1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Operator.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
42 /// markers.
43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
44                                       const LangOptions &LangOpts) {
45   // Asan uses markers for use-after-scope checks.
46   if (CGOpts.SanitizeAddressUseAfterScope)
47     return true;
48 
49   // Disable lifetime markers in msan builds.
50   // FIXME: Remove this when msan works with lifetime markers.
51   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
52     return false;
53 
54   // For now, only in optimized builds.
55   return CGOpts.OptimizationLevel != 0;
56 }
57 
58 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
59     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
60       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
61               CGBuilderInserterTy(this)),
62       CurFn(nullptr), ReturnValue(Address::invalid()),
63       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
64       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
65       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
66       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
67       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
68       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
69       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
70       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
71       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
72       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
73       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
74       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
75       CXXStructorImplicitParamDecl(nullptr),
76       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
77       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
78       TerminateHandler(nullptr), TrapBB(nullptr),
79       ShouldEmitLifetimeMarkers(
80           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
81   if (!suppressNewContext)
82     CGM.getCXXABI().getMangleContext().startNewFunction();
83 
84   llvm::FastMathFlags FMF;
85   if (CGM.getLangOpts().FastMath)
86     FMF.setUnsafeAlgebra();
87   if (CGM.getLangOpts().FiniteMathOnly) {
88     FMF.setNoNaNs();
89     FMF.setNoInfs();
90   }
91   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
92     FMF.setNoNaNs();
93   }
94   if (CGM.getCodeGenOpts().NoSignedZeros) {
95     FMF.setNoSignedZeros();
96   }
97   if (CGM.getCodeGenOpts().ReciprocalMath) {
98     FMF.setAllowReciprocal();
99   }
100   Builder.setFastMathFlags(FMF);
101 }
102 
103 CodeGenFunction::~CodeGenFunction() {
104   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
105 
106   // If there are any unclaimed block infos, go ahead and destroy them
107   // now.  This can happen if IR-gen gets clever and skips evaluating
108   // something.
109   if (FirstBlockInfo)
110     destroyBlockInfos(FirstBlockInfo);
111 
112   if (getLangOpts().OpenMP) {
113     CGM.getOpenMPRuntime().functionFinished(*this);
114   }
115 }
116 
117 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
118                                                      AlignmentSource *Source) {
119   return getNaturalTypeAlignment(T->getPointeeType(), Source,
120                                  /*forPointee*/ true);
121 }
122 
123 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
124                                                    AlignmentSource *Source,
125                                                    bool forPointeeType) {
126   // Honor alignment typedef attributes even on incomplete types.
127   // We also honor them straight for C++ class types, even as pointees;
128   // there's an expressivity gap here.
129   if (auto TT = T->getAs<TypedefType>()) {
130     if (auto Align = TT->getDecl()->getMaxAlignment()) {
131       if (Source) *Source = AlignmentSource::AttributedType;
132       return getContext().toCharUnitsFromBits(Align);
133     }
134   }
135 
136   if (Source) *Source = AlignmentSource::Type;
137 
138   CharUnits Alignment;
139   if (T->isIncompleteType()) {
140     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
141   } else {
142     // For C++ class pointees, we don't know whether we're pointing at a
143     // base or a complete object, so we generally need to use the
144     // non-virtual alignment.
145     const CXXRecordDecl *RD;
146     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
147       Alignment = CGM.getClassPointerAlignment(RD);
148     } else {
149       Alignment = getContext().getTypeAlignInChars(T);
150     }
151 
152     // Cap to the global maximum type alignment unless the alignment
153     // was somehow explicit on the type.
154     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
155       if (Alignment.getQuantity() > MaxAlign &&
156           !getContext().isAlignmentRequired(T))
157         Alignment = CharUnits::fromQuantity(MaxAlign);
158     }
159   }
160   return Alignment;
161 }
162 
163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
164   AlignmentSource AlignSource;
165   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
166   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
167                           CGM.getTBAAInfo(T));
168 }
169 
170 /// Given a value of type T* that may not be to a complete object,
171 /// construct an l-value with the natural pointee alignment of T.
172 LValue
173 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
174   AlignmentSource AlignSource;
175   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
176   return MakeAddrLValue(Address(V, Align), T, AlignSource);
177 }
178 
179 
180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
181   return CGM.getTypes().ConvertTypeForMem(T);
182 }
183 
184 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
185   return CGM.getTypes().ConvertType(T);
186 }
187 
188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
189   type = type.getCanonicalType();
190   while (true) {
191     switch (type->getTypeClass()) {
192 #define TYPE(name, parent)
193 #define ABSTRACT_TYPE(name, parent)
194 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
195 #define DEPENDENT_TYPE(name, parent) case Type::name:
196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
197 #include "clang/AST/TypeNodes.def"
198       llvm_unreachable("non-canonical or dependent type in IR-generation");
199 
200     case Type::Auto:
201       llvm_unreachable("undeduced auto type in IR-generation");
202 
203     // Various scalar types.
204     case Type::Builtin:
205     case Type::Pointer:
206     case Type::BlockPointer:
207     case Type::LValueReference:
208     case Type::RValueReference:
209     case Type::MemberPointer:
210     case Type::Vector:
211     case Type::ExtVector:
212     case Type::FunctionProto:
213     case Type::FunctionNoProto:
214     case Type::Enum:
215     case Type::ObjCObjectPointer:
216     case Type::Pipe:
217       return TEK_Scalar;
218 
219     // Complexes.
220     case Type::Complex:
221       return TEK_Complex;
222 
223     // Arrays, records, and Objective-C objects.
224     case Type::ConstantArray:
225     case Type::IncompleteArray:
226     case Type::VariableArray:
227     case Type::Record:
228     case Type::ObjCObject:
229     case Type::ObjCInterface:
230       return TEK_Aggregate;
231 
232     // We operate on atomic values according to their underlying type.
233     case Type::Atomic:
234       type = cast<AtomicType>(type)->getValueType();
235       continue;
236     }
237     llvm_unreachable("unknown type kind!");
238   }
239 }
240 
241 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
242   // For cleanliness, we try to avoid emitting the return block for
243   // simple cases.
244   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
245 
246   if (CurBB) {
247     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
248 
249     // We have a valid insert point, reuse it if it is empty or there are no
250     // explicit jumps to the return block.
251     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
252       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
253       delete ReturnBlock.getBlock();
254     } else
255       EmitBlock(ReturnBlock.getBlock());
256     return llvm::DebugLoc();
257   }
258 
259   // Otherwise, if the return block is the target of a single direct
260   // branch then we can just put the code in that block instead. This
261   // cleans up functions which started with a unified return block.
262   if (ReturnBlock.getBlock()->hasOneUse()) {
263     llvm::BranchInst *BI =
264       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
265     if (BI && BI->isUnconditional() &&
266         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
267       // Record/return the DebugLoc of the simple 'return' expression to be used
268       // later by the actual 'ret' instruction.
269       llvm::DebugLoc Loc = BI->getDebugLoc();
270       Builder.SetInsertPoint(BI->getParent());
271       BI->eraseFromParent();
272       delete ReturnBlock.getBlock();
273       return Loc;
274     }
275   }
276 
277   // FIXME: We are at an unreachable point, there is no reason to emit the block
278   // unless it has uses. However, we still need a place to put the debug
279   // region.end for now.
280 
281   EmitBlock(ReturnBlock.getBlock());
282   return llvm::DebugLoc();
283 }
284 
285 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
286   if (!BB) return;
287   if (!BB->use_empty())
288     return CGF.CurFn->getBasicBlockList().push_back(BB);
289   delete BB;
290 }
291 
292 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
293   assert(BreakContinueStack.empty() &&
294          "mismatched push/pop in break/continue stack!");
295 
296   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
297     && NumSimpleReturnExprs == NumReturnExprs
298     && ReturnBlock.getBlock()->use_empty();
299   // Usually the return expression is evaluated before the cleanup
300   // code.  If the function contains only a simple return statement,
301   // such as a constant, the location before the cleanup code becomes
302   // the last useful breakpoint in the function, because the simple
303   // return expression will be evaluated after the cleanup code. To be
304   // safe, set the debug location for cleanup code to the location of
305   // the return statement.  Otherwise the cleanup code should be at the
306   // end of the function's lexical scope.
307   //
308   // If there are multiple branches to the return block, the branch
309   // instructions will get the location of the return statements and
310   // all will be fine.
311   if (CGDebugInfo *DI = getDebugInfo()) {
312     if (OnlySimpleReturnStmts)
313       DI->EmitLocation(Builder, LastStopPoint);
314     else
315       DI->EmitLocation(Builder, EndLoc);
316   }
317 
318   // Pop any cleanups that might have been associated with the
319   // parameters.  Do this in whatever block we're currently in; it's
320   // important to do this before we enter the return block or return
321   // edges will be *really* confused.
322   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
323   bool HasOnlyLifetimeMarkers =
324       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
325   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
326   if (HasCleanups) {
327     // Make sure the line table doesn't jump back into the body for
328     // the ret after it's been at EndLoc.
329     if (CGDebugInfo *DI = getDebugInfo())
330       if (OnlySimpleReturnStmts)
331         DI->EmitLocation(Builder, EndLoc);
332 
333     PopCleanupBlocks(PrologueCleanupDepth);
334   }
335 
336   // Emit function epilog (to return).
337   llvm::DebugLoc Loc = EmitReturnBlock();
338 
339   if (ShouldInstrumentFunction())
340     EmitFunctionInstrumentation("__cyg_profile_func_exit");
341 
342   // Emit debug descriptor for function end.
343   if (CGDebugInfo *DI = getDebugInfo())
344     DI->EmitFunctionEnd(Builder);
345 
346   // Reset the debug location to that of the simple 'return' expression, if any
347   // rather than that of the end of the function's scope '}'.
348   ApplyDebugLocation AL(*this, Loc);
349   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
350   EmitEndEHSpec(CurCodeDecl);
351 
352   assert(EHStack.empty() &&
353          "did not remove all scopes from cleanup stack!");
354 
355   // If someone did an indirect goto, emit the indirect goto block at the end of
356   // the function.
357   if (IndirectBranch) {
358     EmitBlock(IndirectBranch->getParent());
359     Builder.ClearInsertionPoint();
360   }
361 
362   // If some of our locals escaped, insert a call to llvm.localescape in the
363   // entry block.
364   if (!EscapedLocals.empty()) {
365     // Invert the map from local to index into a simple vector. There should be
366     // no holes.
367     SmallVector<llvm::Value *, 4> EscapeArgs;
368     EscapeArgs.resize(EscapedLocals.size());
369     for (auto &Pair : EscapedLocals)
370       EscapeArgs[Pair.second] = Pair.first;
371     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
372         &CGM.getModule(), llvm::Intrinsic::localescape);
373     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
374   }
375 
376   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
377   llvm::Instruction *Ptr = AllocaInsertPt;
378   AllocaInsertPt = nullptr;
379   Ptr->eraseFromParent();
380 
381   // If someone took the address of a label but never did an indirect goto, we
382   // made a zero entry PHI node, which is illegal, zap it now.
383   if (IndirectBranch) {
384     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
385     if (PN->getNumIncomingValues() == 0) {
386       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
387       PN->eraseFromParent();
388     }
389   }
390 
391   EmitIfUsed(*this, EHResumeBlock);
392   EmitIfUsed(*this, TerminateLandingPad);
393   EmitIfUsed(*this, TerminateHandler);
394   EmitIfUsed(*this, UnreachableBlock);
395 
396   if (CGM.getCodeGenOpts().EmitDeclMetadata)
397     EmitDeclMetadata();
398 
399   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
400            I = DeferredReplacements.begin(),
401            E = DeferredReplacements.end();
402        I != E; ++I) {
403     I->first->replaceAllUsesWith(I->second);
404     I->first->eraseFromParent();
405   }
406 }
407 
408 /// ShouldInstrumentFunction - Return true if the current function should be
409 /// instrumented with __cyg_profile_func_* calls
410 bool CodeGenFunction::ShouldInstrumentFunction() {
411   if (!CGM.getCodeGenOpts().InstrumentFunctions)
412     return false;
413   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
414     return false;
415   return true;
416 }
417 
418 /// ShouldXRayInstrument - Return true if the current function should be
419 /// instrumented with XRay nop sleds.
420 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
421   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
422 }
423 
424 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
425 /// instrumentation function with the current function and the call site, if
426 /// function instrumentation is enabled.
427 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
428   auto NL = ApplyDebugLocation::CreateArtificial(*this);
429   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
430   llvm::PointerType *PointerTy = Int8PtrTy;
431   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
432   llvm::FunctionType *FunctionTy =
433     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
434 
435   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
436   llvm::CallInst *CallSite = Builder.CreateCall(
437     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
438     llvm::ConstantInt::get(Int32Ty, 0),
439     "callsite");
440 
441   llvm::Value *args[] = {
442     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
443     CallSite
444   };
445 
446   EmitNounwindRuntimeCall(F, args);
447 }
448 
449 static void removeImageAccessQualifier(std::string& TyName) {
450   std::string ReadOnlyQual("__read_only");
451   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
452   if (ReadOnlyPos != std::string::npos)
453     // "+ 1" for the space after access qualifier.
454     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
455   else {
456     std::string WriteOnlyQual("__write_only");
457     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
458     if (WriteOnlyPos != std::string::npos)
459       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
460     else {
461       std::string ReadWriteQual("__read_write");
462       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
463       if (ReadWritePos != std::string::npos)
464         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
465     }
466   }
467 }
468 
469 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
470 // information in the program executable. The argument information stored
471 // includes the argument name, its type, the address and access qualifiers used.
472 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
473                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
474                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
475   // Create MDNodes that represent the kernel arg metadata.
476   // Each MDNode is a list in the form of "key", N number of values which is
477   // the same number of values as their are kernel arguments.
478 
479   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
480 
481   // MDNode for the kernel argument address space qualifiers.
482   SmallVector<llvm::Metadata *, 8> addressQuals;
483 
484   // MDNode for the kernel argument access qualifiers (images only).
485   SmallVector<llvm::Metadata *, 8> accessQuals;
486 
487   // MDNode for the kernel argument type names.
488   SmallVector<llvm::Metadata *, 8> argTypeNames;
489 
490   // MDNode for the kernel argument base type names.
491   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
492 
493   // MDNode for the kernel argument type qualifiers.
494   SmallVector<llvm::Metadata *, 8> argTypeQuals;
495 
496   // MDNode for the kernel argument names.
497   SmallVector<llvm::Metadata *, 8> argNames;
498 
499   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
500     const ParmVarDecl *parm = FD->getParamDecl(i);
501     QualType ty = parm->getType();
502     std::string typeQuals;
503 
504     if (ty->isPointerType()) {
505       QualType pointeeTy = ty->getPointeeType();
506 
507       // Get address qualifier.
508       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
509           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
510 
511       // Get argument type name.
512       std::string typeName =
513           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
514 
515       // Turn "unsigned type" to "utype"
516       std::string::size_type pos = typeName.find("unsigned");
517       if (pointeeTy.isCanonical() && pos != std::string::npos)
518         typeName.erase(pos+1, 8);
519 
520       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
521 
522       std::string baseTypeName =
523           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
524               Policy) +
525           "*";
526 
527       // Turn "unsigned type" to "utype"
528       pos = baseTypeName.find("unsigned");
529       if (pos != std::string::npos)
530         baseTypeName.erase(pos+1, 8);
531 
532       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
533 
534       // Get argument type qualifiers:
535       if (ty.isRestrictQualified())
536         typeQuals = "restrict";
537       if (pointeeTy.isConstQualified() ||
538           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
539         typeQuals += typeQuals.empty() ? "const" : " const";
540       if (pointeeTy.isVolatileQualified())
541         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
542     } else {
543       uint32_t AddrSpc = 0;
544       bool isPipe = ty->isPipeType();
545       if (ty->isImageType() || isPipe)
546         AddrSpc =
547           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
548 
549       addressQuals.push_back(
550           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
551 
552       // Get argument type name.
553       std::string typeName;
554       if (isPipe)
555         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
556                      .getAsString(Policy);
557       else
558         typeName = ty.getUnqualifiedType().getAsString(Policy);
559 
560       // Turn "unsigned type" to "utype"
561       std::string::size_type pos = typeName.find("unsigned");
562       if (ty.isCanonical() && pos != std::string::npos)
563         typeName.erase(pos+1, 8);
564 
565       std::string baseTypeName;
566       if (isPipe)
567         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
568                           ->getElementType().getCanonicalType()
569                           .getAsString(Policy);
570       else
571         baseTypeName =
572           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
573 
574       // Remove access qualifiers on images
575       // (as they are inseparable from type in clang implementation,
576       // but OpenCL spec provides a special query to get access qualifier
577       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
578       if (ty->isImageType()) {
579         removeImageAccessQualifier(typeName);
580         removeImageAccessQualifier(baseTypeName);
581       }
582 
583       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
584 
585       // Turn "unsigned type" to "utype"
586       pos = baseTypeName.find("unsigned");
587       if (pos != std::string::npos)
588         baseTypeName.erase(pos+1, 8);
589 
590       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
591 
592       // Get argument type qualifiers:
593       if (ty.isConstQualified())
594         typeQuals = "const";
595       if (ty.isVolatileQualified())
596         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
597       if (isPipe)
598         typeQuals = "pipe";
599     }
600 
601     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
602 
603     // Get image and pipe access qualifier:
604     if (ty->isImageType()|| ty->isPipeType()) {
605       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
606       if (A && A->isWriteOnly())
607         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
608       else if (A && A->isReadWrite())
609         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
610       else
611         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
612     } else
613       accessQuals.push_back(llvm::MDString::get(Context, "none"));
614 
615     // Get argument name.
616     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
617   }
618 
619   Fn->setMetadata("kernel_arg_addr_space",
620                   llvm::MDNode::get(Context, addressQuals));
621   Fn->setMetadata("kernel_arg_access_qual",
622                   llvm::MDNode::get(Context, accessQuals));
623   Fn->setMetadata("kernel_arg_type",
624                   llvm::MDNode::get(Context, argTypeNames));
625   Fn->setMetadata("kernel_arg_base_type",
626                   llvm::MDNode::get(Context, argBaseTypeNames));
627   Fn->setMetadata("kernel_arg_type_qual",
628                   llvm::MDNode::get(Context, argTypeQuals));
629   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
630     Fn->setMetadata("kernel_arg_name",
631                     llvm::MDNode::get(Context, argNames));
632 }
633 
634 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
635                                                llvm::Function *Fn)
636 {
637   if (!FD->hasAttr<OpenCLKernelAttr>())
638     return;
639 
640   llvm::LLVMContext &Context = getLLVMContext();
641 
642   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
643 
644   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
645     QualType hintQTy = A->getTypeHint();
646     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
647     bool isSignedInteger =
648         hintQTy->isSignedIntegerType() ||
649         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
650     llvm::Metadata *attrMDArgs[] = {
651         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
652             CGM.getTypes().ConvertType(A->getTypeHint()))),
653         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
654             llvm::IntegerType::get(Context, 32),
655             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
656     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
657   }
658 
659   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
660     llvm::Metadata *attrMDArgs[] = {
661         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
662         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
663         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
664     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
665   }
666 
667   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
668     llvm::Metadata *attrMDArgs[] = {
669         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
670         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
671         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
672     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
673   }
674 }
675 
676 /// Determine whether the function F ends with a return stmt.
677 static bool endsWithReturn(const Decl* F) {
678   const Stmt *Body = nullptr;
679   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
680     Body = FD->getBody();
681   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
682     Body = OMD->getBody();
683 
684   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
685     auto LastStmt = CS->body_rbegin();
686     if (LastStmt != CS->body_rend())
687       return isa<ReturnStmt>(*LastStmt);
688   }
689   return false;
690 }
691 
692 void CodeGenFunction::StartFunction(GlobalDecl GD,
693                                     QualType RetTy,
694                                     llvm::Function *Fn,
695                                     const CGFunctionInfo &FnInfo,
696                                     const FunctionArgList &Args,
697                                     SourceLocation Loc,
698                                     SourceLocation StartLoc) {
699   assert(!CurFn &&
700          "Do not use a CodeGenFunction object for more than one function");
701 
702   const Decl *D = GD.getDecl();
703 
704   DidCallStackSave = false;
705   CurCodeDecl = D;
706   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
707     if (FD->usesSEHTry())
708       CurSEHParent = FD;
709   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
710   FnRetTy = RetTy;
711   CurFn = Fn;
712   CurFnInfo = &FnInfo;
713   assert(CurFn->isDeclaration() && "Function already has body?");
714 
715   if (CGM.isInSanitizerBlacklist(Fn, Loc))
716     SanOpts.clear();
717 
718   if (D) {
719     // Apply the no_sanitize* attributes to SanOpts.
720     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
721       SanOpts.Mask &= ~Attr->getMask();
722   }
723 
724   // Apply sanitizer attributes to the function.
725   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
726     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
727   if (SanOpts.has(SanitizerKind::Thread))
728     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
729   if (SanOpts.has(SanitizerKind::Memory))
730     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
731   if (SanOpts.has(SanitizerKind::SafeStack))
732     Fn->addFnAttr(llvm::Attribute::SafeStack);
733 
734   // Apply xray attributes to the function (as a string, for now)
735   if (D && ShouldXRayInstrumentFunction()) {
736     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
737       if (XRayAttr->alwaysXRayInstrument())
738         Fn->addFnAttr("function-instrument", "xray-always");
739       if (XRayAttr->neverXRayInstrument())
740         Fn->addFnAttr("function-instrument", "xray-never");
741     } else {
742       Fn->addFnAttr(
743           "xray-instruction-threshold",
744           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
745     }
746   }
747 
748   // Pass inline keyword to optimizer if it appears explicitly on any
749   // declaration. Also, in the case of -fno-inline attach NoInline
750   // attribute to all functions that are not marked AlwaysInline, or
751   // to all functions that are not marked inline or implicitly inline
752   // in the case of -finline-hint-functions.
753   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
754     const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts();
755     if (!CodeGenOpts.NoInline) {
756       for (auto RI : FD->redecls())
757         if (RI->isInlineSpecified()) {
758           Fn->addFnAttr(llvm::Attribute::InlineHint);
759           break;
760         }
761       if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining &&
762           !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint))
763         Fn->addFnAttr(llvm::Attribute::NoInline);
764     } else if (!FD->hasAttr<AlwaysInlineAttr>())
765       Fn->addFnAttr(llvm::Attribute::NoInline);
766     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
767       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
768   }
769 
770   // Add no-jump-tables value.
771   Fn->addFnAttr("no-jump-tables",
772                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
773 
774   if (getLangOpts().OpenCL) {
775     // Add metadata for a kernel function.
776     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
777       EmitOpenCLKernelMetadata(FD, Fn);
778   }
779 
780   // If we are checking function types, emit a function type signature as
781   // prologue data.
782   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
783     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
784       if (llvm::Constant *PrologueSig =
785               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
786         llvm::Constant *FTRTTIConst =
787             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
788         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
789         llvm::Constant *PrologueStructConst =
790             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
791         Fn->setPrologueData(PrologueStructConst);
792       }
793     }
794   }
795 
796   // If we're in C++ mode and the function name is "main", it is guaranteed
797   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
798   // used within a program").
799   if (getLangOpts().CPlusPlus)
800     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
801       if (FD->isMain())
802         Fn->addFnAttr(llvm::Attribute::NoRecurse);
803 
804   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
805 
806   // Create a marker to make it easy to insert allocas into the entryblock
807   // later.  Don't create this with the builder, because we don't want it
808   // folded.
809   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
810   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
811 
812   ReturnBlock = getJumpDestInCurrentScope("return");
813 
814   Builder.SetInsertPoint(EntryBB);
815 
816   // Emit subprogram debug descriptor.
817   if (CGDebugInfo *DI = getDebugInfo()) {
818     // Reconstruct the type from the argument list so that implicit parameters,
819     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
820     // convention.
821     CallingConv CC = CallingConv::CC_C;
822     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
823       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
824         CC = SrcFnTy->getCallConv();
825     SmallVector<QualType, 16> ArgTypes;
826     for (const VarDecl *VD : Args)
827       ArgTypes.push_back(VD->getType());
828     QualType FnType = getContext().getFunctionType(
829         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
830     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
831   }
832 
833   if (ShouldInstrumentFunction())
834     EmitFunctionInstrumentation("__cyg_profile_func_enter");
835 
836   // Since emitting the mcount call here impacts optimizations such as function
837   // inlining, we just add an attribute to insert a mcount call in backend.
838   // The attribute "counting-function" is set to mcount function name which is
839   // architecture dependent.
840   if (CGM.getCodeGenOpts().InstrumentForProfiling)
841     Fn->addFnAttr("counting-function", getTarget().getMCountName());
842 
843   if (RetTy->isVoidType()) {
844     // Void type; nothing to return.
845     ReturnValue = Address::invalid();
846 
847     // Count the implicit return.
848     if (!endsWithReturn(D))
849       ++NumReturnExprs;
850   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
851              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
852     // Indirect aggregate return; emit returned value directly into sret slot.
853     // This reduces code size, and affects correctness in C++.
854     auto AI = CurFn->arg_begin();
855     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
856       ++AI;
857     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
858   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
859              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
860     // Load the sret pointer from the argument struct and return into that.
861     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
862     llvm::Function::arg_iterator EI = CurFn->arg_end();
863     --EI;
864     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
865     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
866     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
867   } else {
868     ReturnValue = CreateIRTemp(RetTy, "retval");
869 
870     // Tell the epilog emitter to autorelease the result.  We do this
871     // now so that various specialized functions can suppress it
872     // during their IR-generation.
873     if (getLangOpts().ObjCAutoRefCount &&
874         !CurFnInfo->isReturnsRetained() &&
875         RetTy->isObjCRetainableType())
876       AutoreleaseResult = true;
877   }
878 
879   EmitStartEHSpec(CurCodeDecl);
880 
881   PrologueCleanupDepth = EHStack.stable_begin();
882   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
883 
884   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
885     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
886     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
887     if (MD->getParent()->isLambda() &&
888         MD->getOverloadedOperator() == OO_Call) {
889       // We're in a lambda; figure out the captures.
890       MD->getParent()->getCaptureFields(LambdaCaptureFields,
891                                         LambdaThisCaptureField);
892       if (LambdaThisCaptureField) {
893         // If the lambda captures the object referred to by '*this' - either by
894         // value or by reference, make sure CXXThisValue points to the correct
895         // object.
896 
897         // Get the lvalue for the field (which is a copy of the enclosing object
898         // or contains the address of the enclosing object).
899         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
900         if (!LambdaThisCaptureField->getType()->isPointerType()) {
901           // If the enclosing object was captured by value, just use its address.
902           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
903         } else {
904           // Load the lvalue pointed to by the field, since '*this' was captured
905           // by reference.
906           CXXThisValue =
907               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
908         }
909       }
910       for (auto *FD : MD->getParent()->fields()) {
911         if (FD->hasCapturedVLAType()) {
912           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
913                                            SourceLocation()).getScalarVal();
914           auto VAT = FD->getCapturedVLAType();
915           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
916         }
917       }
918     } else {
919       // Not in a lambda; just use 'this' from the method.
920       // FIXME: Should we generate a new load for each use of 'this'?  The
921       // fast register allocator would be happier...
922       CXXThisValue = CXXABIThisValue;
923     }
924   }
925 
926   // If any of the arguments have a variably modified type, make sure to
927   // emit the type size.
928   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
929        i != e; ++i) {
930     const VarDecl *VD = *i;
931 
932     // Dig out the type as written from ParmVarDecls; it's unclear whether
933     // the standard (C99 6.9.1p10) requires this, but we're following the
934     // precedent set by gcc.
935     QualType Ty;
936     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
937       Ty = PVD->getOriginalType();
938     else
939       Ty = VD->getType();
940 
941     if (Ty->isVariablyModifiedType())
942       EmitVariablyModifiedType(Ty);
943   }
944   // Emit a location at the end of the prologue.
945   if (CGDebugInfo *DI = getDebugInfo())
946     DI->EmitLocation(Builder, StartLoc);
947 }
948 
949 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
950                                        const Stmt *Body) {
951   incrementProfileCounter(Body);
952   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
953     EmitCompoundStmtWithoutScope(*S);
954   else
955     EmitStmt(Body);
956 }
957 
958 /// When instrumenting to collect profile data, the counts for some blocks
959 /// such as switch cases need to not include the fall-through counts, so
960 /// emit a branch around the instrumentation code. When not instrumenting,
961 /// this just calls EmitBlock().
962 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
963                                                const Stmt *S) {
964   llvm::BasicBlock *SkipCountBB = nullptr;
965   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
966     // When instrumenting for profiling, the fallthrough to certain
967     // statements needs to skip over the instrumentation code so that we
968     // get an accurate count.
969     SkipCountBB = createBasicBlock("skipcount");
970     EmitBranch(SkipCountBB);
971   }
972   EmitBlock(BB);
973   uint64_t CurrentCount = getCurrentProfileCount();
974   incrementProfileCounter(S);
975   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
976   if (SkipCountBB)
977     EmitBlock(SkipCountBB);
978 }
979 
980 /// Tries to mark the given function nounwind based on the
981 /// non-existence of any throwing calls within it.  We believe this is
982 /// lightweight enough to do at -O0.
983 static void TryMarkNoThrow(llvm::Function *F) {
984   // LLVM treats 'nounwind' on a function as part of the type, so we
985   // can't do this on functions that can be overwritten.
986   if (F->isInterposable()) return;
987 
988   for (llvm::BasicBlock &BB : *F)
989     for (llvm::Instruction &I : BB)
990       if (I.mayThrow())
991         return;
992 
993   F->setDoesNotThrow();
994 }
995 
996 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
997                                                FunctionArgList &Args) {
998   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
999   QualType ResTy = FD->getReturnType();
1000 
1001   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1002   if (MD && MD->isInstance()) {
1003     if (CGM.getCXXABI().HasThisReturn(GD))
1004       ResTy = MD->getThisType(getContext());
1005     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1006       ResTy = CGM.getContext().VoidPtrTy;
1007     CGM.getCXXABI().buildThisParam(*this, Args);
1008   }
1009 
1010   // The base version of an inheriting constructor whose constructed base is a
1011   // virtual base is not passed any arguments (because it doesn't actually call
1012   // the inherited constructor).
1013   bool PassedParams = true;
1014   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1015     if (auto Inherited = CD->getInheritedConstructor())
1016       PassedParams =
1017           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1018 
1019   if (PassedParams) {
1020     for (auto *Param : FD->parameters()) {
1021       Args.push_back(Param);
1022       if (!Param->hasAttr<PassObjectSizeAttr>())
1023         continue;
1024 
1025       IdentifierInfo *NoID = nullptr;
1026       auto *Implicit = ImplicitParamDecl::Create(
1027           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
1028           getContext().getSizeType());
1029       SizeArguments[Param] = Implicit;
1030       Args.push_back(Implicit);
1031     }
1032   }
1033 
1034   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1035     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1036 
1037   return ResTy;
1038 }
1039 
1040 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1041                                    const CGFunctionInfo &FnInfo) {
1042   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1043   CurGD = GD;
1044 
1045   FunctionArgList Args;
1046   QualType ResTy = BuildFunctionArgList(GD, Args);
1047 
1048   // Check if we should generate debug info for this function.
1049   if (FD->hasAttr<NoDebugAttr>())
1050     DebugInfo = nullptr; // disable debug info indefinitely for this function
1051 
1052   SourceRange BodyRange;
1053   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
1054   CurEHLocation = BodyRange.getEnd();
1055 
1056   // Use the location of the start of the function to determine where
1057   // the function definition is located. By default use the location
1058   // of the declaration as the location for the subprogram. A function
1059   // may lack a declaration in the source code if it is created by code
1060   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1061   SourceLocation Loc = FD->getLocation();
1062 
1063   // If this is a function specialization then use the pattern body
1064   // as the location for the function.
1065   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1066     if (SpecDecl->hasBody(SpecDecl))
1067       Loc = SpecDecl->getLocation();
1068 
1069   // Emit the standard function prologue.
1070   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1071 
1072   // Generate the body of the function.
1073   PGO.assignRegionCounters(GD, CurFn);
1074   if (isa<CXXDestructorDecl>(FD))
1075     EmitDestructorBody(Args);
1076   else if (isa<CXXConstructorDecl>(FD))
1077     EmitConstructorBody(Args);
1078   else if (getLangOpts().CUDA &&
1079            !getLangOpts().CUDAIsDevice &&
1080            FD->hasAttr<CUDAGlobalAttr>())
1081     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1082   else if (isa<CXXConversionDecl>(FD) &&
1083            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1084     // The lambda conversion to block pointer is special; the semantics can't be
1085     // expressed in the AST, so IRGen needs to special-case it.
1086     EmitLambdaToBlockPointerBody(Args);
1087   } else if (isa<CXXMethodDecl>(FD) &&
1088              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1089     // The lambda static invoker function is special, because it forwards or
1090     // clones the body of the function call operator (but is actually static).
1091     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1092   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1093              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1094               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1095     // Implicit copy-assignment gets the same special treatment as implicit
1096     // copy-constructors.
1097     emitImplicitAssignmentOperatorBody(Args);
1098   } else if (Stmt *Body = FD->getBody()) {
1099     EmitFunctionBody(Args, Body);
1100   } else
1101     llvm_unreachable("no definition for emitted function");
1102 
1103   // C++11 [stmt.return]p2:
1104   //   Flowing off the end of a function [...] results in undefined behavior in
1105   //   a value-returning function.
1106   // C11 6.9.1p12:
1107   //   If the '}' that terminates a function is reached, and the value of the
1108   //   function call is used by the caller, the behavior is undefined.
1109   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1110       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1111     if (SanOpts.has(SanitizerKind::Return)) {
1112       SanitizerScope SanScope(this);
1113       llvm::Value *IsFalse = Builder.getFalse();
1114       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1115                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1116                 None);
1117     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1118       EmitTrapCall(llvm::Intrinsic::trap);
1119     }
1120     Builder.CreateUnreachable();
1121     Builder.ClearInsertionPoint();
1122   }
1123 
1124   // Emit the standard function epilogue.
1125   FinishFunction(BodyRange.getEnd());
1126 
1127   // If we haven't marked the function nothrow through other means, do
1128   // a quick pass now to see if we can.
1129   if (!CurFn->doesNotThrow())
1130     TryMarkNoThrow(CurFn);
1131 }
1132 
1133 /// ContainsLabel - Return true if the statement contains a label in it.  If
1134 /// this statement is not executed normally, it not containing a label means
1135 /// that we can just remove the code.
1136 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1137   // Null statement, not a label!
1138   if (!S) return false;
1139 
1140   // If this is a label, we have to emit the code, consider something like:
1141   // if (0) {  ...  foo:  bar(); }  goto foo;
1142   //
1143   // TODO: If anyone cared, we could track __label__'s, since we know that you
1144   // can't jump to one from outside their declared region.
1145   if (isa<LabelStmt>(S))
1146     return true;
1147 
1148   // If this is a case/default statement, and we haven't seen a switch, we have
1149   // to emit the code.
1150   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1151     return true;
1152 
1153   // If this is a switch statement, we want to ignore cases below it.
1154   if (isa<SwitchStmt>(S))
1155     IgnoreCaseStmts = true;
1156 
1157   // Scan subexpressions for verboten labels.
1158   for (const Stmt *SubStmt : S->children())
1159     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1160       return true;
1161 
1162   return false;
1163 }
1164 
1165 /// containsBreak - Return true if the statement contains a break out of it.
1166 /// If the statement (recursively) contains a switch or loop with a break
1167 /// inside of it, this is fine.
1168 bool CodeGenFunction::containsBreak(const Stmt *S) {
1169   // Null statement, not a label!
1170   if (!S) return false;
1171 
1172   // If this is a switch or loop that defines its own break scope, then we can
1173   // include it and anything inside of it.
1174   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1175       isa<ForStmt>(S))
1176     return false;
1177 
1178   if (isa<BreakStmt>(S))
1179     return true;
1180 
1181   // Scan subexpressions for verboten breaks.
1182   for (const Stmt *SubStmt : S->children())
1183     if (containsBreak(SubStmt))
1184       return true;
1185 
1186   return false;
1187 }
1188 
1189 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1190   if (!S) return false;
1191 
1192   // Some statement kinds add a scope and thus never add a decl to the current
1193   // scope. Note, this list is longer than the list of statements that might
1194   // have an unscoped decl nested within them, but this way is conservatively
1195   // correct even if more statement kinds are added.
1196   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1197       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1198       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1199       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1200     return false;
1201 
1202   if (isa<DeclStmt>(S))
1203     return true;
1204 
1205   for (const Stmt *SubStmt : S->children())
1206     if (mightAddDeclToScope(SubStmt))
1207       return true;
1208 
1209   return false;
1210 }
1211 
1212 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1213 /// to a constant, or if it does but contains a label, return false.  If it
1214 /// constant folds return true and set the boolean result in Result.
1215 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1216                                                    bool &ResultBool,
1217                                                    bool AllowLabels) {
1218   llvm::APSInt ResultInt;
1219   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1220     return false;
1221 
1222   ResultBool = ResultInt.getBoolValue();
1223   return true;
1224 }
1225 
1226 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1227 /// to a constant, or if it does but contains a label, return false.  If it
1228 /// constant folds return true and set the folded value.
1229 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1230                                                    llvm::APSInt &ResultInt,
1231                                                    bool AllowLabels) {
1232   // FIXME: Rename and handle conversion of other evaluatable things
1233   // to bool.
1234   llvm::APSInt Int;
1235   if (!Cond->EvaluateAsInt(Int, getContext()))
1236     return false;  // Not foldable, not integer or not fully evaluatable.
1237 
1238   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1239     return false;  // Contains a label.
1240 
1241   ResultInt = Int;
1242   return true;
1243 }
1244 
1245 
1246 
1247 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1248 /// statement) to the specified blocks.  Based on the condition, this might try
1249 /// to simplify the codegen of the conditional based on the branch.
1250 ///
1251 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1252                                            llvm::BasicBlock *TrueBlock,
1253                                            llvm::BasicBlock *FalseBlock,
1254                                            uint64_t TrueCount) {
1255   Cond = Cond->IgnoreParens();
1256 
1257   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1258 
1259     // Handle X && Y in a condition.
1260     if (CondBOp->getOpcode() == BO_LAnd) {
1261       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1262       // folded if the case was simple enough.
1263       bool ConstantBool = false;
1264       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1265           ConstantBool) {
1266         // br(1 && X) -> br(X).
1267         incrementProfileCounter(CondBOp);
1268         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1269                                     TrueCount);
1270       }
1271 
1272       // If we have "X && 1", simplify the code to use an uncond branch.
1273       // "X && 0" would have been constant folded to 0.
1274       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1275           ConstantBool) {
1276         // br(X && 1) -> br(X).
1277         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1278                                     TrueCount);
1279       }
1280 
1281       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1282       // want to jump to the FalseBlock.
1283       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1284       // The counter tells us how often we evaluate RHS, and all of TrueCount
1285       // can be propagated to that branch.
1286       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1287 
1288       ConditionalEvaluation eval(*this);
1289       {
1290         ApplyDebugLocation DL(*this, Cond);
1291         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1292         EmitBlock(LHSTrue);
1293       }
1294 
1295       incrementProfileCounter(CondBOp);
1296       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1297 
1298       // Any temporaries created here are conditional.
1299       eval.begin(*this);
1300       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1301       eval.end(*this);
1302 
1303       return;
1304     }
1305 
1306     if (CondBOp->getOpcode() == BO_LOr) {
1307       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1308       // folded if the case was simple enough.
1309       bool ConstantBool = false;
1310       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1311           !ConstantBool) {
1312         // br(0 || X) -> br(X).
1313         incrementProfileCounter(CondBOp);
1314         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1315                                     TrueCount);
1316       }
1317 
1318       // If we have "X || 0", simplify the code to use an uncond branch.
1319       // "X || 1" would have been constant folded to 1.
1320       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1321           !ConstantBool) {
1322         // br(X || 0) -> br(X).
1323         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1324                                     TrueCount);
1325       }
1326 
1327       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1328       // want to jump to the TrueBlock.
1329       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1330       // We have the count for entry to the RHS and for the whole expression
1331       // being true, so we can divy up True count between the short circuit and
1332       // the RHS.
1333       uint64_t LHSCount =
1334           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1335       uint64_t RHSCount = TrueCount - LHSCount;
1336 
1337       ConditionalEvaluation eval(*this);
1338       {
1339         ApplyDebugLocation DL(*this, Cond);
1340         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1341         EmitBlock(LHSFalse);
1342       }
1343 
1344       incrementProfileCounter(CondBOp);
1345       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1346 
1347       // Any temporaries created here are conditional.
1348       eval.begin(*this);
1349       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1350 
1351       eval.end(*this);
1352 
1353       return;
1354     }
1355   }
1356 
1357   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1358     // br(!x, t, f) -> br(x, f, t)
1359     if (CondUOp->getOpcode() == UO_LNot) {
1360       // Negate the count.
1361       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1362       // Negate the condition and swap the destination blocks.
1363       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1364                                   FalseCount);
1365     }
1366   }
1367 
1368   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1369     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1370     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1371     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1372 
1373     ConditionalEvaluation cond(*this);
1374     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1375                          getProfileCount(CondOp));
1376 
1377     // When computing PGO branch weights, we only know the overall count for
1378     // the true block. This code is essentially doing tail duplication of the
1379     // naive code-gen, introducing new edges for which counts are not
1380     // available. Divide the counts proportionally between the LHS and RHS of
1381     // the conditional operator.
1382     uint64_t LHSScaledTrueCount = 0;
1383     if (TrueCount) {
1384       double LHSRatio =
1385           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1386       LHSScaledTrueCount = TrueCount * LHSRatio;
1387     }
1388 
1389     cond.begin(*this);
1390     EmitBlock(LHSBlock);
1391     incrementProfileCounter(CondOp);
1392     {
1393       ApplyDebugLocation DL(*this, Cond);
1394       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1395                            LHSScaledTrueCount);
1396     }
1397     cond.end(*this);
1398 
1399     cond.begin(*this);
1400     EmitBlock(RHSBlock);
1401     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1402                          TrueCount - LHSScaledTrueCount);
1403     cond.end(*this);
1404 
1405     return;
1406   }
1407 
1408   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1409     // Conditional operator handling can give us a throw expression as a
1410     // condition for a case like:
1411     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1412     // Fold this to:
1413     //   br(c, throw x, br(y, t, f))
1414     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1415     return;
1416   }
1417 
1418   // If the branch has a condition wrapped by __builtin_unpredictable,
1419   // create metadata that specifies that the branch is unpredictable.
1420   // Don't bother if not optimizing because that metadata would not be used.
1421   llvm::MDNode *Unpredictable = nullptr;
1422   auto *Call = dyn_cast<CallExpr>(Cond);
1423   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1424     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1425     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1426       llvm::MDBuilder MDHelper(getLLVMContext());
1427       Unpredictable = MDHelper.createUnpredictable();
1428     }
1429   }
1430 
1431   // Create branch weights based on the number of times we get here and the
1432   // number of times the condition should be true.
1433   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1434   llvm::MDNode *Weights =
1435       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1436 
1437   // Emit the code with the fully general case.
1438   llvm::Value *CondV;
1439   {
1440     ApplyDebugLocation DL(*this, Cond);
1441     CondV = EvaluateExprAsBool(Cond);
1442   }
1443   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1444 }
1445 
1446 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1447 /// specified stmt yet.
1448 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1449   CGM.ErrorUnsupported(S, Type);
1450 }
1451 
1452 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1453 /// variable-length array whose elements have a non-zero bit-pattern.
1454 ///
1455 /// \param baseType the inner-most element type of the array
1456 /// \param src - a char* pointing to the bit-pattern for a single
1457 /// base element of the array
1458 /// \param sizeInChars - the total size of the VLA, in chars
1459 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1460                                Address dest, Address src,
1461                                llvm::Value *sizeInChars) {
1462   CGBuilderTy &Builder = CGF.Builder;
1463 
1464   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1465   llvm::Value *baseSizeInChars
1466     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1467 
1468   Address begin =
1469     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1470   llvm::Value *end =
1471     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1472 
1473   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1474   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1475   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1476 
1477   // Make a loop over the VLA.  C99 guarantees that the VLA element
1478   // count must be nonzero.
1479   CGF.EmitBlock(loopBB);
1480 
1481   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1482   cur->addIncoming(begin.getPointer(), originBB);
1483 
1484   CharUnits curAlign =
1485     dest.getAlignment().alignmentOfArrayElement(baseSize);
1486 
1487   // memcpy the individual element bit-pattern.
1488   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1489                        /*volatile*/ false);
1490 
1491   // Go to the next element.
1492   llvm::Value *next =
1493     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1494 
1495   // Leave if that's the end of the VLA.
1496   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1497   Builder.CreateCondBr(done, contBB, loopBB);
1498   cur->addIncoming(next, loopBB);
1499 
1500   CGF.EmitBlock(contBB);
1501 }
1502 
1503 void
1504 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1505   // Ignore empty classes in C++.
1506   if (getLangOpts().CPlusPlus) {
1507     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1508       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1509         return;
1510     }
1511   }
1512 
1513   // Cast the dest ptr to the appropriate i8 pointer type.
1514   if (DestPtr.getElementType() != Int8Ty)
1515     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1516 
1517   // Get size and alignment info for this aggregate.
1518   CharUnits size = getContext().getTypeSizeInChars(Ty);
1519 
1520   llvm::Value *SizeVal;
1521   const VariableArrayType *vla;
1522 
1523   // Don't bother emitting a zero-byte memset.
1524   if (size.isZero()) {
1525     // But note that getTypeInfo returns 0 for a VLA.
1526     if (const VariableArrayType *vlaType =
1527           dyn_cast_or_null<VariableArrayType>(
1528                                           getContext().getAsArrayType(Ty))) {
1529       QualType eltType;
1530       llvm::Value *numElts;
1531       std::tie(numElts, eltType) = getVLASize(vlaType);
1532 
1533       SizeVal = numElts;
1534       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1535       if (!eltSize.isOne())
1536         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1537       vla = vlaType;
1538     } else {
1539       return;
1540     }
1541   } else {
1542     SizeVal = CGM.getSize(size);
1543     vla = nullptr;
1544   }
1545 
1546   // If the type contains a pointer to data member we can't memset it to zero.
1547   // Instead, create a null constant and copy it to the destination.
1548   // TODO: there are other patterns besides zero that we can usefully memset,
1549   // like -1, which happens to be the pattern used by member-pointers.
1550   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1551     // For a VLA, emit a single element, then splat that over the VLA.
1552     if (vla) Ty = getContext().getBaseElementType(vla);
1553 
1554     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1555 
1556     llvm::GlobalVariable *NullVariable =
1557       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1558                                /*isConstant=*/true,
1559                                llvm::GlobalVariable::PrivateLinkage,
1560                                NullConstant, Twine());
1561     CharUnits NullAlign = DestPtr.getAlignment();
1562     NullVariable->setAlignment(NullAlign.getQuantity());
1563     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1564                    NullAlign);
1565 
1566     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1567 
1568     // Get and call the appropriate llvm.memcpy overload.
1569     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1570     return;
1571   }
1572 
1573   // Otherwise, just memset the whole thing to zero.  This is legal
1574   // because in LLVM, all default initializers (other than the ones we just
1575   // handled above) are guaranteed to have a bit pattern of all zeros.
1576   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1577 }
1578 
1579 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1580   // Make sure that there is a block for the indirect goto.
1581   if (!IndirectBranch)
1582     GetIndirectGotoBlock();
1583 
1584   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1585 
1586   // Make sure the indirect branch includes all of the address-taken blocks.
1587   IndirectBranch->addDestination(BB);
1588   return llvm::BlockAddress::get(CurFn, BB);
1589 }
1590 
1591 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1592   // If we already made the indirect branch for indirect goto, return its block.
1593   if (IndirectBranch) return IndirectBranch->getParent();
1594 
1595   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1596 
1597   // Create the PHI node that indirect gotos will add entries to.
1598   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1599                                               "indirect.goto.dest");
1600 
1601   // Create the indirect branch instruction.
1602   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1603   return IndirectBranch->getParent();
1604 }
1605 
1606 /// Computes the length of an array in elements, as well as the base
1607 /// element type and a properly-typed first element pointer.
1608 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1609                                               QualType &baseType,
1610                                               Address &addr) {
1611   const ArrayType *arrayType = origArrayType;
1612 
1613   // If it's a VLA, we have to load the stored size.  Note that
1614   // this is the size of the VLA in bytes, not its size in elements.
1615   llvm::Value *numVLAElements = nullptr;
1616   if (isa<VariableArrayType>(arrayType)) {
1617     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1618 
1619     // Walk into all VLAs.  This doesn't require changes to addr,
1620     // which has type T* where T is the first non-VLA element type.
1621     do {
1622       QualType elementType = arrayType->getElementType();
1623       arrayType = getContext().getAsArrayType(elementType);
1624 
1625       // If we only have VLA components, 'addr' requires no adjustment.
1626       if (!arrayType) {
1627         baseType = elementType;
1628         return numVLAElements;
1629       }
1630     } while (isa<VariableArrayType>(arrayType));
1631 
1632     // We get out here only if we find a constant array type
1633     // inside the VLA.
1634   }
1635 
1636   // We have some number of constant-length arrays, so addr should
1637   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1638   // down to the first element of addr.
1639   SmallVector<llvm::Value*, 8> gepIndices;
1640 
1641   // GEP down to the array type.
1642   llvm::ConstantInt *zero = Builder.getInt32(0);
1643   gepIndices.push_back(zero);
1644 
1645   uint64_t countFromCLAs = 1;
1646   QualType eltType;
1647 
1648   llvm::ArrayType *llvmArrayType =
1649     dyn_cast<llvm::ArrayType>(addr.getElementType());
1650   while (llvmArrayType) {
1651     assert(isa<ConstantArrayType>(arrayType));
1652     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1653              == llvmArrayType->getNumElements());
1654 
1655     gepIndices.push_back(zero);
1656     countFromCLAs *= llvmArrayType->getNumElements();
1657     eltType = arrayType->getElementType();
1658 
1659     llvmArrayType =
1660       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1661     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1662     assert((!llvmArrayType || arrayType) &&
1663            "LLVM and Clang types are out-of-synch");
1664   }
1665 
1666   if (arrayType) {
1667     // From this point onwards, the Clang array type has been emitted
1668     // as some other type (probably a packed struct). Compute the array
1669     // size, and just emit the 'begin' expression as a bitcast.
1670     while (arrayType) {
1671       countFromCLAs *=
1672           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1673       eltType = arrayType->getElementType();
1674       arrayType = getContext().getAsArrayType(eltType);
1675     }
1676 
1677     llvm::Type *baseType = ConvertType(eltType);
1678     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1679   } else {
1680     // Create the actual GEP.
1681     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1682                                              gepIndices, "array.begin"),
1683                    addr.getAlignment());
1684   }
1685 
1686   baseType = eltType;
1687 
1688   llvm::Value *numElements
1689     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1690 
1691   // If we had any VLA dimensions, factor them in.
1692   if (numVLAElements)
1693     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1694 
1695   return numElements;
1696 }
1697 
1698 std::pair<llvm::Value*, QualType>
1699 CodeGenFunction::getVLASize(QualType type) {
1700   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1701   assert(vla && "type was not a variable array type!");
1702   return getVLASize(vla);
1703 }
1704 
1705 std::pair<llvm::Value*, QualType>
1706 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1707   // The number of elements so far; always size_t.
1708   llvm::Value *numElements = nullptr;
1709 
1710   QualType elementType;
1711   do {
1712     elementType = type->getElementType();
1713     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1714     assert(vlaSize && "no size for VLA!");
1715     assert(vlaSize->getType() == SizeTy);
1716 
1717     if (!numElements) {
1718       numElements = vlaSize;
1719     } else {
1720       // It's undefined behavior if this wraps around, so mark it that way.
1721       // FIXME: Teach -fsanitize=undefined to trap this.
1722       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1723     }
1724   } while ((type = getContext().getAsVariableArrayType(elementType)));
1725 
1726   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1727 }
1728 
1729 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1730   assert(type->isVariablyModifiedType() &&
1731          "Must pass variably modified type to EmitVLASizes!");
1732 
1733   EnsureInsertPoint();
1734 
1735   // We're going to walk down into the type and look for VLA
1736   // expressions.
1737   do {
1738     assert(type->isVariablyModifiedType());
1739 
1740     const Type *ty = type.getTypePtr();
1741     switch (ty->getTypeClass()) {
1742 
1743 #define TYPE(Class, Base)
1744 #define ABSTRACT_TYPE(Class, Base)
1745 #define NON_CANONICAL_TYPE(Class, Base)
1746 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1747 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1748 #include "clang/AST/TypeNodes.def"
1749       llvm_unreachable("unexpected dependent type!");
1750 
1751     // These types are never variably-modified.
1752     case Type::Builtin:
1753     case Type::Complex:
1754     case Type::Vector:
1755     case Type::ExtVector:
1756     case Type::Record:
1757     case Type::Enum:
1758     case Type::Elaborated:
1759     case Type::TemplateSpecialization:
1760     case Type::ObjCTypeParam:
1761     case Type::ObjCObject:
1762     case Type::ObjCInterface:
1763     case Type::ObjCObjectPointer:
1764       llvm_unreachable("type class is never variably-modified!");
1765 
1766     case Type::Adjusted:
1767       type = cast<AdjustedType>(ty)->getAdjustedType();
1768       break;
1769 
1770     case Type::Decayed:
1771       type = cast<DecayedType>(ty)->getPointeeType();
1772       break;
1773 
1774     case Type::Pointer:
1775       type = cast<PointerType>(ty)->getPointeeType();
1776       break;
1777 
1778     case Type::BlockPointer:
1779       type = cast<BlockPointerType>(ty)->getPointeeType();
1780       break;
1781 
1782     case Type::LValueReference:
1783     case Type::RValueReference:
1784       type = cast<ReferenceType>(ty)->getPointeeType();
1785       break;
1786 
1787     case Type::MemberPointer:
1788       type = cast<MemberPointerType>(ty)->getPointeeType();
1789       break;
1790 
1791     case Type::ConstantArray:
1792     case Type::IncompleteArray:
1793       // Losing element qualification here is fine.
1794       type = cast<ArrayType>(ty)->getElementType();
1795       break;
1796 
1797     case Type::VariableArray: {
1798       // Losing element qualification here is fine.
1799       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1800 
1801       // Unknown size indication requires no size computation.
1802       // Otherwise, evaluate and record it.
1803       if (const Expr *size = vat->getSizeExpr()) {
1804         // It's possible that we might have emitted this already,
1805         // e.g. with a typedef and a pointer to it.
1806         llvm::Value *&entry = VLASizeMap[size];
1807         if (!entry) {
1808           llvm::Value *Size = EmitScalarExpr(size);
1809 
1810           // C11 6.7.6.2p5:
1811           //   If the size is an expression that is not an integer constant
1812           //   expression [...] each time it is evaluated it shall have a value
1813           //   greater than zero.
1814           if (SanOpts.has(SanitizerKind::VLABound) &&
1815               size->getType()->isSignedIntegerType()) {
1816             SanitizerScope SanScope(this);
1817             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1818             llvm::Constant *StaticArgs[] = {
1819               EmitCheckSourceLocation(size->getLocStart()),
1820               EmitCheckTypeDescriptor(size->getType())
1821             };
1822             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1823                                      SanitizerKind::VLABound),
1824                       "vla_bound_not_positive", StaticArgs, Size);
1825           }
1826 
1827           // Always zexting here would be wrong if it weren't
1828           // undefined behavior to have a negative bound.
1829           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1830         }
1831       }
1832       type = vat->getElementType();
1833       break;
1834     }
1835 
1836     case Type::FunctionProto:
1837     case Type::FunctionNoProto:
1838       type = cast<FunctionType>(ty)->getReturnType();
1839       break;
1840 
1841     case Type::Paren:
1842     case Type::TypeOf:
1843     case Type::UnaryTransform:
1844     case Type::Attributed:
1845     case Type::SubstTemplateTypeParm:
1846     case Type::PackExpansion:
1847       // Keep walking after single level desugaring.
1848       type = type.getSingleStepDesugaredType(getContext());
1849       break;
1850 
1851     case Type::Typedef:
1852     case Type::Decltype:
1853     case Type::Auto:
1854       // Stop walking: nothing to do.
1855       return;
1856 
1857     case Type::TypeOfExpr:
1858       // Stop walking: emit typeof expression.
1859       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1860       return;
1861 
1862     case Type::Atomic:
1863       type = cast<AtomicType>(ty)->getValueType();
1864       break;
1865 
1866     case Type::Pipe:
1867       type = cast<PipeType>(ty)->getElementType();
1868       break;
1869     }
1870   } while (type->isVariablyModifiedType());
1871 }
1872 
1873 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1874   if (getContext().getBuiltinVaListType()->isArrayType())
1875     return EmitPointerWithAlignment(E);
1876   return EmitLValue(E).getAddress();
1877 }
1878 
1879 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1880   return EmitLValue(E).getAddress();
1881 }
1882 
1883 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1884                                               const APValue &Init) {
1885   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
1886   if (CGDebugInfo *Dbg = getDebugInfo())
1887     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1888       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1889 }
1890 
1891 CodeGenFunction::PeepholeProtection
1892 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1893   // At the moment, the only aggressive peephole we do in IR gen
1894   // is trunc(zext) folding, but if we add more, we can easily
1895   // extend this protection.
1896 
1897   if (!rvalue.isScalar()) return PeepholeProtection();
1898   llvm::Value *value = rvalue.getScalarVal();
1899   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1900 
1901   // Just make an extra bitcast.
1902   assert(HaveInsertPoint());
1903   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1904                                                   Builder.GetInsertBlock());
1905 
1906   PeepholeProtection protection;
1907   protection.Inst = inst;
1908   return protection;
1909 }
1910 
1911 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1912   if (!protection.Inst) return;
1913 
1914   // In theory, we could try to duplicate the peepholes now, but whatever.
1915   protection.Inst->eraseFromParent();
1916 }
1917 
1918 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1919                                                  llvm::Value *AnnotatedVal,
1920                                                  StringRef AnnotationStr,
1921                                                  SourceLocation Location) {
1922   llvm::Value *Args[4] = {
1923     AnnotatedVal,
1924     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1925     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1926     CGM.EmitAnnotationLineNo(Location)
1927   };
1928   return Builder.CreateCall(AnnotationFn, Args);
1929 }
1930 
1931 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1932   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1933   // FIXME We create a new bitcast for every annotation because that's what
1934   // llvm-gcc was doing.
1935   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1936     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1937                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1938                        I->getAnnotation(), D->getLocation());
1939 }
1940 
1941 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1942                                               Address Addr) {
1943   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1944   llvm::Value *V = Addr.getPointer();
1945   llvm::Type *VTy = V->getType();
1946   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1947                                     CGM.Int8PtrTy);
1948 
1949   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1950     // FIXME Always emit the cast inst so we can differentiate between
1951     // annotation on the first field of a struct and annotation on the struct
1952     // itself.
1953     if (VTy != CGM.Int8PtrTy)
1954       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1955     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1956     V = Builder.CreateBitCast(V, VTy);
1957   }
1958 
1959   return Address(V, Addr.getAlignment());
1960 }
1961 
1962 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1963 
1964 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1965     : CGF(CGF) {
1966   assert(!CGF->IsSanitizerScope);
1967   CGF->IsSanitizerScope = true;
1968 }
1969 
1970 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1971   CGF->IsSanitizerScope = false;
1972 }
1973 
1974 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1975                                    const llvm::Twine &Name,
1976                                    llvm::BasicBlock *BB,
1977                                    llvm::BasicBlock::iterator InsertPt) const {
1978   LoopStack.InsertHelper(I);
1979   if (IsSanitizerScope)
1980     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1981 }
1982 
1983 void CGBuilderInserter::InsertHelper(
1984     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1985     llvm::BasicBlock::iterator InsertPt) const {
1986   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1987   if (CGF)
1988     CGF->InsertHelper(I, Name, BB, InsertPt);
1989 }
1990 
1991 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1992                                 CodeGenModule &CGM, const FunctionDecl *FD,
1993                                 std::string &FirstMissing) {
1994   // If there aren't any required features listed then go ahead and return.
1995   if (ReqFeatures.empty())
1996     return false;
1997 
1998   // Now build up the set of caller features and verify that all the required
1999   // features are there.
2000   llvm::StringMap<bool> CallerFeatureMap;
2001   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2002 
2003   // If we have at least one of the features in the feature list return
2004   // true, otherwise return false.
2005   return std::all_of(
2006       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2007         SmallVector<StringRef, 1> OrFeatures;
2008         Feature.split(OrFeatures, "|");
2009         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2010                            [&](StringRef Feature) {
2011                              if (!CallerFeatureMap.lookup(Feature)) {
2012                                FirstMissing = Feature.str();
2013                                return false;
2014                              }
2015                              return true;
2016                            });
2017       });
2018 }
2019 
2020 // Emits an error if we don't have a valid set of target features for the
2021 // called function.
2022 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2023                                           const FunctionDecl *TargetDecl) {
2024   // Early exit if this is an indirect call.
2025   if (!TargetDecl)
2026     return;
2027 
2028   // Get the current enclosing function if it exists. If it doesn't
2029   // we can't check the target features anyhow.
2030   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2031   if (!FD)
2032     return;
2033 
2034   // Grab the required features for the call. For a builtin this is listed in
2035   // the td file with the default cpu, for an always_inline function this is any
2036   // listed cpu and any listed features.
2037   unsigned BuiltinID = TargetDecl->getBuiltinID();
2038   std::string MissingFeature;
2039   if (BuiltinID) {
2040     SmallVector<StringRef, 1> ReqFeatures;
2041     const char *FeatureList =
2042         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2043     // Return if the builtin doesn't have any required features.
2044     if (!FeatureList || StringRef(FeatureList) == "")
2045       return;
2046     StringRef(FeatureList).split(ReqFeatures, ",");
2047     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2048       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2049           << TargetDecl->getDeclName()
2050           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2051 
2052   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2053     // Get the required features for the callee.
2054     SmallVector<StringRef, 1> ReqFeatures;
2055     llvm::StringMap<bool> CalleeFeatureMap;
2056     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2057     for (const auto &F : CalleeFeatureMap) {
2058       // Only positive features are "required".
2059       if (F.getValue())
2060         ReqFeatures.push_back(F.getKey());
2061     }
2062     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2063       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2064           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2065   }
2066 }
2067 
2068 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2069   if (!CGM.getCodeGenOpts().SanitizeStats)
2070     return;
2071 
2072   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2073   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2074   CGM.getSanStats().create(IRB, SSK);
2075 }
2076