1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 43 /// markers. 44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 45 const LangOptions &LangOpts) { 46 if (CGOpts.DisableLifetimeMarkers) 47 return false; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // Asan uses markers for use-after-scope checks. 55 if (CGOpts.SanitizeAddressUseAfterScope) 56 return true; 57 58 // For now, only in optimized builds. 59 return CGOpts.OptimizationLevel != 0; 60 } 61 62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 63 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 64 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 65 CGBuilderInserterTy(this)), 66 CurFn(nullptr), ReturnValue(Address::invalid()), 67 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 68 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 69 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 70 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 71 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 72 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 73 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 74 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 75 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 76 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 77 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 78 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 79 CXXStructorImplicitParamDecl(nullptr), 80 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 81 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 82 TerminateHandler(nullptr), TrapBB(nullptr), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 88 llvm::FastMathFlags FMF; 89 if (CGM.getLangOpts().FastMath) 90 FMF.setUnsafeAlgebra(); 91 if (CGM.getLangOpts().FiniteMathOnly) { 92 FMF.setNoNaNs(); 93 FMF.setNoInfs(); 94 } 95 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 96 FMF.setNoNaNs(); 97 } 98 if (CGM.getCodeGenOpts().NoSignedZeros) { 99 FMF.setNoSignedZeros(); 100 } 101 if (CGM.getCodeGenOpts().ReciprocalMath) { 102 FMF.setAllowReciprocal(); 103 } 104 Builder.setFastMathFlags(FMF); 105 } 106 107 CodeGenFunction::~CodeGenFunction() { 108 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 109 110 // If there are any unclaimed block infos, go ahead and destroy them 111 // now. This can happen if IR-gen gets clever and skips evaluating 112 // something. 113 if (FirstBlockInfo) 114 destroyBlockInfos(FirstBlockInfo); 115 116 if (getLangOpts().OpenMP && CurFn) 117 CGM.getOpenMPRuntime().functionFinished(*this); 118 } 119 120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 121 LValueBaseInfo *BaseInfo) { 122 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 123 /*forPointee*/ true); 124 } 125 126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 127 LValueBaseInfo *BaseInfo, 128 bool forPointeeType) { 129 // Honor alignment typedef attributes even on incomplete types. 130 // We also honor them straight for C++ class types, even as pointees; 131 // there's an expressivity gap here. 132 if (auto TT = T->getAs<TypedefType>()) { 133 if (auto Align = TT->getDecl()->getMaxAlignment()) { 134 if (BaseInfo) 135 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 136 return getContext().toCharUnitsFromBits(Align); 137 } 138 } 139 140 if (BaseInfo) 141 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 142 143 CharUnits Alignment; 144 if (T->isIncompleteType()) { 145 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 146 } else { 147 // For C++ class pointees, we don't know whether we're pointing at a 148 // base or a complete object, so we generally need to use the 149 // non-virtual alignment. 150 const CXXRecordDecl *RD; 151 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 152 Alignment = CGM.getClassPointerAlignment(RD); 153 } else { 154 Alignment = getContext().getTypeAlignInChars(T); 155 if (T.getQualifiers().hasUnaligned()) 156 Alignment = CharUnits::One(); 157 } 158 159 // Cap to the global maximum type alignment unless the alignment 160 // was somehow explicit on the type. 161 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 162 if (Alignment.getQuantity() > MaxAlign && 163 !getContext().isAlignmentRequired(T)) 164 Alignment = CharUnits::fromQuantity(MaxAlign); 165 } 166 } 167 return Alignment; 168 } 169 170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 171 LValueBaseInfo BaseInfo; 172 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); 173 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 174 CGM.getTBAAInfo(T)); 175 } 176 177 /// Given a value of type T* that may not be to a complete object, 178 /// construct an l-value with the natural pointee alignment of T. 179 LValue 180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); 183 return MakeAddrLValue(Address(V, Align), T, BaseInfo); 184 } 185 186 187 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 188 return CGM.getTypes().ConvertTypeForMem(T); 189 } 190 191 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 192 return CGM.getTypes().ConvertType(T); 193 } 194 195 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 196 type = type.getCanonicalType(); 197 while (true) { 198 switch (type->getTypeClass()) { 199 #define TYPE(name, parent) 200 #define ABSTRACT_TYPE(name, parent) 201 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 202 #define DEPENDENT_TYPE(name, parent) case Type::name: 203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 204 #include "clang/AST/TypeNodes.def" 205 llvm_unreachable("non-canonical or dependent type in IR-generation"); 206 207 case Type::Auto: 208 case Type::DeducedTemplateSpecialization: 209 llvm_unreachable("undeduced type in IR-generation"); 210 211 // Various scalar types. 212 case Type::Builtin: 213 case Type::Pointer: 214 case Type::BlockPointer: 215 case Type::LValueReference: 216 case Type::RValueReference: 217 case Type::MemberPointer: 218 case Type::Vector: 219 case Type::ExtVector: 220 case Type::FunctionProto: 221 case Type::FunctionNoProto: 222 case Type::Enum: 223 case Type::ObjCObjectPointer: 224 case Type::Pipe: 225 return TEK_Scalar; 226 227 // Complexes. 228 case Type::Complex: 229 return TEK_Complex; 230 231 // Arrays, records, and Objective-C objects. 232 case Type::ConstantArray: 233 case Type::IncompleteArray: 234 case Type::VariableArray: 235 case Type::Record: 236 case Type::ObjCObject: 237 case Type::ObjCInterface: 238 return TEK_Aggregate; 239 240 // We operate on atomic values according to their underlying type. 241 case Type::Atomic: 242 type = cast<AtomicType>(type)->getValueType(); 243 continue; 244 } 245 llvm_unreachable("unknown type kind!"); 246 } 247 } 248 249 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 250 // For cleanliness, we try to avoid emitting the return block for 251 // simple cases. 252 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 253 254 if (CurBB) { 255 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 256 257 // We have a valid insert point, reuse it if it is empty or there are no 258 // explicit jumps to the return block. 259 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 260 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 261 delete ReturnBlock.getBlock(); 262 } else 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 // Otherwise, if the return block is the target of a single direct 268 // branch then we can just put the code in that block instead. This 269 // cleans up functions which started with a unified return block. 270 if (ReturnBlock.getBlock()->hasOneUse()) { 271 llvm::BranchInst *BI = 272 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 273 if (BI && BI->isUnconditional() && 274 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 275 // Record/return the DebugLoc of the simple 'return' expression to be used 276 // later by the actual 'ret' instruction. 277 llvm::DebugLoc Loc = BI->getDebugLoc(); 278 Builder.SetInsertPoint(BI->getParent()); 279 BI->eraseFromParent(); 280 delete ReturnBlock.getBlock(); 281 return Loc; 282 } 283 } 284 285 // FIXME: We are at an unreachable point, there is no reason to emit the block 286 // unless it has uses. However, we still need a place to put the debug 287 // region.end for now. 288 289 EmitBlock(ReturnBlock.getBlock()); 290 return llvm::DebugLoc(); 291 } 292 293 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 294 if (!BB) return; 295 if (!BB->use_empty()) 296 return CGF.CurFn->getBasicBlockList().push_back(BB); 297 delete BB; 298 } 299 300 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 301 assert(BreakContinueStack.empty() && 302 "mismatched push/pop in break/continue stack!"); 303 304 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 305 && NumSimpleReturnExprs == NumReturnExprs 306 && ReturnBlock.getBlock()->use_empty(); 307 // Usually the return expression is evaluated before the cleanup 308 // code. If the function contains only a simple return statement, 309 // such as a constant, the location before the cleanup code becomes 310 // the last useful breakpoint in the function, because the simple 311 // return expression will be evaluated after the cleanup code. To be 312 // safe, set the debug location for cleanup code to the location of 313 // the return statement. Otherwise the cleanup code should be at the 314 // end of the function's lexical scope. 315 // 316 // If there are multiple branches to the return block, the branch 317 // instructions will get the location of the return statements and 318 // all will be fine. 319 if (CGDebugInfo *DI = getDebugInfo()) { 320 if (OnlySimpleReturnStmts) 321 DI->EmitLocation(Builder, LastStopPoint); 322 else 323 DI->EmitLocation(Builder, EndLoc); 324 } 325 326 // Pop any cleanups that might have been associated with the 327 // parameters. Do this in whatever block we're currently in; it's 328 // important to do this before we enter the return block or return 329 // edges will be *really* confused. 330 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 331 bool HasOnlyLifetimeMarkers = 332 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 333 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 334 if (HasCleanups) { 335 // Make sure the line table doesn't jump back into the body for 336 // the ret after it's been at EndLoc. 337 if (CGDebugInfo *DI = getDebugInfo()) 338 if (OnlySimpleReturnStmts) 339 DI->EmitLocation(Builder, EndLoc); 340 341 PopCleanupBlocks(PrologueCleanupDepth); 342 } 343 344 // Emit function epilog (to return). 345 llvm::DebugLoc Loc = EmitReturnBlock(); 346 347 if (ShouldInstrumentFunction()) 348 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 349 350 // Emit debug descriptor for function end. 351 if (CGDebugInfo *DI = getDebugInfo()) 352 DI->EmitFunctionEnd(Builder, CurFn); 353 354 // Reset the debug location to that of the simple 'return' expression, if any 355 // rather than that of the end of the function's scope '}'. 356 ApplyDebugLocation AL(*this, Loc); 357 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 358 EmitEndEHSpec(CurCodeDecl); 359 360 assert(EHStack.empty() && 361 "did not remove all scopes from cleanup stack!"); 362 363 // If someone did an indirect goto, emit the indirect goto block at the end of 364 // the function. 365 if (IndirectBranch) { 366 EmitBlock(IndirectBranch->getParent()); 367 Builder.ClearInsertionPoint(); 368 } 369 370 // If some of our locals escaped, insert a call to llvm.localescape in the 371 // entry block. 372 if (!EscapedLocals.empty()) { 373 // Invert the map from local to index into a simple vector. There should be 374 // no holes. 375 SmallVector<llvm::Value *, 4> EscapeArgs; 376 EscapeArgs.resize(EscapedLocals.size()); 377 for (auto &Pair : EscapedLocals) 378 EscapeArgs[Pair.second] = Pair.first; 379 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 380 &CGM.getModule(), llvm::Intrinsic::localescape); 381 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 382 } 383 384 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 385 llvm::Instruction *Ptr = AllocaInsertPt; 386 AllocaInsertPt = nullptr; 387 Ptr->eraseFromParent(); 388 389 // If someone took the address of a label but never did an indirect goto, we 390 // made a zero entry PHI node, which is illegal, zap it now. 391 if (IndirectBranch) { 392 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 393 if (PN->getNumIncomingValues() == 0) { 394 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 395 PN->eraseFromParent(); 396 } 397 } 398 399 EmitIfUsed(*this, EHResumeBlock); 400 EmitIfUsed(*this, TerminateLandingPad); 401 EmitIfUsed(*this, TerminateHandler); 402 EmitIfUsed(*this, UnreachableBlock); 403 404 if (CGM.getCodeGenOpts().EmitDeclMetadata) 405 EmitDeclMetadata(); 406 407 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 408 I = DeferredReplacements.begin(), 409 E = DeferredReplacements.end(); 410 I != E; ++I) { 411 I->first->replaceAllUsesWith(I->second); 412 I->first->eraseFromParent(); 413 } 414 } 415 416 /// ShouldInstrumentFunction - Return true if the current function should be 417 /// instrumented with __cyg_profile_func_* calls 418 bool CodeGenFunction::ShouldInstrumentFunction() { 419 if (!CGM.getCodeGenOpts().InstrumentFunctions) 420 return false; 421 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 422 return false; 423 return true; 424 } 425 426 /// ShouldXRayInstrument - Return true if the current function should be 427 /// instrumented with XRay nop sleds. 428 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 429 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 430 } 431 432 llvm::Constant * 433 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 434 llvm::Constant *Addr) { 435 // Addresses stored in prologue data can't require run-time fixups and must 436 // be PC-relative. Run-time fixups are undesirable because they necessitate 437 // writable text segments, which are unsafe. And absolute addresses are 438 // undesirable because they break PIE mode. 439 440 // Add a layer of indirection through a private global. Taking its address 441 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 442 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 443 /*isConstant=*/true, 444 llvm::GlobalValue::PrivateLinkage, Addr); 445 446 // Create a PC-relative address. 447 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 448 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 449 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 450 return (IntPtrTy == Int32Ty) 451 ? PCRelAsInt 452 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 453 } 454 455 llvm::Value * 456 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 457 llvm::Value *EncodedAddr) { 458 // Reconstruct the address of the global. 459 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 460 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 461 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 462 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 463 464 // Load the original pointer through the global. 465 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 466 "decoded_addr"); 467 } 468 469 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 470 /// instrumentation function with the current function and the call site, if 471 /// function instrumentation is enabled. 472 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 473 auto NL = ApplyDebugLocation::CreateArtificial(*this); 474 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 475 llvm::PointerType *PointerTy = Int8PtrTy; 476 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 477 llvm::FunctionType *FunctionTy = 478 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 479 480 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 481 llvm::CallInst *CallSite = Builder.CreateCall( 482 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 483 llvm::ConstantInt::get(Int32Ty, 0), 484 "callsite"); 485 486 llvm::Value *args[] = { 487 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 488 CallSite 489 }; 490 491 EmitNounwindRuntimeCall(F, args); 492 } 493 494 static void removeImageAccessQualifier(std::string& TyName) { 495 std::string ReadOnlyQual("__read_only"); 496 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 497 if (ReadOnlyPos != std::string::npos) 498 // "+ 1" for the space after access qualifier. 499 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 500 else { 501 std::string WriteOnlyQual("__write_only"); 502 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 503 if (WriteOnlyPos != std::string::npos) 504 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 505 else { 506 std::string ReadWriteQual("__read_write"); 507 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 508 if (ReadWritePos != std::string::npos) 509 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 510 } 511 } 512 } 513 514 // Returns the address space id that should be produced to the 515 // kernel_arg_addr_space metadata. This is always fixed to the ids 516 // as specified in the SPIR 2.0 specification in order to differentiate 517 // for example in clGetKernelArgInfo() implementation between the address 518 // spaces with targets without unique mapping to the OpenCL address spaces 519 // (basically all single AS CPUs). 520 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 521 switch (LangAS) { 522 case LangAS::opencl_global: return 1; 523 case LangAS::opencl_constant: return 2; 524 case LangAS::opencl_local: return 3; 525 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 526 default: 527 return 0; // Assume private. 528 } 529 } 530 531 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 532 // information in the program executable. The argument information stored 533 // includes the argument name, its type, the address and access qualifiers used. 534 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 535 CodeGenModule &CGM, llvm::LLVMContext &Context, 536 CGBuilderTy &Builder, ASTContext &ASTCtx) { 537 // Create MDNodes that represent the kernel arg metadata. 538 // Each MDNode is a list in the form of "key", N number of values which is 539 // the same number of values as their are kernel arguments. 540 541 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 542 543 // MDNode for the kernel argument address space qualifiers. 544 SmallVector<llvm::Metadata *, 8> addressQuals; 545 546 // MDNode for the kernel argument access qualifiers (images only). 547 SmallVector<llvm::Metadata *, 8> accessQuals; 548 549 // MDNode for the kernel argument type names. 550 SmallVector<llvm::Metadata *, 8> argTypeNames; 551 552 // MDNode for the kernel argument base type names. 553 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 554 555 // MDNode for the kernel argument type qualifiers. 556 SmallVector<llvm::Metadata *, 8> argTypeQuals; 557 558 // MDNode for the kernel argument names. 559 SmallVector<llvm::Metadata *, 8> argNames; 560 561 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 562 const ParmVarDecl *parm = FD->getParamDecl(i); 563 QualType ty = parm->getType(); 564 std::string typeQuals; 565 566 if (ty->isPointerType()) { 567 QualType pointeeTy = ty->getPointeeType(); 568 569 // Get address qualifier. 570 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 571 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 572 573 // Get argument type name. 574 std::string typeName = 575 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 576 577 // Turn "unsigned type" to "utype" 578 std::string::size_type pos = typeName.find("unsigned"); 579 if (pointeeTy.isCanonical() && pos != std::string::npos) 580 typeName.erase(pos+1, 8); 581 582 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 583 584 std::string baseTypeName = 585 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 586 Policy) + 587 "*"; 588 589 // Turn "unsigned type" to "utype" 590 pos = baseTypeName.find("unsigned"); 591 if (pos != std::string::npos) 592 baseTypeName.erase(pos+1, 8); 593 594 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 595 596 // Get argument type qualifiers: 597 if (ty.isRestrictQualified()) 598 typeQuals = "restrict"; 599 if (pointeeTy.isConstQualified() || 600 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 601 typeQuals += typeQuals.empty() ? "const" : " const"; 602 if (pointeeTy.isVolatileQualified()) 603 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 604 } else { 605 uint32_t AddrSpc = 0; 606 bool isPipe = ty->isPipeType(); 607 if (ty->isImageType() || isPipe) 608 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 609 610 addressQuals.push_back( 611 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 612 613 // Get argument type name. 614 std::string typeName; 615 if (isPipe) 616 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 617 .getAsString(Policy); 618 else 619 typeName = ty.getUnqualifiedType().getAsString(Policy); 620 621 // Turn "unsigned type" to "utype" 622 std::string::size_type pos = typeName.find("unsigned"); 623 if (ty.isCanonical() && pos != std::string::npos) 624 typeName.erase(pos+1, 8); 625 626 std::string baseTypeName; 627 if (isPipe) 628 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 629 ->getElementType().getCanonicalType() 630 .getAsString(Policy); 631 else 632 baseTypeName = 633 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 634 635 // Remove access qualifiers on images 636 // (as they are inseparable from type in clang implementation, 637 // but OpenCL spec provides a special query to get access qualifier 638 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 639 if (ty->isImageType()) { 640 removeImageAccessQualifier(typeName); 641 removeImageAccessQualifier(baseTypeName); 642 } 643 644 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 645 646 // Turn "unsigned type" to "utype" 647 pos = baseTypeName.find("unsigned"); 648 if (pos != std::string::npos) 649 baseTypeName.erase(pos+1, 8); 650 651 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 652 653 if (isPipe) 654 typeQuals = "pipe"; 655 } 656 657 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 658 659 // Get image and pipe access qualifier: 660 if (ty->isImageType()|| ty->isPipeType()) { 661 const Decl *PDecl = parm; 662 if (auto *TD = dyn_cast<TypedefType>(ty)) 663 PDecl = TD->getDecl(); 664 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 665 if (A && A->isWriteOnly()) 666 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 667 else if (A && A->isReadWrite()) 668 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 669 else 670 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 671 } else 672 accessQuals.push_back(llvm::MDString::get(Context, "none")); 673 674 // Get argument name. 675 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 676 } 677 678 Fn->setMetadata("kernel_arg_addr_space", 679 llvm::MDNode::get(Context, addressQuals)); 680 Fn->setMetadata("kernel_arg_access_qual", 681 llvm::MDNode::get(Context, accessQuals)); 682 Fn->setMetadata("kernel_arg_type", 683 llvm::MDNode::get(Context, argTypeNames)); 684 Fn->setMetadata("kernel_arg_base_type", 685 llvm::MDNode::get(Context, argBaseTypeNames)); 686 Fn->setMetadata("kernel_arg_type_qual", 687 llvm::MDNode::get(Context, argTypeQuals)); 688 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 689 Fn->setMetadata("kernel_arg_name", 690 llvm::MDNode::get(Context, argNames)); 691 } 692 693 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 694 llvm::Function *Fn) 695 { 696 if (!FD->hasAttr<OpenCLKernelAttr>()) 697 return; 698 699 llvm::LLVMContext &Context = getLLVMContext(); 700 701 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 702 703 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 704 QualType HintQTy = A->getTypeHint(); 705 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 706 bool IsSignedInteger = 707 HintQTy->isSignedIntegerType() || 708 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 709 llvm::Metadata *AttrMDArgs[] = { 710 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 711 CGM.getTypes().ConvertType(A->getTypeHint()))), 712 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 713 llvm::IntegerType::get(Context, 32), 714 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 715 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 716 } 717 718 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 719 llvm::Metadata *AttrMDArgs[] = { 720 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 721 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 722 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 723 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 724 } 725 726 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 727 llvm::Metadata *AttrMDArgs[] = { 728 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 729 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 730 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 731 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 732 } 733 734 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 735 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 736 llvm::Metadata *AttrMDArgs[] = { 737 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 738 Fn->setMetadata("intel_reqd_sub_group_size", 739 llvm::MDNode::get(Context, AttrMDArgs)); 740 } 741 } 742 743 /// Determine whether the function F ends with a return stmt. 744 static bool endsWithReturn(const Decl* F) { 745 const Stmt *Body = nullptr; 746 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 747 Body = FD->getBody(); 748 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 749 Body = OMD->getBody(); 750 751 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 752 auto LastStmt = CS->body_rbegin(); 753 if (LastStmt != CS->body_rend()) 754 return isa<ReturnStmt>(*LastStmt); 755 } 756 return false; 757 } 758 759 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 760 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 761 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 762 } 763 764 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 765 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 766 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 767 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 768 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 769 return false; 770 771 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 772 return false; 773 774 if (MD->getNumParams() == 2) { 775 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 776 if (!PT || !PT->isVoidPointerType() || 777 !PT->getPointeeType().isConstQualified()) 778 return false; 779 } 780 781 return true; 782 } 783 784 void CodeGenFunction::StartFunction(GlobalDecl GD, 785 QualType RetTy, 786 llvm::Function *Fn, 787 const CGFunctionInfo &FnInfo, 788 const FunctionArgList &Args, 789 SourceLocation Loc, 790 SourceLocation StartLoc) { 791 assert(!CurFn && 792 "Do not use a CodeGenFunction object for more than one function"); 793 794 const Decl *D = GD.getDecl(); 795 796 DidCallStackSave = false; 797 CurCodeDecl = D; 798 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 799 if (FD->usesSEHTry()) 800 CurSEHParent = FD; 801 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 802 FnRetTy = RetTy; 803 CurFn = Fn; 804 CurFnInfo = &FnInfo; 805 assert(CurFn->isDeclaration() && "Function already has body?"); 806 807 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 808 SanOpts.clear(); 809 810 if (D) { 811 // Apply the no_sanitize* attributes to SanOpts. 812 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 813 SanOpts.Mask &= ~Attr->getMask(); 814 } 815 816 // Apply sanitizer attributes to the function. 817 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 818 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 819 if (SanOpts.has(SanitizerKind::Thread)) 820 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 821 if (SanOpts.has(SanitizerKind::Memory)) 822 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 823 if (SanOpts.has(SanitizerKind::SafeStack)) 824 Fn->addFnAttr(llvm::Attribute::SafeStack); 825 826 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 827 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 828 if (SanOpts.has(SanitizerKind::Thread)) { 829 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 830 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 831 if (OMD->getMethodFamily() == OMF_dealloc || 832 OMD->getMethodFamily() == OMF_initialize || 833 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 834 markAsIgnoreThreadCheckingAtRuntime(Fn); 835 } 836 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 837 IdentifierInfo *II = FD->getIdentifier(); 838 if (II && II->isStr("__destroy_helper_block_")) 839 markAsIgnoreThreadCheckingAtRuntime(Fn); 840 } 841 } 842 843 // Ignore unrelated casts in STL allocate() since the allocator must cast 844 // from void* to T* before object initialization completes. Don't match on the 845 // namespace because not all allocators are in std:: 846 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 847 if (matchesStlAllocatorFn(D, getContext())) 848 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 849 } 850 851 // Apply xray attributes to the function (as a string, for now) 852 if (D && ShouldXRayInstrumentFunction()) { 853 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 854 if (XRayAttr->alwaysXRayInstrument()) 855 Fn->addFnAttr("function-instrument", "xray-always"); 856 if (XRayAttr->neverXRayInstrument()) 857 Fn->addFnAttr("function-instrument", "xray-never"); 858 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 859 Fn->addFnAttr("xray-log-args", 860 llvm::utostr(LogArgs->getArgumentCount())); 861 } 862 } else { 863 if (!CGM.imbueXRayAttrs(Fn, Loc)) 864 Fn->addFnAttr( 865 "xray-instruction-threshold", 866 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 867 } 868 } 869 870 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 871 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 872 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 873 874 // Add no-jump-tables value. 875 Fn->addFnAttr("no-jump-tables", 876 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 877 878 // Add profile-sample-accurate value. 879 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 880 Fn->addFnAttr("profile-sample-accurate"); 881 882 if (getLangOpts().OpenCL) { 883 // Add metadata for a kernel function. 884 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 885 EmitOpenCLKernelMetadata(FD, Fn); 886 } 887 888 // If we are checking function types, emit a function type signature as 889 // prologue data. 890 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 891 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 892 if (llvm::Constant *PrologueSig = 893 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 894 llvm::Constant *FTRTTIConst = 895 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 896 llvm::Constant *FTRTTIConstEncoded = 897 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 898 llvm::Constant *PrologueStructElems[] = {PrologueSig, 899 FTRTTIConstEncoded}; 900 llvm::Constant *PrologueStructConst = 901 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 902 Fn->setPrologueData(PrologueStructConst); 903 } 904 } 905 } 906 907 // If we're checking nullability, we need to know whether we can check the 908 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 909 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 910 auto Nullability = FnRetTy->getNullability(getContext()); 911 if (Nullability && *Nullability == NullabilityKind::NonNull) { 912 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 913 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 914 RetValNullabilityPrecondition = 915 llvm::ConstantInt::getTrue(getLLVMContext()); 916 } 917 } 918 919 // If we're in C++ mode and the function name is "main", it is guaranteed 920 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 921 // used within a program"). 922 if (getLangOpts().CPlusPlus) 923 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 924 if (FD->isMain()) 925 Fn->addFnAttr(llvm::Attribute::NoRecurse); 926 927 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 928 929 // Create a marker to make it easy to insert allocas into the entryblock 930 // later. Don't create this with the builder, because we don't want it 931 // folded. 932 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 933 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 934 935 ReturnBlock = getJumpDestInCurrentScope("return"); 936 937 Builder.SetInsertPoint(EntryBB); 938 939 // If we're checking the return value, allocate space for a pointer to a 940 // precise source location of the checked return statement. 941 if (requiresReturnValueCheck()) { 942 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 943 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 944 } 945 946 // Emit subprogram debug descriptor. 947 if (CGDebugInfo *DI = getDebugInfo()) { 948 // Reconstruct the type from the argument list so that implicit parameters, 949 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 950 // convention. 951 CallingConv CC = CallingConv::CC_C; 952 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 953 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 954 CC = SrcFnTy->getCallConv(); 955 SmallVector<QualType, 16> ArgTypes; 956 for (const VarDecl *VD : Args) 957 ArgTypes.push_back(VD->getType()); 958 QualType FnType = getContext().getFunctionType( 959 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 960 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 961 } 962 963 if (ShouldInstrumentFunction()) 964 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 965 966 // Since emitting the mcount call here impacts optimizations such as function 967 // inlining, we just add an attribute to insert a mcount call in backend. 968 // The attribute "counting-function" is set to mcount function name which is 969 // architecture dependent. 970 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 971 if (CGM.getCodeGenOpts().CallFEntry) 972 Fn->addFnAttr("fentry-call", "true"); 973 else { 974 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 975 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 976 } 977 } 978 979 if (RetTy->isVoidType()) { 980 // Void type; nothing to return. 981 ReturnValue = Address::invalid(); 982 983 // Count the implicit return. 984 if (!endsWithReturn(D)) 985 ++NumReturnExprs; 986 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 987 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 988 // Indirect aggregate return; emit returned value directly into sret slot. 989 // This reduces code size, and affects correctness in C++. 990 auto AI = CurFn->arg_begin(); 991 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 992 ++AI; 993 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 994 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 995 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 996 // Load the sret pointer from the argument struct and return into that. 997 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 998 llvm::Function::arg_iterator EI = CurFn->arg_end(); 999 --EI; 1000 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1001 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1002 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1003 } else { 1004 ReturnValue = CreateIRTemp(RetTy, "retval"); 1005 1006 // Tell the epilog emitter to autorelease the result. We do this 1007 // now so that various specialized functions can suppress it 1008 // during their IR-generation. 1009 if (getLangOpts().ObjCAutoRefCount && 1010 !CurFnInfo->isReturnsRetained() && 1011 RetTy->isObjCRetainableType()) 1012 AutoreleaseResult = true; 1013 } 1014 1015 EmitStartEHSpec(CurCodeDecl); 1016 1017 PrologueCleanupDepth = EHStack.stable_begin(); 1018 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1019 1020 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1021 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1022 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1023 if (MD->getParent()->isLambda() && 1024 MD->getOverloadedOperator() == OO_Call) { 1025 // We're in a lambda; figure out the captures. 1026 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1027 LambdaThisCaptureField); 1028 if (LambdaThisCaptureField) { 1029 // If the lambda captures the object referred to by '*this' - either by 1030 // value or by reference, make sure CXXThisValue points to the correct 1031 // object. 1032 1033 // Get the lvalue for the field (which is a copy of the enclosing object 1034 // or contains the address of the enclosing object). 1035 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1036 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1037 // If the enclosing object was captured by value, just use its address. 1038 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1039 } else { 1040 // Load the lvalue pointed to by the field, since '*this' was captured 1041 // by reference. 1042 CXXThisValue = 1043 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1044 } 1045 } 1046 for (auto *FD : MD->getParent()->fields()) { 1047 if (FD->hasCapturedVLAType()) { 1048 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1049 SourceLocation()).getScalarVal(); 1050 auto VAT = FD->getCapturedVLAType(); 1051 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1052 } 1053 } 1054 } else { 1055 // Not in a lambda; just use 'this' from the method. 1056 // FIXME: Should we generate a new load for each use of 'this'? The 1057 // fast register allocator would be happier... 1058 CXXThisValue = CXXABIThisValue; 1059 } 1060 1061 // Check the 'this' pointer once per function, if it's available. 1062 if (CXXABIThisValue) { 1063 SanitizerSet SkippedChecks; 1064 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1065 QualType ThisTy = MD->getThisType(getContext()); 1066 1067 // If this is the call operator of a lambda with no capture-default, it 1068 // may have a static invoker function, which may call this operator with 1069 // a null 'this' pointer. 1070 if (isLambdaCallOperator(MD) && 1071 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1072 LCD_None) 1073 SkippedChecks.set(SanitizerKind::Null, true); 1074 1075 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1076 : TCK_MemberCall, 1077 Loc, CXXABIThisValue, ThisTy, 1078 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1079 SkippedChecks); 1080 } 1081 } 1082 1083 // If any of the arguments have a variably modified type, make sure to 1084 // emit the type size. 1085 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1086 i != e; ++i) { 1087 const VarDecl *VD = *i; 1088 1089 // Dig out the type as written from ParmVarDecls; it's unclear whether 1090 // the standard (C99 6.9.1p10) requires this, but we're following the 1091 // precedent set by gcc. 1092 QualType Ty; 1093 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1094 Ty = PVD->getOriginalType(); 1095 else 1096 Ty = VD->getType(); 1097 1098 if (Ty->isVariablyModifiedType()) 1099 EmitVariablyModifiedType(Ty); 1100 } 1101 // Emit a location at the end of the prologue. 1102 if (CGDebugInfo *DI = getDebugInfo()) 1103 DI->EmitLocation(Builder, StartLoc); 1104 } 1105 1106 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1107 const Stmt *Body) { 1108 incrementProfileCounter(Body); 1109 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1110 EmitCompoundStmtWithoutScope(*S); 1111 else 1112 EmitStmt(Body); 1113 } 1114 1115 /// When instrumenting to collect profile data, the counts for some blocks 1116 /// such as switch cases need to not include the fall-through counts, so 1117 /// emit a branch around the instrumentation code. When not instrumenting, 1118 /// this just calls EmitBlock(). 1119 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1120 const Stmt *S) { 1121 llvm::BasicBlock *SkipCountBB = nullptr; 1122 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1123 // When instrumenting for profiling, the fallthrough to certain 1124 // statements needs to skip over the instrumentation code so that we 1125 // get an accurate count. 1126 SkipCountBB = createBasicBlock("skipcount"); 1127 EmitBranch(SkipCountBB); 1128 } 1129 EmitBlock(BB); 1130 uint64_t CurrentCount = getCurrentProfileCount(); 1131 incrementProfileCounter(S); 1132 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1133 if (SkipCountBB) 1134 EmitBlock(SkipCountBB); 1135 } 1136 1137 /// Tries to mark the given function nounwind based on the 1138 /// non-existence of any throwing calls within it. We believe this is 1139 /// lightweight enough to do at -O0. 1140 static void TryMarkNoThrow(llvm::Function *F) { 1141 // LLVM treats 'nounwind' on a function as part of the type, so we 1142 // can't do this on functions that can be overwritten. 1143 if (F->isInterposable()) return; 1144 1145 for (llvm::BasicBlock &BB : *F) 1146 for (llvm::Instruction &I : BB) 1147 if (I.mayThrow()) 1148 return; 1149 1150 F->setDoesNotThrow(); 1151 } 1152 1153 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1154 FunctionArgList &Args) { 1155 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1156 QualType ResTy = FD->getReturnType(); 1157 1158 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1159 if (MD && MD->isInstance()) { 1160 if (CGM.getCXXABI().HasThisReturn(GD)) 1161 ResTy = MD->getThisType(getContext()); 1162 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1163 ResTy = CGM.getContext().VoidPtrTy; 1164 CGM.getCXXABI().buildThisParam(*this, Args); 1165 } 1166 1167 // The base version of an inheriting constructor whose constructed base is a 1168 // virtual base is not passed any arguments (because it doesn't actually call 1169 // the inherited constructor). 1170 bool PassedParams = true; 1171 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1172 if (auto Inherited = CD->getInheritedConstructor()) 1173 PassedParams = 1174 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1175 1176 if (PassedParams) { 1177 for (auto *Param : FD->parameters()) { 1178 Args.push_back(Param); 1179 if (!Param->hasAttr<PassObjectSizeAttr>()) 1180 continue; 1181 1182 auto *Implicit = ImplicitParamDecl::Create( 1183 getContext(), Param->getDeclContext(), Param->getLocation(), 1184 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1185 SizeArguments[Param] = Implicit; 1186 Args.push_back(Implicit); 1187 } 1188 } 1189 1190 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1191 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1192 1193 return ResTy; 1194 } 1195 1196 static bool 1197 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1198 const ASTContext &Context) { 1199 QualType T = FD->getReturnType(); 1200 // Avoid the optimization for functions that return a record type with a 1201 // trivial destructor or another trivially copyable type. 1202 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1203 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1204 return !ClassDecl->hasTrivialDestructor(); 1205 } 1206 return !T.isTriviallyCopyableType(Context); 1207 } 1208 1209 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1210 const CGFunctionInfo &FnInfo) { 1211 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1212 CurGD = GD; 1213 1214 FunctionArgList Args; 1215 QualType ResTy = BuildFunctionArgList(GD, Args); 1216 1217 // Check if we should generate debug info for this function. 1218 if (FD->hasAttr<NoDebugAttr>()) 1219 DebugInfo = nullptr; // disable debug info indefinitely for this function 1220 1221 // The function might not have a body if we're generating thunks for a 1222 // function declaration. 1223 SourceRange BodyRange; 1224 if (Stmt *Body = FD->getBody()) 1225 BodyRange = Body->getSourceRange(); 1226 else 1227 BodyRange = FD->getLocation(); 1228 CurEHLocation = BodyRange.getEnd(); 1229 1230 // Use the location of the start of the function to determine where 1231 // the function definition is located. By default use the location 1232 // of the declaration as the location for the subprogram. A function 1233 // may lack a declaration in the source code if it is created by code 1234 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1235 SourceLocation Loc = FD->getLocation(); 1236 1237 // If this is a function specialization then use the pattern body 1238 // as the location for the function. 1239 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1240 if (SpecDecl->hasBody(SpecDecl)) 1241 Loc = SpecDecl->getLocation(); 1242 1243 Stmt *Body = FD->getBody(); 1244 1245 // Initialize helper which will detect jumps which can cause invalid lifetime 1246 // markers. 1247 if (Body && ShouldEmitLifetimeMarkers) 1248 Bypasses.Init(Body); 1249 1250 // Emit the standard function prologue. 1251 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1252 1253 // Generate the body of the function. 1254 PGO.assignRegionCounters(GD, CurFn); 1255 if (isa<CXXDestructorDecl>(FD)) 1256 EmitDestructorBody(Args); 1257 else if (isa<CXXConstructorDecl>(FD)) 1258 EmitConstructorBody(Args); 1259 else if (getLangOpts().CUDA && 1260 !getLangOpts().CUDAIsDevice && 1261 FD->hasAttr<CUDAGlobalAttr>()) 1262 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1263 else if (isa<CXXMethodDecl>(FD) && 1264 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1265 // The lambda static invoker function is special, because it forwards or 1266 // clones the body of the function call operator (but is actually static). 1267 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1268 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1269 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1270 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1271 // Implicit copy-assignment gets the same special treatment as implicit 1272 // copy-constructors. 1273 emitImplicitAssignmentOperatorBody(Args); 1274 } else if (Body) { 1275 EmitFunctionBody(Args, Body); 1276 } else 1277 llvm_unreachable("no definition for emitted function"); 1278 1279 // C++11 [stmt.return]p2: 1280 // Flowing off the end of a function [...] results in undefined behavior in 1281 // a value-returning function. 1282 // C11 6.9.1p12: 1283 // If the '}' that terminates a function is reached, and the value of the 1284 // function call is used by the caller, the behavior is undefined. 1285 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1286 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1287 bool ShouldEmitUnreachable = 1288 CGM.getCodeGenOpts().StrictReturn || 1289 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1290 if (SanOpts.has(SanitizerKind::Return)) { 1291 SanitizerScope SanScope(this); 1292 llvm::Value *IsFalse = Builder.getFalse(); 1293 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1294 SanitizerHandler::MissingReturn, 1295 EmitCheckSourceLocation(FD->getLocation()), None); 1296 } else if (ShouldEmitUnreachable) { 1297 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1298 EmitTrapCall(llvm::Intrinsic::trap); 1299 } 1300 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1301 Builder.CreateUnreachable(); 1302 Builder.ClearInsertionPoint(); 1303 } 1304 } 1305 1306 // Emit the standard function epilogue. 1307 FinishFunction(BodyRange.getEnd()); 1308 1309 // If we haven't marked the function nothrow through other means, do 1310 // a quick pass now to see if we can. 1311 if (!CurFn->doesNotThrow()) 1312 TryMarkNoThrow(CurFn); 1313 } 1314 1315 /// ContainsLabel - Return true if the statement contains a label in it. If 1316 /// this statement is not executed normally, it not containing a label means 1317 /// that we can just remove the code. 1318 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1319 // Null statement, not a label! 1320 if (!S) return false; 1321 1322 // If this is a label, we have to emit the code, consider something like: 1323 // if (0) { ... foo: bar(); } goto foo; 1324 // 1325 // TODO: If anyone cared, we could track __label__'s, since we know that you 1326 // can't jump to one from outside their declared region. 1327 if (isa<LabelStmt>(S)) 1328 return true; 1329 1330 // If this is a case/default statement, and we haven't seen a switch, we have 1331 // to emit the code. 1332 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1333 return true; 1334 1335 // If this is a switch statement, we want to ignore cases below it. 1336 if (isa<SwitchStmt>(S)) 1337 IgnoreCaseStmts = true; 1338 1339 // Scan subexpressions for verboten labels. 1340 for (const Stmt *SubStmt : S->children()) 1341 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1342 return true; 1343 1344 return false; 1345 } 1346 1347 /// containsBreak - Return true if the statement contains a break out of it. 1348 /// If the statement (recursively) contains a switch or loop with a break 1349 /// inside of it, this is fine. 1350 bool CodeGenFunction::containsBreak(const Stmt *S) { 1351 // Null statement, not a label! 1352 if (!S) return false; 1353 1354 // If this is a switch or loop that defines its own break scope, then we can 1355 // include it and anything inside of it. 1356 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1357 isa<ForStmt>(S)) 1358 return false; 1359 1360 if (isa<BreakStmt>(S)) 1361 return true; 1362 1363 // Scan subexpressions for verboten breaks. 1364 for (const Stmt *SubStmt : S->children()) 1365 if (containsBreak(SubStmt)) 1366 return true; 1367 1368 return false; 1369 } 1370 1371 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1372 if (!S) return false; 1373 1374 // Some statement kinds add a scope and thus never add a decl to the current 1375 // scope. Note, this list is longer than the list of statements that might 1376 // have an unscoped decl nested within them, but this way is conservatively 1377 // correct even if more statement kinds are added. 1378 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1379 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1380 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1381 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1382 return false; 1383 1384 if (isa<DeclStmt>(S)) 1385 return true; 1386 1387 for (const Stmt *SubStmt : S->children()) 1388 if (mightAddDeclToScope(SubStmt)) 1389 return true; 1390 1391 return false; 1392 } 1393 1394 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1395 /// to a constant, or if it does but contains a label, return false. If it 1396 /// constant folds return true and set the boolean result in Result. 1397 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1398 bool &ResultBool, 1399 bool AllowLabels) { 1400 llvm::APSInt ResultInt; 1401 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1402 return false; 1403 1404 ResultBool = ResultInt.getBoolValue(); 1405 return true; 1406 } 1407 1408 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1409 /// to a constant, or if it does but contains a label, return false. If it 1410 /// constant folds return true and set the folded value. 1411 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1412 llvm::APSInt &ResultInt, 1413 bool AllowLabels) { 1414 // FIXME: Rename and handle conversion of other evaluatable things 1415 // to bool. 1416 llvm::APSInt Int; 1417 if (!Cond->EvaluateAsInt(Int, getContext())) 1418 return false; // Not foldable, not integer or not fully evaluatable. 1419 1420 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1421 return false; // Contains a label. 1422 1423 ResultInt = Int; 1424 return true; 1425 } 1426 1427 1428 1429 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1430 /// statement) to the specified blocks. Based on the condition, this might try 1431 /// to simplify the codegen of the conditional based on the branch. 1432 /// 1433 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1434 llvm::BasicBlock *TrueBlock, 1435 llvm::BasicBlock *FalseBlock, 1436 uint64_t TrueCount) { 1437 Cond = Cond->IgnoreParens(); 1438 1439 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1440 1441 // Handle X && Y in a condition. 1442 if (CondBOp->getOpcode() == BO_LAnd) { 1443 // If we have "1 && X", simplify the code. "0 && X" would have constant 1444 // folded if the case was simple enough. 1445 bool ConstantBool = false; 1446 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1447 ConstantBool) { 1448 // br(1 && X) -> br(X). 1449 incrementProfileCounter(CondBOp); 1450 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1451 TrueCount); 1452 } 1453 1454 // If we have "X && 1", simplify the code to use an uncond branch. 1455 // "X && 0" would have been constant folded to 0. 1456 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1457 ConstantBool) { 1458 // br(X && 1) -> br(X). 1459 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1460 TrueCount); 1461 } 1462 1463 // Emit the LHS as a conditional. If the LHS conditional is false, we 1464 // want to jump to the FalseBlock. 1465 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1466 // The counter tells us how often we evaluate RHS, and all of TrueCount 1467 // can be propagated to that branch. 1468 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1469 1470 ConditionalEvaluation eval(*this); 1471 { 1472 ApplyDebugLocation DL(*this, Cond); 1473 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1474 EmitBlock(LHSTrue); 1475 } 1476 1477 incrementProfileCounter(CondBOp); 1478 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1479 1480 // Any temporaries created here are conditional. 1481 eval.begin(*this); 1482 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1483 eval.end(*this); 1484 1485 return; 1486 } 1487 1488 if (CondBOp->getOpcode() == BO_LOr) { 1489 // If we have "0 || X", simplify the code. "1 || X" would have constant 1490 // folded if the case was simple enough. 1491 bool ConstantBool = false; 1492 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1493 !ConstantBool) { 1494 // br(0 || X) -> br(X). 1495 incrementProfileCounter(CondBOp); 1496 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1497 TrueCount); 1498 } 1499 1500 // If we have "X || 0", simplify the code to use an uncond branch. 1501 // "X || 1" would have been constant folded to 1. 1502 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1503 !ConstantBool) { 1504 // br(X || 0) -> br(X). 1505 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1506 TrueCount); 1507 } 1508 1509 // Emit the LHS as a conditional. If the LHS conditional is true, we 1510 // want to jump to the TrueBlock. 1511 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1512 // We have the count for entry to the RHS and for the whole expression 1513 // being true, so we can divy up True count between the short circuit and 1514 // the RHS. 1515 uint64_t LHSCount = 1516 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1517 uint64_t RHSCount = TrueCount - LHSCount; 1518 1519 ConditionalEvaluation eval(*this); 1520 { 1521 ApplyDebugLocation DL(*this, Cond); 1522 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1523 EmitBlock(LHSFalse); 1524 } 1525 1526 incrementProfileCounter(CondBOp); 1527 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1528 1529 // Any temporaries created here are conditional. 1530 eval.begin(*this); 1531 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1532 1533 eval.end(*this); 1534 1535 return; 1536 } 1537 } 1538 1539 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1540 // br(!x, t, f) -> br(x, f, t) 1541 if (CondUOp->getOpcode() == UO_LNot) { 1542 // Negate the count. 1543 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1544 // Negate the condition and swap the destination blocks. 1545 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1546 FalseCount); 1547 } 1548 } 1549 1550 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1551 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1552 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1553 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1554 1555 ConditionalEvaluation cond(*this); 1556 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1557 getProfileCount(CondOp)); 1558 1559 // When computing PGO branch weights, we only know the overall count for 1560 // the true block. This code is essentially doing tail duplication of the 1561 // naive code-gen, introducing new edges for which counts are not 1562 // available. Divide the counts proportionally between the LHS and RHS of 1563 // the conditional operator. 1564 uint64_t LHSScaledTrueCount = 0; 1565 if (TrueCount) { 1566 double LHSRatio = 1567 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1568 LHSScaledTrueCount = TrueCount * LHSRatio; 1569 } 1570 1571 cond.begin(*this); 1572 EmitBlock(LHSBlock); 1573 incrementProfileCounter(CondOp); 1574 { 1575 ApplyDebugLocation DL(*this, Cond); 1576 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1577 LHSScaledTrueCount); 1578 } 1579 cond.end(*this); 1580 1581 cond.begin(*this); 1582 EmitBlock(RHSBlock); 1583 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1584 TrueCount - LHSScaledTrueCount); 1585 cond.end(*this); 1586 1587 return; 1588 } 1589 1590 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1591 // Conditional operator handling can give us a throw expression as a 1592 // condition for a case like: 1593 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1594 // Fold this to: 1595 // br(c, throw x, br(y, t, f)) 1596 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1597 return; 1598 } 1599 1600 // If the branch has a condition wrapped by __builtin_unpredictable, 1601 // create metadata that specifies that the branch is unpredictable. 1602 // Don't bother if not optimizing because that metadata would not be used. 1603 llvm::MDNode *Unpredictable = nullptr; 1604 auto *Call = dyn_cast<CallExpr>(Cond); 1605 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1606 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1607 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1608 llvm::MDBuilder MDHelper(getLLVMContext()); 1609 Unpredictable = MDHelper.createUnpredictable(); 1610 } 1611 } 1612 1613 // Create branch weights based on the number of times we get here and the 1614 // number of times the condition should be true. 1615 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1616 llvm::MDNode *Weights = 1617 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1618 1619 // Emit the code with the fully general case. 1620 llvm::Value *CondV; 1621 { 1622 ApplyDebugLocation DL(*this, Cond); 1623 CondV = EvaluateExprAsBool(Cond); 1624 } 1625 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1626 } 1627 1628 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1629 /// specified stmt yet. 1630 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1631 CGM.ErrorUnsupported(S, Type); 1632 } 1633 1634 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1635 /// variable-length array whose elements have a non-zero bit-pattern. 1636 /// 1637 /// \param baseType the inner-most element type of the array 1638 /// \param src - a char* pointing to the bit-pattern for a single 1639 /// base element of the array 1640 /// \param sizeInChars - the total size of the VLA, in chars 1641 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1642 Address dest, Address src, 1643 llvm::Value *sizeInChars) { 1644 CGBuilderTy &Builder = CGF.Builder; 1645 1646 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1647 llvm::Value *baseSizeInChars 1648 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1649 1650 Address begin = 1651 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1652 llvm::Value *end = 1653 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1654 1655 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1656 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1657 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1658 1659 // Make a loop over the VLA. C99 guarantees that the VLA element 1660 // count must be nonzero. 1661 CGF.EmitBlock(loopBB); 1662 1663 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1664 cur->addIncoming(begin.getPointer(), originBB); 1665 1666 CharUnits curAlign = 1667 dest.getAlignment().alignmentOfArrayElement(baseSize); 1668 1669 // memcpy the individual element bit-pattern. 1670 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1671 /*volatile*/ false); 1672 1673 // Go to the next element. 1674 llvm::Value *next = 1675 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1676 1677 // Leave if that's the end of the VLA. 1678 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1679 Builder.CreateCondBr(done, contBB, loopBB); 1680 cur->addIncoming(next, loopBB); 1681 1682 CGF.EmitBlock(contBB); 1683 } 1684 1685 void 1686 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1687 // Ignore empty classes in C++. 1688 if (getLangOpts().CPlusPlus) { 1689 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1690 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1691 return; 1692 } 1693 } 1694 1695 // Cast the dest ptr to the appropriate i8 pointer type. 1696 if (DestPtr.getElementType() != Int8Ty) 1697 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1698 1699 // Get size and alignment info for this aggregate. 1700 CharUnits size = getContext().getTypeSizeInChars(Ty); 1701 1702 llvm::Value *SizeVal; 1703 const VariableArrayType *vla; 1704 1705 // Don't bother emitting a zero-byte memset. 1706 if (size.isZero()) { 1707 // But note that getTypeInfo returns 0 for a VLA. 1708 if (const VariableArrayType *vlaType = 1709 dyn_cast_or_null<VariableArrayType>( 1710 getContext().getAsArrayType(Ty))) { 1711 QualType eltType; 1712 llvm::Value *numElts; 1713 std::tie(numElts, eltType) = getVLASize(vlaType); 1714 1715 SizeVal = numElts; 1716 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1717 if (!eltSize.isOne()) 1718 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1719 vla = vlaType; 1720 } else { 1721 return; 1722 } 1723 } else { 1724 SizeVal = CGM.getSize(size); 1725 vla = nullptr; 1726 } 1727 1728 // If the type contains a pointer to data member we can't memset it to zero. 1729 // Instead, create a null constant and copy it to the destination. 1730 // TODO: there are other patterns besides zero that we can usefully memset, 1731 // like -1, which happens to be the pattern used by member-pointers. 1732 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1733 // For a VLA, emit a single element, then splat that over the VLA. 1734 if (vla) Ty = getContext().getBaseElementType(vla); 1735 1736 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1737 1738 llvm::GlobalVariable *NullVariable = 1739 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1740 /*isConstant=*/true, 1741 llvm::GlobalVariable::PrivateLinkage, 1742 NullConstant, Twine()); 1743 CharUnits NullAlign = DestPtr.getAlignment(); 1744 NullVariable->setAlignment(NullAlign.getQuantity()); 1745 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1746 NullAlign); 1747 1748 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1749 1750 // Get and call the appropriate llvm.memcpy overload. 1751 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1752 return; 1753 } 1754 1755 // Otherwise, just memset the whole thing to zero. This is legal 1756 // because in LLVM, all default initializers (other than the ones we just 1757 // handled above) are guaranteed to have a bit pattern of all zeros. 1758 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1759 } 1760 1761 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1762 // Make sure that there is a block for the indirect goto. 1763 if (!IndirectBranch) 1764 GetIndirectGotoBlock(); 1765 1766 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1767 1768 // Make sure the indirect branch includes all of the address-taken blocks. 1769 IndirectBranch->addDestination(BB); 1770 return llvm::BlockAddress::get(CurFn, BB); 1771 } 1772 1773 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1774 // If we already made the indirect branch for indirect goto, return its block. 1775 if (IndirectBranch) return IndirectBranch->getParent(); 1776 1777 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1778 1779 // Create the PHI node that indirect gotos will add entries to. 1780 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1781 "indirect.goto.dest"); 1782 1783 // Create the indirect branch instruction. 1784 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1785 return IndirectBranch->getParent(); 1786 } 1787 1788 /// Computes the length of an array in elements, as well as the base 1789 /// element type and a properly-typed first element pointer. 1790 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1791 QualType &baseType, 1792 Address &addr) { 1793 const ArrayType *arrayType = origArrayType; 1794 1795 // If it's a VLA, we have to load the stored size. Note that 1796 // this is the size of the VLA in bytes, not its size in elements. 1797 llvm::Value *numVLAElements = nullptr; 1798 if (isa<VariableArrayType>(arrayType)) { 1799 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1800 1801 // Walk into all VLAs. This doesn't require changes to addr, 1802 // which has type T* where T is the first non-VLA element type. 1803 do { 1804 QualType elementType = arrayType->getElementType(); 1805 arrayType = getContext().getAsArrayType(elementType); 1806 1807 // If we only have VLA components, 'addr' requires no adjustment. 1808 if (!arrayType) { 1809 baseType = elementType; 1810 return numVLAElements; 1811 } 1812 } while (isa<VariableArrayType>(arrayType)); 1813 1814 // We get out here only if we find a constant array type 1815 // inside the VLA. 1816 } 1817 1818 // We have some number of constant-length arrays, so addr should 1819 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1820 // down to the first element of addr. 1821 SmallVector<llvm::Value*, 8> gepIndices; 1822 1823 // GEP down to the array type. 1824 llvm::ConstantInt *zero = Builder.getInt32(0); 1825 gepIndices.push_back(zero); 1826 1827 uint64_t countFromCLAs = 1; 1828 QualType eltType; 1829 1830 llvm::ArrayType *llvmArrayType = 1831 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1832 while (llvmArrayType) { 1833 assert(isa<ConstantArrayType>(arrayType)); 1834 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1835 == llvmArrayType->getNumElements()); 1836 1837 gepIndices.push_back(zero); 1838 countFromCLAs *= llvmArrayType->getNumElements(); 1839 eltType = arrayType->getElementType(); 1840 1841 llvmArrayType = 1842 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1843 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1844 assert((!llvmArrayType || arrayType) && 1845 "LLVM and Clang types are out-of-synch"); 1846 } 1847 1848 if (arrayType) { 1849 // From this point onwards, the Clang array type has been emitted 1850 // as some other type (probably a packed struct). Compute the array 1851 // size, and just emit the 'begin' expression as a bitcast. 1852 while (arrayType) { 1853 countFromCLAs *= 1854 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1855 eltType = arrayType->getElementType(); 1856 arrayType = getContext().getAsArrayType(eltType); 1857 } 1858 1859 llvm::Type *baseType = ConvertType(eltType); 1860 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1861 } else { 1862 // Create the actual GEP. 1863 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1864 gepIndices, "array.begin"), 1865 addr.getAlignment()); 1866 } 1867 1868 baseType = eltType; 1869 1870 llvm::Value *numElements 1871 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1872 1873 // If we had any VLA dimensions, factor them in. 1874 if (numVLAElements) 1875 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1876 1877 return numElements; 1878 } 1879 1880 std::pair<llvm::Value*, QualType> 1881 CodeGenFunction::getVLASize(QualType type) { 1882 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1883 assert(vla && "type was not a variable array type!"); 1884 return getVLASize(vla); 1885 } 1886 1887 std::pair<llvm::Value*, QualType> 1888 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1889 // The number of elements so far; always size_t. 1890 llvm::Value *numElements = nullptr; 1891 1892 QualType elementType; 1893 do { 1894 elementType = type->getElementType(); 1895 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1896 assert(vlaSize && "no size for VLA!"); 1897 assert(vlaSize->getType() == SizeTy); 1898 1899 if (!numElements) { 1900 numElements = vlaSize; 1901 } else { 1902 // It's undefined behavior if this wraps around, so mark it that way. 1903 // FIXME: Teach -fsanitize=undefined to trap this. 1904 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1905 } 1906 } while ((type = getContext().getAsVariableArrayType(elementType))); 1907 1908 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1909 } 1910 1911 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1912 assert(type->isVariablyModifiedType() && 1913 "Must pass variably modified type to EmitVLASizes!"); 1914 1915 EnsureInsertPoint(); 1916 1917 // We're going to walk down into the type and look for VLA 1918 // expressions. 1919 do { 1920 assert(type->isVariablyModifiedType()); 1921 1922 const Type *ty = type.getTypePtr(); 1923 switch (ty->getTypeClass()) { 1924 1925 #define TYPE(Class, Base) 1926 #define ABSTRACT_TYPE(Class, Base) 1927 #define NON_CANONICAL_TYPE(Class, Base) 1928 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1929 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1930 #include "clang/AST/TypeNodes.def" 1931 llvm_unreachable("unexpected dependent type!"); 1932 1933 // These types are never variably-modified. 1934 case Type::Builtin: 1935 case Type::Complex: 1936 case Type::Vector: 1937 case Type::ExtVector: 1938 case Type::Record: 1939 case Type::Enum: 1940 case Type::Elaborated: 1941 case Type::TemplateSpecialization: 1942 case Type::ObjCTypeParam: 1943 case Type::ObjCObject: 1944 case Type::ObjCInterface: 1945 case Type::ObjCObjectPointer: 1946 llvm_unreachable("type class is never variably-modified!"); 1947 1948 case Type::Adjusted: 1949 type = cast<AdjustedType>(ty)->getAdjustedType(); 1950 break; 1951 1952 case Type::Decayed: 1953 type = cast<DecayedType>(ty)->getPointeeType(); 1954 break; 1955 1956 case Type::Pointer: 1957 type = cast<PointerType>(ty)->getPointeeType(); 1958 break; 1959 1960 case Type::BlockPointer: 1961 type = cast<BlockPointerType>(ty)->getPointeeType(); 1962 break; 1963 1964 case Type::LValueReference: 1965 case Type::RValueReference: 1966 type = cast<ReferenceType>(ty)->getPointeeType(); 1967 break; 1968 1969 case Type::MemberPointer: 1970 type = cast<MemberPointerType>(ty)->getPointeeType(); 1971 break; 1972 1973 case Type::ConstantArray: 1974 case Type::IncompleteArray: 1975 // Losing element qualification here is fine. 1976 type = cast<ArrayType>(ty)->getElementType(); 1977 break; 1978 1979 case Type::VariableArray: { 1980 // Losing element qualification here is fine. 1981 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1982 1983 // Unknown size indication requires no size computation. 1984 // Otherwise, evaluate and record it. 1985 if (const Expr *size = vat->getSizeExpr()) { 1986 // It's possible that we might have emitted this already, 1987 // e.g. with a typedef and a pointer to it. 1988 llvm::Value *&entry = VLASizeMap[size]; 1989 if (!entry) { 1990 llvm::Value *Size = EmitScalarExpr(size); 1991 1992 // C11 6.7.6.2p5: 1993 // If the size is an expression that is not an integer constant 1994 // expression [...] each time it is evaluated it shall have a value 1995 // greater than zero. 1996 if (SanOpts.has(SanitizerKind::VLABound) && 1997 size->getType()->isSignedIntegerType()) { 1998 SanitizerScope SanScope(this); 1999 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2000 llvm::Constant *StaticArgs[] = { 2001 EmitCheckSourceLocation(size->getLocStart()), 2002 EmitCheckTypeDescriptor(size->getType()) 2003 }; 2004 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2005 SanitizerKind::VLABound), 2006 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2007 } 2008 2009 // Always zexting here would be wrong if it weren't 2010 // undefined behavior to have a negative bound. 2011 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2012 } 2013 } 2014 type = vat->getElementType(); 2015 break; 2016 } 2017 2018 case Type::FunctionProto: 2019 case Type::FunctionNoProto: 2020 type = cast<FunctionType>(ty)->getReturnType(); 2021 break; 2022 2023 case Type::Paren: 2024 case Type::TypeOf: 2025 case Type::UnaryTransform: 2026 case Type::Attributed: 2027 case Type::SubstTemplateTypeParm: 2028 case Type::PackExpansion: 2029 // Keep walking after single level desugaring. 2030 type = type.getSingleStepDesugaredType(getContext()); 2031 break; 2032 2033 case Type::Typedef: 2034 case Type::Decltype: 2035 case Type::Auto: 2036 case Type::DeducedTemplateSpecialization: 2037 // Stop walking: nothing to do. 2038 return; 2039 2040 case Type::TypeOfExpr: 2041 // Stop walking: emit typeof expression. 2042 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2043 return; 2044 2045 case Type::Atomic: 2046 type = cast<AtomicType>(ty)->getValueType(); 2047 break; 2048 2049 case Type::Pipe: 2050 type = cast<PipeType>(ty)->getElementType(); 2051 break; 2052 } 2053 } while (type->isVariablyModifiedType()); 2054 } 2055 2056 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2057 if (getContext().getBuiltinVaListType()->isArrayType()) 2058 return EmitPointerWithAlignment(E); 2059 return EmitLValue(E).getAddress(); 2060 } 2061 2062 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2063 return EmitLValue(E).getAddress(); 2064 } 2065 2066 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2067 const APValue &Init) { 2068 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2069 if (CGDebugInfo *Dbg = getDebugInfo()) 2070 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2071 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2072 } 2073 2074 CodeGenFunction::PeepholeProtection 2075 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2076 // At the moment, the only aggressive peephole we do in IR gen 2077 // is trunc(zext) folding, but if we add more, we can easily 2078 // extend this protection. 2079 2080 if (!rvalue.isScalar()) return PeepholeProtection(); 2081 llvm::Value *value = rvalue.getScalarVal(); 2082 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2083 2084 // Just make an extra bitcast. 2085 assert(HaveInsertPoint()); 2086 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2087 Builder.GetInsertBlock()); 2088 2089 PeepholeProtection protection; 2090 protection.Inst = inst; 2091 return protection; 2092 } 2093 2094 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2095 if (!protection.Inst) return; 2096 2097 // In theory, we could try to duplicate the peepholes now, but whatever. 2098 protection.Inst->eraseFromParent(); 2099 } 2100 2101 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2102 llvm::Value *AnnotatedVal, 2103 StringRef AnnotationStr, 2104 SourceLocation Location) { 2105 llvm::Value *Args[4] = { 2106 AnnotatedVal, 2107 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2108 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2109 CGM.EmitAnnotationLineNo(Location) 2110 }; 2111 return Builder.CreateCall(AnnotationFn, Args); 2112 } 2113 2114 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2115 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2116 // FIXME We create a new bitcast for every annotation because that's what 2117 // llvm-gcc was doing. 2118 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2119 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2120 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2121 I->getAnnotation(), D->getLocation()); 2122 } 2123 2124 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2125 Address Addr) { 2126 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2127 llvm::Value *V = Addr.getPointer(); 2128 llvm::Type *VTy = V->getType(); 2129 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2130 CGM.Int8PtrTy); 2131 2132 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2133 // FIXME Always emit the cast inst so we can differentiate between 2134 // annotation on the first field of a struct and annotation on the struct 2135 // itself. 2136 if (VTy != CGM.Int8PtrTy) 2137 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2138 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2139 V = Builder.CreateBitCast(V, VTy); 2140 } 2141 2142 return Address(V, Addr.getAlignment()); 2143 } 2144 2145 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2146 2147 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2148 : CGF(CGF) { 2149 assert(!CGF->IsSanitizerScope); 2150 CGF->IsSanitizerScope = true; 2151 } 2152 2153 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2154 CGF->IsSanitizerScope = false; 2155 } 2156 2157 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2158 const llvm::Twine &Name, 2159 llvm::BasicBlock *BB, 2160 llvm::BasicBlock::iterator InsertPt) const { 2161 LoopStack.InsertHelper(I); 2162 if (IsSanitizerScope) 2163 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2164 } 2165 2166 void CGBuilderInserter::InsertHelper( 2167 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2168 llvm::BasicBlock::iterator InsertPt) const { 2169 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2170 if (CGF) 2171 CGF->InsertHelper(I, Name, BB, InsertPt); 2172 } 2173 2174 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2175 CodeGenModule &CGM, const FunctionDecl *FD, 2176 std::string &FirstMissing) { 2177 // If there aren't any required features listed then go ahead and return. 2178 if (ReqFeatures.empty()) 2179 return false; 2180 2181 // Now build up the set of caller features and verify that all the required 2182 // features are there. 2183 llvm::StringMap<bool> CallerFeatureMap; 2184 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2185 2186 // If we have at least one of the features in the feature list return 2187 // true, otherwise return false. 2188 return std::all_of( 2189 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2190 SmallVector<StringRef, 1> OrFeatures; 2191 Feature.split(OrFeatures, "|"); 2192 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2193 [&](StringRef Feature) { 2194 if (!CallerFeatureMap.lookup(Feature)) { 2195 FirstMissing = Feature.str(); 2196 return false; 2197 } 2198 return true; 2199 }); 2200 }); 2201 } 2202 2203 // Emits an error if we don't have a valid set of target features for the 2204 // called function. 2205 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2206 const FunctionDecl *TargetDecl) { 2207 // Early exit if this is an indirect call. 2208 if (!TargetDecl) 2209 return; 2210 2211 // Get the current enclosing function if it exists. If it doesn't 2212 // we can't check the target features anyhow. 2213 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2214 if (!FD) 2215 return; 2216 2217 // Grab the required features for the call. For a builtin this is listed in 2218 // the td file with the default cpu, for an always_inline function this is any 2219 // listed cpu and any listed features. 2220 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2221 std::string MissingFeature; 2222 if (BuiltinID) { 2223 SmallVector<StringRef, 1> ReqFeatures; 2224 const char *FeatureList = 2225 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2226 // Return if the builtin doesn't have any required features. 2227 if (!FeatureList || StringRef(FeatureList) == "") 2228 return; 2229 StringRef(FeatureList).split(ReqFeatures, ","); 2230 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2231 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2232 << TargetDecl->getDeclName() 2233 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2234 2235 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2236 // Get the required features for the callee. 2237 SmallVector<StringRef, 1> ReqFeatures; 2238 llvm::StringMap<bool> CalleeFeatureMap; 2239 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2240 for (const auto &F : CalleeFeatureMap) { 2241 // Only positive features are "required". 2242 if (F.getValue()) 2243 ReqFeatures.push_back(F.getKey()); 2244 } 2245 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2246 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2247 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2248 } 2249 } 2250 2251 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2252 if (!CGM.getCodeGenOpts().SanitizeStats) 2253 return; 2254 2255 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2256 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2257 CGM.getSanStats().create(IRB, SSK); 2258 } 2259 2260 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2261 if (CGDebugInfo *DI = getDebugInfo()) 2262 return DI->SourceLocToDebugLoc(Location); 2263 2264 return llvm::DebugLoc(); 2265 } 2266