1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/MDBuilder.h" 27 #include "llvm/DataLayout.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 32 : CodeGenTypeCache(cgm), CGM(cgm), 33 Target(CGM.getContext().getTargetInfo()), 34 Builder(cgm.getModule().getContext()), 35 SanitizePerformTypeCheck(CGM.getLangOpts().SanitizeNull | 36 CGM.getLangOpts().SanitizeAlignment | 37 CGM.getLangOpts().SanitizeObjectSize | 38 CGM.getLangOpts().SanitizeVptr), 39 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 40 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 41 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 42 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 43 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 44 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0), 45 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0), 46 TerminateHandler(0), TrapBB(0) { 47 if (!suppressNewContext) 48 CGM.getCXXABI().getMangleContext().startNewFunction(); 49 } 50 51 CodeGenFunction::~CodeGenFunction() { 52 // If there are any unclaimed block infos, go ahead and destroy them 53 // now. This can happen if IR-gen gets clever and skips evaluating 54 // something. 55 if (FirstBlockInfo) 56 destroyBlockInfos(FirstBlockInfo); 57 } 58 59 60 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 61 return CGM.getTypes().ConvertTypeForMem(T); 62 } 63 64 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 65 return CGM.getTypes().ConvertType(T); 66 } 67 68 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 69 switch (type.getCanonicalType()->getTypeClass()) { 70 #define TYPE(name, parent) 71 #define ABSTRACT_TYPE(name, parent) 72 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 73 #define DEPENDENT_TYPE(name, parent) case Type::name: 74 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 75 #include "clang/AST/TypeNodes.def" 76 llvm_unreachable("non-canonical or dependent type in IR-generation"); 77 78 case Type::Builtin: 79 case Type::Pointer: 80 case Type::BlockPointer: 81 case Type::LValueReference: 82 case Type::RValueReference: 83 case Type::MemberPointer: 84 case Type::Vector: 85 case Type::ExtVector: 86 case Type::FunctionProto: 87 case Type::FunctionNoProto: 88 case Type::Enum: 89 case Type::ObjCObjectPointer: 90 return false; 91 92 // Complexes, arrays, records, and Objective-C objects. 93 case Type::Complex: 94 case Type::ConstantArray: 95 case Type::IncompleteArray: 96 case Type::VariableArray: 97 case Type::Record: 98 case Type::ObjCObject: 99 case Type::ObjCInterface: 100 return true; 101 102 // In IRGen, atomic types are just the underlying type 103 case Type::Atomic: 104 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 105 } 106 llvm_unreachable("unknown type kind!"); 107 } 108 109 void CodeGenFunction::EmitReturnBlock() { 110 // For cleanliness, we try to avoid emitting the return block for 111 // simple cases. 112 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 113 114 if (CurBB) { 115 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 116 117 // We have a valid insert point, reuse it if it is empty or there are no 118 // explicit jumps to the return block. 119 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 120 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 121 delete ReturnBlock.getBlock(); 122 } else 123 EmitBlock(ReturnBlock.getBlock()); 124 return; 125 } 126 127 // Otherwise, if the return block is the target of a single direct 128 // branch then we can just put the code in that block instead. This 129 // cleans up functions which started with a unified return block. 130 if (ReturnBlock.getBlock()->hasOneUse()) { 131 llvm::BranchInst *BI = 132 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 133 if (BI && BI->isUnconditional() && 134 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 135 // Reset insertion point, including debug location, and delete the branch. 136 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 137 Builder.SetInsertPoint(BI->getParent()); 138 BI->eraseFromParent(); 139 delete ReturnBlock.getBlock(); 140 return; 141 } 142 } 143 144 // FIXME: We are at an unreachable point, there is no reason to emit the block 145 // unless it has uses. However, we still need a place to put the debug 146 // region.end for now. 147 148 EmitBlock(ReturnBlock.getBlock()); 149 } 150 151 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 152 if (!BB) return; 153 if (!BB->use_empty()) 154 return CGF.CurFn->getBasicBlockList().push_back(BB); 155 delete BB; 156 } 157 158 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 159 assert(BreakContinueStack.empty() && 160 "mismatched push/pop in break/continue stack!"); 161 162 // Pop any cleanups that might have been associated with the 163 // parameters. Do this in whatever block we're currently in; it's 164 // important to do this before we enter the return block or return 165 // edges will be *really* confused. 166 if (EHStack.stable_begin() != PrologueCleanupDepth) 167 PopCleanupBlocks(PrologueCleanupDepth); 168 169 // Emit function epilog (to return). 170 EmitReturnBlock(); 171 172 if (ShouldInstrumentFunction()) 173 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 174 175 // Emit debug descriptor for function end. 176 if (CGDebugInfo *DI = getDebugInfo()) { 177 DI->setLocation(EndLoc); 178 DI->EmitFunctionEnd(Builder); 179 } 180 181 EmitFunctionEpilog(*CurFnInfo); 182 EmitEndEHSpec(CurCodeDecl); 183 184 assert(EHStack.empty() && 185 "did not remove all scopes from cleanup stack!"); 186 187 // If someone did an indirect goto, emit the indirect goto block at the end of 188 // the function. 189 if (IndirectBranch) { 190 EmitBlock(IndirectBranch->getParent()); 191 Builder.ClearInsertionPoint(); 192 } 193 194 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 195 llvm::Instruction *Ptr = AllocaInsertPt; 196 AllocaInsertPt = 0; 197 Ptr->eraseFromParent(); 198 199 // If someone took the address of a label but never did an indirect goto, we 200 // made a zero entry PHI node, which is illegal, zap it now. 201 if (IndirectBranch) { 202 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 203 if (PN->getNumIncomingValues() == 0) { 204 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 205 PN->eraseFromParent(); 206 } 207 } 208 209 EmitIfUsed(*this, EHResumeBlock); 210 EmitIfUsed(*this, TerminateLandingPad); 211 EmitIfUsed(*this, TerminateHandler); 212 EmitIfUsed(*this, UnreachableBlock); 213 214 if (CGM.getCodeGenOpts().EmitDeclMetadata) 215 EmitDeclMetadata(); 216 } 217 218 /// ShouldInstrumentFunction - Return true if the current function should be 219 /// instrumented with __cyg_profile_func_* calls 220 bool CodeGenFunction::ShouldInstrumentFunction() { 221 if (!CGM.getCodeGenOpts().InstrumentFunctions) 222 return false; 223 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 224 return false; 225 return true; 226 } 227 228 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 229 /// instrumentation function with the current function and the call site, if 230 /// function instrumentation is enabled. 231 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 232 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 233 llvm::PointerType *PointerTy = Int8PtrTy; 234 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 235 llvm::FunctionType *FunctionTy = 236 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 237 238 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 239 llvm::CallInst *CallSite = Builder.CreateCall( 240 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 241 llvm::ConstantInt::get(Int32Ty, 0), 242 "callsite"); 243 244 Builder.CreateCall2(F, 245 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 246 CallSite); 247 } 248 249 void CodeGenFunction::EmitMCountInstrumentation() { 250 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 251 252 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 253 Target.getMCountName()); 254 Builder.CreateCall(MCountFn); 255 } 256 257 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 258 // information in the program executable. The argument information stored 259 // includes the argument name, its type, the address and access qualifiers used. 260 // FIXME: Add type, address, and access qualifiers. 261 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 262 CodeGenModule &CGM,llvm::LLVMContext &Context, 263 llvm::SmallVector <llvm::Value*, 5> &kernelMDArgs) { 264 265 // Create MDNodes that represents the kernel arg metadata. 266 // Each MDNode is a list in the form of "key", N number of values which is 267 // the same number of values as their are kernel arguments. 268 269 // MDNode for the kernel argument names. 270 SmallVector<llvm::Value*, 8> argNames; 271 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 272 273 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 274 const ParmVarDecl *parm = FD->getParamDecl(i); 275 276 // Get argument name. 277 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 278 279 } 280 // Add MDNode to the list of all metadata. 281 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 282 } 283 284 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 285 llvm::Function *Fn) 286 { 287 if (!FD->hasAttr<OpenCLKernelAttr>()) 288 return; 289 290 llvm::LLVMContext &Context = getLLVMContext(); 291 292 llvm::SmallVector <llvm::Value*, 5> kernelMDArgs; 293 kernelMDArgs.push_back(Fn); 294 295 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 296 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 297 298 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 299 llvm::SmallVector <llvm::Value*, 5> attrMDArgs; 300 attrMDArgs.push_back(llvm::MDString::get(Context, "work_group_size_hint")); 301 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 302 llvm::Type *iTy = llvm::IntegerType::get(Context, 32); 303 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 304 llvm::APInt(32, (uint64_t)attr->getXDim()))); 305 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 306 llvm::APInt(32, (uint64_t)attr->getYDim()))); 307 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 308 llvm::APInt(32, (uint64_t)attr->getZDim()))); 309 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 310 } 311 312 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 313 llvm::SmallVector <llvm::Value*, 5> attrMDArgs; 314 attrMDArgs.push_back(llvm::MDString::get(Context, "reqd_work_group_size")); 315 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 316 llvm::Type *iTy = llvm::IntegerType::get(Context, 32); 317 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 318 llvm::APInt(32, (uint64_t)attr->getXDim()))); 319 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 320 llvm::APInt(32, (uint64_t)attr->getYDim()))); 321 attrMDArgs.push_back(llvm::ConstantInt::get(iTy, 322 llvm::APInt(32, (uint64_t)attr->getZDim()))); 323 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 324 } 325 326 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 327 llvm::NamedMDNode *OpenCLKernelMetadata = 328 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 329 OpenCLKernelMetadata->addOperand(kernelMDNode); 330 } 331 332 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 333 llvm::Function *Fn, 334 const CGFunctionInfo &FnInfo, 335 const FunctionArgList &Args, 336 SourceLocation StartLoc) { 337 const Decl *D = GD.getDecl(); 338 339 DidCallStackSave = false; 340 CurCodeDecl = CurFuncDecl = D; 341 FnRetTy = RetTy; 342 CurFn = Fn; 343 CurFnInfo = &FnInfo; 344 assert(CurFn->isDeclaration() && "Function already has body?"); 345 346 // Pass inline keyword to optimizer if it appears explicitly on any 347 // declaration. 348 if (!CGM.getCodeGenOpts().NoInline) 349 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 350 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 351 RE = FD->redecls_end(); RI != RE; ++RI) 352 if (RI->isInlineSpecified()) { 353 Fn->addFnAttr(llvm::Attributes::InlineHint); 354 break; 355 } 356 357 if (getLangOpts().OpenCL) { 358 // Add metadata for a kernel function. 359 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 360 EmitOpenCLKernelMetadata(FD, Fn); 361 } 362 363 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 364 365 // Create a marker to make it easy to insert allocas into the entryblock 366 // later. Don't create this with the builder, because we don't want it 367 // folded. 368 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 369 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 370 if (Builder.isNamePreserving()) 371 AllocaInsertPt->setName("allocapt"); 372 373 ReturnBlock = getJumpDestInCurrentScope("return"); 374 375 Builder.SetInsertPoint(EntryBB); 376 377 // Emit subprogram debug descriptor. 378 if (CGDebugInfo *DI = getDebugInfo()) { 379 unsigned NumArgs = 0; 380 QualType *ArgsArray = new QualType[Args.size()]; 381 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 382 i != e; ++i) { 383 ArgsArray[NumArgs++] = (*i)->getType(); 384 } 385 386 QualType FnType = 387 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 388 FunctionProtoType::ExtProtoInfo()); 389 390 delete[] ArgsArray; 391 392 DI->setLocation(StartLoc); 393 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 394 } 395 396 if (ShouldInstrumentFunction()) 397 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 398 399 if (CGM.getCodeGenOpts().InstrumentForProfiling) 400 EmitMCountInstrumentation(); 401 402 if (RetTy->isVoidType()) { 403 // Void type; nothing to return. 404 ReturnValue = 0; 405 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 406 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 407 // Indirect aggregate return; emit returned value directly into sret slot. 408 // This reduces code size, and affects correctness in C++. 409 ReturnValue = CurFn->arg_begin(); 410 } else { 411 ReturnValue = CreateIRTemp(RetTy, "retval"); 412 413 // Tell the epilog emitter to autorelease the result. We do this 414 // now so that various specialized functions can suppress it 415 // during their IR-generation. 416 if (getLangOpts().ObjCAutoRefCount && 417 !CurFnInfo->isReturnsRetained() && 418 RetTy->isObjCRetainableType()) 419 AutoreleaseResult = true; 420 } 421 422 EmitStartEHSpec(CurCodeDecl); 423 424 PrologueCleanupDepth = EHStack.stable_begin(); 425 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 426 427 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 428 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 429 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 430 if (MD->getParent()->isLambda() && 431 MD->getOverloadedOperator() == OO_Call) { 432 // We're in a lambda; figure out the captures. 433 MD->getParent()->getCaptureFields(LambdaCaptureFields, 434 LambdaThisCaptureField); 435 if (LambdaThisCaptureField) { 436 // If this lambda captures this, load it. 437 QualType LambdaTagType = 438 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 439 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 440 LambdaTagType); 441 LValue ThisLValue = EmitLValueForField(LambdaLV, 442 LambdaThisCaptureField); 443 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 444 } 445 } else { 446 // Not in a lambda; just use 'this' from the method. 447 // FIXME: Should we generate a new load for each use of 'this'? The 448 // fast register allocator would be happier... 449 CXXThisValue = CXXABIThisValue; 450 } 451 } 452 453 // If any of the arguments have a variably modified type, make sure to 454 // emit the type size. 455 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 456 i != e; ++i) { 457 const VarDecl *VD = *i; 458 459 // Dig out the type as written from ParmVarDecls; it's unclear whether 460 // the standard (C99 6.9.1p10) requires this, but we're following the 461 // precedent set by gcc. 462 QualType Ty; 463 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 464 Ty = PVD->getOriginalType(); 465 else 466 Ty = VD->getType(); 467 468 if (Ty->isVariablyModifiedType()) 469 EmitVariablyModifiedType(Ty); 470 } 471 // Emit a location at the end of the prologue. 472 if (CGDebugInfo *DI = getDebugInfo()) 473 DI->EmitLocation(Builder, StartLoc); 474 } 475 476 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 477 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 478 assert(FD->getBody()); 479 EmitStmt(FD->getBody()); 480 } 481 482 /// Tries to mark the given function nounwind based on the 483 /// non-existence of any throwing calls within it. We believe this is 484 /// lightweight enough to do at -O0. 485 static void TryMarkNoThrow(llvm::Function *F) { 486 // LLVM treats 'nounwind' on a function as part of the type, so we 487 // can't do this on functions that can be overwritten. 488 if (F->mayBeOverridden()) return; 489 490 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 491 for (llvm::BasicBlock::iterator 492 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 493 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 494 if (!Call->doesNotThrow()) 495 return; 496 } else if (isa<llvm::ResumeInst>(&*BI)) { 497 return; 498 } 499 F->setDoesNotThrow(); 500 } 501 502 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 503 const CGFunctionInfo &FnInfo) { 504 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 505 506 // Check if we should generate debug info for this function. 507 if (!FD->hasAttr<NoDebugAttr>()) 508 maybeInitializeDebugInfo(); 509 510 FunctionArgList Args; 511 QualType ResTy = FD->getResultType(); 512 513 CurGD = GD; 514 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 515 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 516 517 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 518 Args.push_back(FD->getParamDecl(i)); 519 520 SourceRange BodyRange; 521 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 522 523 // Emit the standard function prologue. 524 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 525 526 // Generate the body of the function. 527 if (isa<CXXDestructorDecl>(FD)) 528 EmitDestructorBody(Args); 529 else if (isa<CXXConstructorDecl>(FD)) 530 EmitConstructorBody(Args); 531 else if (getLangOpts().CUDA && 532 !CGM.getCodeGenOpts().CUDAIsDevice && 533 FD->hasAttr<CUDAGlobalAttr>()) 534 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 535 else if (isa<CXXConversionDecl>(FD) && 536 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 537 // The lambda conversion to block pointer is special; the semantics can't be 538 // expressed in the AST, so IRGen needs to special-case it. 539 EmitLambdaToBlockPointerBody(Args); 540 } else if (isa<CXXMethodDecl>(FD) && 541 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 542 // The lambda "__invoke" function is special, because it forwards or 543 // clones the body of the function call operator (but is actually static). 544 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 545 } 546 else 547 EmitFunctionBody(Args); 548 549 // C++11 [stmt.return]p2: 550 // Flowing off the end of a function [...] results in undefined behavior in 551 // a value-returning function. 552 // C11 6.9.1p12: 553 // If the '}' that terminates a function is reached, and the value of the 554 // function call is used by the caller, the behavior is undefined. 555 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 556 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 557 if (getLangOpts().SanitizeReturn) 558 EmitCheck(Builder.getFalse(), "missing_return", 559 EmitCheckSourceLocation(FD->getLocation()), 560 llvm::ArrayRef<llvm::Value*>()); 561 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 562 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 563 Builder.CreateUnreachable(); 564 Builder.ClearInsertionPoint(); 565 } 566 567 // Emit the standard function epilogue. 568 FinishFunction(BodyRange.getEnd()); 569 570 // If we haven't marked the function nothrow through other means, do 571 // a quick pass now to see if we can. 572 if (!CurFn->doesNotThrow()) 573 TryMarkNoThrow(CurFn); 574 } 575 576 /// ContainsLabel - Return true if the statement contains a label in it. If 577 /// this statement is not executed normally, it not containing a label means 578 /// that we can just remove the code. 579 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 580 // Null statement, not a label! 581 if (S == 0) return false; 582 583 // If this is a label, we have to emit the code, consider something like: 584 // if (0) { ... foo: bar(); } goto foo; 585 // 586 // TODO: If anyone cared, we could track __label__'s, since we know that you 587 // can't jump to one from outside their declared region. 588 if (isa<LabelStmt>(S)) 589 return true; 590 591 // If this is a case/default statement, and we haven't seen a switch, we have 592 // to emit the code. 593 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 594 return true; 595 596 // If this is a switch statement, we want to ignore cases below it. 597 if (isa<SwitchStmt>(S)) 598 IgnoreCaseStmts = true; 599 600 // Scan subexpressions for verboten labels. 601 for (Stmt::const_child_range I = S->children(); I; ++I) 602 if (ContainsLabel(*I, IgnoreCaseStmts)) 603 return true; 604 605 return false; 606 } 607 608 /// containsBreak - Return true if the statement contains a break out of it. 609 /// If the statement (recursively) contains a switch or loop with a break 610 /// inside of it, this is fine. 611 bool CodeGenFunction::containsBreak(const Stmt *S) { 612 // Null statement, not a label! 613 if (S == 0) return false; 614 615 // If this is a switch or loop that defines its own break scope, then we can 616 // include it and anything inside of it. 617 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 618 isa<ForStmt>(S)) 619 return false; 620 621 if (isa<BreakStmt>(S)) 622 return true; 623 624 // Scan subexpressions for verboten breaks. 625 for (Stmt::const_child_range I = S->children(); I; ++I) 626 if (containsBreak(*I)) 627 return true; 628 629 return false; 630 } 631 632 633 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 634 /// to a constant, or if it does but contains a label, return false. If it 635 /// constant folds return true and set the boolean result in Result. 636 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 637 bool &ResultBool) { 638 llvm::APSInt ResultInt; 639 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 640 return false; 641 642 ResultBool = ResultInt.getBoolValue(); 643 return true; 644 } 645 646 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 647 /// to a constant, or if it does but contains a label, return false. If it 648 /// constant folds return true and set the folded value. 649 bool CodeGenFunction:: 650 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 651 // FIXME: Rename and handle conversion of other evaluatable things 652 // to bool. 653 llvm::APSInt Int; 654 if (!Cond->EvaluateAsInt(Int, getContext())) 655 return false; // Not foldable, not integer or not fully evaluatable. 656 657 if (CodeGenFunction::ContainsLabel(Cond)) 658 return false; // Contains a label. 659 660 ResultInt = Int; 661 return true; 662 } 663 664 665 666 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 667 /// statement) to the specified blocks. Based on the condition, this might try 668 /// to simplify the codegen of the conditional based on the branch. 669 /// 670 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 671 llvm::BasicBlock *TrueBlock, 672 llvm::BasicBlock *FalseBlock) { 673 Cond = Cond->IgnoreParens(); 674 675 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 676 // Handle X && Y in a condition. 677 if (CondBOp->getOpcode() == BO_LAnd) { 678 // If we have "1 && X", simplify the code. "0 && X" would have constant 679 // folded if the case was simple enough. 680 bool ConstantBool = false; 681 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 682 ConstantBool) { 683 // br(1 && X) -> br(X). 684 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 685 } 686 687 // If we have "X && 1", simplify the code to use an uncond branch. 688 // "X && 0" would have been constant folded to 0. 689 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 690 ConstantBool) { 691 // br(X && 1) -> br(X). 692 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 693 } 694 695 // Emit the LHS as a conditional. If the LHS conditional is false, we 696 // want to jump to the FalseBlock. 697 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 698 699 ConditionalEvaluation eval(*this); 700 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 701 EmitBlock(LHSTrue); 702 703 // Any temporaries created here are conditional. 704 eval.begin(*this); 705 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 706 eval.end(*this); 707 708 return; 709 } 710 711 if (CondBOp->getOpcode() == BO_LOr) { 712 // If we have "0 || X", simplify the code. "1 || X" would have constant 713 // folded if the case was simple enough. 714 bool ConstantBool = false; 715 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 716 !ConstantBool) { 717 // br(0 || X) -> br(X). 718 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 719 } 720 721 // If we have "X || 0", simplify the code to use an uncond branch. 722 // "X || 1" would have been constant folded to 1. 723 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 724 !ConstantBool) { 725 // br(X || 0) -> br(X). 726 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 727 } 728 729 // Emit the LHS as a conditional. If the LHS conditional is true, we 730 // want to jump to the TrueBlock. 731 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 732 733 ConditionalEvaluation eval(*this); 734 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 735 EmitBlock(LHSFalse); 736 737 // Any temporaries created here are conditional. 738 eval.begin(*this); 739 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 740 eval.end(*this); 741 742 return; 743 } 744 } 745 746 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 747 // br(!x, t, f) -> br(x, f, t) 748 if (CondUOp->getOpcode() == UO_LNot) 749 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 750 } 751 752 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 753 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 754 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 755 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 756 757 ConditionalEvaluation cond(*this); 758 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 759 760 cond.begin(*this); 761 EmitBlock(LHSBlock); 762 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 763 cond.end(*this); 764 765 cond.begin(*this); 766 EmitBlock(RHSBlock); 767 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 768 cond.end(*this); 769 770 return; 771 } 772 773 // Emit the code with the fully general case. 774 llvm::Value *CondV = EvaluateExprAsBool(Cond); 775 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 776 } 777 778 /// ErrorUnsupported - Print out an error that codegen doesn't support the 779 /// specified stmt yet. 780 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 781 bool OmitOnError) { 782 CGM.ErrorUnsupported(S, Type, OmitOnError); 783 } 784 785 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 786 /// variable-length array whose elements have a non-zero bit-pattern. 787 /// 788 /// \param baseType the inner-most element type of the array 789 /// \param src - a char* pointing to the bit-pattern for a single 790 /// base element of the array 791 /// \param sizeInChars - the total size of the VLA, in chars 792 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 793 llvm::Value *dest, llvm::Value *src, 794 llvm::Value *sizeInChars) { 795 std::pair<CharUnits,CharUnits> baseSizeAndAlign 796 = CGF.getContext().getTypeInfoInChars(baseType); 797 798 CGBuilderTy &Builder = CGF.Builder; 799 800 llvm::Value *baseSizeInChars 801 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 802 803 llvm::Type *i8p = Builder.getInt8PtrTy(); 804 805 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 806 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 807 808 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 809 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 810 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 811 812 // Make a loop over the VLA. C99 guarantees that the VLA element 813 // count must be nonzero. 814 CGF.EmitBlock(loopBB); 815 816 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 817 cur->addIncoming(begin, originBB); 818 819 // memcpy the individual element bit-pattern. 820 Builder.CreateMemCpy(cur, src, baseSizeInChars, 821 baseSizeAndAlign.second.getQuantity(), 822 /*volatile*/ false); 823 824 // Go to the next element. 825 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 826 827 // Leave if that's the end of the VLA. 828 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 829 Builder.CreateCondBr(done, contBB, loopBB); 830 cur->addIncoming(next, loopBB); 831 832 CGF.EmitBlock(contBB); 833 } 834 835 void 836 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 837 // Ignore empty classes in C++. 838 if (getLangOpts().CPlusPlus) { 839 if (const RecordType *RT = Ty->getAs<RecordType>()) { 840 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 841 return; 842 } 843 } 844 845 // Cast the dest ptr to the appropriate i8 pointer type. 846 unsigned DestAS = 847 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 848 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 849 if (DestPtr->getType() != BP) 850 DestPtr = Builder.CreateBitCast(DestPtr, BP); 851 852 // Get size and alignment info for this aggregate. 853 std::pair<CharUnits, CharUnits> TypeInfo = 854 getContext().getTypeInfoInChars(Ty); 855 CharUnits Size = TypeInfo.first; 856 CharUnits Align = TypeInfo.second; 857 858 llvm::Value *SizeVal; 859 const VariableArrayType *vla; 860 861 // Don't bother emitting a zero-byte memset. 862 if (Size.isZero()) { 863 // But note that getTypeInfo returns 0 for a VLA. 864 if (const VariableArrayType *vlaType = 865 dyn_cast_or_null<VariableArrayType>( 866 getContext().getAsArrayType(Ty))) { 867 QualType eltType; 868 llvm::Value *numElts; 869 llvm::tie(numElts, eltType) = getVLASize(vlaType); 870 871 SizeVal = numElts; 872 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 873 if (!eltSize.isOne()) 874 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 875 vla = vlaType; 876 } else { 877 return; 878 } 879 } else { 880 SizeVal = CGM.getSize(Size); 881 vla = 0; 882 } 883 884 // If the type contains a pointer to data member we can't memset it to zero. 885 // Instead, create a null constant and copy it to the destination. 886 // TODO: there are other patterns besides zero that we can usefully memset, 887 // like -1, which happens to be the pattern used by member-pointers. 888 if (!CGM.getTypes().isZeroInitializable(Ty)) { 889 // For a VLA, emit a single element, then splat that over the VLA. 890 if (vla) Ty = getContext().getBaseElementType(vla); 891 892 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 893 894 llvm::GlobalVariable *NullVariable = 895 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 896 /*isConstant=*/true, 897 llvm::GlobalVariable::PrivateLinkage, 898 NullConstant, Twine()); 899 llvm::Value *SrcPtr = 900 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 901 902 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 903 904 // Get and call the appropriate llvm.memcpy overload. 905 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 906 return; 907 } 908 909 // Otherwise, just memset the whole thing to zero. This is legal 910 // because in LLVM, all default initializers (other than the ones we just 911 // handled above) are guaranteed to have a bit pattern of all zeros. 912 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 913 Align.getQuantity(), false); 914 } 915 916 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 917 // Make sure that there is a block for the indirect goto. 918 if (IndirectBranch == 0) 919 GetIndirectGotoBlock(); 920 921 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 922 923 // Make sure the indirect branch includes all of the address-taken blocks. 924 IndirectBranch->addDestination(BB); 925 return llvm::BlockAddress::get(CurFn, BB); 926 } 927 928 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 929 // If we already made the indirect branch for indirect goto, return its block. 930 if (IndirectBranch) return IndirectBranch->getParent(); 931 932 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 933 934 // Create the PHI node that indirect gotos will add entries to. 935 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 936 "indirect.goto.dest"); 937 938 // Create the indirect branch instruction. 939 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 940 return IndirectBranch->getParent(); 941 } 942 943 /// Computes the length of an array in elements, as well as the base 944 /// element type and a properly-typed first element pointer. 945 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 946 QualType &baseType, 947 llvm::Value *&addr) { 948 const ArrayType *arrayType = origArrayType; 949 950 // If it's a VLA, we have to load the stored size. Note that 951 // this is the size of the VLA in bytes, not its size in elements. 952 llvm::Value *numVLAElements = 0; 953 if (isa<VariableArrayType>(arrayType)) { 954 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 955 956 // Walk into all VLAs. This doesn't require changes to addr, 957 // which has type T* where T is the first non-VLA element type. 958 do { 959 QualType elementType = arrayType->getElementType(); 960 arrayType = getContext().getAsArrayType(elementType); 961 962 // If we only have VLA components, 'addr' requires no adjustment. 963 if (!arrayType) { 964 baseType = elementType; 965 return numVLAElements; 966 } 967 } while (isa<VariableArrayType>(arrayType)); 968 969 // We get out here only if we find a constant array type 970 // inside the VLA. 971 } 972 973 // We have some number of constant-length arrays, so addr should 974 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 975 // down to the first element of addr. 976 SmallVector<llvm::Value*, 8> gepIndices; 977 978 // GEP down to the array type. 979 llvm::ConstantInt *zero = Builder.getInt32(0); 980 gepIndices.push_back(zero); 981 982 uint64_t countFromCLAs = 1; 983 QualType eltType; 984 985 llvm::ArrayType *llvmArrayType = 986 dyn_cast<llvm::ArrayType>( 987 cast<llvm::PointerType>(addr->getType())->getElementType()); 988 while (llvmArrayType) { 989 assert(isa<ConstantArrayType>(arrayType)); 990 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 991 == llvmArrayType->getNumElements()); 992 993 gepIndices.push_back(zero); 994 countFromCLAs *= llvmArrayType->getNumElements(); 995 eltType = arrayType->getElementType(); 996 997 llvmArrayType = 998 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 999 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1000 assert((!llvmArrayType || arrayType) && 1001 "LLVM and Clang types are out-of-synch"); 1002 } 1003 1004 if (arrayType) { 1005 // From this point onwards, the Clang array type has been emitted 1006 // as some other type (probably a packed struct). Compute the array 1007 // size, and just emit the 'begin' expression as a bitcast. 1008 while (arrayType) { 1009 countFromCLAs *= 1010 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1011 eltType = arrayType->getElementType(); 1012 arrayType = getContext().getAsArrayType(eltType); 1013 } 1014 1015 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1016 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1017 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1018 } else { 1019 // Create the actual GEP. 1020 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1021 } 1022 1023 baseType = eltType; 1024 1025 llvm::Value *numElements 1026 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1027 1028 // If we had any VLA dimensions, factor them in. 1029 if (numVLAElements) 1030 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1031 1032 return numElements; 1033 } 1034 1035 std::pair<llvm::Value*, QualType> 1036 CodeGenFunction::getVLASize(QualType type) { 1037 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1038 assert(vla && "type was not a variable array type!"); 1039 return getVLASize(vla); 1040 } 1041 1042 std::pair<llvm::Value*, QualType> 1043 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1044 // The number of elements so far; always size_t. 1045 llvm::Value *numElements = 0; 1046 1047 QualType elementType; 1048 do { 1049 elementType = type->getElementType(); 1050 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1051 assert(vlaSize && "no size for VLA!"); 1052 assert(vlaSize->getType() == SizeTy); 1053 1054 if (!numElements) { 1055 numElements = vlaSize; 1056 } else { 1057 // It's undefined behavior if this wraps around, so mark it that way. 1058 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1059 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1060 } 1061 } while ((type = getContext().getAsVariableArrayType(elementType))); 1062 1063 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1064 } 1065 1066 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1067 assert(type->isVariablyModifiedType() && 1068 "Must pass variably modified type to EmitVLASizes!"); 1069 1070 EnsureInsertPoint(); 1071 1072 // We're going to walk down into the type and look for VLA 1073 // expressions. 1074 do { 1075 assert(type->isVariablyModifiedType()); 1076 1077 const Type *ty = type.getTypePtr(); 1078 switch (ty->getTypeClass()) { 1079 1080 #define TYPE(Class, Base) 1081 #define ABSTRACT_TYPE(Class, Base) 1082 #define NON_CANONICAL_TYPE(Class, Base) 1083 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1084 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1085 #include "clang/AST/TypeNodes.def" 1086 llvm_unreachable("unexpected dependent type!"); 1087 1088 // These types are never variably-modified. 1089 case Type::Builtin: 1090 case Type::Complex: 1091 case Type::Vector: 1092 case Type::ExtVector: 1093 case Type::Record: 1094 case Type::Enum: 1095 case Type::Elaborated: 1096 case Type::TemplateSpecialization: 1097 case Type::ObjCObject: 1098 case Type::ObjCInterface: 1099 case Type::ObjCObjectPointer: 1100 llvm_unreachable("type class is never variably-modified!"); 1101 1102 case Type::Pointer: 1103 type = cast<PointerType>(ty)->getPointeeType(); 1104 break; 1105 1106 case Type::BlockPointer: 1107 type = cast<BlockPointerType>(ty)->getPointeeType(); 1108 break; 1109 1110 case Type::LValueReference: 1111 case Type::RValueReference: 1112 type = cast<ReferenceType>(ty)->getPointeeType(); 1113 break; 1114 1115 case Type::MemberPointer: 1116 type = cast<MemberPointerType>(ty)->getPointeeType(); 1117 break; 1118 1119 case Type::ConstantArray: 1120 case Type::IncompleteArray: 1121 // Losing element qualification here is fine. 1122 type = cast<ArrayType>(ty)->getElementType(); 1123 break; 1124 1125 case Type::VariableArray: { 1126 // Losing element qualification here is fine. 1127 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1128 1129 // Unknown size indication requires no size computation. 1130 // Otherwise, evaluate and record it. 1131 if (const Expr *size = vat->getSizeExpr()) { 1132 // It's possible that we might have emitted this already, 1133 // e.g. with a typedef and a pointer to it. 1134 llvm::Value *&entry = VLASizeMap[size]; 1135 if (!entry) { 1136 llvm::Value *Size = EmitScalarExpr(size); 1137 1138 // C11 6.7.6.2p5: 1139 // If the size is an expression that is not an integer constant 1140 // expression [...] each time it is evaluated it shall have a value 1141 // greater than zero. 1142 if (getLangOpts().SanitizeVLABound && 1143 size->getType()->isSignedIntegerType()) { 1144 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1145 llvm::Constant *StaticArgs[] = { 1146 EmitCheckSourceLocation(size->getLocStart()), 1147 EmitCheckTypeDescriptor(size->getType()) 1148 }; 1149 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1150 "vla_bound_not_positive", StaticArgs, Size); 1151 } 1152 1153 // Always zexting here would be wrong if it weren't 1154 // undefined behavior to have a negative bound. 1155 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1156 } 1157 } 1158 type = vat->getElementType(); 1159 break; 1160 } 1161 1162 case Type::FunctionProto: 1163 case Type::FunctionNoProto: 1164 type = cast<FunctionType>(ty)->getResultType(); 1165 break; 1166 1167 case Type::Paren: 1168 case Type::TypeOf: 1169 case Type::UnaryTransform: 1170 case Type::Attributed: 1171 case Type::SubstTemplateTypeParm: 1172 // Keep walking after single level desugaring. 1173 type = type.getSingleStepDesugaredType(getContext()); 1174 break; 1175 1176 case Type::Typedef: 1177 case Type::Decltype: 1178 case Type::Auto: 1179 // Stop walking: nothing to do. 1180 return; 1181 1182 case Type::TypeOfExpr: 1183 // Stop walking: emit typeof expression. 1184 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1185 return; 1186 1187 case Type::Atomic: 1188 type = cast<AtomicType>(ty)->getValueType(); 1189 break; 1190 } 1191 } while (type->isVariablyModifiedType()); 1192 } 1193 1194 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1195 if (getContext().getBuiltinVaListType()->isArrayType()) 1196 return EmitScalarExpr(E); 1197 return EmitLValue(E).getAddress(); 1198 } 1199 1200 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1201 llvm::Constant *Init) { 1202 assert (Init && "Invalid DeclRefExpr initializer!"); 1203 if (CGDebugInfo *Dbg = getDebugInfo()) 1204 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1205 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1206 } 1207 1208 CodeGenFunction::PeepholeProtection 1209 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1210 // At the moment, the only aggressive peephole we do in IR gen 1211 // is trunc(zext) folding, but if we add more, we can easily 1212 // extend this protection. 1213 1214 if (!rvalue.isScalar()) return PeepholeProtection(); 1215 llvm::Value *value = rvalue.getScalarVal(); 1216 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1217 1218 // Just make an extra bitcast. 1219 assert(HaveInsertPoint()); 1220 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1221 Builder.GetInsertBlock()); 1222 1223 PeepholeProtection protection; 1224 protection.Inst = inst; 1225 return protection; 1226 } 1227 1228 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1229 if (!protection.Inst) return; 1230 1231 // In theory, we could try to duplicate the peepholes now, but whatever. 1232 protection.Inst->eraseFromParent(); 1233 } 1234 1235 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1236 llvm::Value *AnnotatedVal, 1237 llvm::StringRef AnnotationStr, 1238 SourceLocation Location) { 1239 llvm::Value *Args[4] = { 1240 AnnotatedVal, 1241 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1242 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1243 CGM.EmitAnnotationLineNo(Location) 1244 }; 1245 return Builder.CreateCall(AnnotationFn, Args); 1246 } 1247 1248 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1249 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1250 // FIXME We create a new bitcast for every annotation because that's what 1251 // llvm-gcc was doing. 1252 for (specific_attr_iterator<AnnotateAttr> 1253 ai = D->specific_attr_begin<AnnotateAttr>(), 1254 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1255 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1256 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1257 (*ai)->getAnnotation(), D->getLocation()); 1258 } 1259 1260 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1261 llvm::Value *V) { 1262 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1263 llvm::Type *VTy = V->getType(); 1264 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1265 CGM.Int8PtrTy); 1266 1267 for (specific_attr_iterator<AnnotateAttr> 1268 ai = D->specific_attr_begin<AnnotateAttr>(), 1269 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1270 // FIXME Always emit the cast inst so we can differentiate between 1271 // annotation on the first field of a struct and annotation on the struct 1272 // itself. 1273 if (VTy != CGM.Int8PtrTy) 1274 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1275 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1276 V = Builder.CreateBitCast(V, VTy); 1277 } 1278 1279 return V; 1280 } 1281