1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 43 /// markers. 44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 45 const LangOptions &LangOpts) { 46 if (CGOpts.DisableLifetimeMarkers) 47 return false; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // Asan uses markers for use-after-scope checks. 55 if (CGOpts.SanitizeAddressUseAfterScope) 56 return true; 57 58 // For now, only in optimized builds. 59 return CGOpts.OptimizationLevel != 0; 60 } 61 62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 63 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 64 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 65 CGBuilderInserterTy(this)), 66 CurFn(nullptr), ReturnValue(Address::invalid()), 67 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 68 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 69 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 70 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 71 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 72 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 73 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 74 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 75 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 76 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 77 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 78 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 79 CXXStructorImplicitParamDecl(nullptr), 80 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 81 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 82 TerminateHandler(nullptr), TrapBB(nullptr), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 88 llvm::FastMathFlags FMF; 89 if (CGM.getLangOpts().FastMath) 90 FMF.setUnsafeAlgebra(); 91 if (CGM.getLangOpts().FiniteMathOnly) { 92 FMF.setNoNaNs(); 93 FMF.setNoInfs(); 94 } 95 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 96 FMF.setNoNaNs(); 97 } 98 if (CGM.getCodeGenOpts().NoSignedZeros) { 99 FMF.setNoSignedZeros(); 100 } 101 if (CGM.getCodeGenOpts().ReciprocalMath) { 102 FMF.setAllowReciprocal(); 103 } 104 Builder.setFastMathFlags(FMF); 105 } 106 107 CodeGenFunction::~CodeGenFunction() { 108 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 109 110 // If there are any unclaimed block infos, go ahead and destroy them 111 // now. This can happen if IR-gen gets clever and skips evaluating 112 // something. 113 if (FirstBlockInfo) 114 destroyBlockInfos(FirstBlockInfo); 115 116 if (getLangOpts().OpenMP && CurFn) 117 CGM.getOpenMPRuntime().functionFinished(*this); 118 } 119 120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 121 LValueBaseInfo *BaseInfo) { 122 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 123 /*forPointee*/ true); 124 } 125 126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 127 LValueBaseInfo *BaseInfo, 128 bool forPointeeType) { 129 // Honor alignment typedef attributes even on incomplete types. 130 // We also honor them straight for C++ class types, even as pointees; 131 // there's an expressivity gap here. 132 if (auto TT = T->getAs<TypedefType>()) { 133 if (auto Align = TT->getDecl()->getMaxAlignment()) { 134 if (BaseInfo) 135 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 136 return getContext().toCharUnitsFromBits(Align); 137 } 138 } 139 140 if (BaseInfo) 141 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 142 143 CharUnits Alignment; 144 if (T->isIncompleteType()) { 145 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 146 } else { 147 // For C++ class pointees, we don't know whether we're pointing at a 148 // base or a complete object, so we generally need to use the 149 // non-virtual alignment. 150 const CXXRecordDecl *RD; 151 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 152 Alignment = CGM.getClassPointerAlignment(RD); 153 } else { 154 Alignment = getContext().getTypeAlignInChars(T); 155 if (T.getQualifiers().hasUnaligned()) 156 Alignment = CharUnits::One(); 157 } 158 159 // Cap to the global maximum type alignment unless the alignment 160 // was somehow explicit on the type. 161 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 162 if (Alignment.getQuantity() > MaxAlign && 163 !getContext().isAlignmentRequired(T)) 164 Alignment = CharUnits::fromQuantity(MaxAlign); 165 } 166 } 167 return Alignment; 168 } 169 170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 171 LValueBaseInfo BaseInfo; 172 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); 173 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 174 CGM.getTBAAAccessInfo(T)); 175 } 176 177 /// Given a value of type T* that may not be to a complete object, 178 /// construct an l-value with the natural pointee alignment of T. 179 LValue 180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); 183 return MakeAddrLValue(Address(V, Align), T, BaseInfo); 184 } 185 186 187 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 188 return CGM.getTypes().ConvertTypeForMem(T); 189 } 190 191 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 192 return CGM.getTypes().ConvertType(T); 193 } 194 195 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 196 type = type.getCanonicalType(); 197 while (true) { 198 switch (type->getTypeClass()) { 199 #define TYPE(name, parent) 200 #define ABSTRACT_TYPE(name, parent) 201 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 202 #define DEPENDENT_TYPE(name, parent) case Type::name: 203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 204 #include "clang/AST/TypeNodes.def" 205 llvm_unreachable("non-canonical or dependent type in IR-generation"); 206 207 case Type::Auto: 208 case Type::DeducedTemplateSpecialization: 209 llvm_unreachable("undeduced type in IR-generation"); 210 211 // Various scalar types. 212 case Type::Builtin: 213 case Type::Pointer: 214 case Type::BlockPointer: 215 case Type::LValueReference: 216 case Type::RValueReference: 217 case Type::MemberPointer: 218 case Type::Vector: 219 case Type::ExtVector: 220 case Type::FunctionProto: 221 case Type::FunctionNoProto: 222 case Type::Enum: 223 case Type::ObjCObjectPointer: 224 case Type::Pipe: 225 return TEK_Scalar; 226 227 // Complexes. 228 case Type::Complex: 229 return TEK_Complex; 230 231 // Arrays, records, and Objective-C objects. 232 case Type::ConstantArray: 233 case Type::IncompleteArray: 234 case Type::VariableArray: 235 case Type::Record: 236 case Type::ObjCObject: 237 case Type::ObjCInterface: 238 return TEK_Aggregate; 239 240 // We operate on atomic values according to their underlying type. 241 case Type::Atomic: 242 type = cast<AtomicType>(type)->getValueType(); 243 continue; 244 } 245 llvm_unreachable("unknown type kind!"); 246 } 247 } 248 249 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 250 // For cleanliness, we try to avoid emitting the return block for 251 // simple cases. 252 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 253 254 if (CurBB) { 255 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 256 257 // We have a valid insert point, reuse it if it is empty or there are no 258 // explicit jumps to the return block. 259 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 260 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 261 delete ReturnBlock.getBlock(); 262 } else 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 // Otherwise, if the return block is the target of a single direct 268 // branch then we can just put the code in that block instead. This 269 // cleans up functions which started with a unified return block. 270 if (ReturnBlock.getBlock()->hasOneUse()) { 271 llvm::BranchInst *BI = 272 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 273 if (BI && BI->isUnconditional() && 274 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 275 // Record/return the DebugLoc of the simple 'return' expression to be used 276 // later by the actual 'ret' instruction. 277 llvm::DebugLoc Loc = BI->getDebugLoc(); 278 Builder.SetInsertPoint(BI->getParent()); 279 BI->eraseFromParent(); 280 delete ReturnBlock.getBlock(); 281 return Loc; 282 } 283 } 284 285 // FIXME: We are at an unreachable point, there is no reason to emit the block 286 // unless it has uses. However, we still need a place to put the debug 287 // region.end for now. 288 289 EmitBlock(ReturnBlock.getBlock()); 290 return llvm::DebugLoc(); 291 } 292 293 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 294 if (!BB) return; 295 if (!BB->use_empty()) 296 return CGF.CurFn->getBasicBlockList().push_back(BB); 297 delete BB; 298 } 299 300 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 301 assert(BreakContinueStack.empty() && 302 "mismatched push/pop in break/continue stack!"); 303 304 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 305 && NumSimpleReturnExprs == NumReturnExprs 306 && ReturnBlock.getBlock()->use_empty(); 307 // Usually the return expression is evaluated before the cleanup 308 // code. If the function contains only a simple return statement, 309 // such as a constant, the location before the cleanup code becomes 310 // the last useful breakpoint in the function, because the simple 311 // return expression will be evaluated after the cleanup code. To be 312 // safe, set the debug location for cleanup code to the location of 313 // the return statement. Otherwise the cleanup code should be at the 314 // end of the function's lexical scope. 315 // 316 // If there are multiple branches to the return block, the branch 317 // instructions will get the location of the return statements and 318 // all will be fine. 319 if (CGDebugInfo *DI = getDebugInfo()) { 320 if (OnlySimpleReturnStmts) 321 DI->EmitLocation(Builder, LastStopPoint); 322 else 323 DI->EmitLocation(Builder, EndLoc); 324 } 325 326 // Pop any cleanups that might have been associated with the 327 // parameters. Do this in whatever block we're currently in; it's 328 // important to do this before we enter the return block or return 329 // edges will be *really* confused. 330 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 331 bool HasOnlyLifetimeMarkers = 332 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 333 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 334 if (HasCleanups) { 335 // Make sure the line table doesn't jump back into the body for 336 // the ret after it's been at EndLoc. 337 if (CGDebugInfo *DI = getDebugInfo()) 338 if (OnlySimpleReturnStmts) 339 DI->EmitLocation(Builder, EndLoc); 340 341 PopCleanupBlocks(PrologueCleanupDepth); 342 } 343 344 // Emit function epilog (to return). 345 llvm::DebugLoc Loc = EmitReturnBlock(); 346 347 if (ShouldInstrumentFunction()) 348 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 349 350 // Emit debug descriptor for function end. 351 if (CGDebugInfo *DI = getDebugInfo()) 352 DI->EmitFunctionEnd(Builder, CurFn); 353 354 // Reset the debug location to that of the simple 'return' expression, if any 355 // rather than that of the end of the function's scope '}'. 356 ApplyDebugLocation AL(*this, Loc); 357 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 358 EmitEndEHSpec(CurCodeDecl); 359 360 assert(EHStack.empty() && 361 "did not remove all scopes from cleanup stack!"); 362 363 // If someone did an indirect goto, emit the indirect goto block at the end of 364 // the function. 365 if (IndirectBranch) { 366 EmitBlock(IndirectBranch->getParent()); 367 Builder.ClearInsertionPoint(); 368 } 369 370 // If some of our locals escaped, insert a call to llvm.localescape in the 371 // entry block. 372 if (!EscapedLocals.empty()) { 373 // Invert the map from local to index into a simple vector. There should be 374 // no holes. 375 SmallVector<llvm::Value *, 4> EscapeArgs; 376 EscapeArgs.resize(EscapedLocals.size()); 377 for (auto &Pair : EscapedLocals) 378 EscapeArgs[Pair.second] = Pair.first; 379 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 380 &CGM.getModule(), llvm::Intrinsic::localescape); 381 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 382 } 383 384 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 385 llvm::Instruction *Ptr = AllocaInsertPt; 386 AllocaInsertPt = nullptr; 387 Ptr->eraseFromParent(); 388 389 // If someone took the address of a label but never did an indirect goto, we 390 // made a zero entry PHI node, which is illegal, zap it now. 391 if (IndirectBranch) { 392 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 393 if (PN->getNumIncomingValues() == 0) { 394 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 395 PN->eraseFromParent(); 396 } 397 } 398 399 EmitIfUsed(*this, EHResumeBlock); 400 EmitIfUsed(*this, TerminateLandingPad); 401 EmitIfUsed(*this, TerminateHandler); 402 EmitIfUsed(*this, UnreachableBlock); 403 404 if (CGM.getCodeGenOpts().EmitDeclMetadata) 405 EmitDeclMetadata(); 406 407 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 408 I = DeferredReplacements.begin(), 409 E = DeferredReplacements.end(); 410 I != E; ++I) { 411 I->first->replaceAllUsesWith(I->second); 412 I->first->eraseFromParent(); 413 } 414 } 415 416 /// ShouldInstrumentFunction - Return true if the current function should be 417 /// instrumented with __cyg_profile_func_* calls 418 bool CodeGenFunction::ShouldInstrumentFunction() { 419 if (!CGM.getCodeGenOpts().InstrumentFunctions) 420 return false; 421 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 422 return false; 423 return true; 424 } 425 426 /// ShouldXRayInstrument - Return true if the current function should be 427 /// instrumented with XRay nop sleds. 428 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 429 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 430 } 431 432 llvm::Constant * 433 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 434 llvm::Constant *Addr) { 435 // Addresses stored in prologue data can't require run-time fixups and must 436 // be PC-relative. Run-time fixups are undesirable because they necessitate 437 // writable text segments, which are unsafe. And absolute addresses are 438 // undesirable because they break PIE mode. 439 440 // Add a layer of indirection through a private global. Taking its address 441 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 442 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 443 /*isConstant=*/true, 444 llvm::GlobalValue::PrivateLinkage, Addr); 445 446 // Create a PC-relative address. 447 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 448 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 449 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 450 return (IntPtrTy == Int32Ty) 451 ? PCRelAsInt 452 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 453 } 454 455 llvm::Value * 456 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 457 llvm::Value *EncodedAddr) { 458 // Reconstruct the address of the global. 459 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 460 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 461 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 462 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 463 464 // Load the original pointer through the global. 465 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 466 "decoded_addr"); 467 } 468 469 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 470 /// instrumentation function with the current function and the call site, if 471 /// function instrumentation is enabled. 472 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 473 auto NL = ApplyDebugLocation::CreateArtificial(*this); 474 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 475 llvm::PointerType *PointerTy = Int8PtrTy; 476 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 477 llvm::FunctionType *FunctionTy = 478 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 479 480 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 481 llvm::CallInst *CallSite = Builder.CreateCall( 482 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 483 llvm::ConstantInt::get(Int32Ty, 0), 484 "callsite"); 485 486 llvm::Value *args[] = { 487 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 488 CallSite 489 }; 490 491 EmitNounwindRuntimeCall(F, args); 492 } 493 494 static void removeImageAccessQualifier(std::string& TyName) { 495 std::string ReadOnlyQual("__read_only"); 496 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 497 if (ReadOnlyPos != std::string::npos) 498 // "+ 1" for the space after access qualifier. 499 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 500 else { 501 std::string WriteOnlyQual("__write_only"); 502 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 503 if (WriteOnlyPos != std::string::npos) 504 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 505 else { 506 std::string ReadWriteQual("__read_write"); 507 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 508 if (ReadWritePos != std::string::npos) 509 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 510 } 511 } 512 } 513 514 // Returns the address space id that should be produced to the 515 // kernel_arg_addr_space metadata. This is always fixed to the ids 516 // as specified in the SPIR 2.0 specification in order to differentiate 517 // for example in clGetKernelArgInfo() implementation between the address 518 // spaces with targets without unique mapping to the OpenCL address spaces 519 // (basically all single AS CPUs). 520 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 521 switch (LangAS) { 522 case LangAS::opencl_global: return 1; 523 case LangAS::opencl_constant: return 2; 524 case LangAS::opencl_local: return 3; 525 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 526 default: 527 return 0; // Assume private. 528 } 529 } 530 531 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 532 // information in the program executable. The argument information stored 533 // includes the argument name, its type, the address and access qualifiers used. 534 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 535 CodeGenModule &CGM, llvm::LLVMContext &Context, 536 CGBuilderTy &Builder, ASTContext &ASTCtx) { 537 // Create MDNodes that represent the kernel arg metadata. 538 // Each MDNode is a list in the form of "key", N number of values which is 539 // the same number of values as their are kernel arguments. 540 541 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 542 543 // MDNode for the kernel argument address space qualifiers. 544 SmallVector<llvm::Metadata *, 8> addressQuals; 545 546 // MDNode for the kernel argument access qualifiers (images only). 547 SmallVector<llvm::Metadata *, 8> accessQuals; 548 549 // MDNode for the kernel argument type names. 550 SmallVector<llvm::Metadata *, 8> argTypeNames; 551 552 // MDNode for the kernel argument base type names. 553 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 554 555 // MDNode for the kernel argument type qualifiers. 556 SmallVector<llvm::Metadata *, 8> argTypeQuals; 557 558 // MDNode for the kernel argument names. 559 SmallVector<llvm::Metadata *, 8> argNames; 560 561 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 562 const ParmVarDecl *parm = FD->getParamDecl(i); 563 QualType ty = parm->getType(); 564 std::string typeQuals; 565 566 if (ty->isPointerType()) { 567 QualType pointeeTy = ty->getPointeeType(); 568 569 // Get address qualifier. 570 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 571 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 572 573 // Get argument type name. 574 std::string typeName = 575 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 576 577 // Turn "unsigned type" to "utype" 578 std::string::size_type pos = typeName.find("unsigned"); 579 if (pointeeTy.isCanonical() && pos != std::string::npos) 580 typeName.erase(pos+1, 8); 581 582 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 583 584 std::string baseTypeName = 585 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 586 Policy) + 587 "*"; 588 589 // Turn "unsigned type" to "utype" 590 pos = baseTypeName.find("unsigned"); 591 if (pos != std::string::npos) 592 baseTypeName.erase(pos+1, 8); 593 594 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 595 596 // Get argument type qualifiers: 597 if (ty.isRestrictQualified()) 598 typeQuals = "restrict"; 599 if (pointeeTy.isConstQualified() || 600 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 601 typeQuals += typeQuals.empty() ? "const" : " const"; 602 if (pointeeTy.isVolatileQualified()) 603 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 604 } else { 605 uint32_t AddrSpc = 0; 606 bool isPipe = ty->isPipeType(); 607 if (ty->isImageType() || isPipe) 608 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 609 610 addressQuals.push_back( 611 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 612 613 // Get argument type name. 614 std::string typeName; 615 if (isPipe) 616 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 617 .getAsString(Policy); 618 else 619 typeName = ty.getUnqualifiedType().getAsString(Policy); 620 621 // Turn "unsigned type" to "utype" 622 std::string::size_type pos = typeName.find("unsigned"); 623 if (ty.isCanonical() && pos != std::string::npos) 624 typeName.erase(pos+1, 8); 625 626 std::string baseTypeName; 627 if (isPipe) 628 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 629 ->getElementType().getCanonicalType() 630 .getAsString(Policy); 631 else 632 baseTypeName = 633 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 634 635 // Remove access qualifiers on images 636 // (as they are inseparable from type in clang implementation, 637 // but OpenCL spec provides a special query to get access qualifier 638 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 639 if (ty->isImageType()) { 640 removeImageAccessQualifier(typeName); 641 removeImageAccessQualifier(baseTypeName); 642 } 643 644 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 645 646 // Turn "unsigned type" to "utype" 647 pos = baseTypeName.find("unsigned"); 648 if (pos != std::string::npos) 649 baseTypeName.erase(pos+1, 8); 650 651 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 652 653 if (isPipe) 654 typeQuals = "pipe"; 655 } 656 657 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 658 659 // Get image and pipe access qualifier: 660 if (ty->isImageType()|| ty->isPipeType()) { 661 const Decl *PDecl = parm; 662 if (auto *TD = dyn_cast<TypedefType>(ty)) 663 PDecl = TD->getDecl(); 664 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 665 if (A && A->isWriteOnly()) 666 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 667 else if (A && A->isReadWrite()) 668 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 669 else 670 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 671 } else 672 accessQuals.push_back(llvm::MDString::get(Context, "none")); 673 674 // Get argument name. 675 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 676 } 677 678 Fn->setMetadata("kernel_arg_addr_space", 679 llvm::MDNode::get(Context, addressQuals)); 680 Fn->setMetadata("kernel_arg_access_qual", 681 llvm::MDNode::get(Context, accessQuals)); 682 Fn->setMetadata("kernel_arg_type", 683 llvm::MDNode::get(Context, argTypeNames)); 684 Fn->setMetadata("kernel_arg_base_type", 685 llvm::MDNode::get(Context, argBaseTypeNames)); 686 Fn->setMetadata("kernel_arg_type_qual", 687 llvm::MDNode::get(Context, argTypeQuals)); 688 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 689 Fn->setMetadata("kernel_arg_name", 690 llvm::MDNode::get(Context, argNames)); 691 } 692 693 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 694 llvm::Function *Fn) 695 { 696 if (!FD->hasAttr<OpenCLKernelAttr>()) 697 return; 698 699 llvm::LLVMContext &Context = getLLVMContext(); 700 701 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 702 703 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 704 QualType HintQTy = A->getTypeHint(); 705 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 706 bool IsSignedInteger = 707 HintQTy->isSignedIntegerType() || 708 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 709 llvm::Metadata *AttrMDArgs[] = { 710 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 711 CGM.getTypes().ConvertType(A->getTypeHint()))), 712 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 713 llvm::IntegerType::get(Context, 32), 714 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 715 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 716 } 717 718 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 719 llvm::Metadata *AttrMDArgs[] = { 720 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 721 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 722 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 723 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 724 } 725 726 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 727 llvm::Metadata *AttrMDArgs[] = { 728 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 729 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 730 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 731 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 732 } 733 734 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 735 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 736 llvm::Metadata *AttrMDArgs[] = { 737 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 738 Fn->setMetadata("intel_reqd_sub_group_size", 739 llvm::MDNode::get(Context, AttrMDArgs)); 740 } 741 } 742 743 /// Determine whether the function F ends with a return stmt. 744 static bool endsWithReturn(const Decl* F) { 745 const Stmt *Body = nullptr; 746 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 747 Body = FD->getBody(); 748 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 749 Body = OMD->getBody(); 750 751 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 752 auto LastStmt = CS->body_rbegin(); 753 if (LastStmt != CS->body_rend()) 754 return isa<ReturnStmt>(*LastStmt); 755 } 756 return false; 757 } 758 759 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 760 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 761 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 762 } 763 764 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 765 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 766 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 767 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 768 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 769 return false; 770 771 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 772 return false; 773 774 if (MD->getNumParams() == 2) { 775 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 776 if (!PT || !PT->isVoidPointerType() || 777 !PT->getPointeeType().isConstQualified()) 778 return false; 779 } 780 781 return true; 782 } 783 784 void CodeGenFunction::StartFunction(GlobalDecl GD, 785 QualType RetTy, 786 llvm::Function *Fn, 787 const CGFunctionInfo &FnInfo, 788 const FunctionArgList &Args, 789 SourceLocation Loc, 790 SourceLocation StartLoc) { 791 assert(!CurFn && 792 "Do not use a CodeGenFunction object for more than one function"); 793 794 const Decl *D = GD.getDecl(); 795 796 DidCallStackSave = false; 797 CurCodeDecl = D; 798 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 799 if (FD->usesSEHTry()) 800 CurSEHParent = FD; 801 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 802 FnRetTy = RetTy; 803 CurFn = Fn; 804 CurFnInfo = &FnInfo; 805 assert(CurFn->isDeclaration() && "Function already has body?"); 806 807 // If this function has been blacklisted for any of the enabled sanitizers, 808 // disable the sanitizer for the function. 809 do { 810 #define SANITIZER(NAME, ID) \ 811 if (SanOpts.empty()) \ 812 break; \ 813 if (SanOpts.has(SanitizerKind::ID)) \ 814 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 815 SanOpts.set(SanitizerKind::ID, false); 816 817 #include "clang/Basic/Sanitizers.def" 818 #undef SANITIZER 819 } while (0); 820 821 if (D) { 822 // Apply the no_sanitize* attributes to SanOpts. 823 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 824 SanOpts.Mask &= ~Attr->getMask(); 825 } 826 827 // Apply sanitizer attributes to the function. 828 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 829 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 830 if (SanOpts.has(SanitizerKind::Thread)) 831 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 832 if (SanOpts.has(SanitizerKind::Memory)) 833 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 834 if (SanOpts.has(SanitizerKind::SafeStack)) 835 Fn->addFnAttr(llvm::Attribute::SafeStack); 836 837 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 838 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 839 if (SanOpts.has(SanitizerKind::Thread)) { 840 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 841 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 842 if (OMD->getMethodFamily() == OMF_dealloc || 843 OMD->getMethodFamily() == OMF_initialize || 844 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 845 markAsIgnoreThreadCheckingAtRuntime(Fn); 846 } 847 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 848 IdentifierInfo *II = FD->getIdentifier(); 849 if (II && II->isStr("__destroy_helper_block_")) 850 markAsIgnoreThreadCheckingAtRuntime(Fn); 851 } 852 } 853 854 // Ignore unrelated casts in STL allocate() since the allocator must cast 855 // from void* to T* before object initialization completes. Don't match on the 856 // namespace because not all allocators are in std:: 857 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 858 if (matchesStlAllocatorFn(D, getContext())) 859 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 860 } 861 862 // Apply xray attributes to the function (as a string, for now) 863 if (D && ShouldXRayInstrumentFunction()) { 864 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 865 if (XRayAttr->alwaysXRayInstrument()) 866 Fn->addFnAttr("function-instrument", "xray-always"); 867 if (XRayAttr->neverXRayInstrument()) 868 Fn->addFnAttr("function-instrument", "xray-never"); 869 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 870 Fn->addFnAttr("xray-log-args", 871 llvm::utostr(LogArgs->getArgumentCount())); 872 } 873 } else { 874 if (!CGM.imbueXRayAttrs(Fn, Loc)) 875 Fn->addFnAttr( 876 "xray-instruction-threshold", 877 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 878 } 879 } 880 881 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 882 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 883 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 884 885 // Add no-jump-tables value. 886 Fn->addFnAttr("no-jump-tables", 887 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 888 889 // Add profile-sample-accurate value. 890 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 891 Fn->addFnAttr("profile-sample-accurate"); 892 893 if (getLangOpts().OpenCL) { 894 // Add metadata for a kernel function. 895 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 896 EmitOpenCLKernelMetadata(FD, Fn); 897 } 898 899 // If we are checking function types, emit a function type signature as 900 // prologue data. 901 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 902 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 903 if (llvm::Constant *PrologueSig = 904 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 905 llvm::Constant *FTRTTIConst = 906 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 907 llvm::Constant *FTRTTIConstEncoded = 908 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 909 llvm::Constant *PrologueStructElems[] = {PrologueSig, 910 FTRTTIConstEncoded}; 911 llvm::Constant *PrologueStructConst = 912 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 913 Fn->setPrologueData(PrologueStructConst); 914 } 915 } 916 } 917 918 // If we're checking nullability, we need to know whether we can check the 919 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 920 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 921 auto Nullability = FnRetTy->getNullability(getContext()); 922 if (Nullability && *Nullability == NullabilityKind::NonNull) { 923 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 924 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 925 RetValNullabilityPrecondition = 926 llvm::ConstantInt::getTrue(getLLVMContext()); 927 } 928 } 929 930 // If we're in C++ mode and the function name is "main", it is guaranteed 931 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 932 // used within a program"). 933 if (getLangOpts().CPlusPlus) 934 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 935 if (FD->isMain()) 936 Fn->addFnAttr(llvm::Attribute::NoRecurse); 937 938 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 939 940 // Create a marker to make it easy to insert allocas into the entryblock 941 // later. Don't create this with the builder, because we don't want it 942 // folded. 943 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 944 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 945 946 ReturnBlock = getJumpDestInCurrentScope("return"); 947 948 Builder.SetInsertPoint(EntryBB); 949 950 // If we're checking the return value, allocate space for a pointer to a 951 // precise source location of the checked return statement. 952 if (requiresReturnValueCheck()) { 953 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 954 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 955 } 956 957 // Emit subprogram debug descriptor. 958 if (CGDebugInfo *DI = getDebugInfo()) { 959 // Reconstruct the type from the argument list so that implicit parameters, 960 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 961 // convention. 962 CallingConv CC = CallingConv::CC_C; 963 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 964 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 965 CC = SrcFnTy->getCallConv(); 966 SmallVector<QualType, 16> ArgTypes; 967 for (const VarDecl *VD : Args) 968 ArgTypes.push_back(VD->getType()); 969 QualType FnType = getContext().getFunctionType( 970 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 971 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 972 } 973 974 if (ShouldInstrumentFunction()) 975 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 976 977 // Since emitting the mcount call here impacts optimizations such as function 978 // inlining, we just add an attribute to insert a mcount call in backend. 979 // The attribute "counting-function" is set to mcount function name which is 980 // architecture dependent. 981 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 982 if (CGM.getCodeGenOpts().CallFEntry) 983 Fn->addFnAttr("fentry-call", "true"); 984 else { 985 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 986 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 987 } 988 } 989 990 if (RetTy->isVoidType()) { 991 // Void type; nothing to return. 992 ReturnValue = Address::invalid(); 993 994 // Count the implicit return. 995 if (!endsWithReturn(D)) 996 ++NumReturnExprs; 997 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 998 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 999 // Indirect aggregate return; emit returned value directly into sret slot. 1000 // This reduces code size, and affects correctness in C++. 1001 auto AI = CurFn->arg_begin(); 1002 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1003 ++AI; 1004 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1005 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1006 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1007 // Load the sret pointer from the argument struct and return into that. 1008 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1009 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1010 --EI; 1011 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1012 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1013 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1014 } else { 1015 ReturnValue = CreateIRTemp(RetTy, "retval"); 1016 1017 // Tell the epilog emitter to autorelease the result. We do this 1018 // now so that various specialized functions can suppress it 1019 // during their IR-generation. 1020 if (getLangOpts().ObjCAutoRefCount && 1021 !CurFnInfo->isReturnsRetained() && 1022 RetTy->isObjCRetainableType()) 1023 AutoreleaseResult = true; 1024 } 1025 1026 EmitStartEHSpec(CurCodeDecl); 1027 1028 PrologueCleanupDepth = EHStack.stable_begin(); 1029 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1030 1031 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1032 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1033 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1034 if (MD->getParent()->isLambda() && 1035 MD->getOverloadedOperator() == OO_Call) { 1036 // We're in a lambda; figure out the captures. 1037 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1038 LambdaThisCaptureField); 1039 if (LambdaThisCaptureField) { 1040 // If the lambda captures the object referred to by '*this' - either by 1041 // value or by reference, make sure CXXThisValue points to the correct 1042 // object. 1043 1044 // Get the lvalue for the field (which is a copy of the enclosing object 1045 // or contains the address of the enclosing object). 1046 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1047 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1048 // If the enclosing object was captured by value, just use its address. 1049 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1050 } else { 1051 // Load the lvalue pointed to by the field, since '*this' was captured 1052 // by reference. 1053 CXXThisValue = 1054 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1055 } 1056 } 1057 for (auto *FD : MD->getParent()->fields()) { 1058 if (FD->hasCapturedVLAType()) { 1059 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1060 SourceLocation()).getScalarVal(); 1061 auto VAT = FD->getCapturedVLAType(); 1062 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1063 } 1064 } 1065 } else { 1066 // Not in a lambda; just use 'this' from the method. 1067 // FIXME: Should we generate a new load for each use of 'this'? The 1068 // fast register allocator would be happier... 1069 CXXThisValue = CXXABIThisValue; 1070 } 1071 1072 // Check the 'this' pointer once per function, if it's available. 1073 if (CXXABIThisValue) { 1074 SanitizerSet SkippedChecks; 1075 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1076 QualType ThisTy = MD->getThisType(getContext()); 1077 1078 // If this is the call operator of a lambda with no capture-default, it 1079 // may have a static invoker function, which may call this operator with 1080 // a null 'this' pointer. 1081 if (isLambdaCallOperator(MD) && 1082 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1083 LCD_None) 1084 SkippedChecks.set(SanitizerKind::Null, true); 1085 1086 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1087 : TCK_MemberCall, 1088 Loc, CXXABIThisValue, ThisTy, 1089 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1090 SkippedChecks); 1091 } 1092 } 1093 1094 // If any of the arguments have a variably modified type, make sure to 1095 // emit the type size. 1096 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1097 i != e; ++i) { 1098 const VarDecl *VD = *i; 1099 1100 // Dig out the type as written from ParmVarDecls; it's unclear whether 1101 // the standard (C99 6.9.1p10) requires this, but we're following the 1102 // precedent set by gcc. 1103 QualType Ty; 1104 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1105 Ty = PVD->getOriginalType(); 1106 else 1107 Ty = VD->getType(); 1108 1109 if (Ty->isVariablyModifiedType()) 1110 EmitVariablyModifiedType(Ty); 1111 } 1112 // Emit a location at the end of the prologue. 1113 if (CGDebugInfo *DI = getDebugInfo()) 1114 DI->EmitLocation(Builder, StartLoc); 1115 } 1116 1117 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1118 const Stmt *Body) { 1119 incrementProfileCounter(Body); 1120 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1121 EmitCompoundStmtWithoutScope(*S); 1122 else 1123 EmitStmt(Body); 1124 } 1125 1126 /// When instrumenting to collect profile data, the counts for some blocks 1127 /// such as switch cases need to not include the fall-through counts, so 1128 /// emit a branch around the instrumentation code. When not instrumenting, 1129 /// this just calls EmitBlock(). 1130 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1131 const Stmt *S) { 1132 llvm::BasicBlock *SkipCountBB = nullptr; 1133 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1134 // When instrumenting for profiling, the fallthrough to certain 1135 // statements needs to skip over the instrumentation code so that we 1136 // get an accurate count. 1137 SkipCountBB = createBasicBlock("skipcount"); 1138 EmitBranch(SkipCountBB); 1139 } 1140 EmitBlock(BB); 1141 uint64_t CurrentCount = getCurrentProfileCount(); 1142 incrementProfileCounter(S); 1143 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1144 if (SkipCountBB) 1145 EmitBlock(SkipCountBB); 1146 } 1147 1148 /// Tries to mark the given function nounwind based on the 1149 /// non-existence of any throwing calls within it. We believe this is 1150 /// lightweight enough to do at -O0. 1151 static void TryMarkNoThrow(llvm::Function *F) { 1152 // LLVM treats 'nounwind' on a function as part of the type, so we 1153 // can't do this on functions that can be overwritten. 1154 if (F->isInterposable()) return; 1155 1156 for (llvm::BasicBlock &BB : *F) 1157 for (llvm::Instruction &I : BB) 1158 if (I.mayThrow()) 1159 return; 1160 1161 F->setDoesNotThrow(); 1162 } 1163 1164 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1165 FunctionArgList &Args) { 1166 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1167 QualType ResTy = FD->getReturnType(); 1168 1169 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1170 if (MD && MD->isInstance()) { 1171 if (CGM.getCXXABI().HasThisReturn(GD)) 1172 ResTy = MD->getThisType(getContext()); 1173 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1174 ResTy = CGM.getContext().VoidPtrTy; 1175 CGM.getCXXABI().buildThisParam(*this, Args); 1176 } 1177 1178 // The base version of an inheriting constructor whose constructed base is a 1179 // virtual base is not passed any arguments (because it doesn't actually call 1180 // the inherited constructor). 1181 bool PassedParams = true; 1182 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1183 if (auto Inherited = CD->getInheritedConstructor()) 1184 PassedParams = 1185 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1186 1187 if (PassedParams) { 1188 for (auto *Param : FD->parameters()) { 1189 Args.push_back(Param); 1190 if (!Param->hasAttr<PassObjectSizeAttr>()) 1191 continue; 1192 1193 auto *Implicit = ImplicitParamDecl::Create( 1194 getContext(), Param->getDeclContext(), Param->getLocation(), 1195 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1196 SizeArguments[Param] = Implicit; 1197 Args.push_back(Implicit); 1198 } 1199 } 1200 1201 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1202 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1203 1204 return ResTy; 1205 } 1206 1207 static bool 1208 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1209 const ASTContext &Context) { 1210 QualType T = FD->getReturnType(); 1211 // Avoid the optimization for functions that return a record type with a 1212 // trivial destructor or another trivially copyable type. 1213 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1214 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1215 return !ClassDecl->hasTrivialDestructor(); 1216 } 1217 return !T.isTriviallyCopyableType(Context); 1218 } 1219 1220 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1221 const CGFunctionInfo &FnInfo) { 1222 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1223 CurGD = GD; 1224 1225 FunctionArgList Args; 1226 QualType ResTy = BuildFunctionArgList(GD, Args); 1227 1228 // Check if we should generate debug info for this function. 1229 if (FD->hasAttr<NoDebugAttr>()) 1230 DebugInfo = nullptr; // disable debug info indefinitely for this function 1231 1232 // The function might not have a body if we're generating thunks for a 1233 // function declaration. 1234 SourceRange BodyRange; 1235 if (Stmt *Body = FD->getBody()) 1236 BodyRange = Body->getSourceRange(); 1237 else 1238 BodyRange = FD->getLocation(); 1239 CurEHLocation = BodyRange.getEnd(); 1240 1241 // Use the location of the start of the function to determine where 1242 // the function definition is located. By default use the location 1243 // of the declaration as the location for the subprogram. A function 1244 // may lack a declaration in the source code if it is created by code 1245 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1246 SourceLocation Loc = FD->getLocation(); 1247 1248 // If this is a function specialization then use the pattern body 1249 // as the location for the function. 1250 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1251 if (SpecDecl->hasBody(SpecDecl)) 1252 Loc = SpecDecl->getLocation(); 1253 1254 Stmt *Body = FD->getBody(); 1255 1256 // Initialize helper which will detect jumps which can cause invalid lifetime 1257 // markers. 1258 if (Body && ShouldEmitLifetimeMarkers) 1259 Bypasses.Init(Body); 1260 1261 // Emit the standard function prologue. 1262 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1263 1264 // Generate the body of the function. 1265 PGO.assignRegionCounters(GD, CurFn); 1266 if (isa<CXXDestructorDecl>(FD)) 1267 EmitDestructorBody(Args); 1268 else if (isa<CXXConstructorDecl>(FD)) 1269 EmitConstructorBody(Args); 1270 else if (getLangOpts().CUDA && 1271 !getLangOpts().CUDAIsDevice && 1272 FD->hasAttr<CUDAGlobalAttr>()) 1273 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1274 else if (isa<CXXMethodDecl>(FD) && 1275 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1276 // The lambda static invoker function is special, because it forwards or 1277 // clones the body of the function call operator (but is actually static). 1278 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1279 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1280 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1281 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1282 // Implicit copy-assignment gets the same special treatment as implicit 1283 // copy-constructors. 1284 emitImplicitAssignmentOperatorBody(Args); 1285 } else if (Body) { 1286 EmitFunctionBody(Args, Body); 1287 } else 1288 llvm_unreachable("no definition for emitted function"); 1289 1290 // C++11 [stmt.return]p2: 1291 // Flowing off the end of a function [...] results in undefined behavior in 1292 // a value-returning function. 1293 // C11 6.9.1p12: 1294 // If the '}' that terminates a function is reached, and the value of the 1295 // function call is used by the caller, the behavior is undefined. 1296 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1297 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1298 bool ShouldEmitUnreachable = 1299 CGM.getCodeGenOpts().StrictReturn || 1300 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1301 if (SanOpts.has(SanitizerKind::Return)) { 1302 SanitizerScope SanScope(this); 1303 llvm::Value *IsFalse = Builder.getFalse(); 1304 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1305 SanitizerHandler::MissingReturn, 1306 EmitCheckSourceLocation(FD->getLocation()), None); 1307 } else if (ShouldEmitUnreachable) { 1308 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1309 EmitTrapCall(llvm::Intrinsic::trap); 1310 } 1311 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1312 Builder.CreateUnreachable(); 1313 Builder.ClearInsertionPoint(); 1314 } 1315 } 1316 1317 // Emit the standard function epilogue. 1318 FinishFunction(BodyRange.getEnd()); 1319 1320 // If we haven't marked the function nothrow through other means, do 1321 // a quick pass now to see if we can. 1322 if (!CurFn->doesNotThrow()) 1323 TryMarkNoThrow(CurFn); 1324 } 1325 1326 /// ContainsLabel - Return true if the statement contains a label in it. If 1327 /// this statement is not executed normally, it not containing a label means 1328 /// that we can just remove the code. 1329 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1330 // Null statement, not a label! 1331 if (!S) return false; 1332 1333 // If this is a label, we have to emit the code, consider something like: 1334 // if (0) { ... foo: bar(); } goto foo; 1335 // 1336 // TODO: If anyone cared, we could track __label__'s, since we know that you 1337 // can't jump to one from outside their declared region. 1338 if (isa<LabelStmt>(S)) 1339 return true; 1340 1341 // If this is a case/default statement, and we haven't seen a switch, we have 1342 // to emit the code. 1343 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1344 return true; 1345 1346 // If this is a switch statement, we want to ignore cases below it. 1347 if (isa<SwitchStmt>(S)) 1348 IgnoreCaseStmts = true; 1349 1350 // Scan subexpressions for verboten labels. 1351 for (const Stmt *SubStmt : S->children()) 1352 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1353 return true; 1354 1355 return false; 1356 } 1357 1358 /// containsBreak - Return true if the statement contains a break out of it. 1359 /// If the statement (recursively) contains a switch or loop with a break 1360 /// inside of it, this is fine. 1361 bool CodeGenFunction::containsBreak(const Stmt *S) { 1362 // Null statement, not a label! 1363 if (!S) return false; 1364 1365 // If this is a switch or loop that defines its own break scope, then we can 1366 // include it and anything inside of it. 1367 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1368 isa<ForStmt>(S)) 1369 return false; 1370 1371 if (isa<BreakStmt>(S)) 1372 return true; 1373 1374 // Scan subexpressions for verboten breaks. 1375 for (const Stmt *SubStmt : S->children()) 1376 if (containsBreak(SubStmt)) 1377 return true; 1378 1379 return false; 1380 } 1381 1382 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1383 if (!S) return false; 1384 1385 // Some statement kinds add a scope and thus never add a decl to the current 1386 // scope. Note, this list is longer than the list of statements that might 1387 // have an unscoped decl nested within them, but this way is conservatively 1388 // correct even if more statement kinds are added. 1389 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1390 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1391 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1392 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1393 return false; 1394 1395 if (isa<DeclStmt>(S)) 1396 return true; 1397 1398 for (const Stmt *SubStmt : S->children()) 1399 if (mightAddDeclToScope(SubStmt)) 1400 return true; 1401 1402 return false; 1403 } 1404 1405 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1406 /// to a constant, or if it does but contains a label, return false. If it 1407 /// constant folds return true and set the boolean result in Result. 1408 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1409 bool &ResultBool, 1410 bool AllowLabels) { 1411 llvm::APSInt ResultInt; 1412 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1413 return false; 1414 1415 ResultBool = ResultInt.getBoolValue(); 1416 return true; 1417 } 1418 1419 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1420 /// to a constant, or if it does but contains a label, return false. If it 1421 /// constant folds return true and set the folded value. 1422 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1423 llvm::APSInt &ResultInt, 1424 bool AllowLabels) { 1425 // FIXME: Rename and handle conversion of other evaluatable things 1426 // to bool. 1427 llvm::APSInt Int; 1428 if (!Cond->EvaluateAsInt(Int, getContext())) 1429 return false; // Not foldable, not integer or not fully evaluatable. 1430 1431 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1432 return false; // Contains a label. 1433 1434 ResultInt = Int; 1435 return true; 1436 } 1437 1438 1439 1440 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1441 /// statement) to the specified blocks. Based on the condition, this might try 1442 /// to simplify the codegen of the conditional based on the branch. 1443 /// 1444 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1445 llvm::BasicBlock *TrueBlock, 1446 llvm::BasicBlock *FalseBlock, 1447 uint64_t TrueCount) { 1448 Cond = Cond->IgnoreParens(); 1449 1450 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1451 1452 // Handle X && Y in a condition. 1453 if (CondBOp->getOpcode() == BO_LAnd) { 1454 // If we have "1 && X", simplify the code. "0 && X" would have constant 1455 // folded if the case was simple enough. 1456 bool ConstantBool = false; 1457 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1458 ConstantBool) { 1459 // br(1 && X) -> br(X). 1460 incrementProfileCounter(CondBOp); 1461 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1462 TrueCount); 1463 } 1464 1465 // If we have "X && 1", simplify the code to use an uncond branch. 1466 // "X && 0" would have been constant folded to 0. 1467 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1468 ConstantBool) { 1469 // br(X && 1) -> br(X). 1470 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1471 TrueCount); 1472 } 1473 1474 // Emit the LHS as a conditional. If the LHS conditional is false, we 1475 // want to jump to the FalseBlock. 1476 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1477 // The counter tells us how often we evaluate RHS, and all of TrueCount 1478 // can be propagated to that branch. 1479 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1480 1481 ConditionalEvaluation eval(*this); 1482 { 1483 ApplyDebugLocation DL(*this, Cond); 1484 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1485 EmitBlock(LHSTrue); 1486 } 1487 1488 incrementProfileCounter(CondBOp); 1489 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1490 1491 // Any temporaries created here are conditional. 1492 eval.begin(*this); 1493 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1494 eval.end(*this); 1495 1496 return; 1497 } 1498 1499 if (CondBOp->getOpcode() == BO_LOr) { 1500 // If we have "0 || X", simplify the code. "1 || X" would have constant 1501 // folded if the case was simple enough. 1502 bool ConstantBool = false; 1503 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1504 !ConstantBool) { 1505 // br(0 || X) -> br(X). 1506 incrementProfileCounter(CondBOp); 1507 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1508 TrueCount); 1509 } 1510 1511 // If we have "X || 0", simplify the code to use an uncond branch. 1512 // "X || 1" would have been constant folded to 1. 1513 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1514 !ConstantBool) { 1515 // br(X || 0) -> br(X). 1516 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1517 TrueCount); 1518 } 1519 1520 // Emit the LHS as a conditional. If the LHS conditional is true, we 1521 // want to jump to the TrueBlock. 1522 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1523 // We have the count for entry to the RHS and for the whole expression 1524 // being true, so we can divy up True count between the short circuit and 1525 // the RHS. 1526 uint64_t LHSCount = 1527 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1528 uint64_t RHSCount = TrueCount - LHSCount; 1529 1530 ConditionalEvaluation eval(*this); 1531 { 1532 ApplyDebugLocation DL(*this, Cond); 1533 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1534 EmitBlock(LHSFalse); 1535 } 1536 1537 incrementProfileCounter(CondBOp); 1538 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1539 1540 // Any temporaries created here are conditional. 1541 eval.begin(*this); 1542 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1543 1544 eval.end(*this); 1545 1546 return; 1547 } 1548 } 1549 1550 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1551 // br(!x, t, f) -> br(x, f, t) 1552 if (CondUOp->getOpcode() == UO_LNot) { 1553 // Negate the count. 1554 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1555 // Negate the condition and swap the destination blocks. 1556 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1557 FalseCount); 1558 } 1559 } 1560 1561 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1562 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1563 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1564 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1565 1566 ConditionalEvaluation cond(*this); 1567 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1568 getProfileCount(CondOp)); 1569 1570 // When computing PGO branch weights, we only know the overall count for 1571 // the true block. This code is essentially doing tail duplication of the 1572 // naive code-gen, introducing new edges for which counts are not 1573 // available. Divide the counts proportionally between the LHS and RHS of 1574 // the conditional operator. 1575 uint64_t LHSScaledTrueCount = 0; 1576 if (TrueCount) { 1577 double LHSRatio = 1578 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1579 LHSScaledTrueCount = TrueCount * LHSRatio; 1580 } 1581 1582 cond.begin(*this); 1583 EmitBlock(LHSBlock); 1584 incrementProfileCounter(CondOp); 1585 { 1586 ApplyDebugLocation DL(*this, Cond); 1587 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1588 LHSScaledTrueCount); 1589 } 1590 cond.end(*this); 1591 1592 cond.begin(*this); 1593 EmitBlock(RHSBlock); 1594 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1595 TrueCount - LHSScaledTrueCount); 1596 cond.end(*this); 1597 1598 return; 1599 } 1600 1601 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1602 // Conditional operator handling can give us a throw expression as a 1603 // condition for a case like: 1604 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1605 // Fold this to: 1606 // br(c, throw x, br(y, t, f)) 1607 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1608 return; 1609 } 1610 1611 // If the branch has a condition wrapped by __builtin_unpredictable, 1612 // create metadata that specifies that the branch is unpredictable. 1613 // Don't bother if not optimizing because that metadata would not be used. 1614 llvm::MDNode *Unpredictable = nullptr; 1615 auto *Call = dyn_cast<CallExpr>(Cond); 1616 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1617 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1618 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1619 llvm::MDBuilder MDHelper(getLLVMContext()); 1620 Unpredictable = MDHelper.createUnpredictable(); 1621 } 1622 } 1623 1624 // Create branch weights based on the number of times we get here and the 1625 // number of times the condition should be true. 1626 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1627 llvm::MDNode *Weights = 1628 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1629 1630 // Emit the code with the fully general case. 1631 llvm::Value *CondV; 1632 { 1633 ApplyDebugLocation DL(*this, Cond); 1634 CondV = EvaluateExprAsBool(Cond); 1635 } 1636 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1637 } 1638 1639 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1640 /// specified stmt yet. 1641 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1642 CGM.ErrorUnsupported(S, Type); 1643 } 1644 1645 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1646 /// variable-length array whose elements have a non-zero bit-pattern. 1647 /// 1648 /// \param baseType the inner-most element type of the array 1649 /// \param src - a char* pointing to the bit-pattern for a single 1650 /// base element of the array 1651 /// \param sizeInChars - the total size of the VLA, in chars 1652 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1653 Address dest, Address src, 1654 llvm::Value *sizeInChars) { 1655 CGBuilderTy &Builder = CGF.Builder; 1656 1657 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1658 llvm::Value *baseSizeInChars 1659 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1660 1661 Address begin = 1662 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1663 llvm::Value *end = 1664 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1665 1666 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1667 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1668 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1669 1670 // Make a loop over the VLA. C99 guarantees that the VLA element 1671 // count must be nonzero. 1672 CGF.EmitBlock(loopBB); 1673 1674 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1675 cur->addIncoming(begin.getPointer(), originBB); 1676 1677 CharUnits curAlign = 1678 dest.getAlignment().alignmentOfArrayElement(baseSize); 1679 1680 // memcpy the individual element bit-pattern. 1681 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1682 /*volatile*/ false); 1683 1684 // Go to the next element. 1685 llvm::Value *next = 1686 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1687 1688 // Leave if that's the end of the VLA. 1689 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1690 Builder.CreateCondBr(done, contBB, loopBB); 1691 cur->addIncoming(next, loopBB); 1692 1693 CGF.EmitBlock(contBB); 1694 } 1695 1696 void 1697 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1698 // Ignore empty classes in C++. 1699 if (getLangOpts().CPlusPlus) { 1700 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1701 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1702 return; 1703 } 1704 } 1705 1706 // Cast the dest ptr to the appropriate i8 pointer type. 1707 if (DestPtr.getElementType() != Int8Ty) 1708 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1709 1710 // Get size and alignment info for this aggregate. 1711 CharUnits size = getContext().getTypeSizeInChars(Ty); 1712 1713 llvm::Value *SizeVal; 1714 const VariableArrayType *vla; 1715 1716 // Don't bother emitting a zero-byte memset. 1717 if (size.isZero()) { 1718 // But note that getTypeInfo returns 0 for a VLA. 1719 if (const VariableArrayType *vlaType = 1720 dyn_cast_or_null<VariableArrayType>( 1721 getContext().getAsArrayType(Ty))) { 1722 QualType eltType; 1723 llvm::Value *numElts; 1724 std::tie(numElts, eltType) = getVLASize(vlaType); 1725 1726 SizeVal = numElts; 1727 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1728 if (!eltSize.isOne()) 1729 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1730 vla = vlaType; 1731 } else { 1732 return; 1733 } 1734 } else { 1735 SizeVal = CGM.getSize(size); 1736 vla = nullptr; 1737 } 1738 1739 // If the type contains a pointer to data member we can't memset it to zero. 1740 // Instead, create a null constant and copy it to the destination. 1741 // TODO: there are other patterns besides zero that we can usefully memset, 1742 // like -1, which happens to be the pattern used by member-pointers. 1743 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1744 // For a VLA, emit a single element, then splat that over the VLA. 1745 if (vla) Ty = getContext().getBaseElementType(vla); 1746 1747 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1748 1749 llvm::GlobalVariable *NullVariable = 1750 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1751 /*isConstant=*/true, 1752 llvm::GlobalVariable::PrivateLinkage, 1753 NullConstant, Twine()); 1754 CharUnits NullAlign = DestPtr.getAlignment(); 1755 NullVariable->setAlignment(NullAlign.getQuantity()); 1756 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1757 NullAlign); 1758 1759 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1760 1761 // Get and call the appropriate llvm.memcpy overload. 1762 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1763 return; 1764 } 1765 1766 // Otherwise, just memset the whole thing to zero. This is legal 1767 // because in LLVM, all default initializers (other than the ones we just 1768 // handled above) are guaranteed to have a bit pattern of all zeros. 1769 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1770 } 1771 1772 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1773 // Make sure that there is a block for the indirect goto. 1774 if (!IndirectBranch) 1775 GetIndirectGotoBlock(); 1776 1777 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1778 1779 // Make sure the indirect branch includes all of the address-taken blocks. 1780 IndirectBranch->addDestination(BB); 1781 return llvm::BlockAddress::get(CurFn, BB); 1782 } 1783 1784 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1785 // If we already made the indirect branch for indirect goto, return its block. 1786 if (IndirectBranch) return IndirectBranch->getParent(); 1787 1788 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1789 1790 // Create the PHI node that indirect gotos will add entries to. 1791 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1792 "indirect.goto.dest"); 1793 1794 // Create the indirect branch instruction. 1795 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1796 return IndirectBranch->getParent(); 1797 } 1798 1799 /// Computes the length of an array in elements, as well as the base 1800 /// element type and a properly-typed first element pointer. 1801 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1802 QualType &baseType, 1803 Address &addr) { 1804 const ArrayType *arrayType = origArrayType; 1805 1806 // If it's a VLA, we have to load the stored size. Note that 1807 // this is the size of the VLA in bytes, not its size in elements. 1808 llvm::Value *numVLAElements = nullptr; 1809 if (isa<VariableArrayType>(arrayType)) { 1810 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1811 1812 // Walk into all VLAs. This doesn't require changes to addr, 1813 // which has type T* where T is the first non-VLA element type. 1814 do { 1815 QualType elementType = arrayType->getElementType(); 1816 arrayType = getContext().getAsArrayType(elementType); 1817 1818 // If we only have VLA components, 'addr' requires no adjustment. 1819 if (!arrayType) { 1820 baseType = elementType; 1821 return numVLAElements; 1822 } 1823 } while (isa<VariableArrayType>(arrayType)); 1824 1825 // We get out here only if we find a constant array type 1826 // inside the VLA. 1827 } 1828 1829 // We have some number of constant-length arrays, so addr should 1830 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1831 // down to the first element of addr. 1832 SmallVector<llvm::Value*, 8> gepIndices; 1833 1834 // GEP down to the array type. 1835 llvm::ConstantInt *zero = Builder.getInt32(0); 1836 gepIndices.push_back(zero); 1837 1838 uint64_t countFromCLAs = 1; 1839 QualType eltType; 1840 1841 llvm::ArrayType *llvmArrayType = 1842 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1843 while (llvmArrayType) { 1844 assert(isa<ConstantArrayType>(arrayType)); 1845 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1846 == llvmArrayType->getNumElements()); 1847 1848 gepIndices.push_back(zero); 1849 countFromCLAs *= llvmArrayType->getNumElements(); 1850 eltType = arrayType->getElementType(); 1851 1852 llvmArrayType = 1853 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1854 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1855 assert((!llvmArrayType || arrayType) && 1856 "LLVM and Clang types are out-of-synch"); 1857 } 1858 1859 if (arrayType) { 1860 // From this point onwards, the Clang array type has been emitted 1861 // as some other type (probably a packed struct). Compute the array 1862 // size, and just emit the 'begin' expression as a bitcast. 1863 while (arrayType) { 1864 countFromCLAs *= 1865 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1866 eltType = arrayType->getElementType(); 1867 arrayType = getContext().getAsArrayType(eltType); 1868 } 1869 1870 llvm::Type *baseType = ConvertType(eltType); 1871 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1872 } else { 1873 // Create the actual GEP. 1874 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1875 gepIndices, "array.begin"), 1876 addr.getAlignment()); 1877 } 1878 1879 baseType = eltType; 1880 1881 llvm::Value *numElements 1882 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1883 1884 // If we had any VLA dimensions, factor them in. 1885 if (numVLAElements) 1886 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1887 1888 return numElements; 1889 } 1890 1891 std::pair<llvm::Value*, QualType> 1892 CodeGenFunction::getVLASize(QualType type) { 1893 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1894 assert(vla && "type was not a variable array type!"); 1895 return getVLASize(vla); 1896 } 1897 1898 std::pair<llvm::Value*, QualType> 1899 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1900 // The number of elements so far; always size_t. 1901 llvm::Value *numElements = nullptr; 1902 1903 QualType elementType; 1904 do { 1905 elementType = type->getElementType(); 1906 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1907 assert(vlaSize && "no size for VLA!"); 1908 assert(vlaSize->getType() == SizeTy); 1909 1910 if (!numElements) { 1911 numElements = vlaSize; 1912 } else { 1913 // It's undefined behavior if this wraps around, so mark it that way. 1914 // FIXME: Teach -fsanitize=undefined to trap this. 1915 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1916 } 1917 } while ((type = getContext().getAsVariableArrayType(elementType))); 1918 1919 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1920 } 1921 1922 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1923 assert(type->isVariablyModifiedType() && 1924 "Must pass variably modified type to EmitVLASizes!"); 1925 1926 EnsureInsertPoint(); 1927 1928 // We're going to walk down into the type and look for VLA 1929 // expressions. 1930 do { 1931 assert(type->isVariablyModifiedType()); 1932 1933 const Type *ty = type.getTypePtr(); 1934 switch (ty->getTypeClass()) { 1935 1936 #define TYPE(Class, Base) 1937 #define ABSTRACT_TYPE(Class, Base) 1938 #define NON_CANONICAL_TYPE(Class, Base) 1939 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1940 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1941 #include "clang/AST/TypeNodes.def" 1942 llvm_unreachable("unexpected dependent type!"); 1943 1944 // These types are never variably-modified. 1945 case Type::Builtin: 1946 case Type::Complex: 1947 case Type::Vector: 1948 case Type::ExtVector: 1949 case Type::Record: 1950 case Type::Enum: 1951 case Type::Elaborated: 1952 case Type::TemplateSpecialization: 1953 case Type::ObjCTypeParam: 1954 case Type::ObjCObject: 1955 case Type::ObjCInterface: 1956 case Type::ObjCObjectPointer: 1957 llvm_unreachable("type class is never variably-modified!"); 1958 1959 case Type::Adjusted: 1960 type = cast<AdjustedType>(ty)->getAdjustedType(); 1961 break; 1962 1963 case Type::Decayed: 1964 type = cast<DecayedType>(ty)->getPointeeType(); 1965 break; 1966 1967 case Type::Pointer: 1968 type = cast<PointerType>(ty)->getPointeeType(); 1969 break; 1970 1971 case Type::BlockPointer: 1972 type = cast<BlockPointerType>(ty)->getPointeeType(); 1973 break; 1974 1975 case Type::LValueReference: 1976 case Type::RValueReference: 1977 type = cast<ReferenceType>(ty)->getPointeeType(); 1978 break; 1979 1980 case Type::MemberPointer: 1981 type = cast<MemberPointerType>(ty)->getPointeeType(); 1982 break; 1983 1984 case Type::ConstantArray: 1985 case Type::IncompleteArray: 1986 // Losing element qualification here is fine. 1987 type = cast<ArrayType>(ty)->getElementType(); 1988 break; 1989 1990 case Type::VariableArray: { 1991 // Losing element qualification here is fine. 1992 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1993 1994 // Unknown size indication requires no size computation. 1995 // Otherwise, evaluate and record it. 1996 if (const Expr *size = vat->getSizeExpr()) { 1997 // It's possible that we might have emitted this already, 1998 // e.g. with a typedef and a pointer to it. 1999 llvm::Value *&entry = VLASizeMap[size]; 2000 if (!entry) { 2001 llvm::Value *Size = EmitScalarExpr(size); 2002 2003 // C11 6.7.6.2p5: 2004 // If the size is an expression that is not an integer constant 2005 // expression [...] each time it is evaluated it shall have a value 2006 // greater than zero. 2007 if (SanOpts.has(SanitizerKind::VLABound) && 2008 size->getType()->isSignedIntegerType()) { 2009 SanitizerScope SanScope(this); 2010 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2011 llvm::Constant *StaticArgs[] = { 2012 EmitCheckSourceLocation(size->getLocStart()), 2013 EmitCheckTypeDescriptor(size->getType()) 2014 }; 2015 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2016 SanitizerKind::VLABound), 2017 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2018 } 2019 2020 // Always zexting here would be wrong if it weren't 2021 // undefined behavior to have a negative bound. 2022 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2023 } 2024 } 2025 type = vat->getElementType(); 2026 break; 2027 } 2028 2029 case Type::FunctionProto: 2030 case Type::FunctionNoProto: 2031 type = cast<FunctionType>(ty)->getReturnType(); 2032 break; 2033 2034 case Type::Paren: 2035 case Type::TypeOf: 2036 case Type::UnaryTransform: 2037 case Type::Attributed: 2038 case Type::SubstTemplateTypeParm: 2039 case Type::PackExpansion: 2040 // Keep walking after single level desugaring. 2041 type = type.getSingleStepDesugaredType(getContext()); 2042 break; 2043 2044 case Type::Typedef: 2045 case Type::Decltype: 2046 case Type::Auto: 2047 case Type::DeducedTemplateSpecialization: 2048 // Stop walking: nothing to do. 2049 return; 2050 2051 case Type::TypeOfExpr: 2052 // Stop walking: emit typeof expression. 2053 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2054 return; 2055 2056 case Type::Atomic: 2057 type = cast<AtomicType>(ty)->getValueType(); 2058 break; 2059 2060 case Type::Pipe: 2061 type = cast<PipeType>(ty)->getElementType(); 2062 break; 2063 } 2064 } while (type->isVariablyModifiedType()); 2065 } 2066 2067 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2068 if (getContext().getBuiltinVaListType()->isArrayType()) 2069 return EmitPointerWithAlignment(E); 2070 return EmitLValue(E).getAddress(); 2071 } 2072 2073 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2074 return EmitLValue(E).getAddress(); 2075 } 2076 2077 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2078 const APValue &Init) { 2079 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2080 if (CGDebugInfo *Dbg = getDebugInfo()) 2081 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2082 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2083 } 2084 2085 CodeGenFunction::PeepholeProtection 2086 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2087 // At the moment, the only aggressive peephole we do in IR gen 2088 // is trunc(zext) folding, but if we add more, we can easily 2089 // extend this protection. 2090 2091 if (!rvalue.isScalar()) return PeepholeProtection(); 2092 llvm::Value *value = rvalue.getScalarVal(); 2093 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2094 2095 // Just make an extra bitcast. 2096 assert(HaveInsertPoint()); 2097 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2098 Builder.GetInsertBlock()); 2099 2100 PeepholeProtection protection; 2101 protection.Inst = inst; 2102 return protection; 2103 } 2104 2105 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2106 if (!protection.Inst) return; 2107 2108 // In theory, we could try to duplicate the peepholes now, but whatever. 2109 protection.Inst->eraseFromParent(); 2110 } 2111 2112 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2113 llvm::Value *AnnotatedVal, 2114 StringRef AnnotationStr, 2115 SourceLocation Location) { 2116 llvm::Value *Args[4] = { 2117 AnnotatedVal, 2118 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2119 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2120 CGM.EmitAnnotationLineNo(Location) 2121 }; 2122 return Builder.CreateCall(AnnotationFn, Args); 2123 } 2124 2125 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2126 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2127 // FIXME We create a new bitcast for every annotation because that's what 2128 // llvm-gcc was doing. 2129 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2130 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2131 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2132 I->getAnnotation(), D->getLocation()); 2133 } 2134 2135 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2136 Address Addr) { 2137 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2138 llvm::Value *V = Addr.getPointer(); 2139 llvm::Type *VTy = V->getType(); 2140 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2141 CGM.Int8PtrTy); 2142 2143 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2144 // FIXME Always emit the cast inst so we can differentiate between 2145 // annotation on the first field of a struct and annotation on the struct 2146 // itself. 2147 if (VTy != CGM.Int8PtrTy) 2148 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2149 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2150 V = Builder.CreateBitCast(V, VTy); 2151 } 2152 2153 return Address(V, Addr.getAlignment()); 2154 } 2155 2156 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2157 2158 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2159 : CGF(CGF) { 2160 assert(!CGF->IsSanitizerScope); 2161 CGF->IsSanitizerScope = true; 2162 } 2163 2164 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2165 CGF->IsSanitizerScope = false; 2166 } 2167 2168 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2169 const llvm::Twine &Name, 2170 llvm::BasicBlock *BB, 2171 llvm::BasicBlock::iterator InsertPt) const { 2172 LoopStack.InsertHelper(I); 2173 if (IsSanitizerScope) 2174 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2175 } 2176 2177 void CGBuilderInserter::InsertHelper( 2178 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2179 llvm::BasicBlock::iterator InsertPt) const { 2180 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2181 if (CGF) 2182 CGF->InsertHelper(I, Name, BB, InsertPt); 2183 } 2184 2185 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2186 CodeGenModule &CGM, const FunctionDecl *FD, 2187 std::string &FirstMissing) { 2188 // If there aren't any required features listed then go ahead and return. 2189 if (ReqFeatures.empty()) 2190 return false; 2191 2192 // Now build up the set of caller features and verify that all the required 2193 // features are there. 2194 llvm::StringMap<bool> CallerFeatureMap; 2195 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2196 2197 // If we have at least one of the features in the feature list return 2198 // true, otherwise return false. 2199 return std::all_of( 2200 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2201 SmallVector<StringRef, 1> OrFeatures; 2202 Feature.split(OrFeatures, "|"); 2203 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2204 [&](StringRef Feature) { 2205 if (!CallerFeatureMap.lookup(Feature)) { 2206 FirstMissing = Feature.str(); 2207 return false; 2208 } 2209 return true; 2210 }); 2211 }); 2212 } 2213 2214 // Emits an error if we don't have a valid set of target features for the 2215 // called function. 2216 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2217 const FunctionDecl *TargetDecl) { 2218 // Early exit if this is an indirect call. 2219 if (!TargetDecl) 2220 return; 2221 2222 // Get the current enclosing function if it exists. If it doesn't 2223 // we can't check the target features anyhow. 2224 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2225 if (!FD) 2226 return; 2227 2228 // Grab the required features for the call. For a builtin this is listed in 2229 // the td file with the default cpu, for an always_inline function this is any 2230 // listed cpu and any listed features. 2231 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2232 std::string MissingFeature; 2233 if (BuiltinID) { 2234 SmallVector<StringRef, 1> ReqFeatures; 2235 const char *FeatureList = 2236 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2237 // Return if the builtin doesn't have any required features. 2238 if (!FeatureList || StringRef(FeatureList) == "") 2239 return; 2240 StringRef(FeatureList).split(ReqFeatures, ","); 2241 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2242 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2243 << TargetDecl->getDeclName() 2244 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2245 2246 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2247 // Get the required features for the callee. 2248 SmallVector<StringRef, 1> ReqFeatures; 2249 llvm::StringMap<bool> CalleeFeatureMap; 2250 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2251 for (const auto &F : CalleeFeatureMap) { 2252 // Only positive features are "required". 2253 if (F.getValue()) 2254 ReqFeatures.push_back(F.getKey()); 2255 } 2256 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2257 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2258 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2259 } 2260 } 2261 2262 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2263 if (!CGM.getCodeGenOpts().SanitizeStats) 2264 return; 2265 2266 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2267 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2268 CGM.getSanStats().create(IRB, SSK); 2269 } 2270 2271 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2272 if (CGDebugInfo *DI = getDebugInfo()) 2273 return DI->SourceLocToDebugLoc(Location); 2274 2275 return llvm::DebugLoc(); 2276 } 2277