1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/FPEnv.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 47 /// markers. 48 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 49 const LangOptions &LangOpts) { 50 if (CGOpts.DisableLifetimeMarkers) 51 return false; 52 53 // Sanitizers may use markers. 54 if (CGOpts.SanitizeAddressUseAfterScope || 55 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 56 LangOpts.Sanitize.has(SanitizerKind::Memory)) 57 return true; 58 59 // For now, only in optimized builds. 60 return CGOpts.OptimizationLevel != 0; 61 } 62 63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 64 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 65 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 66 CGBuilderInserterTy(this)), 67 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 68 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 69 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 70 if (!suppressNewContext) 71 CGM.getCXXABI().getMangleContext().startNewFunction(); 72 73 llvm::FastMathFlags FMF; 74 if (CGM.getLangOpts().FastMath) 75 FMF.setFast(); 76 if (CGM.getLangOpts().FiniteMathOnly) { 77 FMF.setNoNaNs(); 78 FMF.setNoInfs(); 79 } 80 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 81 FMF.setNoNaNs(); 82 } 83 if (CGM.getCodeGenOpts().NoSignedZeros) { 84 FMF.setNoSignedZeros(); 85 } 86 if (CGM.getCodeGenOpts().ReciprocalMath) { 87 FMF.setAllowReciprocal(); 88 } 89 if (CGM.getCodeGenOpts().Reassociate) { 90 FMF.setAllowReassoc(); 91 } 92 Builder.setFastMathFlags(FMF); 93 SetFPModel(); 94 } 95 96 CodeGenFunction::~CodeGenFunction() { 97 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 98 99 // If there are any unclaimed block infos, go ahead and destroy them 100 // now. This can happen if IR-gen gets clever and skips evaluating 101 // something. 102 if (FirstBlockInfo) 103 destroyBlockInfos(FirstBlockInfo); 104 105 if (getLangOpts().OpenMP && CurFn) 106 CGM.getOpenMPRuntime().functionFinished(*this); 107 } 108 109 // Map the LangOption for rounding mode into 110 // the corresponding enum in the IR. 111 static llvm::fp::RoundingMode ToConstrainedRoundingMD( 112 LangOptions::FPRoundingModeKind Kind) { 113 114 switch (Kind) { 115 case LangOptions::FPR_ToNearest: return llvm::fp::rmToNearest; 116 case LangOptions::FPR_Downward: return llvm::fp::rmDownward; 117 case LangOptions::FPR_Upward: return llvm::fp::rmUpward; 118 case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero; 119 case LangOptions::FPR_Dynamic: return llvm::fp::rmDynamic; 120 } 121 llvm_unreachable("Unsupported FP RoundingMode"); 122 } 123 124 // Map the LangOption for exception behavior into 125 // the corresponding enum in the IR. 126 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD( 127 LangOptions::FPExceptionModeKind Kind) { 128 129 switch (Kind) { 130 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 131 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 132 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 133 } 134 llvm_unreachable("Unsupported FP Exception Behavior"); 135 } 136 137 void CodeGenFunction::SetFPModel() { 138 auto fpRoundingMode = ToConstrainedRoundingMD( 139 getLangOpts().getFPRoundingMode()); 140 auto fpExceptionBehavior = ToConstrainedExceptMD( 141 getLangOpts().getFPExceptionMode()); 142 143 if (fpExceptionBehavior == llvm::fp::ebIgnore && 144 fpRoundingMode == llvm::fp::rmToNearest) 145 // Constrained intrinsics are not used. 146 ; 147 else { 148 Builder.setIsFPConstrained(true); 149 Builder.setDefaultConstrainedRounding(fpRoundingMode); 150 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 151 } 152 } 153 154 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 155 LValueBaseInfo *BaseInfo, 156 TBAAAccessInfo *TBAAInfo) { 157 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 158 /* forPointeeType= */ true); 159 } 160 161 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 162 LValueBaseInfo *BaseInfo, 163 TBAAAccessInfo *TBAAInfo, 164 bool forPointeeType) { 165 if (TBAAInfo) 166 *TBAAInfo = CGM.getTBAAAccessInfo(T); 167 168 // Honor alignment typedef attributes even on incomplete types. 169 // We also honor them straight for C++ class types, even as pointees; 170 // there's an expressivity gap here. 171 if (auto TT = T->getAs<TypedefType>()) { 172 if (auto Align = TT->getDecl()->getMaxAlignment()) { 173 if (BaseInfo) 174 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 175 return getContext().toCharUnitsFromBits(Align); 176 } 177 } 178 179 if (BaseInfo) 180 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 181 182 CharUnits Alignment; 183 if (T->isIncompleteType()) { 184 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 185 } else { 186 // For C++ class pointees, we don't know whether we're pointing at a 187 // base or a complete object, so we generally need to use the 188 // non-virtual alignment. 189 const CXXRecordDecl *RD; 190 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 191 Alignment = CGM.getClassPointerAlignment(RD); 192 } else { 193 Alignment = getContext().getTypeAlignInChars(T); 194 if (T.getQualifiers().hasUnaligned()) 195 Alignment = CharUnits::One(); 196 } 197 198 // Cap to the global maximum type alignment unless the alignment 199 // was somehow explicit on the type. 200 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 201 if (Alignment.getQuantity() > MaxAlign && 202 !getContext().isAlignmentRequired(T)) 203 Alignment = CharUnits::fromQuantity(MaxAlign); 204 } 205 } 206 return Alignment; 207 } 208 209 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 213 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 214 TBAAInfo); 215 } 216 217 /// Given a value of type T* that may not be to a complete object, 218 /// construct an l-value with the natural pointee alignment of T. 219 LValue 220 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 221 LValueBaseInfo BaseInfo; 222 TBAAAccessInfo TBAAInfo; 223 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 224 /* forPointeeType= */ true); 225 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 226 } 227 228 229 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 230 return CGM.getTypes().ConvertTypeForMem(T); 231 } 232 233 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 234 return CGM.getTypes().ConvertType(T); 235 } 236 237 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 238 type = type.getCanonicalType(); 239 while (true) { 240 switch (type->getTypeClass()) { 241 #define TYPE(name, parent) 242 #define ABSTRACT_TYPE(name, parent) 243 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 244 #define DEPENDENT_TYPE(name, parent) case Type::name: 245 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 246 #include "clang/AST/TypeNodes.inc" 247 llvm_unreachable("non-canonical or dependent type in IR-generation"); 248 249 case Type::Auto: 250 case Type::DeducedTemplateSpecialization: 251 llvm_unreachable("undeduced type in IR-generation"); 252 253 // Various scalar types. 254 case Type::Builtin: 255 case Type::Pointer: 256 case Type::BlockPointer: 257 case Type::LValueReference: 258 case Type::RValueReference: 259 case Type::MemberPointer: 260 case Type::Vector: 261 case Type::ExtVector: 262 case Type::FunctionProto: 263 case Type::FunctionNoProto: 264 case Type::Enum: 265 case Type::ObjCObjectPointer: 266 case Type::Pipe: 267 return TEK_Scalar; 268 269 // Complexes. 270 case Type::Complex: 271 return TEK_Complex; 272 273 // Arrays, records, and Objective-C objects. 274 case Type::ConstantArray: 275 case Type::IncompleteArray: 276 case Type::VariableArray: 277 case Type::Record: 278 case Type::ObjCObject: 279 case Type::ObjCInterface: 280 return TEK_Aggregate; 281 282 // We operate on atomic values according to their underlying type. 283 case Type::Atomic: 284 type = cast<AtomicType>(type)->getValueType(); 285 continue; 286 } 287 llvm_unreachable("unknown type kind!"); 288 } 289 } 290 291 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 292 // For cleanliness, we try to avoid emitting the return block for 293 // simple cases. 294 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 295 296 if (CurBB) { 297 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 298 299 // We have a valid insert point, reuse it if it is empty or there are no 300 // explicit jumps to the return block. 301 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 302 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 303 delete ReturnBlock.getBlock(); 304 ReturnBlock = JumpDest(); 305 } else 306 EmitBlock(ReturnBlock.getBlock()); 307 return llvm::DebugLoc(); 308 } 309 310 // Otherwise, if the return block is the target of a single direct 311 // branch then we can just put the code in that block instead. This 312 // cleans up functions which started with a unified return block. 313 if (ReturnBlock.getBlock()->hasOneUse()) { 314 llvm::BranchInst *BI = 315 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 316 if (BI && BI->isUnconditional() && 317 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 318 // Record/return the DebugLoc of the simple 'return' expression to be used 319 // later by the actual 'ret' instruction. 320 llvm::DebugLoc Loc = BI->getDebugLoc(); 321 Builder.SetInsertPoint(BI->getParent()); 322 BI->eraseFromParent(); 323 delete ReturnBlock.getBlock(); 324 ReturnBlock = JumpDest(); 325 return Loc; 326 } 327 } 328 329 // FIXME: We are at an unreachable point, there is no reason to emit the block 330 // unless it has uses. However, we still need a place to put the debug 331 // region.end for now. 332 333 EmitBlock(ReturnBlock.getBlock()); 334 return llvm::DebugLoc(); 335 } 336 337 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 338 if (!BB) return; 339 if (!BB->use_empty()) 340 return CGF.CurFn->getBasicBlockList().push_back(BB); 341 delete BB; 342 } 343 344 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 345 assert(BreakContinueStack.empty() && 346 "mismatched push/pop in break/continue stack!"); 347 348 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 349 && NumSimpleReturnExprs == NumReturnExprs 350 && ReturnBlock.getBlock()->use_empty(); 351 // Usually the return expression is evaluated before the cleanup 352 // code. If the function contains only a simple return statement, 353 // such as a constant, the location before the cleanup code becomes 354 // the last useful breakpoint in the function, because the simple 355 // return expression will be evaluated after the cleanup code. To be 356 // safe, set the debug location for cleanup code to the location of 357 // the return statement. Otherwise the cleanup code should be at the 358 // end of the function's lexical scope. 359 // 360 // If there are multiple branches to the return block, the branch 361 // instructions will get the location of the return statements and 362 // all will be fine. 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, LastStopPoint); 366 else 367 DI->EmitLocation(Builder, EndLoc); 368 } 369 370 // Pop any cleanups that might have been associated with the 371 // parameters. Do this in whatever block we're currently in; it's 372 // important to do this before we enter the return block or return 373 // edges will be *really* confused. 374 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 375 bool HasOnlyLifetimeMarkers = 376 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 377 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 378 if (HasCleanups) { 379 // Make sure the line table doesn't jump back into the body for 380 // the ret after it's been at EndLoc. 381 Optional<ApplyDebugLocation> AL; 382 if (CGDebugInfo *DI = getDebugInfo()) { 383 if (OnlySimpleReturnStmts) 384 DI->EmitLocation(Builder, EndLoc); 385 else 386 // We may not have a valid end location. Try to apply it anyway, and 387 // fall back to an artificial location if needed. 388 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 389 } 390 391 PopCleanupBlocks(PrologueCleanupDepth); 392 } 393 394 // Emit function epilog (to return). 395 llvm::DebugLoc Loc = EmitReturnBlock(); 396 397 if (ShouldInstrumentFunction()) { 398 if (CGM.getCodeGenOpts().InstrumentFunctions) 399 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 400 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 401 CurFn->addFnAttr("instrument-function-exit-inlined", 402 "__cyg_profile_func_exit"); 403 } 404 405 // Emit debug descriptor for function end. 406 if (CGDebugInfo *DI = getDebugInfo()) 407 DI->EmitFunctionEnd(Builder, CurFn); 408 409 // Reset the debug location to that of the simple 'return' expression, if any 410 // rather than that of the end of the function's scope '}'. 411 ApplyDebugLocation AL(*this, Loc); 412 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 413 EmitEndEHSpec(CurCodeDecl); 414 415 assert(EHStack.empty() && 416 "did not remove all scopes from cleanup stack!"); 417 418 // If someone did an indirect goto, emit the indirect goto block at the end of 419 // the function. 420 if (IndirectBranch) { 421 EmitBlock(IndirectBranch->getParent()); 422 Builder.ClearInsertionPoint(); 423 } 424 425 // If some of our locals escaped, insert a call to llvm.localescape in the 426 // entry block. 427 if (!EscapedLocals.empty()) { 428 // Invert the map from local to index into a simple vector. There should be 429 // no holes. 430 SmallVector<llvm::Value *, 4> EscapeArgs; 431 EscapeArgs.resize(EscapedLocals.size()); 432 for (auto &Pair : EscapedLocals) 433 EscapeArgs[Pair.second] = Pair.first; 434 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 435 &CGM.getModule(), llvm::Intrinsic::localescape); 436 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 437 } 438 439 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 440 llvm::Instruction *Ptr = AllocaInsertPt; 441 AllocaInsertPt = nullptr; 442 Ptr->eraseFromParent(); 443 444 // If someone took the address of a label but never did an indirect goto, we 445 // made a zero entry PHI node, which is illegal, zap it now. 446 if (IndirectBranch) { 447 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 448 if (PN->getNumIncomingValues() == 0) { 449 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 450 PN->eraseFromParent(); 451 } 452 } 453 454 EmitIfUsed(*this, EHResumeBlock); 455 EmitIfUsed(*this, TerminateLandingPad); 456 EmitIfUsed(*this, TerminateHandler); 457 EmitIfUsed(*this, UnreachableBlock); 458 459 for (const auto &FuncletAndParent : TerminateFunclets) 460 EmitIfUsed(*this, FuncletAndParent.second); 461 462 if (CGM.getCodeGenOpts().EmitDeclMetadata) 463 EmitDeclMetadata(); 464 465 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 466 I = DeferredReplacements.begin(), 467 E = DeferredReplacements.end(); 468 I != E; ++I) { 469 I->first->replaceAllUsesWith(I->second); 470 I->first->eraseFromParent(); 471 } 472 473 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 474 // PHIs if the current function is a coroutine. We don't do it for all 475 // functions as it may result in slight increase in numbers of instructions 476 // if compiled with no optimizations. We do it for coroutine as the lifetime 477 // of CleanupDestSlot alloca make correct coroutine frame building very 478 // difficult. 479 if (NormalCleanupDest.isValid() && isCoroutine()) { 480 llvm::DominatorTree DT(*CurFn); 481 llvm::PromoteMemToReg( 482 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 483 NormalCleanupDest = Address::invalid(); 484 } 485 486 // Scan function arguments for vector width. 487 for (llvm::Argument &A : CurFn->args()) 488 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 489 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 490 VT->getPrimitiveSizeInBits().getFixedSize()); 491 492 // Update vector width based on return type. 493 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 494 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 495 VT->getPrimitiveSizeInBits().getFixedSize()); 496 497 // Add the required-vector-width attribute. This contains the max width from: 498 // 1. min-vector-width attribute used in the source program. 499 // 2. Any builtins used that have a vector width specified. 500 // 3. Values passed in and out of inline assembly. 501 // 4. Width of vector arguments and return types for this function. 502 // 5. Width of vector aguments and return types for functions called by this 503 // function. 504 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function has been blacklisted for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 // Apply the no_sanitize* attributes to SanOpts. 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 SanitizerMask mask = Attr->getMask(); 740 SanOpts.Mask &= ~mask; 741 if (mask & SanitizerKind::Address) 742 SanOpts.set(SanitizerKind::KernelAddress, false); 743 if (mask & SanitizerKind::KernelAddress) 744 SanOpts.set(SanitizerKind::Address, false); 745 if (mask & SanitizerKind::HWAddress) 746 SanOpts.set(SanitizerKind::KernelHWAddress, false); 747 if (mask & SanitizerKind::KernelHWAddress) 748 SanOpts.set(SanitizerKind::HWAddress, false); 749 } 750 } 751 752 // Apply sanitizer attributes to the function. 753 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 755 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 757 if (SanOpts.has(SanitizerKind::MemTag)) 758 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 759 if (SanOpts.has(SanitizerKind::Thread)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 761 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 763 if (SanOpts.has(SanitizerKind::SafeStack)) 764 Fn->addFnAttr(llvm::Attribute::SafeStack); 765 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 766 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 767 768 // Apply fuzzing attribute to the function. 769 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 770 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 771 772 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 773 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 774 if (SanOpts.has(SanitizerKind::Thread)) { 775 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 776 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 777 if (OMD->getMethodFamily() == OMF_dealloc || 778 OMD->getMethodFamily() == OMF_initialize || 779 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 780 markAsIgnoreThreadCheckingAtRuntime(Fn); 781 } 782 } 783 } 784 785 // Ignore unrelated casts in STL allocate() since the allocator must cast 786 // from void* to T* before object initialization completes. Don't match on the 787 // namespace because not all allocators are in std:: 788 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 789 if (matchesStlAllocatorFn(D, getContext())) 790 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 791 } 792 793 // Ignore null checks in coroutine functions since the coroutines passes 794 // are not aware of how to move the extra UBSan instructions across the split 795 // coroutine boundaries. 796 if (D && SanOpts.has(SanitizerKind::Null)) 797 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 798 if (FD->getBody() && 799 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 800 SanOpts.Mask &= ~SanitizerKind::Null; 801 802 if (D) { 803 // Apply xray attributes to the function (as a string, for now) 804 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 805 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 806 XRayInstrKind::Function)) { 807 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 808 Fn->addFnAttr("function-instrument", "xray-always"); 809 if (XRayAttr->neverXRayInstrument()) 810 Fn->addFnAttr("function-instrument", "xray-never"); 811 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 812 if (ShouldXRayInstrumentFunction()) 813 Fn->addFnAttr("xray-log-args", 814 llvm::utostr(LogArgs->getArgumentCount())); 815 } 816 } else { 817 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 818 Fn->addFnAttr( 819 "xray-instruction-threshold", 820 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 821 if (CGM.getCodeGenOpts().XRayIgnoreLoops) { 822 Fn->addFnAttr("xray-ignore-loops"); 823 } 824 } 825 826 if (const auto *Attr = D->getAttr<PatchableFunctionEntryAttr>()) { 827 // Attr->getStart is currently ignored. 828 Fn->addFnAttr("patchable-function-entry", 829 std::to_string(Attr->getCount())); 830 } else if (unsigned Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount) { 831 Fn->addFnAttr("patchable-function-entry", 832 std::to_string(Count)); 833 } 834 } 835 836 // Add no-jump-tables value. 837 Fn->addFnAttr("no-jump-tables", 838 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 839 840 // Add no-inline-line-tables value. 841 if (CGM.getCodeGenOpts().NoInlineLineTables) 842 Fn->addFnAttr("no-inline-line-tables"); 843 844 // Add profile-sample-accurate value. 845 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 846 Fn->addFnAttr("profile-sample-accurate"); 847 848 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 849 Fn->addFnAttr("cfi-canonical-jump-table"); 850 851 if (getLangOpts().OpenCL) { 852 // Add metadata for a kernel function. 853 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 854 EmitOpenCLKernelMetadata(FD, Fn); 855 } 856 857 // If we are checking function types, emit a function type signature as 858 // prologue data. 859 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 860 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 861 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 862 // Remove any (C++17) exception specifications, to allow calling e.g. a 863 // noexcept function through a non-noexcept pointer. 864 auto ProtoTy = 865 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 866 EST_None); 867 llvm::Constant *FTRTTIConst = 868 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 869 llvm::Constant *FTRTTIConstEncoded = 870 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 871 llvm::Constant *PrologueStructElems[] = {PrologueSig, 872 FTRTTIConstEncoded}; 873 llvm::Constant *PrologueStructConst = 874 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 875 Fn->setPrologueData(PrologueStructConst); 876 } 877 } 878 } 879 880 // If we're checking nullability, we need to know whether we can check the 881 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 882 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 883 auto Nullability = FnRetTy->getNullability(getContext()); 884 if (Nullability && *Nullability == NullabilityKind::NonNull) { 885 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 886 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 887 RetValNullabilityPrecondition = 888 llvm::ConstantInt::getTrue(getLLVMContext()); 889 } 890 } 891 892 // If we're in C++ mode and the function name is "main", it is guaranteed 893 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 894 // used within a program"). 895 if (getLangOpts().CPlusPlus) 896 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 897 if (FD->isMain()) 898 Fn->addFnAttr(llvm::Attribute::NoRecurse); 899 900 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 901 if (FD->usesFPIntrin()) 902 Fn->addFnAttr(llvm::Attribute::StrictFP); 903 904 // If a custom alignment is used, force realigning to this alignment on 905 // any main function which certainly will need it. 906 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 907 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 908 CGM.getCodeGenOpts().StackAlignment) 909 Fn->addFnAttr("stackrealign"); 910 911 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 912 913 // Create a marker to make it easy to insert allocas into the entryblock 914 // later. Don't create this with the builder, because we don't want it 915 // folded. 916 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 917 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 918 919 ReturnBlock = getJumpDestInCurrentScope("return"); 920 921 Builder.SetInsertPoint(EntryBB); 922 923 // If we're checking the return value, allocate space for a pointer to a 924 // precise source location of the checked return statement. 925 if (requiresReturnValueCheck()) { 926 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 927 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 928 } 929 930 // Emit subprogram debug descriptor. 931 if (CGDebugInfo *DI = getDebugInfo()) { 932 // Reconstruct the type from the argument list so that implicit parameters, 933 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 934 // convention. 935 CallingConv CC = CallingConv::CC_C; 936 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 937 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 938 CC = SrcFnTy->getCallConv(); 939 SmallVector<QualType, 16> ArgTypes; 940 for (const VarDecl *VD : Args) 941 ArgTypes.push_back(VD->getType()); 942 QualType FnType = getContext().getFunctionType( 943 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 944 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 945 Builder); 946 } 947 948 if (ShouldInstrumentFunction()) { 949 if (CGM.getCodeGenOpts().InstrumentFunctions) 950 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 951 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 952 CurFn->addFnAttr("instrument-function-entry-inlined", 953 "__cyg_profile_func_enter"); 954 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 955 CurFn->addFnAttr("instrument-function-entry-inlined", 956 "__cyg_profile_func_enter_bare"); 957 } 958 959 // Since emitting the mcount call here impacts optimizations such as function 960 // inlining, we just add an attribute to insert a mcount call in backend. 961 // The attribute "counting-function" is set to mcount function name which is 962 // architecture dependent. 963 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 964 // Calls to fentry/mcount should not be generated if function has 965 // the no_instrument_function attribute. 966 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 967 if (CGM.getCodeGenOpts().CallFEntry) 968 Fn->addFnAttr("fentry-call", "true"); 969 else { 970 Fn->addFnAttr("instrument-function-entry-inlined", 971 getTarget().getMCountName()); 972 } 973 if (CGM.getCodeGenOpts().MNopMCount) { 974 if (!CGM.getCodeGenOpts().CallFEntry) 975 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 976 << "-mnop-mcount" << "-mfentry"; 977 Fn->addFnAttr("mnop-mcount"); 978 } 979 980 if (CGM.getCodeGenOpts().RecordMCount) { 981 if (!CGM.getCodeGenOpts().CallFEntry) 982 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 983 << "-mrecord-mcount" << "-mfentry"; 984 Fn->addFnAttr("mrecord-mcount"); 985 } 986 } 987 } 988 989 if (CGM.getCodeGenOpts().PackedStack) { 990 if (getContext().getTargetInfo().getTriple().getArch() != 991 llvm::Triple::systemz) 992 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 993 << "-mpacked-stack"; 994 Fn->addFnAttr("packed-stack"); 995 } 996 997 if (RetTy->isVoidType()) { 998 // Void type; nothing to return. 999 ReturnValue = Address::invalid(); 1000 1001 // Count the implicit return. 1002 if (!endsWithReturn(D)) 1003 ++NumReturnExprs; 1004 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1005 // Indirect return; emit returned value directly into sret slot. 1006 // This reduces code size, and affects correctness in C++. 1007 auto AI = CurFn->arg_begin(); 1008 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1009 ++AI; 1010 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1011 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1012 ReturnValuePointer = 1013 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1014 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1015 ReturnValue.getPointer(), Int8PtrTy), 1016 ReturnValuePointer); 1017 } 1018 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1019 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1020 // Load the sret pointer from the argument struct and return into that. 1021 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1022 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1023 --EI; 1024 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1025 ReturnValuePointer = Address(Addr, getPointerAlign()); 1026 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1027 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1028 } else { 1029 ReturnValue = CreateIRTemp(RetTy, "retval"); 1030 1031 // Tell the epilog emitter to autorelease the result. We do this 1032 // now so that various specialized functions can suppress it 1033 // during their IR-generation. 1034 if (getLangOpts().ObjCAutoRefCount && 1035 !CurFnInfo->isReturnsRetained() && 1036 RetTy->isObjCRetainableType()) 1037 AutoreleaseResult = true; 1038 } 1039 1040 EmitStartEHSpec(CurCodeDecl); 1041 1042 PrologueCleanupDepth = EHStack.stable_begin(); 1043 1044 // Emit OpenMP specific initialization of the device functions. 1045 if (getLangOpts().OpenMP && CurCodeDecl) 1046 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1047 1048 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1049 1050 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1051 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1052 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1053 if (MD->getParent()->isLambda() && 1054 MD->getOverloadedOperator() == OO_Call) { 1055 // We're in a lambda; figure out the captures. 1056 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1057 LambdaThisCaptureField); 1058 if (LambdaThisCaptureField) { 1059 // If the lambda captures the object referred to by '*this' - either by 1060 // value or by reference, make sure CXXThisValue points to the correct 1061 // object. 1062 1063 // Get the lvalue for the field (which is a copy of the enclosing object 1064 // or contains the address of the enclosing object). 1065 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1066 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1067 // If the enclosing object was captured by value, just use its address. 1068 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1069 } else { 1070 // Load the lvalue pointed to by the field, since '*this' was captured 1071 // by reference. 1072 CXXThisValue = 1073 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1074 } 1075 } 1076 for (auto *FD : MD->getParent()->fields()) { 1077 if (FD->hasCapturedVLAType()) { 1078 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1079 SourceLocation()).getScalarVal(); 1080 auto VAT = FD->getCapturedVLAType(); 1081 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1082 } 1083 } 1084 } else { 1085 // Not in a lambda; just use 'this' from the method. 1086 // FIXME: Should we generate a new load for each use of 'this'? The 1087 // fast register allocator would be happier... 1088 CXXThisValue = CXXABIThisValue; 1089 } 1090 1091 // Check the 'this' pointer once per function, if it's available. 1092 if (CXXABIThisValue) { 1093 SanitizerSet SkippedChecks; 1094 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1095 QualType ThisTy = MD->getThisType(); 1096 1097 // If this is the call operator of a lambda with no capture-default, it 1098 // may have a static invoker function, which may call this operator with 1099 // a null 'this' pointer. 1100 if (isLambdaCallOperator(MD) && 1101 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1102 SkippedChecks.set(SanitizerKind::Null, true); 1103 1104 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1105 : TCK_MemberCall, 1106 Loc, CXXABIThisValue, ThisTy, 1107 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1108 SkippedChecks); 1109 } 1110 } 1111 1112 // If any of the arguments have a variably modified type, make sure to 1113 // emit the type size. 1114 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1115 i != e; ++i) { 1116 const VarDecl *VD = *i; 1117 1118 // Dig out the type as written from ParmVarDecls; it's unclear whether 1119 // the standard (C99 6.9.1p10) requires this, but we're following the 1120 // precedent set by gcc. 1121 QualType Ty; 1122 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1123 Ty = PVD->getOriginalType(); 1124 else 1125 Ty = VD->getType(); 1126 1127 if (Ty->isVariablyModifiedType()) 1128 EmitVariablyModifiedType(Ty); 1129 } 1130 // Emit a location at the end of the prologue. 1131 if (CGDebugInfo *DI = getDebugInfo()) 1132 DI->EmitLocation(Builder, StartLoc); 1133 1134 // TODO: Do we need to handle this in two places like we do with 1135 // target-features/target-cpu? 1136 if (CurFuncDecl) 1137 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1138 LargestVectorWidth = VecWidth->getVectorWidth(); 1139 } 1140 1141 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1142 incrementProfileCounter(Body); 1143 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1144 EmitCompoundStmtWithoutScope(*S); 1145 else 1146 EmitStmt(Body); 1147 } 1148 1149 /// When instrumenting to collect profile data, the counts for some blocks 1150 /// such as switch cases need to not include the fall-through counts, so 1151 /// emit a branch around the instrumentation code. When not instrumenting, 1152 /// this just calls EmitBlock(). 1153 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1154 const Stmt *S) { 1155 llvm::BasicBlock *SkipCountBB = nullptr; 1156 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1157 // When instrumenting for profiling, the fallthrough to certain 1158 // statements needs to skip over the instrumentation code so that we 1159 // get an accurate count. 1160 SkipCountBB = createBasicBlock("skipcount"); 1161 EmitBranch(SkipCountBB); 1162 } 1163 EmitBlock(BB); 1164 uint64_t CurrentCount = getCurrentProfileCount(); 1165 incrementProfileCounter(S); 1166 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1167 if (SkipCountBB) 1168 EmitBlock(SkipCountBB); 1169 } 1170 1171 /// Tries to mark the given function nounwind based on the 1172 /// non-existence of any throwing calls within it. We believe this is 1173 /// lightweight enough to do at -O0. 1174 static void TryMarkNoThrow(llvm::Function *F) { 1175 // LLVM treats 'nounwind' on a function as part of the type, so we 1176 // can't do this on functions that can be overwritten. 1177 if (F->isInterposable()) return; 1178 1179 for (llvm::BasicBlock &BB : *F) 1180 for (llvm::Instruction &I : BB) 1181 if (I.mayThrow()) 1182 return; 1183 1184 F->setDoesNotThrow(); 1185 } 1186 1187 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1188 FunctionArgList &Args) { 1189 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1190 QualType ResTy = FD->getReturnType(); 1191 1192 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1193 if (MD && MD->isInstance()) { 1194 if (CGM.getCXXABI().HasThisReturn(GD)) 1195 ResTy = MD->getThisType(); 1196 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1197 ResTy = CGM.getContext().VoidPtrTy; 1198 CGM.getCXXABI().buildThisParam(*this, Args); 1199 } 1200 1201 // The base version of an inheriting constructor whose constructed base is a 1202 // virtual base is not passed any arguments (because it doesn't actually call 1203 // the inherited constructor). 1204 bool PassedParams = true; 1205 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1206 if (auto Inherited = CD->getInheritedConstructor()) 1207 PassedParams = 1208 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1209 1210 if (PassedParams) { 1211 for (auto *Param : FD->parameters()) { 1212 Args.push_back(Param); 1213 if (!Param->hasAttr<PassObjectSizeAttr>()) 1214 continue; 1215 1216 auto *Implicit = ImplicitParamDecl::Create( 1217 getContext(), Param->getDeclContext(), Param->getLocation(), 1218 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1219 SizeArguments[Param] = Implicit; 1220 Args.push_back(Implicit); 1221 } 1222 } 1223 1224 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1225 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1226 1227 return ResTy; 1228 } 1229 1230 static bool 1231 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1232 const ASTContext &Context) { 1233 QualType T = FD->getReturnType(); 1234 // Avoid the optimization for functions that return a record type with a 1235 // trivial destructor or another trivially copyable type. 1236 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1237 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1238 return !ClassDecl->hasTrivialDestructor(); 1239 } 1240 return !T.isTriviallyCopyableType(Context); 1241 } 1242 1243 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1244 const CGFunctionInfo &FnInfo) { 1245 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1246 CurGD = GD; 1247 1248 FunctionArgList Args; 1249 QualType ResTy = BuildFunctionArgList(GD, Args); 1250 1251 // Check if we should generate debug info for this function. 1252 if (FD->hasAttr<NoDebugAttr>()) 1253 DebugInfo = nullptr; // disable debug info indefinitely for this function 1254 1255 // The function might not have a body if we're generating thunks for a 1256 // function declaration. 1257 SourceRange BodyRange; 1258 if (Stmt *Body = FD->getBody()) 1259 BodyRange = Body->getSourceRange(); 1260 else 1261 BodyRange = FD->getLocation(); 1262 CurEHLocation = BodyRange.getEnd(); 1263 1264 // Use the location of the start of the function to determine where 1265 // the function definition is located. By default use the location 1266 // of the declaration as the location for the subprogram. A function 1267 // may lack a declaration in the source code if it is created by code 1268 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1269 SourceLocation Loc = FD->getLocation(); 1270 1271 // If this is a function specialization then use the pattern body 1272 // as the location for the function. 1273 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1274 if (SpecDecl->hasBody(SpecDecl)) 1275 Loc = SpecDecl->getLocation(); 1276 1277 Stmt *Body = FD->getBody(); 1278 1279 // Initialize helper which will detect jumps which can cause invalid lifetime 1280 // markers. 1281 if (Body && ShouldEmitLifetimeMarkers) 1282 Bypasses.Init(Body); 1283 1284 // Emit the standard function prologue. 1285 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1286 1287 // Generate the body of the function. 1288 PGO.assignRegionCounters(GD, CurFn); 1289 if (isa<CXXDestructorDecl>(FD)) 1290 EmitDestructorBody(Args); 1291 else if (isa<CXXConstructorDecl>(FD)) 1292 EmitConstructorBody(Args); 1293 else if (getLangOpts().CUDA && 1294 !getLangOpts().CUDAIsDevice && 1295 FD->hasAttr<CUDAGlobalAttr>()) 1296 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1297 else if (isa<CXXMethodDecl>(FD) && 1298 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1299 // The lambda static invoker function is special, because it forwards or 1300 // clones the body of the function call operator (but is actually static). 1301 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1302 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1303 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1304 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1305 // Implicit copy-assignment gets the same special treatment as implicit 1306 // copy-constructors. 1307 emitImplicitAssignmentOperatorBody(Args); 1308 } else if (Body) { 1309 EmitFunctionBody(Body); 1310 } else 1311 llvm_unreachable("no definition for emitted function"); 1312 1313 // C++11 [stmt.return]p2: 1314 // Flowing off the end of a function [...] results in undefined behavior in 1315 // a value-returning function. 1316 // C11 6.9.1p12: 1317 // If the '}' that terminates a function is reached, and the value of the 1318 // function call is used by the caller, the behavior is undefined. 1319 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1320 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1321 bool ShouldEmitUnreachable = 1322 CGM.getCodeGenOpts().StrictReturn || 1323 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1324 if (SanOpts.has(SanitizerKind::Return)) { 1325 SanitizerScope SanScope(this); 1326 llvm::Value *IsFalse = Builder.getFalse(); 1327 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1328 SanitizerHandler::MissingReturn, 1329 EmitCheckSourceLocation(FD->getLocation()), None); 1330 } else if (ShouldEmitUnreachable) { 1331 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1332 EmitTrapCall(llvm::Intrinsic::trap); 1333 } 1334 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1335 Builder.CreateUnreachable(); 1336 Builder.ClearInsertionPoint(); 1337 } 1338 } 1339 1340 // Emit the standard function epilogue. 1341 FinishFunction(BodyRange.getEnd()); 1342 1343 // If we haven't marked the function nothrow through other means, do 1344 // a quick pass now to see if we can. 1345 if (!CurFn->doesNotThrow()) 1346 TryMarkNoThrow(CurFn); 1347 } 1348 1349 /// ContainsLabel - Return true if the statement contains a label in it. If 1350 /// this statement is not executed normally, it not containing a label means 1351 /// that we can just remove the code. 1352 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1353 // Null statement, not a label! 1354 if (!S) return false; 1355 1356 // If this is a label, we have to emit the code, consider something like: 1357 // if (0) { ... foo: bar(); } goto foo; 1358 // 1359 // TODO: If anyone cared, we could track __label__'s, since we know that you 1360 // can't jump to one from outside their declared region. 1361 if (isa<LabelStmt>(S)) 1362 return true; 1363 1364 // If this is a case/default statement, and we haven't seen a switch, we have 1365 // to emit the code. 1366 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1367 return true; 1368 1369 // If this is a switch statement, we want to ignore cases below it. 1370 if (isa<SwitchStmt>(S)) 1371 IgnoreCaseStmts = true; 1372 1373 // Scan subexpressions for verboten labels. 1374 for (const Stmt *SubStmt : S->children()) 1375 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1376 return true; 1377 1378 return false; 1379 } 1380 1381 /// containsBreak - Return true if the statement contains a break out of it. 1382 /// If the statement (recursively) contains a switch or loop with a break 1383 /// inside of it, this is fine. 1384 bool CodeGenFunction::containsBreak(const Stmt *S) { 1385 // Null statement, not a label! 1386 if (!S) return false; 1387 1388 // If this is a switch or loop that defines its own break scope, then we can 1389 // include it and anything inside of it. 1390 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1391 isa<ForStmt>(S)) 1392 return false; 1393 1394 if (isa<BreakStmt>(S)) 1395 return true; 1396 1397 // Scan subexpressions for verboten breaks. 1398 for (const Stmt *SubStmt : S->children()) 1399 if (containsBreak(SubStmt)) 1400 return true; 1401 1402 return false; 1403 } 1404 1405 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1406 if (!S) return false; 1407 1408 // Some statement kinds add a scope and thus never add a decl to the current 1409 // scope. Note, this list is longer than the list of statements that might 1410 // have an unscoped decl nested within them, but this way is conservatively 1411 // correct even if more statement kinds are added. 1412 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1413 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1414 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1415 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1416 return false; 1417 1418 if (isa<DeclStmt>(S)) 1419 return true; 1420 1421 for (const Stmt *SubStmt : S->children()) 1422 if (mightAddDeclToScope(SubStmt)) 1423 return true; 1424 1425 return false; 1426 } 1427 1428 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1429 /// to a constant, or if it does but contains a label, return false. If it 1430 /// constant folds return true and set the boolean result in Result. 1431 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1432 bool &ResultBool, 1433 bool AllowLabels) { 1434 llvm::APSInt ResultInt; 1435 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1436 return false; 1437 1438 ResultBool = ResultInt.getBoolValue(); 1439 return true; 1440 } 1441 1442 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1443 /// to a constant, or if it does but contains a label, return false. If it 1444 /// constant folds return true and set the folded value. 1445 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1446 llvm::APSInt &ResultInt, 1447 bool AllowLabels) { 1448 // FIXME: Rename and handle conversion of other evaluatable things 1449 // to bool. 1450 Expr::EvalResult Result; 1451 if (!Cond->EvaluateAsInt(Result, getContext())) 1452 return false; // Not foldable, not integer or not fully evaluatable. 1453 1454 llvm::APSInt Int = Result.Val.getInt(); 1455 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1456 return false; // Contains a label. 1457 1458 ResultInt = Int; 1459 return true; 1460 } 1461 1462 1463 1464 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1465 /// statement) to the specified blocks. Based on the condition, this might try 1466 /// to simplify the codegen of the conditional based on the branch. 1467 /// 1468 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1469 llvm::BasicBlock *TrueBlock, 1470 llvm::BasicBlock *FalseBlock, 1471 uint64_t TrueCount) { 1472 Cond = Cond->IgnoreParens(); 1473 1474 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1475 1476 // Handle X && Y in a condition. 1477 if (CondBOp->getOpcode() == BO_LAnd) { 1478 // If we have "1 && X", simplify the code. "0 && X" would have constant 1479 // folded if the case was simple enough. 1480 bool ConstantBool = false; 1481 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1482 ConstantBool) { 1483 // br(1 && X) -> br(X). 1484 incrementProfileCounter(CondBOp); 1485 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1486 TrueCount); 1487 } 1488 1489 // If we have "X && 1", simplify the code to use an uncond branch. 1490 // "X && 0" would have been constant folded to 0. 1491 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1492 ConstantBool) { 1493 // br(X && 1) -> br(X). 1494 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1495 TrueCount); 1496 } 1497 1498 // Emit the LHS as a conditional. If the LHS conditional is false, we 1499 // want to jump to the FalseBlock. 1500 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1501 // The counter tells us how often we evaluate RHS, and all of TrueCount 1502 // can be propagated to that branch. 1503 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1504 1505 ConditionalEvaluation eval(*this); 1506 { 1507 ApplyDebugLocation DL(*this, Cond); 1508 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1509 EmitBlock(LHSTrue); 1510 } 1511 1512 incrementProfileCounter(CondBOp); 1513 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1514 1515 // Any temporaries created here are conditional. 1516 eval.begin(*this); 1517 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1518 eval.end(*this); 1519 1520 return; 1521 } 1522 1523 if (CondBOp->getOpcode() == BO_LOr) { 1524 // If we have "0 || X", simplify the code. "1 || X" would have constant 1525 // folded if the case was simple enough. 1526 bool ConstantBool = false; 1527 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1528 !ConstantBool) { 1529 // br(0 || X) -> br(X). 1530 incrementProfileCounter(CondBOp); 1531 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1532 TrueCount); 1533 } 1534 1535 // If we have "X || 0", simplify the code to use an uncond branch. 1536 // "X || 1" would have been constant folded to 1. 1537 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1538 !ConstantBool) { 1539 // br(X || 0) -> br(X). 1540 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1541 TrueCount); 1542 } 1543 1544 // Emit the LHS as a conditional. If the LHS conditional is true, we 1545 // want to jump to the TrueBlock. 1546 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1547 // We have the count for entry to the RHS and for the whole expression 1548 // being true, so we can divy up True count between the short circuit and 1549 // the RHS. 1550 uint64_t LHSCount = 1551 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1552 uint64_t RHSCount = TrueCount - LHSCount; 1553 1554 ConditionalEvaluation eval(*this); 1555 { 1556 ApplyDebugLocation DL(*this, Cond); 1557 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1558 EmitBlock(LHSFalse); 1559 } 1560 1561 incrementProfileCounter(CondBOp); 1562 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1563 1564 // Any temporaries created here are conditional. 1565 eval.begin(*this); 1566 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1567 1568 eval.end(*this); 1569 1570 return; 1571 } 1572 } 1573 1574 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1575 // br(!x, t, f) -> br(x, f, t) 1576 if (CondUOp->getOpcode() == UO_LNot) { 1577 // Negate the count. 1578 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1579 // Negate the condition and swap the destination blocks. 1580 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1581 FalseCount); 1582 } 1583 } 1584 1585 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1586 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1587 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1588 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1589 1590 ConditionalEvaluation cond(*this); 1591 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1592 getProfileCount(CondOp)); 1593 1594 // When computing PGO branch weights, we only know the overall count for 1595 // the true block. This code is essentially doing tail duplication of the 1596 // naive code-gen, introducing new edges for which counts are not 1597 // available. Divide the counts proportionally between the LHS and RHS of 1598 // the conditional operator. 1599 uint64_t LHSScaledTrueCount = 0; 1600 if (TrueCount) { 1601 double LHSRatio = 1602 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1603 LHSScaledTrueCount = TrueCount * LHSRatio; 1604 } 1605 1606 cond.begin(*this); 1607 EmitBlock(LHSBlock); 1608 incrementProfileCounter(CondOp); 1609 { 1610 ApplyDebugLocation DL(*this, Cond); 1611 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1612 LHSScaledTrueCount); 1613 } 1614 cond.end(*this); 1615 1616 cond.begin(*this); 1617 EmitBlock(RHSBlock); 1618 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1619 TrueCount - LHSScaledTrueCount); 1620 cond.end(*this); 1621 1622 return; 1623 } 1624 1625 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1626 // Conditional operator handling can give us a throw expression as a 1627 // condition for a case like: 1628 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1629 // Fold this to: 1630 // br(c, throw x, br(y, t, f)) 1631 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1632 return; 1633 } 1634 1635 // If the branch has a condition wrapped by __builtin_unpredictable, 1636 // create metadata that specifies that the branch is unpredictable. 1637 // Don't bother if not optimizing because that metadata would not be used. 1638 llvm::MDNode *Unpredictable = nullptr; 1639 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1640 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1641 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1642 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1643 llvm::MDBuilder MDHelper(getLLVMContext()); 1644 Unpredictable = MDHelper.createUnpredictable(); 1645 } 1646 } 1647 1648 // Create branch weights based on the number of times we get here and the 1649 // number of times the condition should be true. 1650 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1651 llvm::MDNode *Weights = 1652 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1653 1654 // Emit the code with the fully general case. 1655 llvm::Value *CondV; 1656 { 1657 ApplyDebugLocation DL(*this, Cond); 1658 CondV = EvaluateExprAsBool(Cond); 1659 } 1660 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1661 } 1662 1663 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1664 /// specified stmt yet. 1665 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1666 CGM.ErrorUnsupported(S, Type); 1667 } 1668 1669 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1670 /// variable-length array whose elements have a non-zero bit-pattern. 1671 /// 1672 /// \param baseType the inner-most element type of the array 1673 /// \param src - a char* pointing to the bit-pattern for a single 1674 /// base element of the array 1675 /// \param sizeInChars - the total size of the VLA, in chars 1676 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1677 Address dest, Address src, 1678 llvm::Value *sizeInChars) { 1679 CGBuilderTy &Builder = CGF.Builder; 1680 1681 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1682 llvm::Value *baseSizeInChars 1683 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1684 1685 Address begin = 1686 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1687 llvm::Value *end = 1688 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1689 1690 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1691 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1692 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1693 1694 // Make a loop over the VLA. C99 guarantees that the VLA element 1695 // count must be nonzero. 1696 CGF.EmitBlock(loopBB); 1697 1698 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1699 cur->addIncoming(begin.getPointer(), originBB); 1700 1701 CharUnits curAlign = 1702 dest.getAlignment().alignmentOfArrayElement(baseSize); 1703 1704 // memcpy the individual element bit-pattern. 1705 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1706 /*volatile*/ false); 1707 1708 // Go to the next element. 1709 llvm::Value *next = 1710 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1711 1712 // Leave if that's the end of the VLA. 1713 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1714 Builder.CreateCondBr(done, contBB, loopBB); 1715 cur->addIncoming(next, loopBB); 1716 1717 CGF.EmitBlock(contBB); 1718 } 1719 1720 void 1721 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1722 // Ignore empty classes in C++. 1723 if (getLangOpts().CPlusPlus) { 1724 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1725 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1726 return; 1727 } 1728 } 1729 1730 // Cast the dest ptr to the appropriate i8 pointer type. 1731 if (DestPtr.getElementType() != Int8Ty) 1732 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1733 1734 // Get size and alignment info for this aggregate. 1735 CharUnits size = getContext().getTypeSizeInChars(Ty); 1736 1737 llvm::Value *SizeVal; 1738 const VariableArrayType *vla; 1739 1740 // Don't bother emitting a zero-byte memset. 1741 if (size.isZero()) { 1742 // But note that getTypeInfo returns 0 for a VLA. 1743 if (const VariableArrayType *vlaType = 1744 dyn_cast_or_null<VariableArrayType>( 1745 getContext().getAsArrayType(Ty))) { 1746 auto VlaSize = getVLASize(vlaType); 1747 SizeVal = VlaSize.NumElts; 1748 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1749 if (!eltSize.isOne()) 1750 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1751 vla = vlaType; 1752 } else { 1753 return; 1754 } 1755 } else { 1756 SizeVal = CGM.getSize(size); 1757 vla = nullptr; 1758 } 1759 1760 // If the type contains a pointer to data member we can't memset it to zero. 1761 // Instead, create a null constant and copy it to the destination. 1762 // TODO: there are other patterns besides zero that we can usefully memset, 1763 // like -1, which happens to be the pattern used by member-pointers. 1764 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1765 // For a VLA, emit a single element, then splat that over the VLA. 1766 if (vla) Ty = getContext().getBaseElementType(vla); 1767 1768 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1769 1770 llvm::GlobalVariable *NullVariable = 1771 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1772 /*isConstant=*/true, 1773 llvm::GlobalVariable::PrivateLinkage, 1774 NullConstant, Twine()); 1775 CharUnits NullAlign = DestPtr.getAlignment(); 1776 NullVariable->setAlignment(NullAlign.getAsAlign()); 1777 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1778 NullAlign); 1779 1780 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1781 1782 // Get and call the appropriate llvm.memcpy overload. 1783 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1784 return; 1785 } 1786 1787 // Otherwise, just memset the whole thing to zero. This is legal 1788 // because in LLVM, all default initializers (other than the ones we just 1789 // handled above) are guaranteed to have a bit pattern of all zeros. 1790 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1791 } 1792 1793 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1794 // Make sure that there is a block for the indirect goto. 1795 if (!IndirectBranch) 1796 GetIndirectGotoBlock(); 1797 1798 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1799 1800 // Make sure the indirect branch includes all of the address-taken blocks. 1801 IndirectBranch->addDestination(BB); 1802 return llvm::BlockAddress::get(CurFn, BB); 1803 } 1804 1805 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1806 // If we already made the indirect branch for indirect goto, return its block. 1807 if (IndirectBranch) return IndirectBranch->getParent(); 1808 1809 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1810 1811 // Create the PHI node that indirect gotos will add entries to. 1812 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1813 "indirect.goto.dest"); 1814 1815 // Create the indirect branch instruction. 1816 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1817 return IndirectBranch->getParent(); 1818 } 1819 1820 /// Computes the length of an array in elements, as well as the base 1821 /// element type and a properly-typed first element pointer. 1822 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1823 QualType &baseType, 1824 Address &addr) { 1825 const ArrayType *arrayType = origArrayType; 1826 1827 // If it's a VLA, we have to load the stored size. Note that 1828 // this is the size of the VLA in bytes, not its size in elements. 1829 llvm::Value *numVLAElements = nullptr; 1830 if (isa<VariableArrayType>(arrayType)) { 1831 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1832 1833 // Walk into all VLAs. This doesn't require changes to addr, 1834 // which has type T* where T is the first non-VLA element type. 1835 do { 1836 QualType elementType = arrayType->getElementType(); 1837 arrayType = getContext().getAsArrayType(elementType); 1838 1839 // If we only have VLA components, 'addr' requires no adjustment. 1840 if (!arrayType) { 1841 baseType = elementType; 1842 return numVLAElements; 1843 } 1844 } while (isa<VariableArrayType>(arrayType)); 1845 1846 // We get out here only if we find a constant array type 1847 // inside the VLA. 1848 } 1849 1850 // We have some number of constant-length arrays, so addr should 1851 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1852 // down to the first element of addr. 1853 SmallVector<llvm::Value*, 8> gepIndices; 1854 1855 // GEP down to the array type. 1856 llvm::ConstantInt *zero = Builder.getInt32(0); 1857 gepIndices.push_back(zero); 1858 1859 uint64_t countFromCLAs = 1; 1860 QualType eltType; 1861 1862 llvm::ArrayType *llvmArrayType = 1863 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1864 while (llvmArrayType) { 1865 assert(isa<ConstantArrayType>(arrayType)); 1866 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1867 == llvmArrayType->getNumElements()); 1868 1869 gepIndices.push_back(zero); 1870 countFromCLAs *= llvmArrayType->getNumElements(); 1871 eltType = arrayType->getElementType(); 1872 1873 llvmArrayType = 1874 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1875 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1876 assert((!llvmArrayType || arrayType) && 1877 "LLVM and Clang types are out-of-synch"); 1878 } 1879 1880 if (arrayType) { 1881 // From this point onwards, the Clang array type has been emitted 1882 // as some other type (probably a packed struct). Compute the array 1883 // size, and just emit the 'begin' expression as a bitcast. 1884 while (arrayType) { 1885 countFromCLAs *= 1886 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1887 eltType = arrayType->getElementType(); 1888 arrayType = getContext().getAsArrayType(eltType); 1889 } 1890 1891 llvm::Type *baseType = ConvertType(eltType); 1892 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1893 } else { 1894 // Create the actual GEP. 1895 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1896 gepIndices, "array.begin"), 1897 addr.getAlignment()); 1898 } 1899 1900 baseType = eltType; 1901 1902 llvm::Value *numElements 1903 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1904 1905 // If we had any VLA dimensions, factor them in. 1906 if (numVLAElements) 1907 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1908 1909 return numElements; 1910 } 1911 1912 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1913 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1914 assert(vla && "type was not a variable array type!"); 1915 return getVLASize(vla); 1916 } 1917 1918 CodeGenFunction::VlaSizePair 1919 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1920 // The number of elements so far; always size_t. 1921 llvm::Value *numElements = nullptr; 1922 1923 QualType elementType; 1924 do { 1925 elementType = type->getElementType(); 1926 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1927 assert(vlaSize && "no size for VLA!"); 1928 assert(vlaSize->getType() == SizeTy); 1929 1930 if (!numElements) { 1931 numElements = vlaSize; 1932 } else { 1933 // It's undefined behavior if this wraps around, so mark it that way. 1934 // FIXME: Teach -fsanitize=undefined to trap this. 1935 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1936 } 1937 } while ((type = getContext().getAsVariableArrayType(elementType))); 1938 1939 return { numElements, elementType }; 1940 } 1941 1942 CodeGenFunction::VlaSizePair 1943 CodeGenFunction::getVLAElements1D(QualType type) { 1944 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1945 assert(vla && "type was not a variable array type!"); 1946 return getVLAElements1D(vla); 1947 } 1948 1949 CodeGenFunction::VlaSizePair 1950 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1951 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1952 assert(VlaSize && "no size for VLA!"); 1953 assert(VlaSize->getType() == SizeTy); 1954 return { VlaSize, Vla->getElementType() }; 1955 } 1956 1957 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1958 assert(type->isVariablyModifiedType() && 1959 "Must pass variably modified type to EmitVLASizes!"); 1960 1961 EnsureInsertPoint(); 1962 1963 // We're going to walk down into the type and look for VLA 1964 // expressions. 1965 do { 1966 assert(type->isVariablyModifiedType()); 1967 1968 const Type *ty = type.getTypePtr(); 1969 switch (ty->getTypeClass()) { 1970 1971 #define TYPE(Class, Base) 1972 #define ABSTRACT_TYPE(Class, Base) 1973 #define NON_CANONICAL_TYPE(Class, Base) 1974 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1975 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1976 #include "clang/AST/TypeNodes.inc" 1977 llvm_unreachable("unexpected dependent type!"); 1978 1979 // These types are never variably-modified. 1980 case Type::Builtin: 1981 case Type::Complex: 1982 case Type::Vector: 1983 case Type::ExtVector: 1984 case Type::Record: 1985 case Type::Enum: 1986 case Type::Elaborated: 1987 case Type::TemplateSpecialization: 1988 case Type::ObjCTypeParam: 1989 case Type::ObjCObject: 1990 case Type::ObjCInterface: 1991 case Type::ObjCObjectPointer: 1992 llvm_unreachable("type class is never variably-modified!"); 1993 1994 case Type::Adjusted: 1995 type = cast<AdjustedType>(ty)->getAdjustedType(); 1996 break; 1997 1998 case Type::Decayed: 1999 type = cast<DecayedType>(ty)->getPointeeType(); 2000 break; 2001 2002 case Type::Pointer: 2003 type = cast<PointerType>(ty)->getPointeeType(); 2004 break; 2005 2006 case Type::BlockPointer: 2007 type = cast<BlockPointerType>(ty)->getPointeeType(); 2008 break; 2009 2010 case Type::LValueReference: 2011 case Type::RValueReference: 2012 type = cast<ReferenceType>(ty)->getPointeeType(); 2013 break; 2014 2015 case Type::MemberPointer: 2016 type = cast<MemberPointerType>(ty)->getPointeeType(); 2017 break; 2018 2019 case Type::ConstantArray: 2020 case Type::IncompleteArray: 2021 // Losing element qualification here is fine. 2022 type = cast<ArrayType>(ty)->getElementType(); 2023 break; 2024 2025 case Type::VariableArray: { 2026 // Losing element qualification here is fine. 2027 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2028 2029 // Unknown size indication requires no size computation. 2030 // Otherwise, evaluate and record it. 2031 if (const Expr *size = vat->getSizeExpr()) { 2032 // It's possible that we might have emitted this already, 2033 // e.g. with a typedef and a pointer to it. 2034 llvm::Value *&entry = VLASizeMap[size]; 2035 if (!entry) { 2036 llvm::Value *Size = EmitScalarExpr(size); 2037 2038 // C11 6.7.6.2p5: 2039 // If the size is an expression that is not an integer constant 2040 // expression [...] each time it is evaluated it shall have a value 2041 // greater than zero. 2042 if (SanOpts.has(SanitizerKind::VLABound) && 2043 size->getType()->isSignedIntegerType()) { 2044 SanitizerScope SanScope(this); 2045 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2046 llvm::Constant *StaticArgs[] = { 2047 EmitCheckSourceLocation(size->getBeginLoc()), 2048 EmitCheckTypeDescriptor(size->getType())}; 2049 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2050 SanitizerKind::VLABound), 2051 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2052 } 2053 2054 // Always zexting here would be wrong if it weren't 2055 // undefined behavior to have a negative bound. 2056 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2057 } 2058 } 2059 type = vat->getElementType(); 2060 break; 2061 } 2062 2063 case Type::FunctionProto: 2064 case Type::FunctionNoProto: 2065 type = cast<FunctionType>(ty)->getReturnType(); 2066 break; 2067 2068 case Type::Paren: 2069 case Type::TypeOf: 2070 case Type::UnaryTransform: 2071 case Type::Attributed: 2072 case Type::SubstTemplateTypeParm: 2073 case Type::PackExpansion: 2074 case Type::MacroQualified: 2075 // Keep walking after single level desugaring. 2076 type = type.getSingleStepDesugaredType(getContext()); 2077 break; 2078 2079 case Type::Typedef: 2080 case Type::Decltype: 2081 case Type::Auto: 2082 case Type::DeducedTemplateSpecialization: 2083 // Stop walking: nothing to do. 2084 return; 2085 2086 case Type::TypeOfExpr: 2087 // Stop walking: emit typeof expression. 2088 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2089 return; 2090 2091 case Type::Atomic: 2092 type = cast<AtomicType>(ty)->getValueType(); 2093 break; 2094 2095 case Type::Pipe: 2096 type = cast<PipeType>(ty)->getElementType(); 2097 break; 2098 } 2099 } while (type->isVariablyModifiedType()); 2100 } 2101 2102 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2103 if (getContext().getBuiltinVaListType()->isArrayType()) 2104 return EmitPointerWithAlignment(E); 2105 return EmitLValue(E).getAddress(*this); 2106 } 2107 2108 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2109 return EmitLValue(E).getAddress(*this); 2110 } 2111 2112 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2113 const APValue &Init) { 2114 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2115 if (CGDebugInfo *Dbg = getDebugInfo()) 2116 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2117 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2118 } 2119 2120 CodeGenFunction::PeepholeProtection 2121 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2122 // At the moment, the only aggressive peephole we do in IR gen 2123 // is trunc(zext) folding, but if we add more, we can easily 2124 // extend this protection. 2125 2126 if (!rvalue.isScalar()) return PeepholeProtection(); 2127 llvm::Value *value = rvalue.getScalarVal(); 2128 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2129 2130 // Just make an extra bitcast. 2131 assert(HaveInsertPoint()); 2132 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2133 Builder.GetInsertBlock()); 2134 2135 PeepholeProtection protection; 2136 protection.Inst = inst; 2137 return protection; 2138 } 2139 2140 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2141 if (!protection.Inst) return; 2142 2143 // In theory, we could try to duplicate the peepholes now, but whatever. 2144 protection.Inst->eraseFromParent(); 2145 } 2146 2147 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2148 QualType Ty, SourceLocation Loc, 2149 SourceLocation AssumptionLoc, 2150 llvm::Value *Alignment, 2151 llvm::Value *OffsetValue) { 2152 llvm::Value *TheCheck; 2153 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2154 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2155 if (SanOpts.has(SanitizerKind::Alignment)) { 2156 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2157 OffsetValue, TheCheck, Assumption); 2158 } 2159 } 2160 2161 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2162 const Expr *E, 2163 SourceLocation AssumptionLoc, 2164 llvm::Value *Alignment, 2165 llvm::Value *OffsetValue) { 2166 if (auto *CE = dyn_cast<CastExpr>(E)) 2167 E = CE->getSubExprAsWritten(); 2168 QualType Ty = E->getType(); 2169 SourceLocation Loc = E->getExprLoc(); 2170 2171 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2172 OffsetValue); 2173 } 2174 2175 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2176 llvm::Value *AnnotatedVal, 2177 StringRef AnnotationStr, 2178 SourceLocation Location) { 2179 llvm::Value *Args[4] = { 2180 AnnotatedVal, 2181 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2182 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2183 CGM.EmitAnnotationLineNo(Location) 2184 }; 2185 return Builder.CreateCall(AnnotationFn, Args); 2186 } 2187 2188 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2189 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2190 // FIXME We create a new bitcast for every annotation because that's what 2191 // llvm-gcc was doing. 2192 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2193 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2194 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2195 I->getAnnotation(), D->getLocation()); 2196 } 2197 2198 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2199 Address Addr) { 2200 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2201 llvm::Value *V = Addr.getPointer(); 2202 llvm::Type *VTy = V->getType(); 2203 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2204 CGM.Int8PtrTy); 2205 2206 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2207 // FIXME Always emit the cast inst so we can differentiate between 2208 // annotation on the first field of a struct and annotation on the struct 2209 // itself. 2210 if (VTy != CGM.Int8PtrTy) 2211 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2212 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2213 V = Builder.CreateBitCast(V, VTy); 2214 } 2215 2216 return Address(V, Addr.getAlignment()); 2217 } 2218 2219 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2220 2221 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2222 : CGF(CGF) { 2223 assert(!CGF->IsSanitizerScope); 2224 CGF->IsSanitizerScope = true; 2225 } 2226 2227 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2228 CGF->IsSanitizerScope = false; 2229 } 2230 2231 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2232 const llvm::Twine &Name, 2233 llvm::BasicBlock *BB, 2234 llvm::BasicBlock::iterator InsertPt) const { 2235 LoopStack.InsertHelper(I); 2236 if (IsSanitizerScope) 2237 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2238 } 2239 2240 void CGBuilderInserter::InsertHelper( 2241 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2242 llvm::BasicBlock::iterator InsertPt) const { 2243 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2244 if (CGF) 2245 CGF->InsertHelper(I, Name, BB, InsertPt); 2246 } 2247 2248 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2249 CodeGenModule &CGM, const FunctionDecl *FD, 2250 std::string &FirstMissing) { 2251 // If there aren't any required features listed then go ahead and return. 2252 if (ReqFeatures.empty()) 2253 return false; 2254 2255 // Now build up the set of caller features and verify that all the required 2256 // features are there. 2257 llvm::StringMap<bool> CallerFeatureMap; 2258 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2259 2260 // If we have at least one of the features in the feature list return 2261 // true, otherwise return false. 2262 return std::all_of( 2263 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2264 SmallVector<StringRef, 1> OrFeatures; 2265 Feature.split(OrFeatures, '|'); 2266 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2267 if (!CallerFeatureMap.lookup(Feature)) { 2268 FirstMissing = Feature.str(); 2269 return false; 2270 } 2271 return true; 2272 }); 2273 }); 2274 } 2275 2276 // Emits an error if we don't have a valid set of target features for the 2277 // called function. 2278 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2279 const FunctionDecl *TargetDecl) { 2280 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2281 } 2282 2283 // Emits an error if we don't have a valid set of target features for the 2284 // called function. 2285 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2286 const FunctionDecl *TargetDecl) { 2287 // Early exit if this is an indirect call. 2288 if (!TargetDecl) 2289 return; 2290 2291 // Get the current enclosing function if it exists. If it doesn't 2292 // we can't check the target features anyhow. 2293 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2294 if (!FD) 2295 return; 2296 2297 // Grab the required features for the call. For a builtin this is listed in 2298 // the td file with the default cpu, for an always_inline function this is any 2299 // listed cpu and any listed features. 2300 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2301 std::string MissingFeature; 2302 if (BuiltinID) { 2303 SmallVector<StringRef, 1> ReqFeatures; 2304 const char *FeatureList = 2305 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2306 // Return if the builtin doesn't have any required features. 2307 if (!FeatureList || StringRef(FeatureList) == "") 2308 return; 2309 StringRef(FeatureList).split(ReqFeatures, ','); 2310 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2311 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2312 << TargetDecl->getDeclName() 2313 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2314 2315 } else if (!TargetDecl->isMultiVersion() && 2316 TargetDecl->hasAttr<TargetAttr>()) { 2317 // Get the required features for the callee. 2318 2319 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2320 ParsedTargetAttr ParsedAttr = 2321 CGM.getContext().filterFunctionTargetAttrs(TD); 2322 2323 SmallVector<StringRef, 1> ReqFeatures; 2324 llvm::StringMap<bool> CalleeFeatureMap; 2325 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, 2326 GlobalDecl(TargetDecl)); 2327 2328 for (const auto &F : ParsedAttr.Features) { 2329 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2330 ReqFeatures.push_back(StringRef(F).substr(1)); 2331 } 2332 2333 for (const auto &F : CalleeFeatureMap) { 2334 // Only positive features are "required". 2335 if (F.getValue()) 2336 ReqFeatures.push_back(F.getKey()); 2337 } 2338 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2339 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2340 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2341 } 2342 } 2343 2344 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2345 if (!CGM.getCodeGenOpts().SanitizeStats) 2346 return; 2347 2348 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2349 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2350 CGM.getSanStats().create(IRB, SSK); 2351 } 2352 2353 llvm::Value * 2354 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2355 llvm::Value *Condition = nullptr; 2356 2357 if (!RO.Conditions.Architecture.empty()) 2358 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2359 2360 if (!RO.Conditions.Features.empty()) { 2361 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2362 Condition = 2363 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2364 } 2365 return Condition; 2366 } 2367 2368 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2369 llvm::Function *Resolver, 2370 CGBuilderTy &Builder, 2371 llvm::Function *FuncToReturn, 2372 bool SupportsIFunc) { 2373 if (SupportsIFunc) { 2374 Builder.CreateRet(FuncToReturn); 2375 return; 2376 } 2377 2378 llvm::SmallVector<llvm::Value *, 10> Args; 2379 llvm::for_each(Resolver->args(), 2380 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2381 2382 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2383 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2384 2385 if (Resolver->getReturnType()->isVoidTy()) 2386 Builder.CreateRetVoid(); 2387 else 2388 Builder.CreateRet(Result); 2389 } 2390 2391 void CodeGenFunction::EmitMultiVersionResolver( 2392 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2393 assert(getContext().getTargetInfo().getTriple().isX86() && 2394 "Only implemented for x86 targets"); 2395 2396 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2397 2398 // Main function's basic block. 2399 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2400 Builder.SetInsertPoint(CurBlock); 2401 EmitX86CpuInit(); 2402 2403 for (const MultiVersionResolverOption &RO : Options) { 2404 Builder.SetInsertPoint(CurBlock); 2405 llvm::Value *Condition = FormResolverCondition(RO); 2406 2407 // The 'default' or 'generic' case. 2408 if (!Condition) { 2409 assert(&RO == Options.end() - 1 && 2410 "Default or Generic case must be last"); 2411 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2412 SupportsIFunc); 2413 return; 2414 } 2415 2416 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2417 CGBuilderTy RetBuilder(*this, RetBlock); 2418 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2419 SupportsIFunc); 2420 CurBlock = createBasicBlock("resolver_else", Resolver); 2421 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2422 } 2423 2424 // If no generic/default, emit an unreachable. 2425 Builder.SetInsertPoint(CurBlock); 2426 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2427 TrapCall->setDoesNotReturn(); 2428 TrapCall->setDoesNotThrow(); 2429 Builder.CreateUnreachable(); 2430 Builder.ClearInsertionPoint(); 2431 } 2432 2433 // Loc - where the diagnostic will point, where in the source code this 2434 // alignment has failed. 2435 // SecondaryLoc - if present (will be present if sufficiently different from 2436 // Loc), the diagnostic will additionally point a "Note:" to this location. 2437 // It should be the location where the __attribute__((assume_aligned)) 2438 // was written e.g. 2439 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2440 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2441 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2442 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2443 llvm::Instruction *Assumption) { 2444 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2445 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2446 llvm::Intrinsic::getDeclaration( 2447 Builder.GetInsertBlock()->getParent()->getParent(), 2448 llvm::Intrinsic::assume) && 2449 "Assumption should be a call to llvm.assume()."); 2450 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2451 "Assumption should be the last instruction of the basic block, " 2452 "since the basic block is still being generated."); 2453 2454 if (!SanOpts.has(SanitizerKind::Alignment)) 2455 return; 2456 2457 // Don't check pointers to volatile data. The behavior here is implementation- 2458 // defined. 2459 if (Ty->getPointeeType().isVolatileQualified()) 2460 return; 2461 2462 // We need to temorairly remove the assumption so we can insert the 2463 // sanitizer check before it, else the check will be dropped by optimizations. 2464 Assumption->removeFromParent(); 2465 2466 { 2467 SanitizerScope SanScope(this); 2468 2469 if (!OffsetValue) 2470 OffsetValue = Builder.getInt1(0); // no offset. 2471 2472 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2473 EmitCheckSourceLocation(SecondaryLoc), 2474 EmitCheckTypeDescriptor(Ty)}; 2475 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2476 EmitCheckValue(Alignment), 2477 EmitCheckValue(OffsetValue)}; 2478 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2479 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2480 } 2481 2482 // We are now in the (new, empty) "cont" basic block. 2483 // Reintroduce the assumption. 2484 Builder.Insert(Assumption); 2485 // FIXME: Assumption still has it's original basic block as it's Parent. 2486 } 2487 2488 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2489 if (CGDebugInfo *DI = getDebugInfo()) 2490 return DI->SourceLocToDebugLoc(Location); 2491 2492 return llvm::DebugLoc(); 2493 } 2494