1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Operator.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 45 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 46 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 47 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 48 OutermostConditional(0), TerminateLandingPad(0), 49 TerminateHandler(0), TrapBB(0) { 50 if (!suppressNewContext) 51 CGM.getCXXABI().getMangleContext().startNewFunction(); 52 53 llvm::FastMathFlags FMF; 54 if (CGM.getLangOpts().FastMath) 55 FMF.setUnsafeAlgebra(); 56 if (CGM.getLangOpts().FiniteMathOnly) { 57 FMF.setNoNaNs(); 58 FMF.setNoInfs(); 59 } 60 Builder.SetFastMathFlags(FMF); 61 } 62 63 CodeGenFunction::~CodeGenFunction() { 64 // If there are any unclaimed block infos, go ahead and destroy them 65 // now. This can happen if IR-gen gets clever and skips evaluating 66 // something. 67 if (FirstBlockInfo) 68 destroyBlockInfos(FirstBlockInfo); 69 } 70 71 72 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 73 return CGM.getTypes().ConvertTypeForMem(T); 74 } 75 76 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 77 return CGM.getTypes().ConvertType(T); 78 } 79 80 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 81 switch (type.getCanonicalType()->getTypeClass()) { 82 #define TYPE(name, parent) 83 #define ABSTRACT_TYPE(name, parent) 84 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 85 #define DEPENDENT_TYPE(name, parent) case Type::name: 86 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 87 #include "clang/AST/TypeNodes.def" 88 llvm_unreachable("non-canonical or dependent type in IR-generation"); 89 90 case Type::Builtin: 91 case Type::Pointer: 92 case Type::BlockPointer: 93 case Type::LValueReference: 94 case Type::RValueReference: 95 case Type::MemberPointer: 96 case Type::Vector: 97 case Type::ExtVector: 98 case Type::FunctionProto: 99 case Type::FunctionNoProto: 100 case Type::Enum: 101 case Type::ObjCObjectPointer: 102 return false; 103 104 // Complexes, arrays, records, and Objective-C objects. 105 case Type::Complex: 106 case Type::ConstantArray: 107 case Type::IncompleteArray: 108 case Type::VariableArray: 109 case Type::Record: 110 case Type::ObjCObject: 111 case Type::ObjCInterface: 112 return true; 113 114 // In IRGen, atomic types are just the underlying type 115 case Type::Atomic: 116 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 117 } 118 llvm_unreachable("unknown type kind!"); 119 } 120 121 void CodeGenFunction::EmitReturnBlock() { 122 // For cleanliness, we try to avoid emitting the return block for 123 // simple cases. 124 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 125 126 if (CurBB) { 127 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 128 129 // We have a valid insert point, reuse it if it is empty or there are no 130 // explicit jumps to the return block. 131 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 132 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 133 delete ReturnBlock.getBlock(); 134 } else 135 EmitBlock(ReturnBlock.getBlock()); 136 return; 137 } 138 139 // Otherwise, if the return block is the target of a single direct 140 // branch then we can just put the code in that block instead. This 141 // cleans up functions which started with a unified return block. 142 if (ReturnBlock.getBlock()->hasOneUse()) { 143 llvm::BranchInst *BI = 144 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 145 if (BI && BI->isUnconditional() && 146 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 147 // Reset insertion point, including debug location, and delete the 148 // branch. This is really subtle and only works because the next change 149 // in location will hit the caching in CGDebugInfo::EmitLocation and not 150 // override this. 151 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 152 Builder.SetInsertPoint(BI->getParent()); 153 BI->eraseFromParent(); 154 delete ReturnBlock.getBlock(); 155 return; 156 } 157 } 158 159 // FIXME: We are at an unreachable point, there is no reason to emit the block 160 // unless it has uses. However, we still need a place to put the debug 161 // region.end for now. 162 163 EmitBlock(ReturnBlock.getBlock()); 164 } 165 166 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 167 if (!BB) return; 168 if (!BB->use_empty()) 169 return CGF.CurFn->getBasicBlockList().push_back(BB); 170 delete BB; 171 } 172 173 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 174 assert(BreakContinueStack.empty() && 175 "mismatched push/pop in break/continue stack!"); 176 177 if (CGDebugInfo *DI = getDebugInfo()) 178 DI->EmitLocation(Builder, EndLoc); 179 180 // Pop any cleanups that might have been associated with the 181 // parameters. Do this in whatever block we're currently in; it's 182 // important to do this before we enter the return block or return 183 // edges will be *really* confused. 184 if (EHStack.stable_begin() != PrologueCleanupDepth) 185 PopCleanupBlocks(PrologueCleanupDepth); 186 187 // Emit function epilog (to return). 188 EmitReturnBlock(); 189 190 if (ShouldInstrumentFunction()) 191 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 192 193 // Emit debug descriptor for function end. 194 if (CGDebugInfo *DI = getDebugInfo()) { 195 DI->EmitFunctionEnd(Builder); 196 } 197 198 EmitFunctionEpilog(*CurFnInfo); 199 EmitEndEHSpec(CurCodeDecl); 200 201 assert(EHStack.empty() && 202 "did not remove all scopes from cleanup stack!"); 203 204 // If someone did an indirect goto, emit the indirect goto block at the end of 205 // the function. 206 if (IndirectBranch) { 207 EmitBlock(IndirectBranch->getParent()); 208 Builder.ClearInsertionPoint(); 209 } 210 211 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 212 llvm::Instruction *Ptr = AllocaInsertPt; 213 AllocaInsertPt = 0; 214 Ptr->eraseFromParent(); 215 216 // If someone took the address of a label but never did an indirect goto, we 217 // made a zero entry PHI node, which is illegal, zap it now. 218 if (IndirectBranch) { 219 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 220 if (PN->getNumIncomingValues() == 0) { 221 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 222 PN->eraseFromParent(); 223 } 224 } 225 226 EmitIfUsed(*this, EHResumeBlock); 227 EmitIfUsed(*this, TerminateLandingPad); 228 EmitIfUsed(*this, TerminateHandler); 229 EmitIfUsed(*this, UnreachableBlock); 230 231 if (CGM.getCodeGenOpts().EmitDeclMetadata) 232 EmitDeclMetadata(); 233 } 234 235 /// ShouldInstrumentFunction - Return true if the current function should be 236 /// instrumented with __cyg_profile_func_* calls 237 bool CodeGenFunction::ShouldInstrumentFunction() { 238 if (!CGM.getCodeGenOpts().InstrumentFunctions) 239 return false; 240 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 241 return false; 242 return true; 243 } 244 245 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 246 /// instrumentation function with the current function and the call site, if 247 /// function instrumentation is enabled. 248 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 249 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 250 llvm::PointerType *PointerTy = Int8PtrTy; 251 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 252 llvm::FunctionType *FunctionTy = 253 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 254 255 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 256 llvm::CallInst *CallSite = Builder.CreateCall( 257 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 258 llvm::ConstantInt::get(Int32Ty, 0), 259 "callsite"); 260 261 Builder.CreateCall2(F, 262 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 263 CallSite); 264 } 265 266 void CodeGenFunction::EmitMCountInstrumentation() { 267 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 268 269 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 270 Target.getMCountName()); 271 Builder.CreateCall(MCountFn); 272 } 273 274 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 275 // information in the program executable. The argument information stored 276 // includes the argument name, its type, the address and access qualifiers used. 277 // FIXME: Add type, address, and access qualifiers. 278 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 279 CodeGenModule &CGM,llvm::LLVMContext &Context, 280 SmallVector <llvm::Value*, 5> &kernelMDArgs) { 281 282 // Create MDNodes that represents the kernel arg metadata. 283 // Each MDNode is a list in the form of "key", N number of values which is 284 // the same number of values as their are kernel arguments. 285 286 // MDNode for the kernel argument names. 287 SmallVector<llvm::Value*, 8> argNames; 288 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 289 290 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 291 const ParmVarDecl *parm = FD->getParamDecl(i); 292 293 // Get argument name. 294 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 295 296 } 297 // Add MDNode to the list of all metadata. 298 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 299 } 300 301 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 302 llvm::Function *Fn) 303 { 304 if (!FD->hasAttr<OpenCLKernelAttr>()) 305 return; 306 307 llvm::LLVMContext &Context = getLLVMContext(); 308 309 SmallVector <llvm::Value*, 5> kernelMDArgs; 310 kernelMDArgs.push_back(Fn); 311 312 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 313 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 314 315 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 316 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 317 llvm::Value *attrMDArgs[] = { 318 llvm::MDString::get(Context, "work_group_size_hint"), 319 Builder.getInt32(attr->getXDim()), 320 Builder.getInt32(attr->getYDim()), 321 Builder.getInt32(attr->getZDim()) 322 }; 323 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 324 } 325 326 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 327 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 328 llvm::Value *attrMDArgs[] = { 329 llvm::MDString::get(Context, "reqd_work_group_size"), 330 Builder.getInt32(attr->getXDim()), 331 Builder.getInt32(attr->getYDim()), 332 Builder.getInt32(attr->getZDim()) 333 }; 334 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 335 } 336 337 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 338 llvm::NamedMDNode *OpenCLKernelMetadata = 339 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 340 OpenCLKernelMetadata->addOperand(kernelMDNode); 341 } 342 343 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 344 llvm::Function *Fn, 345 const CGFunctionInfo &FnInfo, 346 const FunctionArgList &Args, 347 SourceLocation StartLoc) { 348 const Decl *D = GD.getDecl(); 349 350 DidCallStackSave = false; 351 CurCodeDecl = CurFuncDecl = D; 352 FnRetTy = RetTy; 353 CurFn = Fn; 354 CurFnInfo = &FnInfo; 355 assert(CurFn->isDeclaration() && "Function already has body?"); 356 357 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 358 SanOpts = &SanitizerOptions::Disabled; 359 SanitizePerformTypeCheck = false; 360 } 361 362 // Pass inline keyword to optimizer if it appears explicitly on any 363 // declaration. 364 if (!CGM.getCodeGenOpts().NoInline) 365 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 366 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 367 RE = FD->redecls_end(); RI != RE; ++RI) 368 if (RI->isInlineSpecified()) { 369 Fn->addFnAttr(llvm::Attribute::InlineHint); 370 break; 371 } 372 373 if (getLangOpts().OpenCL) { 374 // Add metadata for a kernel function. 375 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 376 EmitOpenCLKernelMetadata(FD, Fn); 377 } 378 379 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 380 381 // Create a marker to make it easy to insert allocas into the entryblock 382 // later. Don't create this with the builder, because we don't want it 383 // folded. 384 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 385 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 386 if (Builder.isNamePreserving()) 387 AllocaInsertPt->setName("allocapt"); 388 389 ReturnBlock = getJumpDestInCurrentScope("return"); 390 391 Builder.SetInsertPoint(EntryBB); 392 393 // Emit subprogram debug descriptor. 394 if (CGDebugInfo *DI = getDebugInfo()) { 395 unsigned NumArgs = 0; 396 QualType *ArgsArray = new QualType[Args.size()]; 397 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 398 i != e; ++i) { 399 ArgsArray[NumArgs++] = (*i)->getType(); 400 } 401 402 QualType FnType = 403 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 404 FunctionProtoType::ExtProtoInfo()); 405 406 delete[] ArgsArray; 407 408 DI->setLocation(StartLoc); 409 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 410 } 411 412 if (ShouldInstrumentFunction()) 413 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 414 415 if (CGM.getCodeGenOpts().InstrumentForProfiling) 416 EmitMCountInstrumentation(); 417 418 if (RetTy->isVoidType()) { 419 // Void type; nothing to return. 420 ReturnValue = 0; 421 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 422 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 423 // Indirect aggregate return; emit returned value directly into sret slot. 424 // This reduces code size, and affects correctness in C++. 425 ReturnValue = CurFn->arg_begin(); 426 } else { 427 ReturnValue = CreateIRTemp(RetTy, "retval"); 428 429 // Tell the epilog emitter to autorelease the result. We do this 430 // now so that various specialized functions can suppress it 431 // during their IR-generation. 432 if (getLangOpts().ObjCAutoRefCount && 433 !CurFnInfo->isReturnsRetained() && 434 RetTy->isObjCRetainableType()) 435 AutoreleaseResult = true; 436 } 437 438 EmitStartEHSpec(CurCodeDecl); 439 440 PrologueCleanupDepth = EHStack.stable_begin(); 441 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 442 443 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 444 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 445 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 446 if (MD->getParent()->isLambda() && 447 MD->getOverloadedOperator() == OO_Call) { 448 // We're in a lambda; figure out the captures. 449 MD->getParent()->getCaptureFields(LambdaCaptureFields, 450 LambdaThisCaptureField); 451 if (LambdaThisCaptureField) { 452 // If this lambda captures this, load it. 453 QualType LambdaTagType = 454 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 455 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 456 LambdaTagType); 457 LValue ThisLValue = EmitLValueForField(LambdaLV, 458 LambdaThisCaptureField); 459 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 460 } 461 } else { 462 // Not in a lambda; just use 'this' from the method. 463 // FIXME: Should we generate a new load for each use of 'this'? The 464 // fast register allocator would be happier... 465 CXXThisValue = CXXABIThisValue; 466 } 467 } 468 469 // If any of the arguments have a variably modified type, make sure to 470 // emit the type size. 471 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 472 i != e; ++i) { 473 const VarDecl *VD = *i; 474 475 // Dig out the type as written from ParmVarDecls; it's unclear whether 476 // the standard (C99 6.9.1p10) requires this, but we're following the 477 // precedent set by gcc. 478 QualType Ty; 479 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 480 Ty = PVD->getOriginalType(); 481 else 482 Ty = VD->getType(); 483 484 if (Ty->isVariablyModifiedType()) 485 EmitVariablyModifiedType(Ty); 486 } 487 // Emit a location at the end of the prologue. 488 if (CGDebugInfo *DI = getDebugInfo()) 489 DI->EmitLocation(Builder, StartLoc); 490 } 491 492 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 493 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 494 assert(FD->getBody()); 495 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 496 EmitCompoundStmtWithoutScope(*S); 497 else 498 EmitStmt(FD->getBody()); 499 } 500 501 /// Tries to mark the given function nounwind based on the 502 /// non-existence of any throwing calls within it. We believe this is 503 /// lightweight enough to do at -O0. 504 static void TryMarkNoThrow(llvm::Function *F) { 505 // LLVM treats 'nounwind' on a function as part of the type, so we 506 // can't do this on functions that can be overwritten. 507 if (F->mayBeOverridden()) return; 508 509 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 510 for (llvm::BasicBlock::iterator 511 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 512 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 513 if (!Call->doesNotThrow()) 514 return; 515 } else if (isa<llvm::ResumeInst>(&*BI)) { 516 return; 517 } 518 F->setDoesNotThrow(); 519 } 520 521 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 522 const CGFunctionInfo &FnInfo) { 523 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 524 525 // Check if we should generate debug info for this function. 526 if (!FD->hasAttr<NoDebugAttr>()) 527 maybeInitializeDebugInfo(); 528 529 FunctionArgList Args; 530 QualType ResTy = FD->getResultType(); 531 532 CurGD = GD; 533 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 534 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 535 536 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 537 Args.push_back(FD->getParamDecl(i)); 538 539 SourceRange BodyRange; 540 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 541 542 // Emit the standard function prologue. 543 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 544 545 // Generate the body of the function. 546 if (isa<CXXDestructorDecl>(FD)) 547 EmitDestructorBody(Args); 548 else if (isa<CXXConstructorDecl>(FD)) 549 EmitConstructorBody(Args); 550 else if (getLangOpts().CUDA && 551 !CGM.getCodeGenOpts().CUDAIsDevice && 552 FD->hasAttr<CUDAGlobalAttr>()) 553 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 554 else if (isa<CXXConversionDecl>(FD) && 555 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 556 // The lambda conversion to block pointer is special; the semantics can't be 557 // expressed in the AST, so IRGen needs to special-case it. 558 EmitLambdaToBlockPointerBody(Args); 559 } else if (isa<CXXMethodDecl>(FD) && 560 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 561 // The lambda "__invoke" function is special, because it forwards or 562 // clones the body of the function call operator (but is actually static). 563 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 564 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 565 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 566 // Implicit copy-assignment gets the same special treatment as implicit 567 // copy-constructors. 568 emitImplicitAssignmentOperatorBody(Args); 569 } 570 else 571 EmitFunctionBody(Args); 572 573 // C++11 [stmt.return]p2: 574 // Flowing off the end of a function [...] results in undefined behavior in 575 // a value-returning function. 576 // C11 6.9.1p12: 577 // If the '}' that terminates a function is reached, and the value of the 578 // function call is used by the caller, the behavior is undefined. 579 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 580 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 581 if (SanOpts->Return) 582 EmitCheck(Builder.getFalse(), "missing_return", 583 EmitCheckSourceLocation(FD->getLocation()), 584 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 585 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 586 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 587 Builder.CreateUnreachable(); 588 Builder.ClearInsertionPoint(); 589 } 590 591 // Emit the standard function epilogue. 592 FinishFunction(BodyRange.getEnd()); 593 594 // If we haven't marked the function nothrow through other means, do 595 // a quick pass now to see if we can. 596 if (!CurFn->doesNotThrow()) 597 TryMarkNoThrow(CurFn); 598 } 599 600 /// ContainsLabel - Return true if the statement contains a label in it. If 601 /// this statement is not executed normally, it not containing a label means 602 /// that we can just remove the code. 603 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 604 // Null statement, not a label! 605 if (S == 0) return false; 606 607 // If this is a label, we have to emit the code, consider something like: 608 // if (0) { ... foo: bar(); } goto foo; 609 // 610 // TODO: If anyone cared, we could track __label__'s, since we know that you 611 // can't jump to one from outside their declared region. 612 if (isa<LabelStmt>(S)) 613 return true; 614 615 // If this is a case/default statement, and we haven't seen a switch, we have 616 // to emit the code. 617 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 618 return true; 619 620 // If this is a switch statement, we want to ignore cases below it. 621 if (isa<SwitchStmt>(S)) 622 IgnoreCaseStmts = true; 623 624 // Scan subexpressions for verboten labels. 625 for (Stmt::const_child_range I = S->children(); I; ++I) 626 if (ContainsLabel(*I, IgnoreCaseStmts)) 627 return true; 628 629 return false; 630 } 631 632 /// containsBreak - Return true if the statement contains a break out of it. 633 /// If the statement (recursively) contains a switch or loop with a break 634 /// inside of it, this is fine. 635 bool CodeGenFunction::containsBreak(const Stmt *S) { 636 // Null statement, not a label! 637 if (S == 0) return false; 638 639 // If this is a switch or loop that defines its own break scope, then we can 640 // include it and anything inside of it. 641 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 642 isa<ForStmt>(S)) 643 return false; 644 645 if (isa<BreakStmt>(S)) 646 return true; 647 648 // Scan subexpressions for verboten breaks. 649 for (Stmt::const_child_range I = S->children(); I; ++I) 650 if (containsBreak(*I)) 651 return true; 652 653 return false; 654 } 655 656 657 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 658 /// to a constant, or if it does but contains a label, return false. If it 659 /// constant folds return true and set the boolean result in Result. 660 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 661 bool &ResultBool) { 662 llvm::APSInt ResultInt; 663 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 664 return false; 665 666 ResultBool = ResultInt.getBoolValue(); 667 return true; 668 } 669 670 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 671 /// to a constant, or if it does but contains a label, return false. If it 672 /// constant folds return true and set the folded value. 673 bool CodeGenFunction:: 674 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 675 // FIXME: Rename and handle conversion of other evaluatable things 676 // to bool. 677 llvm::APSInt Int; 678 if (!Cond->EvaluateAsInt(Int, getContext())) 679 return false; // Not foldable, not integer or not fully evaluatable. 680 681 if (CodeGenFunction::ContainsLabel(Cond)) 682 return false; // Contains a label. 683 684 ResultInt = Int; 685 return true; 686 } 687 688 689 690 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 691 /// statement) to the specified blocks. Based on the condition, this might try 692 /// to simplify the codegen of the conditional based on the branch. 693 /// 694 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 695 llvm::BasicBlock *TrueBlock, 696 llvm::BasicBlock *FalseBlock) { 697 Cond = Cond->IgnoreParens(); 698 699 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 700 // Handle X && Y in a condition. 701 if (CondBOp->getOpcode() == BO_LAnd) { 702 // If we have "1 && X", simplify the code. "0 && X" would have constant 703 // folded if the case was simple enough. 704 bool ConstantBool = false; 705 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 706 ConstantBool) { 707 // br(1 && X) -> br(X). 708 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 709 } 710 711 // If we have "X && 1", simplify the code to use an uncond branch. 712 // "X && 0" would have been constant folded to 0. 713 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 714 ConstantBool) { 715 // br(X && 1) -> br(X). 716 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 717 } 718 719 // Emit the LHS as a conditional. If the LHS conditional is false, we 720 // want to jump to the FalseBlock. 721 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 722 723 ConditionalEvaluation eval(*this); 724 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 725 EmitBlock(LHSTrue); 726 727 // Any temporaries created here are conditional. 728 eval.begin(*this); 729 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 730 eval.end(*this); 731 732 return; 733 } 734 735 if (CondBOp->getOpcode() == BO_LOr) { 736 // If we have "0 || X", simplify the code. "1 || X" would have constant 737 // folded if the case was simple enough. 738 bool ConstantBool = false; 739 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 740 !ConstantBool) { 741 // br(0 || X) -> br(X). 742 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 743 } 744 745 // If we have "X || 0", simplify the code to use an uncond branch. 746 // "X || 1" would have been constant folded to 1. 747 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 748 !ConstantBool) { 749 // br(X || 0) -> br(X). 750 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 751 } 752 753 // Emit the LHS as a conditional. If the LHS conditional is true, we 754 // want to jump to the TrueBlock. 755 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 756 757 ConditionalEvaluation eval(*this); 758 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 759 EmitBlock(LHSFalse); 760 761 // Any temporaries created here are conditional. 762 eval.begin(*this); 763 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 764 eval.end(*this); 765 766 return; 767 } 768 } 769 770 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 771 // br(!x, t, f) -> br(x, f, t) 772 if (CondUOp->getOpcode() == UO_LNot) 773 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 774 } 775 776 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 777 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 778 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 779 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 780 781 ConditionalEvaluation cond(*this); 782 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 783 784 cond.begin(*this); 785 EmitBlock(LHSBlock); 786 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 787 cond.end(*this); 788 789 cond.begin(*this); 790 EmitBlock(RHSBlock); 791 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 792 cond.end(*this); 793 794 return; 795 } 796 797 // Emit the code with the fully general case. 798 llvm::Value *CondV = EvaluateExprAsBool(Cond); 799 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 800 } 801 802 /// ErrorUnsupported - Print out an error that codegen doesn't support the 803 /// specified stmt yet. 804 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 805 bool OmitOnError) { 806 CGM.ErrorUnsupported(S, Type, OmitOnError); 807 } 808 809 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 810 /// variable-length array whose elements have a non-zero bit-pattern. 811 /// 812 /// \param baseType the inner-most element type of the array 813 /// \param src - a char* pointing to the bit-pattern for a single 814 /// base element of the array 815 /// \param sizeInChars - the total size of the VLA, in chars 816 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 817 llvm::Value *dest, llvm::Value *src, 818 llvm::Value *sizeInChars) { 819 std::pair<CharUnits,CharUnits> baseSizeAndAlign 820 = CGF.getContext().getTypeInfoInChars(baseType); 821 822 CGBuilderTy &Builder = CGF.Builder; 823 824 llvm::Value *baseSizeInChars 825 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 826 827 llvm::Type *i8p = Builder.getInt8PtrTy(); 828 829 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 830 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 831 832 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 833 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 834 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 835 836 // Make a loop over the VLA. C99 guarantees that the VLA element 837 // count must be nonzero. 838 CGF.EmitBlock(loopBB); 839 840 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 841 cur->addIncoming(begin, originBB); 842 843 // memcpy the individual element bit-pattern. 844 Builder.CreateMemCpy(cur, src, baseSizeInChars, 845 baseSizeAndAlign.second.getQuantity(), 846 /*volatile*/ false); 847 848 // Go to the next element. 849 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 850 851 // Leave if that's the end of the VLA. 852 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 853 Builder.CreateCondBr(done, contBB, loopBB); 854 cur->addIncoming(next, loopBB); 855 856 CGF.EmitBlock(contBB); 857 } 858 859 void 860 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 861 // Ignore empty classes in C++. 862 if (getLangOpts().CPlusPlus) { 863 if (const RecordType *RT = Ty->getAs<RecordType>()) { 864 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 865 return; 866 } 867 } 868 869 // Cast the dest ptr to the appropriate i8 pointer type. 870 unsigned DestAS = 871 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 872 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 873 if (DestPtr->getType() != BP) 874 DestPtr = Builder.CreateBitCast(DestPtr, BP); 875 876 // Get size and alignment info for this aggregate. 877 std::pair<CharUnits, CharUnits> TypeInfo = 878 getContext().getTypeInfoInChars(Ty); 879 CharUnits Size = TypeInfo.first; 880 CharUnits Align = TypeInfo.second; 881 882 llvm::Value *SizeVal; 883 const VariableArrayType *vla; 884 885 // Don't bother emitting a zero-byte memset. 886 if (Size.isZero()) { 887 // But note that getTypeInfo returns 0 for a VLA. 888 if (const VariableArrayType *vlaType = 889 dyn_cast_or_null<VariableArrayType>( 890 getContext().getAsArrayType(Ty))) { 891 QualType eltType; 892 llvm::Value *numElts; 893 llvm::tie(numElts, eltType) = getVLASize(vlaType); 894 895 SizeVal = numElts; 896 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 897 if (!eltSize.isOne()) 898 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 899 vla = vlaType; 900 } else { 901 return; 902 } 903 } else { 904 SizeVal = CGM.getSize(Size); 905 vla = 0; 906 } 907 908 // If the type contains a pointer to data member we can't memset it to zero. 909 // Instead, create a null constant and copy it to the destination. 910 // TODO: there are other patterns besides zero that we can usefully memset, 911 // like -1, which happens to be the pattern used by member-pointers. 912 if (!CGM.getTypes().isZeroInitializable(Ty)) { 913 // For a VLA, emit a single element, then splat that over the VLA. 914 if (vla) Ty = getContext().getBaseElementType(vla); 915 916 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 917 918 llvm::GlobalVariable *NullVariable = 919 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 920 /*isConstant=*/true, 921 llvm::GlobalVariable::PrivateLinkage, 922 NullConstant, Twine()); 923 llvm::Value *SrcPtr = 924 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 925 926 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 927 928 // Get and call the appropriate llvm.memcpy overload. 929 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 930 return; 931 } 932 933 // Otherwise, just memset the whole thing to zero. This is legal 934 // because in LLVM, all default initializers (other than the ones we just 935 // handled above) are guaranteed to have a bit pattern of all zeros. 936 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 937 Align.getQuantity(), false); 938 } 939 940 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 941 // Make sure that there is a block for the indirect goto. 942 if (IndirectBranch == 0) 943 GetIndirectGotoBlock(); 944 945 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 946 947 // Make sure the indirect branch includes all of the address-taken blocks. 948 IndirectBranch->addDestination(BB); 949 return llvm::BlockAddress::get(CurFn, BB); 950 } 951 952 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 953 // If we already made the indirect branch for indirect goto, return its block. 954 if (IndirectBranch) return IndirectBranch->getParent(); 955 956 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 957 958 // Create the PHI node that indirect gotos will add entries to. 959 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 960 "indirect.goto.dest"); 961 962 // Create the indirect branch instruction. 963 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 964 return IndirectBranch->getParent(); 965 } 966 967 /// Computes the length of an array in elements, as well as the base 968 /// element type and a properly-typed first element pointer. 969 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 970 QualType &baseType, 971 llvm::Value *&addr) { 972 const ArrayType *arrayType = origArrayType; 973 974 // If it's a VLA, we have to load the stored size. Note that 975 // this is the size of the VLA in bytes, not its size in elements. 976 llvm::Value *numVLAElements = 0; 977 if (isa<VariableArrayType>(arrayType)) { 978 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 979 980 // Walk into all VLAs. This doesn't require changes to addr, 981 // which has type T* where T is the first non-VLA element type. 982 do { 983 QualType elementType = arrayType->getElementType(); 984 arrayType = getContext().getAsArrayType(elementType); 985 986 // If we only have VLA components, 'addr' requires no adjustment. 987 if (!arrayType) { 988 baseType = elementType; 989 return numVLAElements; 990 } 991 } while (isa<VariableArrayType>(arrayType)); 992 993 // We get out here only if we find a constant array type 994 // inside the VLA. 995 } 996 997 // We have some number of constant-length arrays, so addr should 998 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 999 // down to the first element of addr. 1000 SmallVector<llvm::Value*, 8> gepIndices; 1001 1002 // GEP down to the array type. 1003 llvm::ConstantInt *zero = Builder.getInt32(0); 1004 gepIndices.push_back(zero); 1005 1006 uint64_t countFromCLAs = 1; 1007 QualType eltType; 1008 1009 llvm::ArrayType *llvmArrayType = 1010 dyn_cast<llvm::ArrayType>( 1011 cast<llvm::PointerType>(addr->getType())->getElementType()); 1012 while (llvmArrayType) { 1013 assert(isa<ConstantArrayType>(arrayType)); 1014 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1015 == llvmArrayType->getNumElements()); 1016 1017 gepIndices.push_back(zero); 1018 countFromCLAs *= llvmArrayType->getNumElements(); 1019 eltType = arrayType->getElementType(); 1020 1021 llvmArrayType = 1022 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1023 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1024 assert((!llvmArrayType || arrayType) && 1025 "LLVM and Clang types are out-of-synch"); 1026 } 1027 1028 if (arrayType) { 1029 // From this point onwards, the Clang array type has been emitted 1030 // as some other type (probably a packed struct). Compute the array 1031 // size, and just emit the 'begin' expression as a bitcast. 1032 while (arrayType) { 1033 countFromCLAs *= 1034 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1035 eltType = arrayType->getElementType(); 1036 arrayType = getContext().getAsArrayType(eltType); 1037 } 1038 1039 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1040 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1041 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1042 } else { 1043 // Create the actual GEP. 1044 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1045 } 1046 1047 baseType = eltType; 1048 1049 llvm::Value *numElements 1050 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1051 1052 // If we had any VLA dimensions, factor them in. 1053 if (numVLAElements) 1054 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1055 1056 return numElements; 1057 } 1058 1059 std::pair<llvm::Value*, QualType> 1060 CodeGenFunction::getVLASize(QualType type) { 1061 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1062 assert(vla && "type was not a variable array type!"); 1063 return getVLASize(vla); 1064 } 1065 1066 std::pair<llvm::Value*, QualType> 1067 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1068 // The number of elements so far; always size_t. 1069 llvm::Value *numElements = 0; 1070 1071 QualType elementType; 1072 do { 1073 elementType = type->getElementType(); 1074 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1075 assert(vlaSize && "no size for VLA!"); 1076 assert(vlaSize->getType() == SizeTy); 1077 1078 if (!numElements) { 1079 numElements = vlaSize; 1080 } else { 1081 // It's undefined behavior if this wraps around, so mark it that way. 1082 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1083 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1084 } 1085 } while ((type = getContext().getAsVariableArrayType(elementType))); 1086 1087 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1088 } 1089 1090 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1091 assert(type->isVariablyModifiedType() && 1092 "Must pass variably modified type to EmitVLASizes!"); 1093 1094 EnsureInsertPoint(); 1095 1096 // We're going to walk down into the type and look for VLA 1097 // expressions. 1098 do { 1099 assert(type->isVariablyModifiedType()); 1100 1101 const Type *ty = type.getTypePtr(); 1102 switch (ty->getTypeClass()) { 1103 1104 #define TYPE(Class, Base) 1105 #define ABSTRACT_TYPE(Class, Base) 1106 #define NON_CANONICAL_TYPE(Class, Base) 1107 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1108 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1109 #include "clang/AST/TypeNodes.def" 1110 llvm_unreachable("unexpected dependent type!"); 1111 1112 // These types are never variably-modified. 1113 case Type::Builtin: 1114 case Type::Complex: 1115 case Type::Vector: 1116 case Type::ExtVector: 1117 case Type::Record: 1118 case Type::Enum: 1119 case Type::Elaborated: 1120 case Type::TemplateSpecialization: 1121 case Type::ObjCObject: 1122 case Type::ObjCInterface: 1123 case Type::ObjCObjectPointer: 1124 llvm_unreachable("type class is never variably-modified!"); 1125 1126 case Type::Pointer: 1127 type = cast<PointerType>(ty)->getPointeeType(); 1128 break; 1129 1130 case Type::BlockPointer: 1131 type = cast<BlockPointerType>(ty)->getPointeeType(); 1132 break; 1133 1134 case Type::LValueReference: 1135 case Type::RValueReference: 1136 type = cast<ReferenceType>(ty)->getPointeeType(); 1137 break; 1138 1139 case Type::MemberPointer: 1140 type = cast<MemberPointerType>(ty)->getPointeeType(); 1141 break; 1142 1143 case Type::ConstantArray: 1144 case Type::IncompleteArray: 1145 // Losing element qualification here is fine. 1146 type = cast<ArrayType>(ty)->getElementType(); 1147 break; 1148 1149 case Type::VariableArray: { 1150 // Losing element qualification here is fine. 1151 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1152 1153 // Unknown size indication requires no size computation. 1154 // Otherwise, evaluate and record it. 1155 if (const Expr *size = vat->getSizeExpr()) { 1156 // It's possible that we might have emitted this already, 1157 // e.g. with a typedef and a pointer to it. 1158 llvm::Value *&entry = VLASizeMap[size]; 1159 if (!entry) { 1160 llvm::Value *Size = EmitScalarExpr(size); 1161 1162 // C11 6.7.6.2p5: 1163 // If the size is an expression that is not an integer constant 1164 // expression [...] each time it is evaluated it shall have a value 1165 // greater than zero. 1166 if (SanOpts->VLABound && 1167 size->getType()->isSignedIntegerType()) { 1168 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1169 llvm::Constant *StaticArgs[] = { 1170 EmitCheckSourceLocation(size->getLocStart()), 1171 EmitCheckTypeDescriptor(size->getType()) 1172 }; 1173 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1174 "vla_bound_not_positive", StaticArgs, Size, 1175 CRK_Recoverable); 1176 } 1177 1178 // Always zexting here would be wrong if it weren't 1179 // undefined behavior to have a negative bound. 1180 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1181 } 1182 } 1183 type = vat->getElementType(); 1184 break; 1185 } 1186 1187 case Type::FunctionProto: 1188 case Type::FunctionNoProto: 1189 type = cast<FunctionType>(ty)->getResultType(); 1190 break; 1191 1192 case Type::Paren: 1193 case Type::TypeOf: 1194 case Type::UnaryTransform: 1195 case Type::Attributed: 1196 case Type::SubstTemplateTypeParm: 1197 // Keep walking after single level desugaring. 1198 type = type.getSingleStepDesugaredType(getContext()); 1199 break; 1200 1201 case Type::Typedef: 1202 case Type::Decltype: 1203 case Type::Auto: 1204 // Stop walking: nothing to do. 1205 return; 1206 1207 case Type::TypeOfExpr: 1208 // Stop walking: emit typeof expression. 1209 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1210 return; 1211 1212 case Type::Atomic: 1213 type = cast<AtomicType>(ty)->getValueType(); 1214 break; 1215 } 1216 } while (type->isVariablyModifiedType()); 1217 } 1218 1219 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1220 if (getContext().getBuiltinVaListType()->isArrayType()) 1221 return EmitScalarExpr(E); 1222 return EmitLValue(E).getAddress(); 1223 } 1224 1225 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1226 llvm::Constant *Init) { 1227 assert (Init && "Invalid DeclRefExpr initializer!"); 1228 if (CGDebugInfo *Dbg = getDebugInfo()) 1229 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1230 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1231 } 1232 1233 CodeGenFunction::PeepholeProtection 1234 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1235 // At the moment, the only aggressive peephole we do in IR gen 1236 // is trunc(zext) folding, but if we add more, we can easily 1237 // extend this protection. 1238 1239 if (!rvalue.isScalar()) return PeepholeProtection(); 1240 llvm::Value *value = rvalue.getScalarVal(); 1241 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1242 1243 // Just make an extra bitcast. 1244 assert(HaveInsertPoint()); 1245 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1246 Builder.GetInsertBlock()); 1247 1248 PeepholeProtection protection; 1249 protection.Inst = inst; 1250 return protection; 1251 } 1252 1253 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1254 if (!protection.Inst) return; 1255 1256 // In theory, we could try to duplicate the peepholes now, but whatever. 1257 protection.Inst->eraseFromParent(); 1258 } 1259 1260 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1261 llvm::Value *AnnotatedVal, 1262 StringRef AnnotationStr, 1263 SourceLocation Location) { 1264 llvm::Value *Args[4] = { 1265 AnnotatedVal, 1266 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1267 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1268 CGM.EmitAnnotationLineNo(Location) 1269 }; 1270 return Builder.CreateCall(AnnotationFn, Args); 1271 } 1272 1273 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1274 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1275 // FIXME We create a new bitcast for every annotation because that's what 1276 // llvm-gcc was doing. 1277 for (specific_attr_iterator<AnnotateAttr> 1278 ai = D->specific_attr_begin<AnnotateAttr>(), 1279 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1280 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1281 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1282 (*ai)->getAnnotation(), D->getLocation()); 1283 } 1284 1285 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1286 llvm::Value *V) { 1287 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1288 llvm::Type *VTy = V->getType(); 1289 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1290 CGM.Int8PtrTy); 1291 1292 for (specific_attr_iterator<AnnotateAttr> 1293 ai = D->specific_attr_begin<AnnotateAttr>(), 1294 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1295 // FIXME Always emit the cast inst so we can differentiate between 1296 // annotation on the first field of a struct and annotation on the struct 1297 // itself. 1298 if (VTy != CGM.Int8PtrTy) 1299 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1300 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1301 V = Builder.CreateBitCast(V, VTy); 1302 } 1303 1304 return V; 1305 } 1306