1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/MDBuilder.h"
27 #include "llvm/DataLayout.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
32   : CodeGenTypeCache(cgm), CGM(cgm),
33     Target(CGM.getContext().getTargetInfo()),
34     Builder(cgm.getModule().getContext()),
35     SanitizePerformTypeCheck(CGM.getLangOpts().SanitizeNull |
36                              CGM.getLangOpts().SanitizeAlignment |
37                              CGM.getLangOpts().SanitizeObjectSize |
38                              CGM.getLangOpts().SanitizeVptr),
39     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
40     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
41     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
42     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
43     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
44     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
45     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
46     TerminateHandler(0), TrapBB(0) {
47   if (!suppressNewContext)
48     CGM.getCXXABI().getMangleContext().startNewFunction();
49 }
50 
51 CodeGenFunction::~CodeGenFunction() {
52   // If there are any unclaimed block infos, go ahead and destroy them
53   // now.  This can happen if IR-gen gets clever and skips evaluating
54   // something.
55   if (FirstBlockInfo)
56     destroyBlockInfos(FirstBlockInfo);
57 }
58 
59 
60 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
61   return CGM.getTypes().ConvertTypeForMem(T);
62 }
63 
64 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
65   return CGM.getTypes().ConvertType(T);
66 }
67 
68 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
69   switch (type.getCanonicalType()->getTypeClass()) {
70 #define TYPE(name, parent)
71 #define ABSTRACT_TYPE(name, parent)
72 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
73 #define DEPENDENT_TYPE(name, parent) case Type::name:
74 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
75 #include "clang/AST/TypeNodes.def"
76     llvm_unreachable("non-canonical or dependent type in IR-generation");
77 
78   case Type::Builtin:
79   case Type::Pointer:
80   case Type::BlockPointer:
81   case Type::LValueReference:
82   case Type::RValueReference:
83   case Type::MemberPointer:
84   case Type::Vector:
85   case Type::ExtVector:
86   case Type::FunctionProto:
87   case Type::FunctionNoProto:
88   case Type::Enum:
89   case Type::ObjCObjectPointer:
90     return false;
91 
92   // Complexes, arrays, records, and Objective-C objects.
93   case Type::Complex:
94   case Type::ConstantArray:
95   case Type::IncompleteArray:
96   case Type::VariableArray:
97   case Type::Record:
98   case Type::ObjCObject:
99   case Type::ObjCInterface:
100     return true;
101 
102   // In IRGen, atomic types are just the underlying type
103   case Type::Atomic:
104     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
105   }
106   llvm_unreachable("unknown type kind!");
107 }
108 
109 void CodeGenFunction::EmitReturnBlock() {
110   // For cleanliness, we try to avoid emitting the return block for
111   // simple cases.
112   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
113 
114   if (CurBB) {
115     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
116 
117     // We have a valid insert point, reuse it if it is empty or there are no
118     // explicit jumps to the return block.
119     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
120       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
121       delete ReturnBlock.getBlock();
122     } else
123       EmitBlock(ReturnBlock.getBlock());
124     return;
125   }
126 
127   // Otherwise, if the return block is the target of a single direct
128   // branch then we can just put the code in that block instead. This
129   // cleans up functions which started with a unified return block.
130   if (ReturnBlock.getBlock()->hasOneUse()) {
131     llvm::BranchInst *BI =
132       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
133     if (BI && BI->isUnconditional() &&
134         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
135       // Reset insertion point, including debug location, and delete the branch.
136       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
137       Builder.SetInsertPoint(BI->getParent());
138       BI->eraseFromParent();
139       delete ReturnBlock.getBlock();
140       return;
141     }
142   }
143 
144   // FIXME: We are at an unreachable point, there is no reason to emit the block
145   // unless it has uses. However, we still need a place to put the debug
146   // region.end for now.
147 
148   EmitBlock(ReturnBlock.getBlock());
149 }
150 
151 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
152   if (!BB) return;
153   if (!BB->use_empty())
154     return CGF.CurFn->getBasicBlockList().push_back(BB);
155   delete BB;
156 }
157 
158 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
159   assert(BreakContinueStack.empty() &&
160          "mismatched push/pop in break/continue stack!");
161 
162   // Pop any cleanups that might have been associated with the
163   // parameters.  Do this in whatever block we're currently in; it's
164   // important to do this before we enter the return block or return
165   // edges will be *really* confused.
166   if (EHStack.stable_begin() != PrologueCleanupDepth)
167     PopCleanupBlocks(PrologueCleanupDepth);
168 
169   // Emit function epilog (to return).
170   EmitReturnBlock();
171 
172   if (ShouldInstrumentFunction())
173     EmitFunctionInstrumentation("__cyg_profile_func_exit");
174 
175   // Emit debug descriptor for function end.
176   if (CGDebugInfo *DI = getDebugInfo()) {
177     DI->setLocation(EndLoc);
178     DI->EmitFunctionEnd(Builder);
179   }
180 
181   EmitFunctionEpilog(*CurFnInfo);
182   EmitEndEHSpec(CurCodeDecl);
183 
184   assert(EHStack.empty() &&
185          "did not remove all scopes from cleanup stack!");
186 
187   // If someone did an indirect goto, emit the indirect goto block at the end of
188   // the function.
189   if (IndirectBranch) {
190     EmitBlock(IndirectBranch->getParent());
191     Builder.ClearInsertionPoint();
192   }
193 
194   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
195   llvm::Instruction *Ptr = AllocaInsertPt;
196   AllocaInsertPt = 0;
197   Ptr->eraseFromParent();
198 
199   // If someone took the address of a label but never did an indirect goto, we
200   // made a zero entry PHI node, which is illegal, zap it now.
201   if (IndirectBranch) {
202     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
203     if (PN->getNumIncomingValues() == 0) {
204       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
205       PN->eraseFromParent();
206     }
207   }
208 
209   EmitIfUsed(*this, EHResumeBlock);
210   EmitIfUsed(*this, TerminateLandingPad);
211   EmitIfUsed(*this, TerminateHandler);
212   EmitIfUsed(*this, UnreachableBlock);
213 
214   if (CGM.getCodeGenOpts().EmitDeclMetadata)
215     EmitDeclMetadata();
216 }
217 
218 /// ShouldInstrumentFunction - Return true if the current function should be
219 /// instrumented with __cyg_profile_func_* calls
220 bool CodeGenFunction::ShouldInstrumentFunction() {
221   if (!CGM.getCodeGenOpts().InstrumentFunctions)
222     return false;
223   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
224     return false;
225   return true;
226 }
227 
228 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
229 /// instrumentation function with the current function and the call site, if
230 /// function instrumentation is enabled.
231 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
232   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
233   llvm::PointerType *PointerTy = Int8PtrTy;
234   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
235   llvm::FunctionType *FunctionTy =
236     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
237 
238   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
239   llvm::CallInst *CallSite = Builder.CreateCall(
240     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
241     llvm::ConstantInt::get(Int32Ty, 0),
242     "callsite");
243 
244   Builder.CreateCall2(F,
245                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
246                       CallSite);
247 }
248 
249 void CodeGenFunction::EmitMCountInstrumentation() {
250   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
251 
252   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
253                                                        Target.getMCountName());
254   Builder.CreateCall(MCountFn);
255 }
256 
257 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
258 // information in the program executable. The argument information stored
259 // includes the argument name, its type, the address and access qualifiers used.
260 // FIXME: Add type, address, and access qualifiers.
261 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
262                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
263                                  llvm::SmallVector <llvm::Value*, 5> &kernelMDArgs) {
264 
265   // Create MDNodes that represents the kernel arg metadata.
266   // Each MDNode is a list in the form of "key", N number of values which is
267   // the same number of values as their are kernel arguments.
268 
269   // MDNode for the kernel argument names.
270   SmallVector<llvm::Value*, 8> argNames;
271   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
272 
273   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
274     const ParmVarDecl *parm = FD->getParamDecl(i);
275 
276     // Get argument name.
277     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
278 
279   }
280   // Add MDNode to the list of all metadata.
281   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
282 }
283 
284 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
285                                                llvm::Function *Fn)
286 {
287   if (!FD->hasAttr<OpenCLKernelAttr>())
288     return;
289 
290   llvm::LLVMContext &Context = getLLVMContext();
291 
292   llvm::SmallVector <llvm::Value*, 5> kernelMDArgs;
293   kernelMDArgs.push_back(Fn);
294 
295   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
296     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs);
297 
298   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
299     llvm::SmallVector <llvm::Value*, 5> attrMDArgs;
300     attrMDArgs.push_back(llvm::MDString::get(Context, "work_group_size_hint"));
301     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
302     llvm::Type *iTy = llvm::IntegerType::get(Context, 32);
303     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
304        llvm::APInt(32, (uint64_t)attr->getXDim())));
305     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
306        llvm::APInt(32, (uint64_t)attr->getYDim())));
307     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
308        llvm::APInt(32, (uint64_t)attr->getZDim())));
309     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
310   }
311 
312   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
313     llvm::SmallVector <llvm::Value*, 5> attrMDArgs;
314     attrMDArgs.push_back(llvm::MDString::get(Context, "reqd_work_group_size"));
315     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
316     llvm::Type *iTy = llvm::IntegerType::get(Context, 32);
317     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
318        llvm::APInt(32, (uint64_t)attr->getXDim())));
319     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
320        llvm::APInt(32, (uint64_t)attr->getYDim())));
321     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
322        llvm::APInt(32, (uint64_t)attr->getZDim())));
323     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
324   }
325 
326   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
327   llvm::NamedMDNode *OpenCLKernelMetadata =
328     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
329   OpenCLKernelMetadata->addOperand(kernelMDNode);
330 }
331 
332 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
333                                     llvm::Function *Fn,
334                                     const CGFunctionInfo &FnInfo,
335                                     const FunctionArgList &Args,
336                                     SourceLocation StartLoc) {
337   const Decl *D = GD.getDecl();
338 
339   DidCallStackSave = false;
340   CurCodeDecl = CurFuncDecl = D;
341   FnRetTy = RetTy;
342   CurFn = Fn;
343   CurFnInfo = &FnInfo;
344   assert(CurFn->isDeclaration() && "Function already has body?");
345 
346   // Pass inline keyword to optimizer if it appears explicitly on any
347   // declaration.
348   if (!CGM.getCodeGenOpts().NoInline)
349     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
350       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
351              RE = FD->redecls_end(); RI != RE; ++RI)
352         if (RI->isInlineSpecified()) {
353           Fn->addFnAttr(llvm::Attributes::InlineHint);
354           break;
355         }
356 
357   if (getLangOpts().OpenCL) {
358     // Add metadata for a kernel function.
359     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
360       EmitOpenCLKernelMetadata(FD, Fn);
361   }
362 
363   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
364 
365   // Create a marker to make it easy to insert allocas into the entryblock
366   // later.  Don't create this with the builder, because we don't want it
367   // folded.
368   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
369   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
370   if (Builder.isNamePreserving())
371     AllocaInsertPt->setName("allocapt");
372 
373   ReturnBlock = getJumpDestInCurrentScope("return");
374 
375   Builder.SetInsertPoint(EntryBB);
376 
377   // Emit subprogram debug descriptor.
378   if (CGDebugInfo *DI = getDebugInfo()) {
379     unsigned NumArgs = 0;
380     QualType *ArgsArray = new QualType[Args.size()];
381     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
382 	 i != e; ++i) {
383       ArgsArray[NumArgs++] = (*i)->getType();
384     }
385 
386     QualType FnType =
387       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
388                                    FunctionProtoType::ExtProtoInfo());
389 
390     delete[] ArgsArray;
391 
392     DI->setLocation(StartLoc);
393     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
394   }
395 
396   if (ShouldInstrumentFunction())
397     EmitFunctionInstrumentation("__cyg_profile_func_enter");
398 
399   if (CGM.getCodeGenOpts().InstrumentForProfiling)
400     EmitMCountInstrumentation();
401 
402   if (RetTy->isVoidType()) {
403     // Void type; nothing to return.
404     ReturnValue = 0;
405   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
406              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
407     // Indirect aggregate return; emit returned value directly into sret slot.
408     // This reduces code size, and affects correctness in C++.
409     ReturnValue = CurFn->arg_begin();
410   } else {
411     ReturnValue = CreateIRTemp(RetTy, "retval");
412 
413     // Tell the epilog emitter to autorelease the result.  We do this
414     // now so that various specialized functions can suppress it
415     // during their IR-generation.
416     if (getLangOpts().ObjCAutoRefCount &&
417         !CurFnInfo->isReturnsRetained() &&
418         RetTy->isObjCRetainableType())
419       AutoreleaseResult = true;
420   }
421 
422   EmitStartEHSpec(CurCodeDecl);
423 
424   PrologueCleanupDepth = EHStack.stable_begin();
425   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
426 
427   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
428     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
429     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
430     if (MD->getParent()->isLambda() &&
431         MD->getOverloadedOperator() == OO_Call) {
432       // We're in a lambda; figure out the captures.
433       MD->getParent()->getCaptureFields(LambdaCaptureFields,
434                                         LambdaThisCaptureField);
435       if (LambdaThisCaptureField) {
436         // If this lambda captures this, load it.
437         QualType LambdaTagType =
438             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
439         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
440                                                      LambdaTagType);
441         LValue ThisLValue = EmitLValueForField(LambdaLV,
442                                                LambdaThisCaptureField);
443         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
444       }
445     } else {
446       // Not in a lambda; just use 'this' from the method.
447       // FIXME: Should we generate a new load for each use of 'this'?  The
448       // fast register allocator would be happier...
449       CXXThisValue = CXXABIThisValue;
450     }
451   }
452 
453   // If any of the arguments have a variably modified type, make sure to
454   // emit the type size.
455   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
456        i != e; ++i) {
457     const VarDecl *VD = *i;
458 
459     // Dig out the type as written from ParmVarDecls; it's unclear whether
460     // the standard (C99 6.9.1p10) requires this, but we're following the
461     // precedent set by gcc.
462     QualType Ty;
463     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
464       Ty = PVD->getOriginalType();
465     else
466       Ty = VD->getType();
467 
468     if (Ty->isVariablyModifiedType())
469       EmitVariablyModifiedType(Ty);
470   }
471   // Emit a location at the end of the prologue.
472   if (CGDebugInfo *DI = getDebugInfo())
473     DI->EmitLocation(Builder, StartLoc);
474 }
475 
476 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
477   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
478   assert(FD->getBody());
479   EmitStmt(FD->getBody());
480 }
481 
482 /// Tries to mark the given function nounwind based on the
483 /// non-existence of any throwing calls within it.  We believe this is
484 /// lightweight enough to do at -O0.
485 static void TryMarkNoThrow(llvm::Function *F) {
486   // LLVM treats 'nounwind' on a function as part of the type, so we
487   // can't do this on functions that can be overwritten.
488   if (F->mayBeOverridden()) return;
489 
490   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
491     for (llvm::BasicBlock::iterator
492            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
493       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
494         if (!Call->doesNotThrow())
495           return;
496       } else if (isa<llvm::ResumeInst>(&*BI)) {
497         return;
498       }
499   F->setDoesNotThrow();
500 }
501 
502 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
503                                    const CGFunctionInfo &FnInfo) {
504   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
505 
506   // Check if we should generate debug info for this function.
507   if (!FD->hasAttr<NoDebugAttr>())
508     maybeInitializeDebugInfo();
509 
510   FunctionArgList Args;
511   QualType ResTy = FD->getResultType();
512 
513   CurGD = GD;
514   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
515     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
516 
517   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
518     Args.push_back(FD->getParamDecl(i));
519 
520   SourceRange BodyRange;
521   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
522 
523   // Emit the standard function prologue.
524   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
525 
526   // Generate the body of the function.
527   if (isa<CXXDestructorDecl>(FD))
528     EmitDestructorBody(Args);
529   else if (isa<CXXConstructorDecl>(FD))
530     EmitConstructorBody(Args);
531   else if (getLangOpts().CUDA &&
532            !CGM.getCodeGenOpts().CUDAIsDevice &&
533            FD->hasAttr<CUDAGlobalAttr>())
534     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
535   else if (isa<CXXConversionDecl>(FD) &&
536            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
537     // The lambda conversion to block pointer is special; the semantics can't be
538     // expressed in the AST, so IRGen needs to special-case it.
539     EmitLambdaToBlockPointerBody(Args);
540   } else if (isa<CXXMethodDecl>(FD) &&
541              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
542     // The lambda "__invoke" function is special, because it forwards or
543     // clones the body of the function call operator (but is actually static).
544     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
545   }
546   else
547     EmitFunctionBody(Args);
548 
549   // C++11 [stmt.return]p2:
550   //   Flowing off the end of a function [...] results in undefined behavior in
551   //   a value-returning function.
552   // C11 6.9.1p12:
553   //   If the '}' that terminates a function is reached, and the value of the
554   //   function call is used by the caller, the behavior is undefined.
555   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
556       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
557     if (getLangOpts().SanitizeReturn)
558       EmitCheck(Builder.getFalse(), "missing_return",
559                 EmitCheckSourceLocation(FD->getLocation()),
560                 llvm::ArrayRef<llvm::Value*>());
561     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
562       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
563     Builder.CreateUnreachable();
564     Builder.ClearInsertionPoint();
565   }
566 
567   // Emit the standard function epilogue.
568   FinishFunction(BodyRange.getEnd());
569 
570   // If we haven't marked the function nothrow through other means, do
571   // a quick pass now to see if we can.
572   if (!CurFn->doesNotThrow())
573     TryMarkNoThrow(CurFn);
574 }
575 
576 /// ContainsLabel - Return true if the statement contains a label in it.  If
577 /// this statement is not executed normally, it not containing a label means
578 /// that we can just remove the code.
579 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
580   // Null statement, not a label!
581   if (S == 0) return false;
582 
583   // If this is a label, we have to emit the code, consider something like:
584   // if (0) {  ...  foo:  bar(); }  goto foo;
585   //
586   // TODO: If anyone cared, we could track __label__'s, since we know that you
587   // can't jump to one from outside their declared region.
588   if (isa<LabelStmt>(S))
589     return true;
590 
591   // If this is a case/default statement, and we haven't seen a switch, we have
592   // to emit the code.
593   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
594     return true;
595 
596   // If this is a switch statement, we want to ignore cases below it.
597   if (isa<SwitchStmt>(S))
598     IgnoreCaseStmts = true;
599 
600   // Scan subexpressions for verboten labels.
601   for (Stmt::const_child_range I = S->children(); I; ++I)
602     if (ContainsLabel(*I, IgnoreCaseStmts))
603       return true;
604 
605   return false;
606 }
607 
608 /// containsBreak - Return true if the statement contains a break out of it.
609 /// If the statement (recursively) contains a switch or loop with a break
610 /// inside of it, this is fine.
611 bool CodeGenFunction::containsBreak(const Stmt *S) {
612   // Null statement, not a label!
613   if (S == 0) return false;
614 
615   // If this is a switch or loop that defines its own break scope, then we can
616   // include it and anything inside of it.
617   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
618       isa<ForStmt>(S))
619     return false;
620 
621   if (isa<BreakStmt>(S))
622     return true;
623 
624   // Scan subexpressions for verboten breaks.
625   for (Stmt::const_child_range I = S->children(); I; ++I)
626     if (containsBreak(*I))
627       return true;
628 
629   return false;
630 }
631 
632 
633 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
634 /// to a constant, or if it does but contains a label, return false.  If it
635 /// constant folds return true and set the boolean result in Result.
636 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
637                                                    bool &ResultBool) {
638   llvm::APSInt ResultInt;
639   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
640     return false;
641 
642   ResultBool = ResultInt.getBoolValue();
643   return true;
644 }
645 
646 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
647 /// to a constant, or if it does but contains a label, return false.  If it
648 /// constant folds return true and set the folded value.
649 bool CodeGenFunction::
650 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
651   // FIXME: Rename and handle conversion of other evaluatable things
652   // to bool.
653   llvm::APSInt Int;
654   if (!Cond->EvaluateAsInt(Int, getContext()))
655     return false;  // Not foldable, not integer or not fully evaluatable.
656 
657   if (CodeGenFunction::ContainsLabel(Cond))
658     return false;  // Contains a label.
659 
660   ResultInt = Int;
661   return true;
662 }
663 
664 
665 
666 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
667 /// statement) to the specified blocks.  Based on the condition, this might try
668 /// to simplify the codegen of the conditional based on the branch.
669 ///
670 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
671                                            llvm::BasicBlock *TrueBlock,
672                                            llvm::BasicBlock *FalseBlock) {
673   Cond = Cond->IgnoreParens();
674 
675   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
676     // Handle X && Y in a condition.
677     if (CondBOp->getOpcode() == BO_LAnd) {
678       // If we have "1 && X", simplify the code.  "0 && X" would have constant
679       // folded if the case was simple enough.
680       bool ConstantBool = false;
681       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
682           ConstantBool) {
683         // br(1 && X) -> br(X).
684         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
685       }
686 
687       // If we have "X && 1", simplify the code to use an uncond branch.
688       // "X && 0" would have been constant folded to 0.
689       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
690           ConstantBool) {
691         // br(X && 1) -> br(X).
692         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
693       }
694 
695       // Emit the LHS as a conditional.  If the LHS conditional is false, we
696       // want to jump to the FalseBlock.
697       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
698 
699       ConditionalEvaluation eval(*this);
700       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
701       EmitBlock(LHSTrue);
702 
703       // Any temporaries created here are conditional.
704       eval.begin(*this);
705       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
706       eval.end(*this);
707 
708       return;
709     }
710 
711     if (CondBOp->getOpcode() == BO_LOr) {
712       // If we have "0 || X", simplify the code.  "1 || X" would have constant
713       // folded if the case was simple enough.
714       bool ConstantBool = false;
715       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
716           !ConstantBool) {
717         // br(0 || X) -> br(X).
718         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
719       }
720 
721       // If we have "X || 0", simplify the code to use an uncond branch.
722       // "X || 1" would have been constant folded to 1.
723       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
724           !ConstantBool) {
725         // br(X || 0) -> br(X).
726         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
727       }
728 
729       // Emit the LHS as a conditional.  If the LHS conditional is true, we
730       // want to jump to the TrueBlock.
731       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
732 
733       ConditionalEvaluation eval(*this);
734       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
735       EmitBlock(LHSFalse);
736 
737       // Any temporaries created here are conditional.
738       eval.begin(*this);
739       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
740       eval.end(*this);
741 
742       return;
743     }
744   }
745 
746   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
747     // br(!x, t, f) -> br(x, f, t)
748     if (CondUOp->getOpcode() == UO_LNot)
749       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
750   }
751 
752   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
753     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
754     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
755     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
756 
757     ConditionalEvaluation cond(*this);
758     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
759 
760     cond.begin(*this);
761     EmitBlock(LHSBlock);
762     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
763     cond.end(*this);
764 
765     cond.begin(*this);
766     EmitBlock(RHSBlock);
767     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
768     cond.end(*this);
769 
770     return;
771   }
772 
773   // Emit the code with the fully general case.
774   llvm::Value *CondV = EvaluateExprAsBool(Cond);
775   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
776 }
777 
778 /// ErrorUnsupported - Print out an error that codegen doesn't support the
779 /// specified stmt yet.
780 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
781                                        bool OmitOnError) {
782   CGM.ErrorUnsupported(S, Type, OmitOnError);
783 }
784 
785 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
786 /// variable-length array whose elements have a non-zero bit-pattern.
787 ///
788 /// \param baseType the inner-most element type of the array
789 /// \param src - a char* pointing to the bit-pattern for a single
790 /// base element of the array
791 /// \param sizeInChars - the total size of the VLA, in chars
792 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
793                                llvm::Value *dest, llvm::Value *src,
794                                llvm::Value *sizeInChars) {
795   std::pair<CharUnits,CharUnits> baseSizeAndAlign
796     = CGF.getContext().getTypeInfoInChars(baseType);
797 
798   CGBuilderTy &Builder = CGF.Builder;
799 
800   llvm::Value *baseSizeInChars
801     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
802 
803   llvm::Type *i8p = Builder.getInt8PtrTy();
804 
805   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
806   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
807 
808   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
809   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
810   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
811 
812   // Make a loop over the VLA.  C99 guarantees that the VLA element
813   // count must be nonzero.
814   CGF.EmitBlock(loopBB);
815 
816   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
817   cur->addIncoming(begin, originBB);
818 
819   // memcpy the individual element bit-pattern.
820   Builder.CreateMemCpy(cur, src, baseSizeInChars,
821                        baseSizeAndAlign.second.getQuantity(),
822                        /*volatile*/ false);
823 
824   // Go to the next element.
825   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
826 
827   // Leave if that's the end of the VLA.
828   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
829   Builder.CreateCondBr(done, contBB, loopBB);
830   cur->addIncoming(next, loopBB);
831 
832   CGF.EmitBlock(contBB);
833 }
834 
835 void
836 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
837   // Ignore empty classes in C++.
838   if (getLangOpts().CPlusPlus) {
839     if (const RecordType *RT = Ty->getAs<RecordType>()) {
840       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
841         return;
842     }
843   }
844 
845   // Cast the dest ptr to the appropriate i8 pointer type.
846   unsigned DestAS =
847     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
848   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
849   if (DestPtr->getType() != BP)
850     DestPtr = Builder.CreateBitCast(DestPtr, BP);
851 
852   // Get size and alignment info for this aggregate.
853   std::pair<CharUnits, CharUnits> TypeInfo =
854     getContext().getTypeInfoInChars(Ty);
855   CharUnits Size = TypeInfo.first;
856   CharUnits Align = TypeInfo.second;
857 
858   llvm::Value *SizeVal;
859   const VariableArrayType *vla;
860 
861   // Don't bother emitting a zero-byte memset.
862   if (Size.isZero()) {
863     // But note that getTypeInfo returns 0 for a VLA.
864     if (const VariableArrayType *vlaType =
865           dyn_cast_or_null<VariableArrayType>(
866                                           getContext().getAsArrayType(Ty))) {
867       QualType eltType;
868       llvm::Value *numElts;
869       llvm::tie(numElts, eltType) = getVLASize(vlaType);
870 
871       SizeVal = numElts;
872       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
873       if (!eltSize.isOne())
874         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
875       vla = vlaType;
876     } else {
877       return;
878     }
879   } else {
880     SizeVal = CGM.getSize(Size);
881     vla = 0;
882   }
883 
884   // If the type contains a pointer to data member we can't memset it to zero.
885   // Instead, create a null constant and copy it to the destination.
886   // TODO: there are other patterns besides zero that we can usefully memset,
887   // like -1, which happens to be the pattern used by member-pointers.
888   if (!CGM.getTypes().isZeroInitializable(Ty)) {
889     // For a VLA, emit a single element, then splat that over the VLA.
890     if (vla) Ty = getContext().getBaseElementType(vla);
891 
892     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
893 
894     llvm::GlobalVariable *NullVariable =
895       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
896                                /*isConstant=*/true,
897                                llvm::GlobalVariable::PrivateLinkage,
898                                NullConstant, Twine());
899     llvm::Value *SrcPtr =
900       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
901 
902     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
903 
904     // Get and call the appropriate llvm.memcpy overload.
905     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
906     return;
907   }
908 
909   // Otherwise, just memset the whole thing to zero.  This is legal
910   // because in LLVM, all default initializers (other than the ones we just
911   // handled above) are guaranteed to have a bit pattern of all zeros.
912   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
913                        Align.getQuantity(), false);
914 }
915 
916 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
917   // Make sure that there is a block for the indirect goto.
918   if (IndirectBranch == 0)
919     GetIndirectGotoBlock();
920 
921   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
922 
923   // Make sure the indirect branch includes all of the address-taken blocks.
924   IndirectBranch->addDestination(BB);
925   return llvm::BlockAddress::get(CurFn, BB);
926 }
927 
928 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
929   // If we already made the indirect branch for indirect goto, return its block.
930   if (IndirectBranch) return IndirectBranch->getParent();
931 
932   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
933 
934   // Create the PHI node that indirect gotos will add entries to.
935   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
936                                               "indirect.goto.dest");
937 
938   // Create the indirect branch instruction.
939   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
940   return IndirectBranch->getParent();
941 }
942 
943 /// Computes the length of an array in elements, as well as the base
944 /// element type and a properly-typed first element pointer.
945 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
946                                               QualType &baseType,
947                                               llvm::Value *&addr) {
948   const ArrayType *arrayType = origArrayType;
949 
950   // If it's a VLA, we have to load the stored size.  Note that
951   // this is the size of the VLA in bytes, not its size in elements.
952   llvm::Value *numVLAElements = 0;
953   if (isa<VariableArrayType>(arrayType)) {
954     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
955 
956     // Walk into all VLAs.  This doesn't require changes to addr,
957     // which has type T* where T is the first non-VLA element type.
958     do {
959       QualType elementType = arrayType->getElementType();
960       arrayType = getContext().getAsArrayType(elementType);
961 
962       // If we only have VLA components, 'addr' requires no adjustment.
963       if (!arrayType) {
964         baseType = elementType;
965         return numVLAElements;
966       }
967     } while (isa<VariableArrayType>(arrayType));
968 
969     // We get out here only if we find a constant array type
970     // inside the VLA.
971   }
972 
973   // We have some number of constant-length arrays, so addr should
974   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
975   // down to the first element of addr.
976   SmallVector<llvm::Value*, 8> gepIndices;
977 
978   // GEP down to the array type.
979   llvm::ConstantInt *zero = Builder.getInt32(0);
980   gepIndices.push_back(zero);
981 
982   uint64_t countFromCLAs = 1;
983   QualType eltType;
984 
985   llvm::ArrayType *llvmArrayType =
986     dyn_cast<llvm::ArrayType>(
987       cast<llvm::PointerType>(addr->getType())->getElementType());
988   while (llvmArrayType) {
989     assert(isa<ConstantArrayType>(arrayType));
990     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
991              == llvmArrayType->getNumElements());
992 
993     gepIndices.push_back(zero);
994     countFromCLAs *= llvmArrayType->getNumElements();
995     eltType = arrayType->getElementType();
996 
997     llvmArrayType =
998       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
999     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1000     assert((!llvmArrayType || arrayType) &&
1001            "LLVM and Clang types are out-of-synch");
1002   }
1003 
1004   if (arrayType) {
1005     // From this point onwards, the Clang array type has been emitted
1006     // as some other type (probably a packed struct). Compute the array
1007     // size, and just emit the 'begin' expression as a bitcast.
1008     while (arrayType) {
1009       countFromCLAs *=
1010           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1011       eltType = arrayType->getElementType();
1012       arrayType = getContext().getAsArrayType(eltType);
1013     }
1014 
1015     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1016     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1017     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1018   } else {
1019     // Create the actual GEP.
1020     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1021   }
1022 
1023   baseType = eltType;
1024 
1025   llvm::Value *numElements
1026     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1027 
1028   // If we had any VLA dimensions, factor them in.
1029   if (numVLAElements)
1030     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1031 
1032   return numElements;
1033 }
1034 
1035 std::pair<llvm::Value*, QualType>
1036 CodeGenFunction::getVLASize(QualType type) {
1037   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1038   assert(vla && "type was not a variable array type!");
1039   return getVLASize(vla);
1040 }
1041 
1042 std::pair<llvm::Value*, QualType>
1043 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1044   // The number of elements so far; always size_t.
1045   llvm::Value *numElements = 0;
1046 
1047   QualType elementType;
1048   do {
1049     elementType = type->getElementType();
1050     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1051     assert(vlaSize && "no size for VLA!");
1052     assert(vlaSize->getType() == SizeTy);
1053 
1054     if (!numElements) {
1055       numElements = vlaSize;
1056     } else {
1057       // It's undefined behavior if this wraps around, so mark it that way.
1058       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1059       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1060     }
1061   } while ((type = getContext().getAsVariableArrayType(elementType)));
1062 
1063   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1064 }
1065 
1066 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1067   assert(type->isVariablyModifiedType() &&
1068          "Must pass variably modified type to EmitVLASizes!");
1069 
1070   EnsureInsertPoint();
1071 
1072   // We're going to walk down into the type and look for VLA
1073   // expressions.
1074   do {
1075     assert(type->isVariablyModifiedType());
1076 
1077     const Type *ty = type.getTypePtr();
1078     switch (ty->getTypeClass()) {
1079 
1080 #define TYPE(Class, Base)
1081 #define ABSTRACT_TYPE(Class, Base)
1082 #define NON_CANONICAL_TYPE(Class, Base)
1083 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1084 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1085 #include "clang/AST/TypeNodes.def"
1086       llvm_unreachable("unexpected dependent type!");
1087 
1088     // These types are never variably-modified.
1089     case Type::Builtin:
1090     case Type::Complex:
1091     case Type::Vector:
1092     case Type::ExtVector:
1093     case Type::Record:
1094     case Type::Enum:
1095     case Type::Elaborated:
1096     case Type::TemplateSpecialization:
1097     case Type::ObjCObject:
1098     case Type::ObjCInterface:
1099     case Type::ObjCObjectPointer:
1100       llvm_unreachable("type class is never variably-modified!");
1101 
1102     case Type::Pointer:
1103       type = cast<PointerType>(ty)->getPointeeType();
1104       break;
1105 
1106     case Type::BlockPointer:
1107       type = cast<BlockPointerType>(ty)->getPointeeType();
1108       break;
1109 
1110     case Type::LValueReference:
1111     case Type::RValueReference:
1112       type = cast<ReferenceType>(ty)->getPointeeType();
1113       break;
1114 
1115     case Type::MemberPointer:
1116       type = cast<MemberPointerType>(ty)->getPointeeType();
1117       break;
1118 
1119     case Type::ConstantArray:
1120     case Type::IncompleteArray:
1121       // Losing element qualification here is fine.
1122       type = cast<ArrayType>(ty)->getElementType();
1123       break;
1124 
1125     case Type::VariableArray: {
1126       // Losing element qualification here is fine.
1127       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1128 
1129       // Unknown size indication requires no size computation.
1130       // Otherwise, evaluate and record it.
1131       if (const Expr *size = vat->getSizeExpr()) {
1132         // It's possible that we might have emitted this already,
1133         // e.g. with a typedef and a pointer to it.
1134         llvm::Value *&entry = VLASizeMap[size];
1135         if (!entry) {
1136           llvm::Value *Size = EmitScalarExpr(size);
1137 
1138           // C11 6.7.6.2p5:
1139           //   If the size is an expression that is not an integer constant
1140           //   expression [...] each time it is evaluated it shall have a value
1141           //   greater than zero.
1142           if (getLangOpts().SanitizeVLABound &&
1143               size->getType()->isSignedIntegerType()) {
1144             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1145             llvm::Constant *StaticArgs[] = {
1146               EmitCheckSourceLocation(size->getLocStart()),
1147               EmitCheckTypeDescriptor(size->getType())
1148             };
1149             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1150                       "vla_bound_not_positive", StaticArgs, Size);
1151           }
1152 
1153           // Always zexting here would be wrong if it weren't
1154           // undefined behavior to have a negative bound.
1155           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1156         }
1157       }
1158       type = vat->getElementType();
1159       break;
1160     }
1161 
1162     case Type::FunctionProto:
1163     case Type::FunctionNoProto:
1164       type = cast<FunctionType>(ty)->getResultType();
1165       break;
1166 
1167     case Type::Paren:
1168     case Type::TypeOf:
1169     case Type::UnaryTransform:
1170     case Type::Attributed:
1171     case Type::SubstTemplateTypeParm:
1172       // Keep walking after single level desugaring.
1173       type = type.getSingleStepDesugaredType(getContext());
1174       break;
1175 
1176     case Type::Typedef:
1177     case Type::Decltype:
1178     case Type::Auto:
1179       // Stop walking: nothing to do.
1180       return;
1181 
1182     case Type::TypeOfExpr:
1183       // Stop walking: emit typeof expression.
1184       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1185       return;
1186 
1187     case Type::Atomic:
1188       type = cast<AtomicType>(ty)->getValueType();
1189       break;
1190     }
1191   } while (type->isVariablyModifiedType());
1192 }
1193 
1194 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1195   if (getContext().getBuiltinVaListType()->isArrayType())
1196     return EmitScalarExpr(E);
1197   return EmitLValue(E).getAddress();
1198 }
1199 
1200 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1201                                               llvm::Constant *Init) {
1202   assert (Init && "Invalid DeclRefExpr initializer!");
1203   if (CGDebugInfo *Dbg = getDebugInfo())
1204     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1205       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1206 }
1207 
1208 CodeGenFunction::PeepholeProtection
1209 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1210   // At the moment, the only aggressive peephole we do in IR gen
1211   // is trunc(zext) folding, but if we add more, we can easily
1212   // extend this protection.
1213 
1214   if (!rvalue.isScalar()) return PeepholeProtection();
1215   llvm::Value *value = rvalue.getScalarVal();
1216   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1217 
1218   // Just make an extra bitcast.
1219   assert(HaveInsertPoint());
1220   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1221                                                   Builder.GetInsertBlock());
1222 
1223   PeepholeProtection protection;
1224   protection.Inst = inst;
1225   return protection;
1226 }
1227 
1228 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1229   if (!protection.Inst) return;
1230 
1231   // In theory, we could try to duplicate the peepholes now, but whatever.
1232   protection.Inst->eraseFromParent();
1233 }
1234 
1235 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1236                                                  llvm::Value *AnnotatedVal,
1237                                                  llvm::StringRef AnnotationStr,
1238                                                  SourceLocation Location) {
1239   llvm::Value *Args[4] = {
1240     AnnotatedVal,
1241     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1242     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1243     CGM.EmitAnnotationLineNo(Location)
1244   };
1245   return Builder.CreateCall(AnnotationFn, Args);
1246 }
1247 
1248 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1249   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1250   // FIXME We create a new bitcast for every annotation because that's what
1251   // llvm-gcc was doing.
1252   for (specific_attr_iterator<AnnotateAttr>
1253        ai = D->specific_attr_begin<AnnotateAttr>(),
1254        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1255     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1256                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1257                        (*ai)->getAnnotation(), D->getLocation());
1258 }
1259 
1260 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1261                                                    llvm::Value *V) {
1262   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1263   llvm::Type *VTy = V->getType();
1264   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1265                                     CGM.Int8PtrTy);
1266 
1267   for (specific_attr_iterator<AnnotateAttr>
1268        ai = D->specific_attr_begin<AnnotateAttr>(),
1269        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1270     // FIXME Always emit the cast inst so we can differentiate between
1271     // annotation on the first field of a struct and annotation on the struct
1272     // itself.
1273     if (VTy != CGM.Int8PtrTy)
1274       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1275     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1276     V = Builder.CreateBitCast(V, VTy);
1277   }
1278 
1279   return V;
1280 }
1281