {
198     switch (type->getTypeClass()) {
199 #define TYPE(name, parent)
200 #define ABSTRACT_TYPE(name, parent)
201 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
202 #define DEPENDENT_TYPE(name, parent) case Type::name:
203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
204 #include "clang/AST/TypeNodes.def"
205       llvm_unreachable("non-canonical or dependent type in IR-generation");
206 
207     case Type::Auto:
208     case Type::DeducedTemplateSpecialization:
209       llvm_unreachable("undeduced type in IR-generation");
210 
211     // Various scalar types.
212     case Type::Builtin:
213     case Type::Pointer:
214     case Type::BlockPointer:
215     case Type::LValueReference:
216     case Type::RValueReference:
217     case Type::MemberPointer:
218     case Type::Vector:
219     case Type::ExtVector:
220     case Type::FunctionProto:
221     case Type::FunctionNoProto:
222     case Type::Enum:
223     case Type::ObjCObjectPointer:
224     case Type::Pipe:
225       return TEK_Scalar;
226 
227     // Complexes.
228     case Type::Complex:
229       return TEK_Complex;
230 
231     // Arrays, records, and Objective-C objects.
232     case Type::ConstantArray:
233     case Type::IncompleteArray:
234     case Type::VariableArray:
235     case Type::Record:
236     case Type::ObjCObject:
237     case Type::ObjCInterface:
238       return TEK_Aggregate;
239 
240     // We operate on atomic values according to their underlying type.
241     case Type::Atomic:
242       type = cast<AtomicType>(type)->getValueType();
243       continue;
244     }
245     llvm_unreachable("unknown type kind!");
246   }
247 }
248 
249 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
250   // For cleanliness, we try to avoid emitting the return block for
251   // simple cases.
252   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
253 
254   if (CurBB) {
255     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
256 
257     // We have a valid insert point, reuse it if it is empty or there are no
258     // explicit jumps to the return block.
259     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
260       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
261       delete ReturnBlock.getBlock();
262     } else
263       EmitBlock(ReturnBlock.getBlock());
264     return llvm::DebugLoc();
265   }
266 
267   // Otherwise, if the return block is the target of a single direct
268   // branch then we can just put the code in that block instead. This
269   // cleans up functions which started with a unified return block.
270   if (ReturnBlock.getBlock()->hasOneUse()) {
271     llvm::BranchInst *BI =
272       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
273     if (BI && BI->isUnconditional() &&
274         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
275       // Record/return the DebugLoc of the simple 'return' expression to be used
276       // later by the actual 'ret' instruction.
277       llvm::DebugLoc Loc = BI->getDebugLoc();
278       Builder.SetInsertPoint(BI->getParent());
279       BI->eraseFromParent();
280       delete ReturnBlock.getBlock();
281       return Loc;
282     }
283   }
284 
285   // FIXME: We are at an unreachable point, there is no reason to emit the block
286   // unless it has uses. However, we still need a place to put the debug
287   // region.end for now.
288 
289   EmitBlock(ReturnBlock.getBlock());
290   return llvm::DebugLoc();
291 }
292 
293 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
294   if (!BB) return;
295   if (!BB->use_empty())
296     return CGF.CurFn->getBasicBlockList().push_back(BB);
297   delete BB;
298 }
299 
300 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
301   assert(BreakContinueStack.empty() &&
302          "mismatched push/pop in break/continue stack!");
303 
304   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
305     && NumSimpleReturnExprs == NumReturnExprs
306     && ReturnBlock.getBlock()->use_empty();
307   // Usually the return expression is evaluated before the cleanup
308   // code.  If the function contains only a simple return statement,
309   // such as a constant, the location before the cleanup code becomes
310   // the last useful breakpoint in the function, because the simple
311   // return expression will be evaluated after the cleanup code. To be
312   // safe, set the debug location for cleanup code to the location of
313   // the return statement.  Otherwise the cleanup code should be at the
314   // end of the function's lexical scope.
315   //
316   // If there are multiple branches to the return block, the branch
317   // instructions will get the location of the return statements and
318   // all will be fine.
319   if (CGDebugInfo *DI = getDebugInfo()) {
320     if (OnlySimpleReturnStmts)
321       DI->EmitLocation(Builder, LastStopPoint);
322     else
323       DI->EmitLocation(Builder, EndLoc);
324   }
325 
326   // Pop any cleanups that might have been associated with the
327   // parameters.  Do this in whatever block we're currently in; it's
328   // important to do this before we enter the return block or return
329   // edges will be *really* confused.
330   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
331   bool HasOnlyLifetimeMarkers =
332       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
333   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
334   if (HasCleanups) {
335     // Make sure the line table doesn't jump back into the body for
336     // the ret after it's been at EndLoc.
337     if (CGDebugInfo *DI = getDebugInfo())
338       if (OnlySimpleReturnStmts)
339         DI->EmitLocation(Builder, EndLoc);
340 
341     PopCleanupBlocks(PrologueCleanupDepth);
342   }
343 
344   // Emit function epilog (to return).
345   llvm::DebugLoc Loc = EmitReturnBlock();
346 
347   if (ShouldInstrumentFunction())
348     EmitFunctionInstrumentation("__cyg_profile_func_exit");
349 
350   // Emit debug descriptor for function end.
351   if (CGDebugInfo *DI = getDebugInfo())
352     DI->EmitFunctionEnd(Builder, CurFn);
353 
354   // Reset the debug location to that of the simple 'return' expression, if any
355   // rather than that of the end of the function's scope '}'.
356   ApplyDebugLocation AL(*this, Loc);
357   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
358   EmitEndEHSpec(CurCodeDecl);
359 
360   assert(EHStack.empty() &&
361          "did not remove all scopes from cleanup stack!");
362 
363   // If someone did an indirect goto, emit the indirect goto block at the end of
364   // the function.
365   if (IndirectBranch) {
366     EmitBlock(IndirectBranch->getParent());
367     Builder.ClearInsertionPoint();
368   }
369 
370   // If some of our locals escaped, insert a call to llvm.localescape in the
371   // entry block.
372   if (!EscapedLocals.empty()) {
373     // Invert the map from local to index into a simple vector. There should be
374     // no holes.
375     SmallVector<llvm::Value *, 4> EscapeArgs;
376     EscapeArgs.resize(EscapedLocals.size());
377     for (auto &Pair : EscapedLocals)
378       EscapeArgs[Pair.second] = Pair.first;
379     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
380         &CGM.getModule(), llvm::Intrinsic::localescape);
381     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
382   }
383 
384   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
385   llvm::Instruction *Ptr = AllocaInsertPt;
386   AllocaInsertPt = nullptr;
387   Ptr->eraseFromParent();
388 
389   // If someone took the address of a label but never did an indirect goto, we
390   // made a zero entry PHI node, which is illegal, zap it now.
391   if (IndirectBranch) {
392     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
393     if (PN->getNumIncomingValues() == 0) {
394       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
395       PN->eraseFromParent();
396     }
397   }
398 
399   EmitIfUsed(*this, EHResumeBlock);
400   EmitIfUsed(*this, TerminateLandingPad);
401   EmitIfUsed(*this, TerminateHandler);
402   EmitIfUsed(*this, UnreachableBlock);
403 
404   if (CGM.getCodeGenOpts().EmitDeclMetadata)
405     EmitDeclMetadata();
406 
407   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
408            I = DeferredReplacements.begin(),
409            E = DeferredReplacements.end();
410        I != E; ++I) {
411     I->first->replaceAllUsesWith(I->second);
412     I->first->eraseFromParent();
413   }
414 }
415 
416 /// ShouldInstrumentFunction - Return true if the current function should be
417 /// instrumented with __cyg_profile_func_* calls
418 bool CodeGenFunction::ShouldInstrumentFunction() {
419   if (!CGM.getCodeGenOpts().InstrumentFunctions)
420     return false;
421   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
422     return false;
423   return true;
424 }
425 
426 /// ShouldXRayInstrument - Return true if the current function should be
427 /// instrumented with XRay nop sleds.
428 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
429   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
430 }
431 
432 llvm::Constant *
433 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
434                                             llvm::Constant *Addr) {
435   // Addresses stored in prologue data can't require run-time fixups and must
436   // be PC-relative. Run-time fixups are undesirable because they necessitate
437   // writable text segments, which are unsafe. And absolute addresses are
438   // undesirable because they break PIE mode.
439 
440   // Add a layer of indirection through a private global. Taking its address
441   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
442   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
443                                       /*isConstant=*/true,
444                                       llvm::GlobalValue::PrivateLinkage, Addr);
445 
446   // Create a PC-relative address.
447   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
448   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
449   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
450   return (IntPtrTy == Int32Ty)
451              ? PCRelAsInt
452              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
453 }
454 
455 llvm::Value *
456 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
457                                           llvm::Value *EncodedAddr) {
458   // Reconstruct the address of the global.
459   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
460   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
461   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
462   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
463 
464   // Load the original pointer through the global.
465   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
466                             "decoded_addr");
467 }
468 
469 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
470 /// instrumentation function with the current function and the call site, if
471 /// function instrumentation is enabled.
472 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
473   auto NL = ApplyDebugLocation::CreateArtificial(*this);
474   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
475   llvm::PointerType *PointerTy = Int8PtrTy;
476   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
477   llvm::FunctionType *FunctionTy =
478     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
479 
480   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
481   llvm::CallInst *CallSite = Builder.CreateCall(
482     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
483     llvm::ConstantInt::get(Int32Ty, 0),
484     "callsite");
485 
486   llvm::Value *args[] = {
487     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
488     CallSite
489   };
490 
491   EmitNounwindRuntimeCall(F, args);
492 }
493 
494 static void removeImageAccessQualifier(std::string& TyName) {
495   std::string ReadOnlyQual("__read_only");
496   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
497   if (ReadOnlyPos != std::string::npos)
498     // "+ 1" for the space after access qualifier.
499     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
500   else {
501     std::string WriteOnlyQual("__write_only");
502     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
503     if (WriteOnlyPos != std::string::npos)
504       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
505     else {
506       std::string ReadWriteQual("__read_write");
507       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
508       if (ReadWritePos != std::string::npos)
509         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
510     }
511   }
512 }
513 
514 // Returns the address space id that should be produced to the
515 // kernel_arg_addr_space metadata. This is always fixed to the ids
516 // as specified in the SPIR 2.0 specification in order to differentiate
517 // for example in clGetKernelArgInfo() implementation between the address
518 // spaces with targets without unique mapping to the OpenCL address spaces
519 // (basically all single AS CPUs).
520 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
521   switch (LangAS) {
522   case LangAS::opencl_global:   return 1;
523   case LangAS::opencl_constant: return 2;
524   case LangAS::opencl_local:    return 3;
525   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
526   default:
527     return 0; // Assume private.
528   }
529 }
530 
531 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
532 // information in the program executable. The argument information stored
533 // includes the argument name, its type, the address and access qualifiers used.
534 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
535                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
536                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
537   // Create MDNodes that represent the kernel arg metadata.
538   // Each MDNode is a list in the form of "key", N number of values which is
539   // the same number of values as their are kernel arguments.
540 
541   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
542 
543   // MDNode for the kernel argument address space qualifiers.
544   SmallVector<llvm::Metadata *, 8> addressQuals;
545 
546   // MDNode for the kernel argument access qualifiers (images only).
547   SmallVector<llvm::Metadata *, 8> accessQuals;
548 
549   // MDNode for the kernel argument type names.
550   SmallVector<llvm::Metadata *, 8> argTypeNames;
551 
552   // MDNode for the kernel argument base type names.
553   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
554 
555   // MDNode for the kernel argument type qualifiers.
556   SmallVector<llvm::Metadata *, 8> argTypeQuals;
557 
558   // MDNode for the kernel argument names.
559   SmallVector<llvm::Metadata *, 8> argNames;
560 
561   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
562     const ParmVarDecl *parm = FD->getParamDecl(i);
563     QualType ty = parm->getType();
564     std::string typeQuals;
565 
566     if (ty->isPointerType()) {
567       QualType pointeeTy = ty->getPointeeType();
568 
569       // Get address qualifier.
570       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
571         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
572 
573       // Get argument type name.
574       std::string typeName =
575           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
576 
577       // Turn "unsigned type" to "utype"
578       std::string::size_type pos = typeName.find("unsigned");
579       if (pointeeTy.isCanonical() && pos != std::string::npos)
580         typeName.erase(pos+1, 8);
581 
582       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
583 
584       std::string baseTypeName =
585           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
586               Policy) +
587           "*";
588 
589       // Turn "unsigned type" to "utype"
590       pos = baseTypeName.find("unsigned");
591       if (pos != std::string::npos)
592         baseTypeName.erase(pos+1, 8);
593 
594       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
595 
596       // Get argument type qualifiers:
597       if (ty.isRestrictQualified())
598         typeQuals = "restrict";
599       if (pointeeTy.isConstQualified() ||
600           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
601         typeQuals += typeQuals.empty() ? "const" : " const";
602       if (pointeeTy.isVolatileQualified())
603         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
604     } else {
605       uint32_t AddrSpc = 0;
606       bool isPipe = ty->isPipeType();
607       if (ty->isImageType() || isPipe)
608         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
609 
610       addressQuals.push_back(
611           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
612 
613       // Get argument type name.
614       std::string typeName;
615       if (isPipe)
616         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
617                      .getAsString(Policy);
618       else
619         typeName = ty.getUnqualifiedType().getAsString(Policy);
620 
621       // Turn "unsigned type" to "utype"
622       std::string::size_type pos = typeName.find("unsigned");
623       if (ty.isCanonical() && pos != std::string::npos)
624         typeName.erase(pos+1, 8);
625 
626       std::string baseTypeName;
627       if (isPipe)
628         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
629                           ->getElementType().getCanonicalType()
630                           .getAsString(Policy);
631       else
632         baseTypeName =
633           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
634 
635       // Remove access qualifiers on images
636       // (as they are inseparable from type in clang implementation,
637       // but OpenCL spec provides a special query to get access qualifier
638       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
639       if (ty->isImageType()) {
640         removeImageAccessQualifier(typeName);
641         removeImageAccessQualifier(baseTypeName);
642       }
643 
644       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
645 
646       // Turn "unsigned type" to "utype"
647       pos = baseTypeName.find("unsigned");
648       if (pos != std::string::npos)
649         baseTypeName.erase(pos+1, 8);
650 
651       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
652 
653       if (isPipe)
654         typeQuals = "pipe";
655     }
656 
657     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
658 
659     // Get image and pipe access qualifier:
660     if (ty->isImageType()|| ty->isPipeType()) {
661       const Decl *PDecl = parm;
662       if (auto *TD = dyn_cast<TypedefType>(ty))
663         PDecl = TD->getDecl();
664       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
665       if (A && A->isWriteOnly())
666         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
667       else if (A && A->isReadWrite())
668         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
669       else
670         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
671     } else
672       accessQuals.push_back(llvm::MDString::get(Context, "none"));
673 
674     // Get argument name.
675     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
676   }
677 
678   Fn->setMetadata("kernel_arg_addr_space",
679                   llvm::MDNode::get(Context, addressQuals));
680   Fn->setMetadata("kernel_arg_access_qual",
681                   llvm::MDNode::get(Context, accessQuals));
682   Fn->setMetadata("kernel_arg_type",
683                   llvm::MDNode::get(Context, argTypeNames));
684   Fn->setMetadata("kernel_arg_base_type",
685                   llvm::MDNode::get(Context, argBaseTypeNames));
686   Fn->setMetadata("kernel_arg_type_qual",
687                   llvm::MDNode::get(Context, argTypeQuals));
688   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
689     Fn->setMetadata("kernel_arg_name",
690                     llvm::MDNode::get(Context, argNames));
691 }
692 
693 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
694                                                llvm::Function *Fn)
695 {
696   if (!FD->hasAttr<OpenCLKernelAttr>())
697     return;
698 
699   llvm::LLVMContext &Context = getLLVMContext();
700 
701   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
702 
703   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
704     QualType HintQTy = A->getTypeHint();
705     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
706     bool IsSignedInteger =
707         HintQTy->isSignedIntegerType() ||
708         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
709     llvm::Metadata *AttrMDArgs[] = {
710         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
711             CGM.getTypes().ConvertType(A->getTypeHint()))),
712         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
713             llvm::IntegerType::get(Context, 32),
714             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
715     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
716   }
717 
718   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
719     llvm::Metadata *AttrMDArgs[] = {
720         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
721         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
722         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
723     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
724   }
725 
726   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
727     llvm::Metadata *AttrMDArgs[] = {
728         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
729         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
730         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
731     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
732   }
733 
734   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
735           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
736     llvm::Metadata *AttrMDArgs[] = {
737         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
738     Fn->setMetadata("intel_reqd_sub_group_size",
739                     llvm::MDNode::get(Context, AttrMDArgs));
740   }
741 }
742 
743 /// Determine whether the function F ends with a return stmt.
744 static bool endsWithReturn(const Decl* F) {
745   const Stmt *Body = nullptr;
746   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
747     Body = FD->getBody();
748   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
749     Body = OMD->getBody();
750 
751   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
752     auto LastStmt = CS->body_rbegin();
753     if (LastStmt != CS->body_rend())
754       return isa<ReturnStmt>(*LastStmt);
755   }
756   return false;
757 }
758 
759 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
760   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
761   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
762 }
763 
764 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
765   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
766   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
767       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
768       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
769     return false;
770 
771   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
772     return false;
773 
774   if (MD->getNumParams() == 2) {
775     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
776     if (!PT || !PT->isVoidPointerType() ||
777         !PT->getPointeeType().isConstQualified())
778       return false;
779   }
780 
781   return true;
782 }
783 
784 void CodeGenFunction::StartFunction(GlobalDecl GD,
785                                     QualType RetTy,
786                                     llvm::Function *Fn,
787                                     const CGFunctionInfo &FnInfo,
788                                     const FunctionArgList &Args,
789                                     SourceLocation Loc,
790                                     SourceLocation StartLoc) {
791   assert(!CurFn &&
792          "Do not use a CodeGenFunction object for more than one function");
793 
794   const Decl *D = GD.getDecl();
795 
796   DidCallStackSave = false;
797   CurCodeDecl = D;
798   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
799     if (FD->usesSEHTry())
800       CurSEHParent = FD;
801   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
802   FnRetTy = RetTy;
803   CurFn = Fn;
804   CurFnInfo = &FnInfo;
805   assert(CurFn->isDeclaration() && "Function already has body?");
806 
807   if (CGM.isInSanitizerBlacklist(Fn, Loc))
808     SanOpts.clear();
809 
810   if (D) {
811     // Apply the no_sanitize* attributes to SanOpts.
812     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
813       SanOpts.Mask &= ~Attr->getMask();
814   }
815 
816   // Apply sanitizer attributes to the function.
817   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
818     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
819   if (SanOpts.has(SanitizerKind::Thread))
820     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
821   if (SanOpts.has(SanitizerKind::Memory))
822     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
823   if (SanOpts.has(SanitizerKind::SafeStack))
824     Fn->addFnAttr(llvm::Attribute::SafeStack);
825 
826   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
827   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
828   if (SanOpts.has(SanitizerKind::Thread)) {
829     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
830       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
831       if (OMD->getMethodFamily() == OMF_dealloc ||
832           OMD->getMethodFamily() == OMF_initialize ||
833           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
834         markAsIgnoreThreadCheckingAtRuntime(Fn);
835       }
836     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
837       IdentifierInfo *II = FD->getIdentifier();
838       if (II && II->isStr("__destroy_helper_block_"))
839         markAsIgnoreThreadCheckingAtRuntime(Fn);
840     }
841   }
842 
843   // Ignore unrelated casts in STL allocate() since the allocator must cast
844   // from void* to T* before object initialization completes. Don't match on the
845   // namespace because not all allocators are in std::
846   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
847     if (matchesStlAllocatorFn(D, getContext()))
848       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
849   }
850 
851   // Apply xray attributes to the function (as a string, for now)
852   if (D && ShouldXRayInstrumentFunction()) {
853     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
854       if (XRayAttr->alwaysXRayInstrument())
855         Fn->addFnAttr("function-instrument", "xray-always");
856       if (XRayAttr->neverXRayInstrument())
857         Fn->addFnAttr("function-instrument", "xray-never");
858       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
859         Fn->addFnAttr("xray-log-args",
860                       llvm::utostr(LogArgs->getArgumentCount()));
861       }
862     } else {
863       if (!CGM.imbueXRayAttrs(Fn, Loc))
864         Fn->addFnAttr(
865             "xray-instruction-threshold",
866             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
867     }
868   }
869 
870   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
871     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
872       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
873 
874   // Add no-jump-tables value.
875   Fn->addFnAttr("no-jump-tables",
876                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
877 
878   // Add profile-sample-accurate value.
879   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
880     Fn->addFnAttr("profile-sample-accurate");
881 
882   if (getLangOpts().OpenCL) {
883     // Add metadata for a kernel function.
884     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
885       EmitOpenCLKernelMetadata(FD, Fn);
886   }
887 
888   // If we are checking function types, emit a function type signature as
889   // prologue data.
890   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
891     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
892       if (llvm::Constant *PrologueSig =
893               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
894         llvm::Constant *FTRTTIConst =
895             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
896         llvm::Constant *FTRTTIConstEncoded =
897             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
898         llvm::Constant *PrologueStructElems[] = {PrologueSig,
899                                                  FTRTTIConstEncoded};
900         llvm::Constant *PrologueStructConst =
901             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
902         Fn->setPrologueData(PrologueStructConst);
903       }
904     }
905   }
906 
907   // If we're checking nullability, we need to know whether we can check the
908   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
909   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
910     auto Nullability = FnRetTy->getNullability(getContext());
911     if (Nullability && *Nullability == NullabilityKind::NonNull) {
912       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
913             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
914         RetValNullabilityPrecondition =
915             llvm::ConstantInt::getTrue(getLLVMContext());
916     }
917   }
918 
919   // If we're in C++ mode and the function name is "main", it is guaranteed
920   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
921   // used within a program").
922   if (getLangOpts().CPlusPlus)
923     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
924       if (FD->isMain())
925         Fn->addFnAttr(llvm::Attribute::NoRecurse);
926 
927   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
928 
929   // Create a marker to make it easy to insert allocas into the entryblock
930   // later.  Don't create this with the builder, because we don't want it
931   // folded.
932   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
933   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
934 
935   ReturnBlock = getJumpDestInCurrentScope("return");
936 
937   Builder.SetInsertPoint(EntryBB);
938 
939   // If we're checking the return value, allocate space for a pointer to a
940   // precise source location of the checked return statement.
941   if (requiresReturnValueCheck()) {
942     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
943     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
944   }
945 
946   // Emit subprogram debug descriptor.
947   if (CGDebugInfo *DI = getDebugInfo()) {
948     // Reconstruct the type from the argument list so that implicit parameters,
949     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
950     // convention.
951     CallingConv CC = CallingConv::CC_C;
952     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
953       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
954         CC = SrcFnTy->getCallConv();
955     SmallVector<QualType, 16> ArgTypes;
956     for (const VarDecl *VD : Args)
957       ArgTypes.push_back(VD->getType());
958     QualType FnType = getContext().getFunctionType(
959         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
960     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
961   }
962 
963   if (ShouldInstrumentFunction())
964     EmitFunctionInstrumentation("__cyg_profile_func_enter");
965 
966   // Since emitting the mcount call here impacts optimizations such as function
967   // inlining, we just add an attribute to insert a mcount call in backend.
968   // The attribute "counting-function" is set to mcount function name which is
969   // architecture dependent.
970   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
971     if (CGM.getCodeGenOpts().CallFEntry)
972       Fn->addFnAttr("fentry-call", "true");
973     else {
974       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
975         Fn->addFnAttr("counting-function", getTarget().getMCountName());
976     }
977   }
978 
979   if (RetTy->isVoidType()) {
980     // Void type; nothing to return.
981     ReturnValue = Address::invalid();
982 
983     // Count the implicit return.
984     if (!endsWithReturn(D))
985       ++NumReturnExprs;
986   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
987              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
988     // Indirect aggregate return; emit returned value directly into sret slot.
989     // This reduces code size, and affects correctness in C++.
990     auto AI = CurFn->arg_begin();
991     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
992       ++AI;
993     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
994   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
995              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
996     // Load the sret pointer from the argument struct and return into that.
997     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
998     llvm::Function::arg_iterator EI = CurFn->arg_end();
999     --EI;
1000     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1001     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1002     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1003   } else {
1004     ReturnValue = CreateIRTemp(RetTy, "retval");
1005 
1006     // Tell the epilog emitter to autorelease the result.  We do this
1007     // now so that various specialized functions can suppress it
1008     // during their IR-generation.
1009     if (getLangOpts().ObjCAutoRefCount &&
1010         !CurFnInfo->isReturnsRetained() &&
1011         RetTy->isObjCRetainableType())
1012       AutoreleaseResult = true;
1013   }
1014 
1015   EmitStartEHSpec(CurCodeDecl);
1016 
1017   PrologueCleanupDepth = EHStack.stable_begin();
1018   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1019 
1020   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1021     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1022     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1023     if (MD->getParent()->isLambda() &&
1024         MD->getOverloadedOperator() == OO_Call) {
1025       // We're in a lambda; figure out the captures.
1026       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1027                                         LambdaThisCaptureField);
1028       if (LambdaThisCaptureField) {
1029         // If the lambda captures the object referred to by '*this' - either by
1030         // value or by reference, make sure CXXThisValue points to the correct
1031         // object.
1032 
1033         // Get the lvalue for the field (which is a copy of the enclosing object
1034         // or contains the address of the enclosing object).
1035         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1036         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1037           // If the enclosing object was captured by value, just use its address.
1038           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1039         } else {
1040           // Load the lvalue pointed to by the field, since '*this' was captured
1041           // by reference.
1042           CXXThisValue =
1043               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1044         }
1045       }
1046       for (auto *FD : MD->getParent()->fields()) {
1047         if (FD->hasCapturedVLAType()) {
1048           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1049                                            SourceLocation()).getScalarVal();
1050           auto VAT = FD->getCapturedVLAType();
1051           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1052         }
1053       }
1054     } else {
1055       // Not in a lambda; just use 'this' from the method.
1056       // FIXME: Should we generate a new load for each use of 'this'?  The
1057       // fast register allocator would be happier...
1058       CXXThisValue = CXXABIThisValue;
1059     }
1060 
1061     // Check the 'this' pointer once per function, if it's available.
1062     if (CXXABIThisValue) {
1063       SanitizerSet SkippedChecks;
1064       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1065       QualType ThisTy = MD->getThisType(getContext());
1066 
1067       // If this is the call operator of a lambda with no capture-default, it
1068       // may have a static invoker function, which may call this operator with
1069       // a null 'this' pointer.
1070       if (isLambdaCallOperator(MD) &&
1071           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1072               LCD_None)
1073         SkippedChecks.set(SanitizerKind::Null, true);
1074 
1075       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1076                                                 : TCK_MemberCall,
1077                     Loc, CXXABIThisValue, ThisTy,
1078                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1079                     SkippedChecks);
1080     }
1081   }
1082 
1083   // If any of the arguments have a variably modified type, make sure to
1084   // emit the type size.
1085   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1086        i != e; ++i) {
1087     const VarDecl *VD = *i;
1088 
1089     // Dig out the type as written from ParmVarDecls; it's unclear whether
1090     // the standard (C99 6.9.1p10) requires this, but we're following the
1091     // precedent set by gcc.
1092     QualType Ty;
1093     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1094       Ty = PVD->getOriginalType();
1095     else
1096       Ty = VD->getType();
1097 
1098     if (Ty->isVariablyModifiedType())
1099       EmitVariablyModifiedType(Ty);
1100   }
1101   // Emit a location at the end of the prologue.
1102   if (CGDebugInfo *DI = getDebugInfo())
1103     DI->EmitLocation(Builder, StartLoc);
1104 }
1105 
1106 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1107                                        const Stmt *Body) {
1108   incrementProfileCounter(Body);
1109   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1110     EmitCompoundStmtWithoutScope(*S);
1111   else
1112     EmitStmt(Body);
1113 }
1114 
1115 /// When instrumenting to collect profile data, the counts for some blocks
1116 /// such as switch cases need to not include the fall-through counts, so
1117 /// emit a branch around the instrumentation code. When not instrumenting,
1118 /// this just calls EmitBlock().
1119 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1120                                                const Stmt *S) {
1121   llvm::BasicBlock *SkipCountBB = nullptr;
1122   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1123     // When instrumenting for profiling, the fallthrough to certain
1124     // statements needs to skip over the instrumentation code so that we
1125     // get an accurate count.
1126     SkipCountBB = createBasicBlock("skipcount");
1127     EmitBranch(SkipCountBB);
1128   }
1129   EmitBlock(BB);
1130   uint64_t CurrentCount = getCurrentProfileCount();
1131   incrementProfileCounter(S);
1132   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1133   if (SkipCountBB)
1134     EmitBlock(SkipCountBB);
1135 }
1136 
1137 /// Tries to mark the given function nounwind based on the
1138 /// non-existence of any throwing calls within it.  We believe this is
1139 /// lightweight enough to do at -O0.
1140 static void TryMarkNoThrow(llvm::Function *F) {
1141   // LLVM treats 'nounwind' on a function as part of the type, so we
1142   // can't do this on functions that can be overwritten.
1143   if (F->isInterposable()) return;
1144 
1145   for (llvm::BasicBlock &BB : *F)
1146     for (llvm::Instruction &I : BB)
1147       if (I.mayThrow())
1148         return;
1149 
1150   F->setDoesNotThrow();
1151 }
1152 
1153 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1154                                                FunctionArgList &Args) {
1155   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1156   QualType ResTy = FD->getReturnType();
1157 
1158   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1159   if (MD && MD->isInstance()) {
1160     if (CGM.getCXXABI().HasThisReturn(GD))
1161       ResTy = MD->getThisType(getContext());
1162     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1163       ResTy = CGM.getContext().VoidPtrTy;
1164     CGM.getCXXABI().buildThisParam(*this, Args);
1165   }
1166 
1167   // The base version of an inheriting constructor whose constructed base is a
1168   // virtual base is not passed any arguments (because it doesn't actually call
1169   // the inherited constructor).
1170   bool PassedParams = true;
1171   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1172     if (auto Inherited = CD->getInheritedConstructor())
1173       PassedParams =
1174           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1175 
1176   if (PassedParams) {
1177     for (auto *Param : FD->parameters()) {
1178       Args.push_back(Param);
1179       if (!Param->hasAttr<PassObjectSizeAttr>())
1180         continue;
1181 
1182       auto *Implicit = ImplicitParamDecl::Create(
1183           getContext(), Param->getDeclContext(), Param->getLocation(),
1184           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1185       SizeArguments[Param] = Implicit;
1186       Args.push_back(Implicit);
1187     }
1188   }
1189 
1190   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1191     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1192 
1193   return ResTy;
1194 }
1195 
1196 static bool
1197 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1198                                              const ASTContext &Context) {
1199   QualType T = FD->getReturnType();
1200   // Avoid the optimization for functions that return a record type with a
1201   // trivial destructor or another trivially copyable type.
1202   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1203     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1204       return !ClassDecl->hasTrivialDestructor();
1205   }
1206   return !T.isTriviallyCopyableType(Context);
1207 }
1208 
1209 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1210                                    const CGFunctionInfo &FnInfo) {
1211   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1212   CurGD = GD;
1213 
1214   FunctionArgList Args;
1215   QualType ResTy = BuildFunctionArgList(GD, Args);
1216 
1217   // Check if we should generate debug info for this function.
1218   if (FD->hasAttr<NoDebugAttr>())
1219     DebugInfo = nullptr; // disable debug info indefinitely for this function
1220 
1221   // The function might not have a body if we're generating thunks for a
1222   // function declaration.
1223   SourceRange BodyRange;
1224   if (Stmt *Body = FD->getBody())
1225     BodyRange = Body->getSourceRange();
1226   else
1227     BodyRange = FD->getLocation();
1228   CurEHLocation = BodyRange.getEnd();
1229 
1230   // Use the location of the start of the function to determine where
1231   // the function definition is located. By default use the location
1232   // of the declaration as the location for the subprogram. A function
1233   // may lack a declaration in the source code if it is created by code
1234   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1235   SourceLocation Loc = FD->getLocation();
1236 
1237   // If this is a function specialization then use the pattern body
1238   // as the location for the function.
1239   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1240     if (SpecDecl->hasBody(SpecDecl))
1241       Loc = SpecDecl->getLocation();
1242 
1243   Stmt *Body = FD->getBody();
1244 
1245   // Initialize helper which will detect jumps which can cause invalid lifetime
1246   // markers.
1247   if (Body && ShouldEmitLifetimeMarkers)
1248     Bypasses.Init(Body);
1249 
1250   // Emit the standard function prologue.
1251   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1252 
1253   // Generate the body of the function.
1254   PGO.assignRegionCounters(GD, CurFn);
1255   if (isa<CXXDestructorDecl>(FD))
1256     EmitDestructorBody(Args);
1257   else if (isa<CXXConstructorDecl>(FD))
1258     EmitConstructorBody(Args);
1259   else if (getLangOpts().CUDA &&
1260            !getLangOpts().CUDAIsDevice &&
1261            FD->hasAttr<CUDAGlobalAttr>())
1262     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1263   else if (isa<CXXMethodDecl>(FD) &&
1264            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1265     // The lambda static invoker function is special, because it forwards or
1266     // clones the body of the function call operator (but is actually static).
1267     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1268   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1269              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1270               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1271     // Implicit copy-assignment gets the same special treatment as implicit
1272     // copy-constructors.
1273     emitImplicitAssignmentOperatorBody(Args);
1274   } else if (Body) {
1275     EmitFunctionBody(Args, Body);
1276   } else
1277     llvm_unreachable("no definition for emitted function");
1278 
1279   // C++11 [stmt.return]p2:
1280   //   Flowing off the end of a function [...] results in undefined behavior in
1281   //   a value-returning function.
1282   // C11 6.9.1p12:
1283   //   If the '}' that terminates a function is reached, and the value of the
1284   //   function call is used by the caller, the behavior is undefined.
1285   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1286       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1287     bool ShouldEmitUnreachable =
1288         CGM.getCodeGenOpts().StrictReturn ||
1289         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1290     if (SanOpts.has(SanitizerKind::Return)) {
1291       SanitizerScope SanScope(this);
1292       llvm::Value *IsFalse = Builder.getFalse();
1293       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1294                 SanitizerHandler::MissingReturn,
1295                 EmitCheckSourceLocation(FD->getLocation()), None);
1296     } else if (ShouldEmitUnreachable) {
1297       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1298         EmitTrapCall(llvm::Intrinsic::trap);
1299     }
1300     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1301       Builder.CreateUnreachable();
1302       Builder.ClearInsertionPoint();
1303     }
1304   }
1305 
1306   // Emit the standard function epilogue.
1307   FinishFunction(BodyRange.getEnd());
1308 
1309   // If we haven't marked the function nothrow through other means, do
1310   // a quick pass now to see if we can.
1311   if (!CurFn->doesNotThrow())
1312     TryMarkNoThrow(CurFn);
1313 }
1314 
1315 /// ContainsLabel - Return true if the statement contains a label in it.  If
1316 /// this statement is not executed normally, it not containing a label means
1317 /// that we can just remove the code.
1318 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1319   // Null statement, not a label!
1320   if (!S) return false;
1321 
1322   // If this is a label, we have to emit the code, consider something like:
1323   // if (0) {  ...  foo:  bar(); }  goto foo;
1324   //
1325   // TODO: If anyone cared, we could track __label__'s, since we know that you
1326   // can't jump to one from outside their declared region.
1327   if (isa<LabelStmt>(S))
1328     return true;
1329 
1330   // If this is a case/default statement, and we haven't seen a switch, we have
1331   // to emit the code.
1332   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1333     return true;
1334 
1335   // If this is a switch statement, we want to ignore cases below it.
1336   if (isa<SwitchStmt>(S))
1337     IgnoreCaseStmts = true;
1338 
1339   // Scan subexpressions for verboten labels.
1340   for (const Stmt *SubStmt : S->children())
1341     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1342       return true;
1343 
1344   return false;
1345 }
1346 
1347 /// containsBreak - Return true if the statement contains a break out of it.
1348 /// If the statement (recursively) contains a switch or loop with a break
1349 /// inside of it, this is fine.
1350 bool CodeGenFunction::containsBreak(const Stmt *S) {
1351   // Null statement, not a label!
1352   if (!S) return false;
1353 
1354   // If this is a switch or loop that defines its own break scope, then we can
1355   // include it and anything inside of it.
1356   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1357       isa<ForStmt>(S))
1358     return false;
1359 
1360   if (isa<BreakStmt>(S))
1361     return true;
1362 
1363   // Scan subexpressions for verboten breaks.
1364   for (const Stmt *SubStmt : S->children())
1365     if (containsBreak(SubStmt))
1366       return true;
1367 
1368   return false;
1369 }
1370 
1371 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1372   if (!S) return false;
1373 
1374   // Some statement kinds add a scope and thus never add a decl to the current
1375   // scope. Note, this list is longer than the list of statements that might
1376   // have an unscoped decl nested within them, but this way is conservatively
1377   // correct even if more statement kinds are added.
1378   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1379       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1380       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1381       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1382     return false;
1383 
1384   if (isa<DeclStmt>(S))
1385     return true;
1386 
1387   for (const Stmt *SubStmt : S->children())
1388     if (mightAddDeclToScope(SubStmt))
1389       return true;
1390 
1391   return false;
1392 }
1393 
1394 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1395 /// to a constant, or if it does but contains a label, return false.  If it
1396 /// constant folds return true and set the boolean result in Result.
1397 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1398                                                    bool &ResultBool,
1399                                                    bool AllowLabels) {
1400   llvm::APSInt ResultInt;
1401   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1402     return false;
1403 
1404   ResultBool = ResultInt.getBoolValue();
1405   return true;
1406 }
1407 
1408 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1409 /// to a constant, or if it does but contains a label, return false.  If it
1410 /// constant folds return true and set the folded value.
1411 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1412                                                    llvm::APSInt &ResultInt,
1413                                                    bool AllowLabels) {
1414   // FIXME: Rename and handle conversion of other evaluatable things
1415   // to bool.
1416   llvm::APSInt Int;
1417   if (!Cond->EvaluateAsInt(Int, getContext()))
1418     return false;  // Not foldable, not integer or not fully evaluatable.
1419 
1420   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1421     return false;  // Contains a label.
1422 
1423   ResultInt = Int;
1424   return true;
1425 }
1426 
1427 
1428 
1429 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1430 /// statement) to the specified blocks.  Based on the condition, this might try
1431 /// to simplify the codegen of the conditional based on the branch.
1432 ///
1433 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1434                                            llvm::BasicBlock *TrueBlock,
1435                                            llvm::BasicBlock *FalseBlock,
1436                                            uint64_t TrueCount) {
1437   Cond = Cond->IgnoreParens();
1438 
1439   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1440 
1441     // Handle X && Y in a condition.
1442     if (CondBOp->getOpcode() == BO_LAnd) {
1443       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1444       // folded if the case was simple enough.
1445       bool ConstantBool = false;
1446       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1447           ConstantBool) {
1448         // br(1 && X) -> br(X).
1449         incrementProfileCounter(CondBOp);
1450         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1451                                     TrueCount);
1452       }
1453 
1454       // If we have "X && 1", simplify the code to use an uncond branch.
1455       // "X && 0" would have been constant folded to 0.
1456       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1457           ConstantBool) {
1458         // br(X && 1) -> br(X).
1459         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1460                                     TrueCount);
1461       }
1462 
1463       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1464       // want to jump to the FalseBlock.
1465       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1466       // The counter tells us how often we evaluate RHS, and all of TrueCount
1467       // can be propagated to that branch.
1468       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1469 
1470       ConditionalEvaluation eval(*this);
1471       {
1472         ApplyDebugLocation DL(*this, Cond);
1473         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1474         EmitBlock(LHSTrue);
1475       }
1476 
1477       incrementProfileCounter(CondBOp);
1478       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1479 
1480       // Any temporaries created here are conditional.
1481       eval.begin(*this);
1482       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1483       eval.end(*this);
1484 
1485       return;
1486     }
1487 
1488     if (CondBOp->getOpcode() == BO_LOr) {
1489       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1490       // folded if the case was simple enough.
1491       bool ConstantBool = false;
1492       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1493           !ConstantBool) {
1494         // br(0 || X) -> br(X).
1495         incrementProfileCounter(CondBOp);
1496         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1497                                     TrueCount);
1498       }
1499 
1500       // If we have "X || 0", simplify the code to use an uncond branch.
1501       // "X || 1" would have been constant folded to 1.
1502       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1503           !ConstantBool) {
1504         // br(X || 0) -> br(X).
1505         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1506                                     TrueCount);
1507       }
1508 
1509       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1510       // want to jump to the TrueBlock.
1511       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1512       // We have the count for entry to the RHS and for the whole expression
1513       // being true, so we can divy up True count between the short circuit and
1514       // the RHS.
1515       uint64_t LHSCount =
1516           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1517       uint64_t RHSCount = TrueCount - LHSCount;
1518 
1519       ConditionalEvaluation eval(*this);
1520       {
1521         ApplyDebugLocation DL(*this, Cond);
1522         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1523         EmitBlock(LHSFalse);
1524       }
1525 
1526       incrementProfileCounter(CondBOp);
1527       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1528 
1529       // Any temporaries created here are conditional.
1530       eval.begin(*this);
1531       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1532 
1533       eval.end(*this);
1534 
1535       return;
1536     }
1537   }
1538 
1539   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1540     // br(!x, t, f) -> br(x, f, t)
1541     if (CondUOp->getOpcode() == UO_LNot) {
1542       // Negate the count.
1543       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1544       // Negate the condition and swap the destination blocks.
1545       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1546                                   FalseCount);
1547     }
1548   }
1549 
1550   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1551     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1552     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1553     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1554 
1555     ConditionalEvaluation cond(*this);
1556     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1557                          getProfileCount(CondOp));
1558 
1559     // When computing PGO branch weights, we only know the overall count for
1560     // the true block. This code is essentially doing tail duplication of the
1561     // naive code-gen, introducing new edges for which counts are not
1562     // available. Divide the counts proportionally between the LHS and RHS of
1563     // the conditional operator.
1564     uint64_t LHSScaledTrueCount = 0;
1565     if (TrueCount) {
1566       double LHSRatio =
1567           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1568       LHSScaledTrueCount = TrueCount * LHSRatio;
1569     }
1570 
1571     cond.begin(*this);
1572     EmitBlock(LHSBlock);
1573     incrementProfileCounter(CondOp);
1574     {
1575       ApplyDebugLocation DL(*this, Cond);
1576       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1577                            LHSScaledTrueCount);
1578     }
1579     cond.end(*this);
1580 
1581     cond.begin(*this);
1582     EmitBlock(RHSBlock);
1583     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1584                          TrueCount - LHSScaledTrueCount);
1585     cond.end(*this);
1586 
1587     return;
1588   }
1589 
1590   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1591     // Conditional operator handling can give us a throw expression as a
1592     // condition for a case like:
1593     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1594     // Fold this to:
1595     //   br(c, throw x, br(y, t, f))
1596     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1597     return;
1598   }
1599 
1600   // If the branch has a condition wrapped by __builtin_unpredictable,
1601   // create metadata that specifies that the branch is unpredictable.
1602   // Don't bother if not optimizing because that metadata would not be used.
1603   llvm::MDNode *Unpredictable = nullptr;
1604   auto *Call = dyn_cast<CallExpr>(Cond);
1605   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1606     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1607     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1608       llvm::MDBuilder MDHelper(getLLVMContext());
1609       Unpredictable = MDHelper.createUnpredictable();
1610     }
1611   }
1612 
1613   // Create branch weights based on the number of times we get here and the
1614   // number of times the condition should be true.
1615   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1616   llvm::MDNode *Weights =
1617       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1618 
1619   // Emit the code with the fully general case.
1620   llvm::Value *CondV;
1621   {
1622     ApplyDebugLocation DL(*this, Cond);
1623     CondV = EvaluateExprAsBool(Cond);
1624   }
1625   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1626 }
1627 
1628 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1629 /// specified stmt yet.
1630 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1631   CGM.ErrorUnsupported(S, Type);
1632 }
1633 
1634 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1635 /// variable-length array whose elements have a non-zero bit-pattern.
1636 ///
1637 /// \param baseType the inner-most element type of the array
1638 /// \param src - a char* pointing to the bit-pattern for a single
1639 /// base element of the array
1640 /// \param sizeInChars - the total size of the VLA, in chars
1641 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1642                                Address dest, Address src,
1643                                llvm::Value *sizeInChars) {
1644   CGBuilderTy &Builder = CGF.Builder;
1645 
1646   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1647   llvm::Value *baseSizeInChars
1648     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1649 
1650   Address begin =
1651     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1652   llvm::Value *end =
1653     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1654 
1655   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1656   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1657   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1658 
1659   // Make a loop over the VLA.  C99 guarantees that the VLA element
1660   // count must be nonzero.
1661   CGF.EmitBlock(loopBB);
1662 
1663   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1664   cur->addIncoming(begin.getPointer(), originBB);
1665 
1666   CharUnits curAlign =
1667     dest.getAlignment().alignmentOfArrayElement(baseSize);
1668 
1669   // memcpy the individual element bit-pattern.
1670   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1671                        /*volatile*/ false);
1672 
1673   // Go to the next element.
1674   llvm::Value *next =
1675     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1676 
1677   // Leave if that's the end of the VLA.
1678   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1679   Builder.CreateCondBr(done, contBB, loopBB);
1680   cur->addIncoming(next, loopBB);
1681 
1682   CGF.EmitBlock(contBB);
1683 }
1684 
1685 void
1686 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1687   // Ignore empty classes in C++.
1688   if (getLangOpts().CPlusPlus) {
1689     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1690       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1691         return;
1692     }
1693   }
1694 
1695   // Cast the dest ptr to the appropriate i8 pointer type.
1696   if (DestPtr.getElementType() != Int8Ty)
1697     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1698 
1699   // Get size and alignment info for this aggregate.
1700   CharUnits size = getContext().getTypeSizeInChars(Ty);
1701 
1702   llvm::Value *SizeVal;
1703   const VariableArrayType *vla;
1704 
1705   // Don't bother emitting a zero-byte memset.
1706   if (size.isZero()) {
1707     // But note that getTypeInfo returns 0 for a VLA.
1708     if (const VariableArrayType *vlaType =
1709           dyn_cast_or_null<VariableArrayType>(
1710                                           getContext().getAsArrayType(Ty))) {
1711       QualType eltType;
1712       llvm::Value *numElts;
1713       std::tie(numElts, eltType) = getVLASize(vlaType);
1714 
1715       SizeVal = numElts;
1716       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1717       if (!eltSize.isOne())
1718         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1719       vla = vlaType;
1720     } else {
1721       return;
1722     }
1723   } else {
1724     SizeVal = CGM.getSize(size);
1725     vla = nullptr;
1726   }
1727 
1728   // If the type contains a pointer to data member we can't memset it to zero.
1729   // Instead, create a null constant and copy it to the destination.
1730   // TODO: there are other patterns besides zero that we can usefully memset,
1731   // like -1, which happens to be the pattern used by member-pointers.
1732   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1733     // For a VLA, emit a single element, then splat that over the VLA.
1734     if (vla) Ty = getContext().getBaseElementType(vla);
1735 
1736     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1737 
1738     llvm::GlobalVariable *NullVariable =
1739       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1740                                /*isConstant=*/true,
1741                                llvm::GlobalVariable::PrivateLinkage,
1742                                NullConstant, Twine());
1743     CharUnits NullAlign = DestPtr.getAlignment();
1744     NullVariable->setAlignment(NullAlign.getQuantity());
1745     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1746                    NullAlign);
1747 
1748     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1749 
1750     // Get and call the appropriate llvm.memcpy overload.
1751     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1752     return;
1753   }
1754 
1755   // Otherwise, just memset the whole thing to zero.  This is legal
1756   // because in LLVM, all default initializers (other than the ones we just
1757   // handled above) are guaranteed to have a bit pattern of all zeros.
1758   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1759 }
1760 
1761 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1762   // Make sure that there is a block for the indirect goto.
1763   if (!IndirectBranch)
1764     GetIndirectGotoBlock();
1765 
1766   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1767 
1768   // Make sure the indirect branch includes all of the address-taken blocks.
1769   IndirectBranch->addDestination(BB);
1770   return llvm::BlockAddress::get(CurFn, BB);
1771 }
1772 
1773 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1774   // If we already made the indirect branch for indirect goto, return its block.
1775   if (IndirectBranch) return IndirectBranch->getParent();
1776 
1777   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1778 
1779   // Create the PHI node that indirect gotos will add entries to.
1780   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1781                                               "indirect.goto.dest");
1782 
1783   // Create the indirect branch instruction.
1784   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1785   return IndirectBranch->getParent();
1786 }
1787 
1788 /// Computes the length of an array in elements, as well as the base
1789 /// element type and a properly-typed first element pointer.
1790 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1791                                               QualType &baseType,
1792                                               Address &addr) {
1793   const ArrayType *arrayType = origArrayType;
1794 
1795   // If it's a VLA, we have to load the stored size.  Note that
1796   // this is the size of the VLA in bytes, not its size in elements.
1797   llvm::Value *numVLAElements = nullptr;
1798   if (isa<VariableArrayType>(arrayType)) {
1799     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1800 
1801     // Walk into all VLAs.  This doesn't require changes to addr,
1802     // which has type T* where T is the first non-VLA element type.
1803     do {
1804       QualType elementType = arrayType->getElementType();
1805       arrayType = getContext().getAsArrayType(elementType);
1806 
1807       // If we only have VLA components, 'addr' requires no adjustment.
1808       if (!arrayType) {
1809         baseType = elementType;
1810         return numVLAElements;
1811       }
1812     } while (isa<VariableArrayType>(arrayType));
1813 
1814     // We get out here only if we find a constant array type
1815     // inside the VLA.
1816   }
1817 
1818   // We have some number of constant-length arrays, so addr should
1819   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1820   // down to the first element of addr.
1821   SmallVector<llvm::Value*, 8> gepIndices;
1822 
1823   // GEP down to the array type.
1824   llvm::ConstantInt *zero = Builder.getInt32(0);
1825   gepIndices.push_back(zero);
1826 
1827   uint64_t countFromCLAs = 1;
1828   QualType eltType;
1829 
1830   llvm::ArrayType *llvmArrayType =
1831     dyn_cast<llvm::ArrayType>(addr.getElementType());
1832   while (llvmArrayType) {
1833     assert(isa<ConstantArrayType>(arrayType));
1834     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1835              == llvmArrayType->getNumElements());
1836 
1837     gepIndices.push_back(zero);
1838     countFromCLAs *= llvmArrayType->getNumElements();
1839     eltType = arrayType->getElementType();
1840 
1841     llvmArrayType =
1842       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1843     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1844     assert((!llvmArrayType || arrayType) &&
1845            "LLVM and Clang types are out-of-synch");
1846   }
1847 
1848   if (arrayType) {
1849     // From this point onwards, the Clang array type has been emitted
1850     // as some other type (probably a packed struct). Compute the array
1851     // size, and just emit the 'begin' expression as a bitcast.
1852     while (arrayType) {
1853       countFromCLAs *=
1854           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1855       eltType = arrayType->getElementType();
1856       arrayType = getContext().getAsArrayType(eltType);
1857     }
1858 
1859     llvm::Type *baseType = ConvertType(eltType);
1860     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1861   } else {
1862     // Create the actual GEP.
1863     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1864                                              gepIndices, "array.begin"),
1865                    addr.getAlignment());
1866   }
1867 
1868   baseType = eltType;
1869 
1870   llvm::Value *numElements
1871     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1872 
1873   // If we had any VLA dimensions, factor them in.
1874   if (numVLAElements)
1875     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1876 
1877   return numElements;
1878 }
1879 
1880 std::pair<llvm::Value*, QualType>
1881 CodeGenFunction::getVLASize(QualType type) {
1882   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1883   assert(vla && "type was not a variable array type!");
1884   return getVLASize(vla);
1885 }
1886 
1887 std::pair<llvm::Value*, QualType>
1888 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1889   // The number of elements so far; always size_t.
1890   llvm::Value *numElements = nullptr;
1891 
1892   QualType elementType;
1893   do {
1894     elementType = type->getElementType();
1895     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1896     assert(vlaSize && "no size for VLA!");
1897     assert(vlaSize->getType() == SizeTy);
1898 
1899     if (!numElements) {
1900       numElements = vlaSize;
1901     } else {
1902       // It's undefined behavior if this wraps around, so mark it that way.
1903       // FIXME: Teach -fsanitize=undefined to trap this.
1904       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1905     }
1906   } while ((type = getContext().getAsVariableArrayType(elementType)));
1907 
1908   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1909 }
1910 
1911 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1912   assert(type->isVariablyModifiedType() &&
1913          "Must pass variably modified type to EmitVLASizes!");
1914 
1915   EnsureInsertPoint();
1916 
1917   // We're going to walk down into the type and look for VLA
1918   // expressions.
1919   do {
1920     assert(type->isVariablyModifiedType());
1921 
1922     const Type *ty = type.getTypePtr();
1923     switch (ty->getTypeClass()) {
1924 
1925 #define TYPE(Class, Base)
1926 #define ABSTRACT_TYPE(Class, Base)
1927 #define NON_CANONICAL_TYPE(Class, Base)
1928 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1929 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1930 #include "clang/AST/TypeNodes.def"
1931       llvm_unreachable("unexpected dependent type!");
1932 
1933     // These types are never variably-modified.
1934     case Type::Builtin:
1935     case Type::Complex:
1936     case Type::Vector:
1937     case Type::ExtVector:
1938     case Type::Record:
1939     case Type::Enum:
1940     case Type::Elaborated:
1941     case Type::TemplateSpecialization:
1942     case Type::ObjCTypeParam:
1943     case Type::ObjCObject:
1944     case Type::ObjCInterface:
1945     case Type::ObjCObjectPointer:
1946       llvm_unreachable("type class is never variably-modified!");
1947 
1948     case Type::Adjusted:
1949       type = cast<AdjustedType>(ty)->getAdjustedType();
1950       break;
1951 
1952     case Type::Decayed:
1953       type = cast<DecayedType>(ty)->getPointeeType();
1954       break;
1955 
1956     case Type::Pointer:
1957       type = cast<PointerType>(ty)->getPointeeType();
1958       break;
1959 
1960     case Type::BlockPointer:
1961       type = cast<BlockPointerType>(ty)->getPointeeType();
1962       break;
1963 
1964     case Type::LValueReference:
1965     case Type::RValueReference:
1966       type = cast<ReferenceType>(ty)->getPointeeType();
1967       break;
1968 
1969     case Type::MemberPointer:
1970       type = cast<MemberPointerType>(ty)->getPointeeType();
1971       break;
1972 
1973     case Type::ConstantArray:
1974     case Type::IncompleteArray:
1975       // Losing element qualification here is fine.
1976       type = cast<ArrayType>(ty)->getElementType();
1977       break;
1978 
1979     case Type::VariableArray: {
1980       // Losing element qualification here is fine.
1981       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1982 
1983       // Unknown size indication requires no size computation.
1984       // Otherwise, evaluate and record it.
1985       if (const Expr *size = vat->getSizeExpr()) {
1986         // It's possible that we might have emitted this already,
1987         // e.g. with a typedef and a pointer to it.
1988         llvm::Value *&entry = VLASizeMap[size];
1989         if (!entry) {
1990           llvm::Value *Size = EmitScalarExpr(size);
1991 
1992           // C11 6.7.6.2p5:
1993           //   If the size is an expression that is not an integer constant
1994           //   expression [...] each time it is evaluated it shall have a value
1995           //   greater than zero.
1996           if (SanOpts.has(SanitizerKind::VLABound) &&
1997               size->getType()->isSignedIntegerType()) {
1998             SanitizerScope SanScope(this);
1999             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2000             llvm::Constant *StaticArgs[] = {
2001               EmitCheckSourceLocation(size->getLocStart()),
2002               EmitCheckTypeDescriptor(size->getType())
2003             };
2004             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2005                                      SanitizerKind::VLABound),
2006                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2007           }
2008 
2009           // Always zexting here would be wrong if it weren't
2010           // undefined behavior to have a negative bound.
2011           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2012         }
2013       }
2014       type = vat->getElementType();
2015       break;
2016     }
2017 
2018     case Type::FunctionProto:
2019     case Type::FunctionNoProto:
2020       type = cast<FunctionType>(ty)->getReturnType();
2021       break;
2022 
2023     case Type::Paren:
2024     case Type::TypeOf:
2025     case Type::UnaryTransform:
2026     case Type::Attributed:
2027     case Type::SubstTemplateTypeParm:
2028     case Type::PackExpansion:
2029       // Keep walking after single level desugaring.
2030       type = type.getSingleStepDesugaredType(getContext());
2031       break;
2032 
2033     case Type::Typedef:
2034     case Type::Decltype:
2035     case Type::Auto:
2036     case Type::DeducedTemplateSpecialization:
2037       // Stop walking: nothing to do.
2038       return;
2039 
2040     case Type::TypeOfExpr:
2041       // Stop walking: emit typeof expression.
2042       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2043       return;
2044 
2045     case Type::Atomic:
2046       type = cast<AtomicType>(ty)->getValueType();
2047       break;
2048 
2049     case Type::Pipe:
2050       type = cast<PipeType>(ty)->getElementType();
2051       break;
2052     }
2053   } while (type->isVariablyModifiedType());
2054 }
2055 
2056 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2057   if (getContext().getBuiltinVaListType()->isArrayType())
2058     return EmitPointerWithAlignment(E);
2059   return EmitLValue(E).getAddress();
2060 }
2061 
2062 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2063   return EmitLValue(E).getAddress();
2064 }
2065 
2066 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2067                                               const APValue &Init) {
2068   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2069   if (CGDebugInfo *Dbg = getDebugInfo())
2070     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2071       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2072 }
2073 
2074 CodeGenFunction::PeepholeProtection
2075 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2076   // At the moment, the only aggressive peephole we do in IR gen
2077   // is trunc(zext) folding, but if we add more, we can easily
2078   // extend this protection.
2079 
2080   if (!rvalue.isScalar()) return PeepholeProtection();
2081   llvm::Value *value = rvalue.getScalarVal();
2082   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2083 
2084   // Just make an extra bitcast.
2085   assert(HaveInsertPoint());
2086   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2087                                                   Builder.GetInsertBlock());
2088 
2089   PeepholeProtection protection;
2090   protection.Inst = inst;
2091   return protection;
2092 }
2093 
2094 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2095   if (!protection.Inst) return;
2096 
2097   // In theory, we could try to duplicate the peepholes now, but whatever.
2098   protection.Inst->eraseFromParent();
2099 }
2100 
2101 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2102                                                  llvm::Value *AnnotatedVal,
2103                                                  StringRef AnnotationStr,
2104                                                  SourceLocation Location) {
2105   llvm::Value *Args[4] = {
2106     AnnotatedVal,
2107     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2108     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2109     CGM.EmitAnnotationLineNo(Location)
2110   };
2111   return Builder.CreateCall(AnnotationFn, Args);
2112 }
2113 
2114 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2115   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2116   // FIXME We create a new bitcast for every annotation because that's what
2117   // llvm-gcc was doing.
2118   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2119     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2120                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2121                        I->getAnnotation(), D->getLocation());
2122 }
2123 
2124 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2125                                               Address Addr) {
2126   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2127   llvm::Value *V = Addr.getPointer();
2128   llvm::Type *VTy = V->getType();
2129   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2130                                     CGM.Int8PtrTy);
2131 
2132   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2133     // FIXME Always emit the cast inst so we can differentiate between
2134     // annotation on the first field of a struct and annotation on the struct
2135     // itself.
2136     if (VTy != CGM.Int8PtrTy)
2137       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2138     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2139     V = Builder.CreateBitCast(V, VTy);
2140   }
2141 
2142   return Address(V, Addr.getAlignment());
2143 }
2144 
2145 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2146 
2147 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2148     : CGF(CGF) {
2149   assert(!CGF->IsSanitizerScope);
2150   CGF->IsSanitizerScope = true;
2151 }
2152 
2153 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2154   CGF->IsSanitizerScope = false;
2155 }
2156 
2157 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2158                                    const llvm::Twine &Name,
2159                                    llvm::BasicBlock *BB,
2160                                    llvm::BasicBlock::iterator InsertPt) const {
2161   LoopStack.InsertHelper(I);
2162   if (IsSanitizerScope)
2163     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2164 }
2165 
2166 void CGBuilderInserter::InsertHelper(
2167     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2168     llvm::BasicBlock::iterator InsertPt) const {
2169   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2170   if (CGF)
2171     CGF->InsertHelper(I, Name, BB, InsertPt);
2172 }
2173 
2174 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2175                                 CodeGenModule &CGM, const FunctionDecl *FD,
2176                                 std::string &FirstMissing) {
2177   // If there aren't any required features listed then go ahead and return.
2178   if (ReqFeatures.empty())
2179     return false;
2180 
2181   // Now build up the set of caller features and verify that all the required
2182   // features are there.
2183   llvm::StringMap<bool> CallerFeatureMap;
2184   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2185 
2186   // If we have at least one of the features in the feature list return
2187   // true, otherwise return false.
2188   return std::all_of(
2189       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2190         SmallVector<StringRef, 1> OrFeatures;
2191         Feature.split(OrFeatures, "|");
2192         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2193                            [&](StringRef Feature) {
2194                              if (!CallerFeatureMap.lookup(Feature)) {
2195                                FirstMissing = Feature.str();
2196                                return false;
2197                              }
2198                              return true;
2199                            });
2200       });
2201 }
2202 
2203 // Emits an error if we don't have a valid set of target features for the
2204 // called function.
2205 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2206                                           const FunctionDecl *TargetDecl) {
2207   // Early exit if this is an indirect call.
2208   if (!TargetDecl)
2209     return;
2210 
2211   // Get the current enclosing function if it exists. If it doesn't
2212   // we can't check the target features anyhow.
2213   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2214   if (!FD)
2215     return;
2216 
2217   // Grab the required features for the call. For a builtin this is listed in
2218   // the td file with the default cpu, for an always_inline function this is any
2219   // listed cpu and any listed features.
2220   unsigned BuiltinID = TargetDecl->getBuiltinID();
2221   std::string MissingFeature;
2222   if (BuiltinID) {
2223     SmallVector<StringRef, 1> ReqFeatures;
2224     const char *FeatureList =
2225         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2226     // Return if the builtin doesn't have any required features.
2227     if (!FeatureList || StringRef(FeatureList) == "")
2228       return;
2229     StringRef(FeatureList).split(ReqFeatures, ",");
2230     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2231       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2232           << TargetDecl->getDeclName()
2233           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2234 
2235   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2236     // Get the required features for the callee.
2237     SmallVector<StringRef, 1> ReqFeatures;
2238     llvm::StringMap<bool> CalleeFeatureMap;
2239     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2240     for (const auto &F : CalleeFeatureMap) {
2241       // Only positive features are "required".
2242       if (F.getValue())
2243         ReqFeatures.push_back(F.getKey());
2244     }
2245     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2246       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2247           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2248   }
2249 }
2250 
2251 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2252   if (!CGM.getCodeGenOpts().SanitizeStats)
2253     return;
2254 
2255   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2256   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2257   CGM.getSanStats().create(IRB, SSK);
2258 }
2259 
2260 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2261   if (CGDebugInfo *DI = getDebugInfo())
2262     return DI->SourceLocToDebugLoc(Location);
2263 
2264   return llvm::DebugLoc();
2265 }
2266