1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
48 /// markers.
49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
50                                       const LangOptions &LangOpts) {
51   if (CGOpts.DisableLifetimeMarkers)
52     return false;
53 
54   // Sanitizers may use markers.
55   if (CGOpts.SanitizeAddressUseAfterScope ||
56       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
57       LangOpts.Sanitize.has(SanitizerKind::Memory))
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   llvm::FastMathFlags FMF;
75   if (CGM.getLangOpts().FastMath)
76     FMF.setFast();
77   if (CGM.getLangOpts().FiniteMathOnly) {
78     FMF.setNoNaNs();
79     FMF.setNoInfs();
80   }
81   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
82     FMF.setNoNaNs();
83   }
84   if (CGM.getCodeGenOpts().NoSignedZeros) {
85     FMF.setNoSignedZeros();
86   }
87   if (CGM.getCodeGenOpts().ReciprocalMath) {
88     FMF.setAllowReciprocal();
89   }
90   if (CGM.getCodeGenOpts().Reassociate) {
91     FMF.setAllowReassoc();
92   }
93   Builder.setFastMathFlags(FMF);
94   SetFPModel();
95 }
96 
97 CodeGenFunction::~CodeGenFunction() {
98   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
99 
100   // If there are any unclaimed block infos, go ahead and destroy them
101   // now.  This can happen if IR-gen gets clever and skips evaluating
102   // something.
103   if (FirstBlockInfo)
104     destroyBlockInfos(FirstBlockInfo);
105 
106   if (getLangOpts().OpenMP && CurFn)
107     CGM.getOpenMPRuntime().functionFinished(*this);
108 
109   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
110   // outlining etc) at some point. Doing it once the function codegen is done
111   // seems to be a reasonable spot. We do it here, as opposed to the deletion
112   // time of the CodeGenModule, because we have to ensure the IR has not yet
113   // been "emitted" to the outside, thus, modifications are still sensible.
114   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder())
115     OMPBuilder->finalize();
116 }
117 
118 // Map the LangOption for rounding mode into
119 // the corresponding enum in the IR.
120 static llvm::fp::RoundingMode ToConstrainedRoundingMD(
121   LangOptions::FPRoundingModeKind Kind) {
122 
123   switch (Kind) {
124   case LangOptions::FPR_ToNearest:  return llvm::fp::rmToNearest;
125   case LangOptions::FPR_Downward:   return llvm::fp::rmDownward;
126   case LangOptions::FPR_Upward:     return llvm::fp::rmUpward;
127   case LangOptions::FPR_TowardZero: return llvm::fp::rmTowardZero;
128   case LangOptions::FPR_Dynamic:    return llvm::fp::rmDynamic;
129   }
130   llvm_unreachable("Unsupported FP RoundingMode");
131 }
132 
133 // Map the LangOption for exception behavior into
134 // the corresponding enum in the IR.
135 static llvm::fp::ExceptionBehavior ToConstrainedExceptMD(
136   LangOptions::FPExceptionModeKind Kind) {
137 
138   switch (Kind) {
139   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
140   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
141   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
142   }
143   llvm_unreachable("Unsupported FP Exception Behavior");
144 }
145 
146 void CodeGenFunction::SetFPModel() {
147   auto fpRoundingMode = ToConstrainedRoundingMD(
148                           getLangOpts().getFPRoundingMode());
149   auto fpExceptionBehavior = ToConstrainedExceptMD(
150                                getLangOpts().getFPExceptionMode());
151 
152   if (fpExceptionBehavior == llvm::fp::ebIgnore &&
153       fpRoundingMode == llvm::fp::rmToNearest)
154     // Constrained intrinsics are not used.
155     ;
156   else {
157     Builder.setIsFPConstrained(true);
158     Builder.setDefaultConstrainedRounding(fpRoundingMode);
159     Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
160   }
161 }
162 
163 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
164                                                     LValueBaseInfo *BaseInfo,
165                                                     TBAAAccessInfo *TBAAInfo) {
166   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
167                                  /* forPointeeType= */ true);
168 }
169 
170 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
171                                                    LValueBaseInfo *BaseInfo,
172                                                    TBAAAccessInfo *TBAAInfo,
173                                                    bool forPointeeType) {
174   if (TBAAInfo)
175     *TBAAInfo = CGM.getTBAAAccessInfo(T);
176 
177   // Honor alignment typedef attributes even on incomplete types.
178   // We also honor them straight for C++ class types, even as pointees;
179   // there's an expressivity gap here.
180   if (auto TT = T->getAs<TypedefType>()) {
181     if (auto Align = TT->getDecl()->getMaxAlignment()) {
182       if (BaseInfo)
183         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
184       return getContext().toCharUnitsFromBits(Align);
185     }
186   }
187 
188   if (BaseInfo)
189     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
190 
191   CharUnits Alignment;
192   if (T->isIncompleteType()) {
193     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
194   } else {
195     // For C++ class pointees, we don't know whether we're pointing at a
196     // base or a complete object, so we generally need to use the
197     // non-virtual alignment.
198     const CXXRecordDecl *RD;
199     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
200       Alignment = CGM.getClassPointerAlignment(RD);
201     } else {
202       Alignment = getContext().getTypeAlignInChars(T);
203       if (T.getQualifiers().hasUnaligned())
204         Alignment = CharUnits::One();
205     }
206 
207     // Cap to the global maximum type alignment unless the alignment
208     // was somehow explicit on the type.
209     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
210       if (Alignment.getQuantity() > MaxAlign &&
211           !getContext().isAlignmentRequired(T))
212         Alignment = CharUnits::fromQuantity(MaxAlign);
213     }
214   }
215   return Alignment;
216 }
217 
218 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
219   LValueBaseInfo BaseInfo;
220   TBAAAccessInfo TBAAInfo;
221   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
222   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
223                           TBAAInfo);
224 }
225 
226 /// Given a value of type T* that may not be to a complete object,
227 /// construct an l-value with the natural pointee alignment of T.
228 LValue
229 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
230   LValueBaseInfo BaseInfo;
231   TBAAAccessInfo TBAAInfo;
232   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
233                                             /* forPointeeType= */ true);
234   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
235 }
236 
237 
238 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
239   return CGM.getTypes().ConvertTypeForMem(T);
240 }
241 
242 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
243   return CGM.getTypes().ConvertType(T);
244 }
245 
246 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
247   type = type.getCanonicalType();
248   while (true) {
249     switch (type->getTypeClass()) {
250 #define TYPE(name, parent)
251 #define ABSTRACT_TYPE(name, parent)
252 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
253 #define DEPENDENT_TYPE(name, parent) case Type::name:
254 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
255 #include "clang/AST/TypeNodes.inc"
256       llvm_unreachable("non-canonical or dependent type in IR-generation");
257 
258     case Type::Auto:
259     case Type::DeducedTemplateSpecialization:
260       llvm_unreachable("undeduced type in IR-generation");
261 
262     // Various scalar types.
263     case Type::Builtin:
264     case Type::Pointer:
265     case Type::BlockPointer:
266     case Type::LValueReference:
267     case Type::RValueReference:
268     case Type::MemberPointer:
269     case Type::Vector:
270     case Type::ExtVector:
271     case Type::FunctionProto:
272     case Type::FunctionNoProto:
273     case Type::Enum:
274     case Type::ObjCObjectPointer:
275     case Type::Pipe:
276       return TEK_Scalar;
277 
278     // Complexes.
279     case Type::Complex:
280       return TEK_Complex;
281 
282     // Arrays, records, and Objective-C objects.
283     case Type::ConstantArray:
284     case Type::IncompleteArray:
285     case Type::VariableArray:
286     case Type::Record:
287     case Type::ObjCObject:
288     case Type::ObjCInterface:
289       return TEK_Aggregate;
290 
291     // We operate on atomic values according to their underlying type.
292     case Type::Atomic:
293       type = cast<AtomicType>(type)->getValueType();
294       continue;
295     }
296     llvm_unreachable("unknown type kind!");
297   }
298 }
299 
300 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
301   // For cleanliness, we try to avoid emitting the return block for
302   // simple cases.
303   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
304 
305   if (CurBB) {
306     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
307 
308     // We have a valid insert point, reuse it if it is empty or there are no
309     // explicit jumps to the return block.
310     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
311       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
312       delete ReturnBlock.getBlock();
313       ReturnBlock = JumpDest();
314     } else
315       EmitBlock(ReturnBlock.getBlock());
316     return llvm::DebugLoc();
317   }
318 
319   // Otherwise, if the return block is the target of a single direct
320   // branch then we can just put the code in that block instead. This
321   // cleans up functions which started with a unified return block.
322   if (ReturnBlock.getBlock()->hasOneUse()) {
323     llvm::BranchInst *BI =
324       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
325     if (BI && BI->isUnconditional() &&
326         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
327       // Record/return the DebugLoc of the simple 'return' expression to be used
328       // later by the actual 'ret' instruction.
329       llvm::DebugLoc Loc = BI->getDebugLoc();
330       Builder.SetInsertPoint(BI->getParent());
331       BI->eraseFromParent();
332       delete ReturnBlock.getBlock();
333       ReturnBlock = JumpDest();
334       return Loc;
335     }
336   }
337 
338   // FIXME: We are at an unreachable point, there is no reason to emit the block
339   // unless it has uses. However, we still need a place to put the debug
340   // region.end for now.
341 
342   EmitBlock(ReturnBlock.getBlock());
343   return llvm::DebugLoc();
344 }
345 
346 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
347   if (!BB) return;
348   if (!BB->use_empty())
349     return CGF.CurFn->getBasicBlockList().push_back(BB);
350   delete BB;
351 }
352 
353 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
354   assert(BreakContinueStack.empty() &&
355          "mismatched push/pop in break/continue stack!");
356 
357   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
358     && NumSimpleReturnExprs == NumReturnExprs
359     && ReturnBlock.getBlock()->use_empty();
360   // Usually the return expression is evaluated before the cleanup
361   // code.  If the function contains only a simple return statement,
362   // such as a constant, the location before the cleanup code becomes
363   // the last useful breakpoint in the function, because the simple
364   // return expression will be evaluated after the cleanup code. To be
365   // safe, set the debug location for cleanup code to the location of
366   // the return statement.  Otherwise the cleanup code should be at the
367   // end of the function's lexical scope.
368   //
369   // If there are multiple branches to the return block, the branch
370   // instructions will get the location of the return statements and
371   // all will be fine.
372   if (CGDebugInfo *DI = getDebugInfo()) {
373     if (OnlySimpleReturnStmts)
374       DI->EmitLocation(Builder, LastStopPoint);
375     else
376       DI->EmitLocation(Builder, EndLoc);
377   }
378 
379   // Pop any cleanups that might have been associated with the
380   // parameters.  Do this in whatever block we're currently in; it's
381   // important to do this before we enter the return block or return
382   // edges will be *really* confused.
383   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
384   bool HasOnlyLifetimeMarkers =
385       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
386   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
387   if (HasCleanups) {
388     // Make sure the line table doesn't jump back into the body for
389     // the ret after it's been at EndLoc.
390     Optional<ApplyDebugLocation> AL;
391     if (CGDebugInfo *DI = getDebugInfo()) {
392       if (OnlySimpleReturnStmts)
393         DI->EmitLocation(Builder, EndLoc);
394       else
395         // We may not have a valid end location. Try to apply it anyway, and
396         // fall back to an artificial location if needed.
397         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
398     }
399 
400     PopCleanupBlocks(PrologueCleanupDepth);
401   }
402 
403   // Emit function epilog (to return).
404   llvm::DebugLoc Loc = EmitReturnBlock();
405 
406   if (ShouldInstrumentFunction()) {
407     if (CGM.getCodeGenOpts().InstrumentFunctions)
408       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
409     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
410       CurFn->addFnAttr("instrument-function-exit-inlined",
411                        "__cyg_profile_func_exit");
412   }
413 
414   // Emit debug descriptor for function end.
415   if (CGDebugInfo *DI = getDebugInfo())
416     DI->EmitFunctionEnd(Builder, CurFn);
417 
418   // Reset the debug location to that of the simple 'return' expression, if any
419   // rather than that of the end of the function's scope '}'.
420   ApplyDebugLocation AL(*this, Loc);
421   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
422   EmitEndEHSpec(CurCodeDecl);
423 
424   assert(EHStack.empty() &&
425          "did not remove all scopes from cleanup stack!");
426 
427   // If someone did an indirect goto, emit the indirect goto block at the end of
428   // the function.
429   if (IndirectBranch) {
430     EmitBlock(IndirectBranch->getParent());
431     Builder.ClearInsertionPoint();
432   }
433 
434   // If some of our locals escaped, insert a call to llvm.localescape in the
435   // entry block.
436   if (!EscapedLocals.empty()) {
437     // Invert the map from local to index into a simple vector. There should be
438     // no holes.
439     SmallVector<llvm::Value *, 4> EscapeArgs;
440     EscapeArgs.resize(EscapedLocals.size());
441     for (auto &Pair : EscapedLocals)
442       EscapeArgs[Pair.second] = Pair.first;
443     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
444         &CGM.getModule(), llvm::Intrinsic::localescape);
445     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
446   }
447 
448   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
449   llvm::Instruction *Ptr = AllocaInsertPt;
450   AllocaInsertPt = nullptr;
451   Ptr->eraseFromParent();
452 
453   // If someone took the address of a label but never did an indirect goto, we
454   // made a zero entry PHI node, which is illegal, zap it now.
455   if (IndirectBranch) {
456     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
457     if (PN->getNumIncomingValues() == 0) {
458       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
459       PN->eraseFromParent();
460     }
461   }
462 
463   EmitIfUsed(*this, EHResumeBlock);
464   EmitIfUsed(*this, TerminateLandingPad);
465   EmitIfUsed(*this, TerminateHandler);
466   EmitIfUsed(*this, UnreachableBlock);
467 
468   for (const auto &FuncletAndParent : TerminateFunclets)
469     EmitIfUsed(*this, FuncletAndParent.second);
470 
471   if (CGM.getCodeGenOpts().EmitDeclMetadata)
472     EmitDeclMetadata();
473 
474   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
475            I = DeferredReplacements.begin(),
476            E = DeferredReplacements.end();
477        I != E; ++I) {
478     I->first->replaceAllUsesWith(I->second);
479     I->first->eraseFromParent();
480   }
481 
482   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
483   // PHIs if the current function is a coroutine. We don't do it for all
484   // functions as it may result in slight increase in numbers of instructions
485   // if compiled with no optimizations. We do it for coroutine as the lifetime
486   // of CleanupDestSlot alloca make correct coroutine frame building very
487   // difficult.
488   if (NormalCleanupDest.isValid() && isCoroutine()) {
489     llvm::DominatorTree DT(*CurFn);
490     llvm::PromoteMemToReg(
491         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
492     NormalCleanupDest = Address::invalid();
493   }
494 
495   // Scan function arguments for vector width.
496   for (llvm::Argument &A : CurFn->args())
497     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
498       LargestVectorWidth =
499           std::max((uint64_t)LargestVectorWidth,
500                    VT->getPrimitiveSizeInBits().getKnownMinSize());
501 
502   // Update vector width based on return type.
503   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
504     LargestVectorWidth =
505         std::max((uint64_t)LargestVectorWidth,
506                  VT->getPrimitiveSizeInBits().getKnownMinSize());
507 
508   // Add the required-vector-width attribute. This contains the max width from:
509   // 1. min-vector-width attribute used in the source program.
510   // 2. Any builtins used that have a vector width specified.
511   // 3. Values passed in and out of inline assembly.
512   // 4. Width of vector arguments and return types for this function.
513   // 5. Width of vector aguments and return types for functions called by this
514   //    function.
515   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
516 
517   // If we generated an unreachable return block, delete it now.
518   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
519     Builder.ClearInsertionPoint();
520     ReturnBlock.getBlock()->eraseFromParent();
521   }
522   if (ReturnValue.isValid()) {
523     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
524     if (RetAlloca && RetAlloca->use_empty()) {
525       RetAlloca->eraseFromParent();
526       ReturnValue = Address::invalid();
527     }
528   }
529 }
530 
531 /// ShouldInstrumentFunction - Return true if the current function should be
532 /// instrumented with __cyg_profile_func_* calls
533 bool CodeGenFunction::ShouldInstrumentFunction() {
534   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
535       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
536       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
537     return false;
538   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
539     return false;
540   return true;
541 }
542 
543 /// ShouldXRayInstrument - Return true if the current function should be
544 /// instrumented with XRay nop sleds.
545 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
546   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
547 }
548 
549 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
550 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
551 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
552   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
553          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
554           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
555               XRayInstrKind::Custom);
556 }
557 
558 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
559   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
560          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
561           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
562               XRayInstrKind::Typed);
563 }
564 
565 llvm::Constant *
566 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
567                                             llvm::Constant *Addr) {
568   // Addresses stored in prologue data can't require run-time fixups and must
569   // be PC-relative. Run-time fixups are undesirable because they necessitate
570   // writable text segments, which are unsafe. And absolute addresses are
571   // undesirable because they break PIE mode.
572 
573   // Add a layer of indirection through a private global. Taking its address
574   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
575   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
576                                       /*isConstant=*/true,
577                                       llvm::GlobalValue::PrivateLinkage, Addr);
578 
579   // Create a PC-relative address.
580   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
581   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
582   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
583   return (IntPtrTy == Int32Ty)
584              ? PCRelAsInt
585              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
586 }
587 
588 llvm::Value *
589 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
590                                           llvm::Value *EncodedAddr) {
591   // Reconstruct the address of the global.
592   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
593   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
594   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
595   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
596 
597   // Load the original pointer through the global.
598   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
599                             "decoded_addr");
600 }
601 
602 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
603                                                llvm::Function *Fn)
604 {
605   if (!FD->hasAttr<OpenCLKernelAttr>())
606     return;
607 
608   llvm::LLVMContext &Context = getLLVMContext();
609 
610   CGM.GenOpenCLArgMetadata(Fn, FD, this);
611 
612   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
613     QualType HintQTy = A->getTypeHint();
614     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
615     bool IsSignedInteger =
616         HintQTy->isSignedIntegerType() ||
617         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
618     llvm::Metadata *AttrMDArgs[] = {
619         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
620             CGM.getTypes().ConvertType(A->getTypeHint()))),
621         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
622             llvm::IntegerType::get(Context, 32),
623             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
624     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
625   }
626 
627   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
628     llvm::Metadata *AttrMDArgs[] = {
629         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
630         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
631         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
632     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
633   }
634 
635   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
636     llvm::Metadata *AttrMDArgs[] = {
637         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
638         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
639         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
640     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
641   }
642 
643   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
644           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
645     llvm::Metadata *AttrMDArgs[] = {
646         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
647     Fn->setMetadata("intel_reqd_sub_group_size",
648                     llvm::MDNode::get(Context, AttrMDArgs));
649   }
650 }
651 
652 /// Determine whether the function F ends with a return stmt.
653 static bool endsWithReturn(const Decl* F) {
654   const Stmt *Body = nullptr;
655   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
656     Body = FD->getBody();
657   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
658     Body = OMD->getBody();
659 
660   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
661     auto LastStmt = CS->body_rbegin();
662     if (LastStmt != CS->body_rend())
663       return isa<ReturnStmt>(*LastStmt);
664   }
665   return false;
666 }
667 
668 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
669   if (SanOpts.has(SanitizerKind::Thread)) {
670     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
671     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
672   }
673 }
674 
675 /// Check if the return value of this function requires sanitization.
676 bool CodeGenFunction::requiresReturnValueCheck() const {
677   return requiresReturnValueNullabilityCheck() ||
678          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
679           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
680 }
681 
682 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
683   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
684   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
685       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
686       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
687     return false;
688 
689   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
690     return false;
691 
692   if (MD->getNumParams() == 2) {
693     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
694     if (!PT || !PT->isVoidPointerType() ||
695         !PT->getPointeeType().isConstQualified())
696       return false;
697   }
698 
699   return true;
700 }
701 
702 /// Return the UBSan prologue signature for \p FD if one is available.
703 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
704                                             const FunctionDecl *FD) {
705   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
706     if (!MD->isStatic())
707       return nullptr;
708   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
709 }
710 
711 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
712                                     llvm::Function *Fn,
713                                     const CGFunctionInfo &FnInfo,
714                                     const FunctionArgList &Args,
715                                     SourceLocation Loc,
716                                     SourceLocation StartLoc) {
717   assert(!CurFn &&
718          "Do not use a CodeGenFunction object for more than one function");
719 
720   const Decl *D = GD.getDecl();
721 
722   DidCallStackSave = false;
723   CurCodeDecl = D;
724   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
725     if (FD->usesSEHTry())
726       CurSEHParent = FD;
727   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
728   FnRetTy = RetTy;
729   CurFn = Fn;
730   CurFnInfo = &FnInfo;
731   assert(CurFn->isDeclaration() && "Function already has body?");
732 
733   // If this function has been blacklisted for any of the enabled sanitizers,
734   // disable the sanitizer for the function.
735   do {
736 #define SANITIZER(NAME, ID)                                                    \
737   if (SanOpts.empty())                                                         \
738     break;                                                                     \
739   if (SanOpts.has(SanitizerKind::ID))                                          \
740     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
741       SanOpts.set(SanitizerKind::ID, false);
742 
743 #include "clang/Basic/Sanitizers.def"
744 #undef SANITIZER
745   } while (0);
746 
747   if (D) {
748     // Apply the no_sanitize* attributes to SanOpts.
749     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
750       SanitizerMask mask = Attr->getMask();
751       SanOpts.Mask &= ~mask;
752       if (mask & SanitizerKind::Address)
753         SanOpts.set(SanitizerKind::KernelAddress, false);
754       if (mask & SanitizerKind::KernelAddress)
755         SanOpts.set(SanitizerKind::Address, false);
756       if (mask & SanitizerKind::HWAddress)
757         SanOpts.set(SanitizerKind::KernelHWAddress, false);
758       if (mask & SanitizerKind::KernelHWAddress)
759         SanOpts.set(SanitizerKind::HWAddress, false);
760     }
761   }
762 
763   // Apply sanitizer attributes to the function.
764   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
765     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
766   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
767     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
768   if (SanOpts.has(SanitizerKind::MemTag))
769     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
770   if (SanOpts.has(SanitizerKind::Thread))
771     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
772   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
773     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
774   if (SanOpts.has(SanitizerKind::SafeStack))
775     Fn->addFnAttr(llvm::Attribute::SafeStack);
776   if (SanOpts.has(SanitizerKind::ShadowCallStack))
777     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
778 
779   // Apply fuzzing attribute to the function.
780   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
781     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
782 
783   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
784   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
785   if (SanOpts.has(SanitizerKind::Thread)) {
786     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
787       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
788       if (OMD->getMethodFamily() == OMF_dealloc ||
789           OMD->getMethodFamily() == OMF_initialize ||
790           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
791         markAsIgnoreThreadCheckingAtRuntime(Fn);
792       }
793     }
794   }
795 
796   // Ignore unrelated casts in STL allocate() since the allocator must cast
797   // from void* to T* before object initialization completes. Don't match on the
798   // namespace because not all allocators are in std::
799   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
800     if (matchesStlAllocatorFn(D, getContext()))
801       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
802   }
803 
804   // Ignore null checks in coroutine functions since the coroutines passes
805   // are not aware of how to move the extra UBSan instructions across the split
806   // coroutine boundaries.
807   if (D && SanOpts.has(SanitizerKind::Null))
808     if (const auto *FD = dyn_cast<FunctionDecl>(D))
809       if (FD->getBody() &&
810           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
811         SanOpts.Mask &= ~SanitizerKind::Null;
812 
813   // Apply xray attributes to the function (as a string, for now)
814   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
815     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
816             XRayInstrKind::FunctionEntry) ||
817         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
818             XRayInstrKind::FunctionExit)) {
819       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
820         Fn->addFnAttr("function-instrument", "xray-always");
821       if (XRayAttr->neverXRayInstrument())
822         Fn->addFnAttr("function-instrument", "xray-never");
823       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
824         if (ShouldXRayInstrumentFunction())
825           Fn->addFnAttr("xray-log-args",
826                         llvm::utostr(LogArgs->getArgumentCount()));
827     }
828   } else {
829     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
830       Fn->addFnAttr(
831           "xray-instruction-threshold",
832           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
833   }
834 
835   if (ShouldXRayInstrumentFunction()) {
836     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
837       Fn->addFnAttr("xray-ignore-loops");
838 
839     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
840             XRayInstrKind::FunctionExit))
841       Fn->addFnAttr("xray-skip-exit");
842 
843     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
844             XRayInstrKind::FunctionEntry))
845       Fn->addFnAttr("xray-skip-entry");
846   }
847 
848   unsigned Count, Offset;
849   if (const auto *Attr =
850           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
851     Count = Attr->getCount();
852     Offset = Attr->getOffset();
853   } else {
854     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
855     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
856   }
857   if (Count && Offset <= Count) {
858     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
859     if (Offset)
860       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
861   }
862 
863   // Add no-jump-tables value.
864   Fn->addFnAttr("no-jump-tables",
865                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
866 
867   // Add no-inline-line-tables value.
868   if (CGM.getCodeGenOpts().NoInlineLineTables)
869     Fn->addFnAttr("no-inline-line-tables");
870 
871   // Add profile-sample-accurate value.
872   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
873     Fn->addFnAttr("profile-sample-accurate");
874 
875   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
876     Fn->addFnAttr("cfi-canonical-jump-table");
877 
878   if (getLangOpts().OpenCL) {
879     // Add metadata for a kernel function.
880     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
881       EmitOpenCLKernelMetadata(FD, Fn);
882   }
883 
884   // If we are checking function types, emit a function type signature as
885   // prologue data.
886   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
887     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
888       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
889         // Remove any (C++17) exception specifications, to allow calling e.g. a
890         // noexcept function through a non-noexcept pointer.
891         auto ProtoTy =
892           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
893                                                         EST_None);
894         llvm::Constant *FTRTTIConst =
895             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
896         llvm::Constant *FTRTTIConstEncoded =
897             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
898         llvm::Constant *PrologueStructElems[] = {PrologueSig,
899                                                  FTRTTIConstEncoded};
900         llvm::Constant *PrologueStructConst =
901             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
902         Fn->setPrologueData(PrologueStructConst);
903       }
904     }
905   }
906 
907   // If we're checking nullability, we need to know whether we can check the
908   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
909   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
910     auto Nullability = FnRetTy->getNullability(getContext());
911     if (Nullability && *Nullability == NullabilityKind::NonNull) {
912       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
913             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
914         RetValNullabilityPrecondition =
915             llvm::ConstantInt::getTrue(getLLVMContext());
916     }
917   }
918 
919   // If we're in C++ mode and the function name is "main", it is guaranteed
920   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
921   // used within a program").
922   //
923   // OpenCL C 2.0 v2.2-11 s6.9.i:
924   //     Recursion is not supported.
925   //
926   // SYCL v1.2.1 s3.10:
927   //     kernels cannot include RTTI information, exception classes,
928   //     recursive code, virtual functions or make use of C++ libraries that
929   //     are not compiled for the device.
930   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
931     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
932         getLangOpts().SYCLIsDevice ||
933         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
934       Fn->addFnAttr(llvm::Attribute::NoRecurse);
935   }
936 
937   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
938     if (FD->usesFPIntrin())
939       Fn->addFnAttr(llvm::Attribute::StrictFP);
940 
941   // If a custom alignment is used, force realigning to this alignment on
942   // any main function which certainly will need it.
943   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
944     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
945         CGM.getCodeGenOpts().StackAlignment)
946       Fn->addFnAttr("stackrealign");
947 
948   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
949 
950   // Create a marker to make it easy to insert allocas into the entryblock
951   // later.  Don't create this with the builder, because we don't want it
952   // folded.
953   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
954   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
955 
956   ReturnBlock = getJumpDestInCurrentScope("return");
957 
958   Builder.SetInsertPoint(EntryBB);
959 
960   // If we're checking the return value, allocate space for a pointer to a
961   // precise source location of the checked return statement.
962   if (requiresReturnValueCheck()) {
963     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
964     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
965   }
966 
967   // Emit subprogram debug descriptor.
968   if (CGDebugInfo *DI = getDebugInfo()) {
969     // Reconstruct the type from the argument list so that implicit parameters,
970     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
971     // convention.
972     CallingConv CC = CallingConv::CC_C;
973     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
974       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
975         CC = SrcFnTy->getCallConv();
976     SmallVector<QualType, 16> ArgTypes;
977     for (const VarDecl *VD : Args)
978       ArgTypes.push_back(VD->getType());
979     QualType FnType = getContext().getFunctionType(
980         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
981     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
982                           Builder);
983   }
984 
985   if (ShouldInstrumentFunction()) {
986     if (CGM.getCodeGenOpts().InstrumentFunctions)
987       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
988     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
989       CurFn->addFnAttr("instrument-function-entry-inlined",
990                        "__cyg_profile_func_enter");
991     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
992       CurFn->addFnAttr("instrument-function-entry-inlined",
993                        "__cyg_profile_func_enter_bare");
994   }
995 
996   // Since emitting the mcount call here impacts optimizations such as function
997   // inlining, we just add an attribute to insert a mcount call in backend.
998   // The attribute "counting-function" is set to mcount function name which is
999   // architecture dependent.
1000   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1001     // Calls to fentry/mcount should not be generated if function has
1002     // the no_instrument_function attribute.
1003     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1004       if (CGM.getCodeGenOpts().CallFEntry)
1005         Fn->addFnAttr("fentry-call", "true");
1006       else {
1007         Fn->addFnAttr("instrument-function-entry-inlined",
1008                       getTarget().getMCountName());
1009       }
1010       if (CGM.getCodeGenOpts().MNopMCount) {
1011         if (!CGM.getCodeGenOpts().CallFEntry)
1012           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1013             << "-mnop-mcount" << "-mfentry";
1014         Fn->addFnAttr("mnop-mcount");
1015       }
1016 
1017       if (CGM.getCodeGenOpts().RecordMCount) {
1018         if (!CGM.getCodeGenOpts().CallFEntry)
1019           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1020             << "-mrecord-mcount" << "-mfentry";
1021         Fn->addFnAttr("mrecord-mcount");
1022       }
1023     }
1024   }
1025 
1026   if (CGM.getCodeGenOpts().PackedStack) {
1027     if (getContext().getTargetInfo().getTriple().getArch() !=
1028         llvm::Triple::systemz)
1029       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1030         << "-mpacked-stack";
1031     Fn->addFnAttr("packed-stack");
1032   }
1033 
1034   if (RetTy->isVoidType()) {
1035     // Void type; nothing to return.
1036     ReturnValue = Address::invalid();
1037 
1038     // Count the implicit return.
1039     if (!endsWithReturn(D))
1040       ++NumReturnExprs;
1041   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1042     // Indirect return; emit returned value directly into sret slot.
1043     // This reduces code size, and affects correctness in C++.
1044     auto AI = CurFn->arg_begin();
1045     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1046       ++AI;
1047     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1048     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1049       ReturnValuePointer =
1050           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1051       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1052                               ReturnValue.getPointer(), Int8PtrTy),
1053                           ReturnValuePointer);
1054     }
1055   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1056              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1057     // Load the sret pointer from the argument struct and return into that.
1058     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1059     llvm::Function::arg_iterator EI = CurFn->arg_end();
1060     --EI;
1061     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1062     ReturnValuePointer = Address(Addr, getPointerAlign());
1063     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1064     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1065   } else {
1066     ReturnValue = CreateIRTemp(RetTy, "retval");
1067 
1068     // Tell the epilog emitter to autorelease the result.  We do this
1069     // now so that various specialized functions can suppress it
1070     // during their IR-generation.
1071     if (getLangOpts().ObjCAutoRefCount &&
1072         !CurFnInfo->isReturnsRetained() &&
1073         RetTy->isObjCRetainableType())
1074       AutoreleaseResult = true;
1075   }
1076 
1077   EmitStartEHSpec(CurCodeDecl);
1078 
1079   PrologueCleanupDepth = EHStack.stable_begin();
1080 
1081   // Emit OpenMP specific initialization of the device functions.
1082   if (getLangOpts().OpenMP && CurCodeDecl)
1083     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1084 
1085   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1086 
1087   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1088     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1089     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1090     if (MD->getParent()->isLambda() &&
1091         MD->getOverloadedOperator() == OO_Call) {
1092       // We're in a lambda; figure out the captures.
1093       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1094                                         LambdaThisCaptureField);
1095       if (LambdaThisCaptureField) {
1096         // If the lambda captures the object referred to by '*this' - either by
1097         // value or by reference, make sure CXXThisValue points to the correct
1098         // object.
1099 
1100         // Get the lvalue for the field (which is a copy of the enclosing object
1101         // or contains the address of the enclosing object).
1102         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1103         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1104           // If the enclosing object was captured by value, just use its address.
1105           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1106         } else {
1107           // Load the lvalue pointed to by the field, since '*this' was captured
1108           // by reference.
1109           CXXThisValue =
1110               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1111         }
1112       }
1113       for (auto *FD : MD->getParent()->fields()) {
1114         if (FD->hasCapturedVLAType()) {
1115           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1116                                            SourceLocation()).getScalarVal();
1117           auto VAT = FD->getCapturedVLAType();
1118           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1119         }
1120       }
1121     } else {
1122       // Not in a lambda; just use 'this' from the method.
1123       // FIXME: Should we generate a new load for each use of 'this'?  The
1124       // fast register allocator would be happier...
1125       CXXThisValue = CXXABIThisValue;
1126     }
1127 
1128     // Check the 'this' pointer once per function, if it's available.
1129     if (CXXABIThisValue) {
1130       SanitizerSet SkippedChecks;
1131       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1132       QualType ThisTy = MD->getThisType();
1133 
1134       // If this is the call operator of a lambda with no capture-default, it
1135       // may have a static invoker function, which may call this operator with
1136       // a null 'this' pointer.
1137       if (isLambdaCallOperator(MD) &&
1138           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1139         SkippedChecks.set(SanitizerKind::Null, true);
1140 
1141       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1142                                                 : TCK_MemberCall,
1143                     Loc, CXXABIThisValue, ThisTy,
1144                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1145                     SkippedChecks);
1146     }
1147   }
1148 
1149   // If any of the arguments have a variably modified type, make sure to
1150   // emit the type size.
1151   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1152        i != e; ++i) {
1153     const VarDecl *VD = *i;
1154 
1155     // Dig out the type as written from ParmVarDecls; it's unclear whether
1156     // the standard (C99 6.9.1p10) requires this, but we're following the
1157     // precedent set by gcc.
1158     QualType Ty;
1159     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1160       Ty = PVD->getOriginalType();
1161     else
1162       Ty = VD->getType();
1163 
1164     if (Ty->isVariablyModifiedType())
1165       EmitVariablyModifiedType(Ty);
1166   }
1167   // Emit a location at the end of the prologue.
1168   if (CGDebugInfo *DI = getDebugInfo())
1169     DI->EmitLocation(Builder, StartLoc);
1170 
1171   // TODO: Do we need to handle this in two places like we do with
1172   // target-features/target-cpu?
1173   if (CurFuncDecl)
1174     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1175       LargestVectorWidth = VecWidth->getVectorWidth();
1176 }
1177 
1178 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1179   incrementProfileCounter(Body);
1180   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1181     EmitCompoundStmtWithoutScope(*S);
1182   else
1183     EmitStmt(Body);
1184 }
1185 
1186 /// When instrumenting to collect profile data, the counts for some blocks
1187 /// such as switch cases need to not include the fall-through counts, so
1188 /// emit a branch around the instrumentation code. When not instrumenting,
1189 /// this just calls EmitBlock().
1190 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1191                                                const Stmt *S) {
1192   llvm::BasicBlock *SkipCountBB = nullptr;
1193   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1194     // When instrumenting for profiling, the fallthrough to certain
1195     // statements needs to skip over the instrumentation code so that we
1196     // get an accurate count.
1197     SkipCountBB = createBasicBlock("skipcount");
1198     EmitBranch(SkipCountBB);
1199   }
1200   EmitBlock(BB);
1201   uint64_t CurrentCount = getCurrentProfileCount();
1202   incrementProfileCounter(S);
1203   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1204   if (SkipCountBB)
1205     EmitBlock(SkipCountBB);
1206 }
1207 
1208 /// Tries to mark the given function nounwind based on the
1209 /// non-existence of any throwing calls within it.  We believe this is
1210 /// lightweight enough to do at -O0.
1211 static void TryMarkNoThrow(llvm::Function *F) {
1212   // LLVM treats 'nounwind' on a function as part of the type, so we
1213   // can't do this on functions that can be overwritten.
1214   if (F->isInterposable()) return;
1215 
1216   for (llvm::BasicBlock &BB : *F)
1217     for (llvm::Instruction &I : BB)
1218       if (I.mayThrow())
1219         return;
1220 
1221   F->setDoesNotThrow();
1222 }
1223 
1224 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1225                                                FunctionArgList &Args) {
1226   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1227   QualType ResTy = FD->getReturnType();
1228 
1229   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1230   if (MD && MD->isInstance()) {
1231     if (CGM.getCXXABI().HasThisReturn(GD))
1232       ResTy = MD->getThisType();
1233     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1234       ResTy = CGM.getContext().VoidPtrTy;
1235     CGM.getCXXABI().buildThisParam(*this, Args);
1236   }
1237 
1238   // The base version of an inheriting constructor whose constructed base is a
1239   // virtual base is not passed any arguments (because it doesn't actually call
1240   // the inherited constructor).
1241   bool PassedParams = true;
1242   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1243     if (auto Inherited = CD->getInheritedConstructor())
1244       PassedParams =
1245           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1246 
1247   if (PassedParams) {
1248     for (auto *Param : FD->parameters()) {
1249       Args.push_back(Param);
1250       if (!Param->hasAttr<PassObjectSizeAttr>())
1251         continue;
1252 
1253       auto *Implicit = ImplicitParamDecl::Create(
1254           getContext(), Param->getDeclContext(), Param->getLocation(),
1255           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1256       SizeArguments[Param] = Implicit;
1257       Args.push_back(Implicit);
1258     }
1259   }
1260 
1261   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1262     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1263 
1264   return ResTy;
1265 }
1266 
1267 static bool
1268 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1269                                              const ASTContext &Context) {
1270   QualType T = FD->getReturnType();
1271   // Avoid the optimization for functions that return a record type with a
1272   // trivial destructor or another trivially copyable type.
1273   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1274     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1275       return !ClassDecl->hasTrivialDestructor();
1276   }
1277   return !T.isTriviallyCopyableType(Context);
1278 }
1279 
1280 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1281                                    const CGFunctionInfo &FnInfo) {
1282   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1283   CurGD = GD;
1284 
1285   FunctionArgList Args;
1286   QualType ResTy = BuildFunctionArgList(GD, Args);
1287 
1288   // Check if we should generate debug info for this function.
1289   if (FD->hasAttr<NoDebugAttr>())
1290     DebugInfo = nullptr; // disable debug info indefinitely for this function
1291 
1292   // The function might not have a body if we're generating thunks for a
1293   // function declaration.
1294   SourceRange BodyRange;
1295   if (Stmt *Body = FD->getBody())
1296     BodyRange = Body->getSourceRange();
1297   else
1298     BodyRange = FD->getLocation();
1299   CurEHLocation = BodyRange.getEnd();
1300 
1301   // Use the location of the start of the function to determine where
1302   // the function definition is located. By default use the location
1303   // of the declaration as the location for the subprogram. A function
1304   // may lack a declaration in the source code if it is created by code
1305   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1306   SourceLocation Loc = FD->getLocation();
1307 
1308   // If this is a function specialization then use the pattern body
1309   // as the location for the function.
1310   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1311     if (SpecDecl->hasBody(SpecDecl))
1312       Loc = SpecDecl->getLocation();
1313 
1314   Stmt *Body = FD->getBody();
1315 
1316   // Initialize helper which will detect jumps which can cause invalid lifetime
1317   // markers.
1318   if (Body && ShouldEmitLifetimeMarkers)
1319     Bypasses.Init(Body);
1320 
1321   // Emit the standard function prologue.
1322   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1323 
1324   // Generate the body of the function.
1325   PGO.assignRegionCounters(GD, CurFn);
1326   if (isa<CXXDestructorDecl>(FD))
1327     EmitDestructorBody(Args);
1328   else if (isa<CXXConstructorDecl>(FD))
1329     EmitConstructorBody(Args);
1330   else if (getLangOpts().CUDA &&
1331            !getLangOpts().CUDAIsDevice &&
1332            FD->hasAttr<CUDAGlobalAttr>())
1333     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1334   else if (isa<CXXMethodDecl>(FD) &&
1335            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1336     // The lambda static invoker function is special, because it forwards or
1337     // clones the body of the function call operator (but is actually static).
1338     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1339   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1340              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1341               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1342     // Implicit copy-assignment gets the same special treatment as implicit
1343     // copy-constructors.
1344     emitImplicitAssignmentOperatorBody(Args);
1345   } else if (Body) {
1346     EmitFunctionBody(Body);
1347   } else
1348     llvm_unreachable("no definition for emitted function");
1349 
1350   // C++11 [stmt.return]p2:
1351   //   Flowing off the end of a function [...] results in undefined behavior in
1352   //   a value-returning function.
1353   // C11 6.9.1p12:
1354   //   If the '}' that terminates a function is reached, and the value of the
1355   //   function call is used by the caller, the behavior is undefined.
1356   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1357       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1358     bool ShouldEmitUnreachable =
1359         CGM.getCodeGenOpts().StrictReturn ||
1360         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1361     if (SanOpts.has(SanitizerKind::Return)) {
1362       SanitizerScope SanScope(this);
1363       llvm::Value *IsFalse = Builder.getFalse();
1364       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1365                 SanitizerHandler::MissingReturn,
1366                 EmitCheckSourceLocation(FD->getLocation()), None);
1367     } else if (ShouldEmitUnreachable) {
1368       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1369         EmitTrapCall(llvm::Intrinsic::trap);
1370     }
1371     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1372       Builder.CreateUnreachable();
1373       Builder.ClearInsertionPoint();
1374     }
1375   }
1376 
1377   // Emit the standard function epilogue.
1378   FinishFunction(BodyRange.getEnd());
1379 
1380   // If we haven't marked the function nothrow through other means, do
1381   // a quick pass now to see if we can.
1382   if (!CurFn->doesNotThrow())
1383     TryMarkNoThrow(CurFn);
1384 }
1385 
1386 /// ContainsLabel - Return true if the statement contains a label in it.  If
1387 /// this statement is not executed normally, it not containing a label means
1388 /// that we can just remove the code.
1389 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1390   // Null statement, not a label!
1391   if (!S) return false;
1392 
1393   // If this is a label, we have to emit the code, consider something like:
1394   // if (0) {  ...  foo:  bar(); }  goto foo;
1395   //
1396   // TODO: If anyone cared, we could track __label__'s, since we know that you
1397   // can't jump to one from outside their declared region.
1398   if (isa<LabelStmt>(S))
1399     return true;
1400 
1401   // If this is a case/default statement, and we haven't seen a switch, we have
1402   // to emit the code.
1403   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1404     return true;
1405 
1406   // If this is a switch statement, we want to ignore cases below it.
1407   if (isa<SwitchStmt>(S))
1408     IgnoreCaseStmts = true;
1409 
1410   // Scan subexpressions for verboten labels.
1411   for (const Stmt *SubStmt : S->children())
1412     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1413       return true;
1414 
1415   return false;
1416 }
1417 
1418 /// containsBreak - Return true if the statement contains a break out of it.
1419 /// If the statement (recursively) contains a switch or loop with a break
1420 /// inside of it, this is fine.
1421 bool CodeGenFunction::containsBreak(const Stmt *S) {
1422   // Null statement, not a label!
1423   if (!S) return false;
1424 
1425   // If this is a switch or loop that defines its own break scope, then we can
1426   // include it and anything inside of it.
1427   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1428       isa<ForStmt>(S))
1429     return false;
1430 
1431   if (isa<BreakStmt>(S))
1432     return true;
1433 
1434   // Scan subexpressions for verboten breaks.
1435   for (const Stmt *SubStmt : S->children())
1436     if (containsBreak(SubStmt))
1437       return true;
1438 
1439   return false;
1440 }
1441 
1442 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1443   if (!S) return false;
1444 
1445   // Some statement kinds add a scope and thus never add a decl to the current
1446   // scope. Note, this list is longer than the list of statements that might
1447   // have an unscoped decl nested within them, but this way is conservatively
1448   // correct even if more statement kinds are added.
1449   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1450       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1451       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1452       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1453     return false;
1454 
1455   if (isa<DeclStmt>(S))
1456     return true;
1457 
1458   for (const Stmt *SubStmt : S->children())
1459     if (mightAddDeclToScope(SubStmt))
1460       return true;
1461 
1462   return false;
1463 }
1464 
1465 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1466 /// to a constant, or if it does but contains a label, return false.  If it
1467 /// constant folds return true and set the boolean result in Result.
1468 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1469                                                    bool &ResultBool,
1470                                                    bool AllowLabels) {
1471   llvm::APSInt ResultInt;
1472   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1473     return false;
1474 
1475   ResultBool = ResultInt.getBoolValue();
1476   return true;
1477 }
1478 
1479 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1480 /// to a constant, or if it does but contains a label, return false.  If it
1481 /// constant folds return true and set the folded value.
1482 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1483                                                    llvm::APSInt &ResultInt,
1484                                                    bool AllowLabels) {
1485   // FIXME: Rename and handle conversion of other evaluatable things
1486   // to bool.
1487   Expr::EvalResult Result;
1488   if (!Cond->EvaluateAsInt(Result, getContext()))
1489     return false;  // Not foldable, not integer or not fully evaluatable.
1490 
1491   llvm::APSInt Int = Result.Val.getInt();
1492   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1493     return false;  // Contains a label.
1494 
1495   ResultInt = Int;
1496   return true;
1497 }
1498 
1499 
1500 
1501 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1502 /// statement) to the specified blocks.  Based on the condition, this might try
1503 /// to simplify the codegen of the conditional based on the branch.
1504 ///
1505 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1506                                            llvm::BasicBlock *TrueBlock,
1507                                            llvm::BasicBlock *FalseBlock,
1508                                            uint64_t TrueCount) {
1509   Cond = Cond->IgnoreParens();
1510 
1511   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1512 
1513     // Handle X && Y in a condition.
1514     if (CondBOp->getOpcode() == BO_LAnd) {
1515       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1516       // folded if the case was simple enough.
1517       bool ConstantBool = false;
1518       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1519           ConstantBool) {
1520         // br(1 && X) -> br(X).
1521         incrementProfileCounter(CondBOp);
1522         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1523                                     TrueCount);
1524       }
1525 
1526       // If we have "X && 1", simplify the code to use an uncond branch.
1527       // "X && 0" would have been constant folded to 0.
1528       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1529           ConstantBool) {
1530         // br(X && 1) -> br(X).
1531         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1532                                     TrueCount);
1533       }
1534 
1535       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1536       // want to jump to the FalseBlock.
1537       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1538       // The counter tells us how often we evaluate RHS, and all of TrueCount
1539       // can be propagated to that branch.
1540       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1541 
1542       ConditionalEvaluation eval(*this);
1543       {
1544         ApplyDebugLocation DL(*this, Cond);
1545         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1546         EmitBlock(LHSTrue);
1547       }
1548 
1549       incrementProfileCounter(CondBOp);
1550       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1551 
1552       // Any temporaries created here are conditional.
1553       eval.begin(*this);
1554       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1555       eval.end(*this);
1556 
1557       return;
1558     }
1559 
1560     if (CondBOp->getOpcode() == BO_LOr) {
1561       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1562       // folded if the case was simple enough.
1563       bool ConstantBool = false;
1564       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1565           !ConstantBool) {
1566         // br(0 || X) -> br(X).
1567         incrementProfileCounter(CondBOp);
1568         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1569                                     TrueCount);
1570       }
1571 
1572       // If we have "X || 0", simplify the code to use an uncond branch.
1573       // "X || 1" would have been constant folded to 1.
1574       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1575           !ConstantBool) {
1576         // br(X || 0) -> br(X).
1577         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1578                                     TrueCount);
1579       }
1580 
1581       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1582       // want to jump to the TrueBlock.
1583       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1584       // We have the count for entry to the RHS and for the whole expression
1585       // being true, so we can divy up True count between the short circuit and
1586       // the RHS.
1587       uint64_t LHSCount =
1588           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1589       uint64_t RHSCount = TrueCount - LHSCount;
1590 
1591       ConditionalEvaluation eval(*this);
1592       {
1593         ApplyDebugLocation DL(*this, Cond);
1594         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1595         EmitBlock(LHSFalse);
1596       }
1597 
1598       incrementProfileCounter(CondBOp);
1599       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1600 
1601       // Any temporaries created here are conditional.
1602       eval.begin(*this);
1603       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1604 
1605       eval.end(*this);
1606 
1607       return;
1608     }
1609   }
1610 
1611   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1612     // br(!x, t, f) -> br(x, f, t)
1613     if (CondUOp->getOpcode() == UO_LNot) {
1614       // Negate the count.
1615       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1616       // Negate the condition and swap the destination blocks.
1617       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1618                                   FalseCount);
1619     }
1620   }
1621 
1622   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1623     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1624     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1625     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1626 
1627     ConditionalEvaluation cond(*this);
1628     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1629                          getProfileCount(CondOp));
1630 
1631     // When computing PGO branch weights, we only know the overall count for
1632     // the true block. This code is essentially doing tail duplication of the
1633     // naive code-gen, introducing new edges for which counts are not
1634     // available. Divide the counts proportionally between the LHS and RHS of
1635     // the conditional operator.
1636     uint64_t LHSScaledTrueCount = 0;
1637     if (TrueCount) {
1638       double LHSRatio =
1639           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1640       LHSScaledTrueCount = TrueCount * LHSRatio;
1641     }
1642 
1643     cond.begin(*this);
1644     EmitBlock(LHSBlock);
1645     incrementProfileCounter(CondOp);
1646     {
1647       ApplyDebugLocation DL(*this, Cond);
1648       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1649                            LHSScaledTrueCount);
1650     }
1651     cond.end(*this);
1652 
1653     cond.begin(*this);
1654     EmitBlock(RHSBlock);
1655     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1656                          TrueCount - LHSScaledTrueCount);
1657     cond.end(*this);
1658 
1659     return;
1660   }
1661 
1662   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1663     // Conditional operator handling can give us a throw expression as a
1664     // condition for a case like:
1665     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1666     // Fold this to:
1667     //   br(c, throw x, br(y, t, f))
1668     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1669     return;
1670   }
1671 
1672   // If the branch has a condition wrapped by __builtin_unpredictable,
1673   // create metadata that specifies that the branch is unpredictable.
1674   // Don't bother if not optimizing because that metadata would not be used.
1675   llvm::MDNode *Unpredictable = nullptr;
1676   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1677   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1678     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1679     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1680       llvm::MDBuilder MDHelper(getLLVMContext());
1681       Unpredictable = MDHelper.createUnpredictable();
1682     }
1683   }
1684 
1685   // Create branch weights based on the number of times we get here and the
1686   // number of times the condition should be true.
1687   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1688   llvm::MDNode *Weights =
1689       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1690 
1691   // Emit the code with the fully general case.
1692   llvm::Value *CondV;
1693   {
1694     ApplyDebugLocation DL(*this, Cond);
1695     CondV = EvaluateExprAsBool(Cond);
1696   }
1697   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1698 }
1699 
1700 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1701 /// specified stmt yet.
1702 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1703   CGM.ErrorUnsupported(S, Type);
1704 }
1705 
1706 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1707 /// variable-length array whose elements have a non-zero bit-pattern.
1708 ///
1709 /// \param baseType the inner-most element type of the array
1710 /// \param src - a char* pointing to the bit-pattern for a single
1711 /// base element of the array
1712 /// \param sizeInChars - the total size of the VLA, in chars
1713 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1714                                Address dest, Address src,
1715                                llvm::Value *sizeInChars) {
1716   CGBuilderTy &Builder = CGF.Builder;
1717 
1718   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1719   llvm::Value *baseSizeInChars
1720     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1721 
1722   Address begin =
1723     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1724   llvm::Value *end =
1725     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1726 
1727   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1728   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1729   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1730 
1731   // Make a loop over the VLA.  C99 guarantees that the VLA element
1732   // count must be nonzero.
1733   CGF.EmitBlock(loopBB);
1734 
1735   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1736   cur->addIncoming(begin.getPointer(), originBB);
1737 
1738   CharUnits curAlign =
1739     dest.getAlignment().alignmentOfArrayElement(baseSize);
1740 
1741   // memcpy the individual element bit-pattern.
1742   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1743                        /*volatile*/ false);
1744 
1745   // Go to the next element.
1746   llvm::Value *next =
1747     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1748 
1749   // Leave if that's the end of the VLA.
1750   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1751   Builder.CreateCondBr(done, contBB, loopBB);
1752   cur->addIncoming(next, loopBB);
1753 
1754   CGF.EmitBlock(contBB);
1755 }
1756 
1757 void
1758 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1759   // Ignore empty classes in C++.
1760   if (getLangOpts().CPlusPlus) {
1761     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1762       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1763         return;
1764     }
1765   }
1766 
1767   // Cast the dest ptr to the appropriate i8 pointer type.
1768   if (DestPtr.getElementType() != Int8Ty)
1769     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1770 
1771   // Get size and alignment info for this aggregate.
1772   CharUnits size = getContext().getTypeSizeInChars(Ty);
1773 
1774   llvm::Value *SizeVal;
1775   const VariableArrayType *vla;
1776 
1777   // Don't bother emitting a zero-byte memset.
1778   if (size.isZero()) {
1779     // But note that getTypeInfo returns 0 for a VLA.
1780     if (const VariableArrayType *vlaType =
1781           dyn_cast_or_null<VariableArrayType>(
1782                                           getContext().getAsArrayType(Ty))) {
1783       auto VlaSize = getVLASize(vlaType);
1784       SizeVal = VlaSize.NumElts;
1785       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1786       if (!eltSize.isOne())
1787         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1788       vla = vlaType;
1789     } else {
1790       return;
1791     }
1792   } else {
1793     SizeVal = CGM.getSize(size);
1794     vla = nullptr;
1795   }
1796 
1797   // If the type contains a pointer to data member we can't memset it to zero.
1798   // Instead, create a null constant and copy it to the destination.
1799   // TODO: there are other patterns besides zero that we can usefully memset,
1800   // like -1, which happens to be the pattern used by member-pointers.
1801   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1802     // For a VLA, emit a single element, then splat that over the VLA.
1803     if (vla) Ty = getContext().getBaseElementType(vla);
1804 
1805     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1806 
1807     llvm::GlobalVariable *NullVariable =
1808       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1809                                /*isConstant=*/true,
1810                                llvm::GlobalVariable::PrivateLinkage,
1811                                NullConstant, Twine());
1812     CharUnits NullAlign = DestPtr.getAlignment();
1813     NullVariable->setAlignment(NullAlign.getAsAlign());
1814     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1815                    NullAlign);
1816 
1817     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1818 
1819     // Get and call the appropriate llvm.memcpy overload.
1820     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1821     return;
1822   }
1823 
1824   // Otherwise, just memset the whole thing to zero.  This is legal
1825   // because in LLVM, all default initializers (other than the ones we just
1826   // handled above) are guaranteed to have a bit pattern of all zeros.
1827   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1828 }
1829 
1830 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1831   // Make sure that there is a block for the indirect goto.
1832   if (!IndirectBranch)
1833     GetIndirectGotoBlock();
1834 
1835   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1836 
1837   // Make sure the indirect branch includes all of the address-taken blocks.
1838   IndirectBranch->addDestination(BB);
1839   return llvm::BlockAddress::get(CurFn, BB);
1840 }
1841 
1842 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1843   // If we already made the indirect branch for indirect goto, return its block.
1844   if (IndirectBranch) return IndirectBranch->getParent();
1845 
1846   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1847 
1848   // Create the PHI node that indirect gotos will add entries to.
1849   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1850                                               "indirect.goto.dest");
1851 
1852   // Create the indirect branch instruction.
1853   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1854   return IndirectBranch->getParent();
1855 }
1856 
1857 /// Computes the length of an array in elements, as well as the base
1858 /// element type and a properly-typed first element pointer.
1859 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1860                                               QualType &baseType,
1861                                               Address &addr) {
1862   const ArrayType *arrayType = origArrayType;
1863 
1864   // If it's a VLA, we have to load the stored size.  Note that
1865   // this is the size of the VLA in bytes, not its size in elements.
1866   llvm::Value *numVLAElements = nullptr;
1867   if (isa<VariableArrayType>(arrayType)) {
1868     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1869 
1870     // Walk into all VLAs.  This doesn't require changes to addr,
1871     // which has type T* where T is the first non-VLA element type.
1872     do {
1873       QualType elementType = arrayType->getElementType();
1874       arrayType = getContext().getAsArrayType(elementType);
1875 
1876       // If we only have VLA components, 'addr' requires no adjustment.
1877       if (!arrayType) {
1878         baseType = elementType;
1879         return numVLAElements;
1880       }
1881     } while (isa<VariableArrayType>(arrayType));
1882 
1883     // We get out here only if we find a constant array type
1884     // inside the VLA.
1885   }
1886 
1887   // We have some number of constant-length arrays, so addr should
1888   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1889   // down to the first element of addr.
1890   SmallVector<llvm::Value*, 8> gepIndices;
1891 
1892   // GEP down to the array type.
1893   llvm::ConstantInt *zero = Builder.getInt32(0);
1894   gepIndices.push_back(zero);
1895 
1896   uint64_t countFromCLAs = 1;
1897   QualType eltType;
1898 
1899   llvm::ArrayType *llvmArrayType =
1900     dyn_cast<llvm::ArrayType>(addr.getElementType());
1901   while (llvmArrayType) {
1902     assert(isa<ConstantArrayType>(arrayType));
1903     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1904              == llvmArrayType->getNumElements());
1905 
1906     gepIndices.push_back(zero);
1907     countFromCLAs *= llvmArrayType->getNumElements();
1908     eltType = arrayType->getElementType();
1909 
1910     llvmArrayType =
1911       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1912     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1913     assert((!llvmArrayType || arrayType) &&
1914            "LLVM and Clang types are out-of-synch");
1915   }
1916 
1917   if (arrayType) {
1918     // From this point onwards, the Clang array type has been emitted
1919     // as some other type (probably a packed struct). Compute the array
1920     // size, and just emit the 'begin' expression as a bitcast.
1921     while (arrayType) {
1922       countFromCLAs *=
1923           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1924       eltType = arrayType->getElementType();
1925       arrayType = getContext().getAsArrayType(eltType);
1926     }
1927 
1928     llvm::Type *baseType = ConvertType(eltType);
1929     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1930   } else {
1931     // Create the actual GEP.
1932     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1933                                              gepIndices, "array.begin"),
1934                    addr.getAlignment());
1935   }
1936 
1937   baseType = eltType;
1938 
1939   llvm::Value *numElements
1940     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1941 
1942   // If we had any VLA dimensions, factor them in.
1943   if (numVLAElements)
1944     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1945 
1946   return numElements;
1947 }
1948 
1949 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1950   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1951   assert(vla && "type was not a variable array type!");
1952   return getVLASize(vla);
1953 }
1954 
1955 CodeGenFunction::VlaSizePair
1956 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1957   // The number of elements so far; always size_t.
1958   llvm::Value *numElements = nullptr;
1959 
1960   QualType elementType;
1961   do {
1962     elementType = type->getElementType();
1963     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1964     assert(vlaSize && "no size for VLA!");
1965     assert(vlaSize->getType() == SizeTy);
1966 
1967     if (!numElements) {
1968       numElements = vlaSize;
1969     } else {
1970       // It's undefined behavior if this wraps around, so mark it that way.
1971       // FIXME: Teach -fsanitize=undefined to trap this.
1972       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1973     }
1974   } while ((type = getContext().getAsVariableArrayType(elementType)));
1975 
1976   return { numElements, elementType };
1977 }
1978 
1979 CodeGenFunction::VlaSizePair
1980 CodeGenFunction::getVLAElements1D(QualType type) {
1981   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1982   assert(vla && "type was not a variable array type!");
1983   return getVLAElements1D(vla);
1984 }
1985 
1986 CodeGenFunction::VlaSizePair
1987 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1988   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1989   assert(VlaSize && "no size for VLA!");
1990   assert(VlaSize->getType() == SizeTy);
1991   return { VlaSize, Vla->getElementType() };
1992 }
1993 
1994 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1995   assert(type->isVariablyModifiedType() &&
1996          "Must pass variably modified type to EmitVLASizes!");
1997 
1998   EnsureInsertPoint();
1999 
2000   // We're going to walk down into the type and look for VLA
2001   // expressions.
2002   do {
2003     assert(type->isVariablyModifiedType());
2004 
2005     const Type *ty = type.getTypePtr();
2006     switch (ty->getTypeClass()) {
2007 
2008 #define TYPE(Class, Base)
2009 #define ABSTRACT_TYPE(Class, Base)
2010 #define NON_CANONICAL_TYPE(Class, Base)
2011 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2012 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2013 #include "clang/AST/TypeNodes.inc"
2014       llvm_unreachable("unexpected dependent type!");
2015 
2016     // These types are never variably-modified.
2017     case Type::Builtin:
2018     case Type::Complex:
2019     case Type::Vector:
2020     case Type::ExtVector:
2021     case Type::Record:
2022     case Type::Enum:
2023     case Type::Elaborated:
2024     case Type::TemplateSpecialization:
2025     case Type::ObjCTypeParam:
2026     case Type::ObjCObject:
2027     case Type::ObjCInterface:
2028     case Type::ObjCObjectPointer:
2029       llvm_unreachable("type class is never variably-modified!");
2030 
2031     case Type::Adjusted:
2032       type = cast<AdjustedType>(ty)->getAdjustedType();
2033       break;
2034 
2035     case Type::Decayed:
2036       type = cast<DecayedType>(ty)->getPointeeType();
2037       break;
2038 
2039     case Type::Pointer:
2040       type = cast<PointerType>(ty)->getPointeeType();
2041       break;
2042 
2043     case Type::BlockPointer:
2044       type = cast<BlockPointerType>(ty)->getPointeeType();
2045       break;
2046 
2047     case Type::LValueReference:
2048     case Type::RValueReference:
2049       type = cast<ReferenceType>(ty)->getPointeeType();
2050       break;
2051 
2052     case Type::MemberPointer:
2053       type = cast<MemberPointerType>(ty)->getPointeeType();
2054       break;
2055 
2056     case Type::ConstantArray:
2057     case Type::IncompleteArray:
2058       // Losing element qualification here is fine.
2059       type = cast<ArrayType>(ty)->getElementType();
2060       break;
2061 
2062     case Type::VariableArray: {
2063       // Losing element qualification here is fine.
2064       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2065 
2066       // Unknown size indication requires no size computation.
2067       // Otherwise, evaluate and record it.
2068       if (const Expr *size = vat->getSizeExpr()) {
2069         // It's possible that we might have emitted this already,
2070         // e.g. with a typedef and a pointer to it.
2071         llvm::Value *&entry = VLASizeMap[size];
2072         if (!entry) {
2073           llvm::Value *Size = EmitScalarExpr(size);
2074 
2075           // C11 6.7.6.2p5:
2076           //   If the size is an expression that is not an integer constant
2077           //   expression [...] each time it is evaluated it shall have a value
2078           //   greater than zero.
2079           if (SanOpts.has(SanitizerKind::VLABound) &&
2080               size->getType()->isSignedIntegerType()) {
2081             SanitizerScope SanScope(this);
2082             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2083             llvm::Constant *StaticArgs[] = {
2084                 EmitCheckSourceLocation(size->getBeginLoc()),
2085                 EmitCheckTypeDescriptor(size->getType())};
2086             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2087                                      SanitizerKind::VLABound),
2088                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2089           }
2090 
2091           // Always zexting here would be wrong if it weren't
2092           // undefined behavior to have a negative bound.
2093           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2094         }
2095       }
2096       type = vat->getElementType();
2097       break;
2098     }
2099 
2100     case Type::FunctionProto:
2101     case Type::FunctionNoProto:
2102       type = cast<FunctionType>(ty)->getReturnType();
2103       break;
2104 
2105     case Type::Paren:
2106     case Type::TypeOf:
2107     case Type::UnaryTransform:
2108     case Type::Attributed:
2109     case Type::SubstTemplateTypeParm:
2110     case Type::PackExpansion:
2111     case Type::MacroQualified:
2112       // Keep walking after single level desugaring.
2113       type = type.getSingleStepDesugaredType(getContext());
2114       break;
2115 
2116     case Type::Typedef:
2117     case Type::Decltype:
2118     case Type::Auto:
2119     case Type::DeducedTemplateSpecialization:
2120       // Stop walking: nothing to do.
2121       return;
2122 
2123     case Type::TypeOfExpr:
2124       // Stop walking: emit typeof expression.
2125       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2126       return;
2127 
2128     case Type::Atomic:
2129       type = cast<AtomicType>(ty)->getValueType();
2130       break;
2131 
2132     case Type::Pipe:
2133       type = cast<PipeType>(ty)->getElementType();
2134       break;
2135     }
2136   } while (type->isVariablyModifiedType());
2137 }
2138 
2139 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2140   if (getContext().getBuiltinVaListType()->isArrayType())
2141     return EmitPointerWithAlignment(E);
2142   return EmitLValue(E).getAddress(*this);
2143 }
2144 
2145 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2146   return EmitLValue(E).getAddress(*this);
2147 }
2148 
2149 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2150                                               const APValue &Init) {
2151   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2152   if (CGDebugInfo *Dbg = getDebugInfo())
2153     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2154       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2155 }
2156 
2157 CodeGenFunction::PeepholeProtection
2158 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2159   // At the moment, the only aggressive peephole we do in IR gen
2160   // is trunc(zext) folding, but if we add more, we can easily
2161   // extend this protection.
2162 
2163   if (!rvalue.isScalar()) return PeepholeProtection();
2164   llvm::Value *value = rvalue.getScalarVal();
2165   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2166 
2167   // Just make an extra bitcast.
2168   assert(HaveInsertPoint());
2169   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2170                                                   Builder.GetInsertBlock());
2171 
2172   PeepholeProtection protection;
2173   protection.Inst = inst;
2174   return protection;
2175 }
2176 
2177 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2178   if (!protection.Inst) return;
2179 
2180   // In theory, we could try to duplicate the peepholes now, but whatever.
2181   protection.Inst->eraseFromParent();
2182 }
2183 
2184 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2185                                               QualType Ty, SourceLocation Loc,
2186                                               SourceLocation AssumptionLoc,
2187                                               llvm::Value *Alignment,
2188                                               llvm::Value *OffsetValue) {
2189   llvm::Value *TheCheck;
2190   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2191       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2192   if (SanOpts.has(SanitizerKind::Alignment)) {
2193     emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2194                                  OffsetValue, TheCheck, Assumption);
2195   }
2196 }
2197 
2198 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2199                                               const Expr *E,
2200                                               SourceLocation AssumptionLoc,
2201                                               llvm::Value *Alignment,
2202                                               llvm::Value *OffsetValue) {
2203   if (auto *CE = dyn_cast<CastExpr>(E))
2204     E = CE->getSubExprAsWritten();
2205   QualType Ty = E->getType();
2206   SourceLocation Loc = E->getExprLoc();
2207 
2208   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2209                           OffsetValue);
2210 }
2211 
2212 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2213                                                  llvm::Value *AnnotatedVal,
2214                                                  StringRef AnnotationStr,
2215                                                  SourceLocation Location) {
2216   llvm::Value *Args[4] = {
2217     AnnotatedVal,
2218     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2219     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2220     CGM.EmitAnnotationLineNo(Location)
2221   };
2222   return Builder.CreateCall(AnnotationFn, Args);
2223 }
2224 
2225 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2226   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2227   // FIXME We create a new bitcast for every annotation because that's what
2228   // llvm-gcc was doing.
2229   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2230     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2231                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2232                        I->getAnnotation(), D->getLocation());
2233 }
2234 
2235 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2236                                               Address Addr) {
2237   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2238   llvm::Value *V = Addr.getPointer();
2239   llvm::Type *VTy = V->getType();
2240   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2241                                     CGM.Int8PtrTy);
2242 
2243   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2244     // FIXME Always emit the cast inst so we can differentiate between
2245     // annotation on the first field of a struct and annotation on the struct
2246     // itself.
2247     if (VTy != CGM.Int8PtrTy)
2248       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2249     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2250     V = Builder.CreateBitCast(V, VTy);
2251   }
2252 
2253   return Address(V, Addr.getAlignment());
2254 }
2255 
2256 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2257 
2258 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2259     : CGF(CGF) {
2260   assert(!CGF->IsSanitizerScope);
2261   CGF->IsSanitizerScope = true;
2262 }
2263 
2264 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2265   CGF->IsSanitizerScope = false;
2266 }
2267 
2268 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2269                                    const llvm::Twine &Name,
2270                                    llvm::BasicBlock *BB,
2271                                    llvm::BasicBlock::iterator InsertPt) const {
2272   LoopStack.InsertHelper(I);
2273   if (IsSanitizerScope)
2274     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2275 }
2276 
2277 void CGBuilderInserter::InsertHelper(
2278     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2279     llvm::BasicBlock::iterator InsertPt) const {
2280   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2281   if (CGF)
2282     CGF->InsertHelper(I, Name, BB, InsertPt);
2283 }
2284 
2285 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2286                                 CodeGenModule &CGM, const FunctionDecl *FD,
2287                                 std::string &FirstMissing) {
2288   // If there aren't any required features listed then go ahead and return.
2289   if (ReqFeatures.empty())
2290     return false;
2291 
2292   // Now build up the set of caller features and verify that all the required
2293   // features are there.
2294   llvm::StringMap<bool> CallerFeatureMap;
2295   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2296 
2297   // If we have at least one of the features in the feature list return
2298   // true, otherwise return false.
2299   return std::all_of(
2300       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2301         SmallVector<StringRef, 1> OrFeatures;
2302         Feature.split(OrFeatures, '|');
2303         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2304           if (!CallerFeatureMap.lookup(Feature)) {
2305             FirstMissing = Feature.str();
2306             return false;
2307           }
2308           return true;
2309         });
2310       });
2311 }
2312 
2313 // Emits an error if we don't have a valid set of target features for the
2314 // called function.
2315 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2316                                           const FunctionDecl *TargetDecl) {
2317   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2318 }
2319 
2320 // Emits an error if we don't have a valid set of target features for the
2321 // called function.
2322 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2323                                           const FunctionDecl *TargetDecl) {
2324   // Early exit if this is an indirect call.
2325   if (!TargetDecl)
2326     return;
2327 
2328   // Get the current enclosing function if it exists. If it doesn't
2329   // we can't check the target features anyhow.
2330   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2331   if (!FD)
2332     return;
2333 
2334   // Grab the required features for the call. For a builtin this is listed in
2335   // the td file with the default cpu, for an always_inline function this is any
2336   // listed cpu and any listed features.
2337   unsigned BuiltinID = TargetDecl->getBuiltinID();
2338   std::string MissingFeature;
2339   if (BuiltinID) {
2340     SmallVector<StringRef, 1> ReqFeatures;
2341     const char *FeatureList =
2342         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2343     // Return if the builtin doesn't have any required features.
2344     if (!FeatureList || StringRef(FeatureList) == "")
2345       return;
2346     StringRef(FeatureList).split(ReqFeatures, ',');
2347     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2348       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2349           << TargetDecl->getDeclName()
2350           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2351 
2352   } else if (!TargetDecl->isMultiVersion() &&
2353              TargetDecl->hasAttr<TargetAttr>()) {
2354     // Get the required features for the callee.
2355 
2356     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2357     ParsedTargetAttr ParsedAttr =
2358         CGM.getContext().filterFunctionTargetAttrs(TD);
2359 
2360     SmallVector<StringRef, 1> ReqFeatures;
2361     llvm::StringMap<bool> CalleeFeatureMap;
2362     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap,
2363                                            GlobalDecl(TargetDecl));
2364 
2365     for (const auto &F : ParsedAttr.Features) {
2366       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2367         ReqFeatures.push_back(StringRef(F).substr(1));
2368     }
2369 
2370     for (const auto &F : CalleeFeatureMap) {
2371       // Only positive features are "required".
2372       if (F.getValue())
2373         ReqFeatures.push_back(F.getKey());
2374     }
2375     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2376       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2377           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2378   }
2379 }
2380 
2381 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2382   if (!CGM.getCodeGenOpts().SanitizeStats)
2383     return;
2384 
2385   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2386   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2387   CGM.getSanStats().create(IRB, SSK);
2388 }
2389 
2390 llvm::Value *
2391 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2392   llvm::Value *Condition = nullptr;
2393 
2394   if (!RO.Conditions.Architecture.empty())
2395     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2396 
2397   if (!RO.Conditions.Features.empty()) {
2398     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2399     Condition =
2400         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2401   }
2402   return Condition;
2403 }
2404 
2405 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2406                                              llvm::Function *Resolver,
2407                                              CGBuilderTy &Builder,
2408                                              llvm::Function *FuncToReturn,
2409                                              bool SupportsIFunc) {
2410   if (SupportsIFunc) {
2411     Builder.CreateRet(FuncToReturn);
2412     return;
2413   }
2414 
2415   llvm::SmallVector<llvm::Value *, 10> Args;
2416   llvm::for_each(Resolver->args(),
2417                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2418 
2419   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2420   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2421 
2422   if (Resolver->getReturnType()->isVoidTy())
2423     Builder.CreateRetVoid();
2424   else
2425     Builder.CreateRet(Result);
2426 }
2427 
2428 void CodeGenFunction::EmitMultiVersionResolver(
2429     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2430   assert(getContext().getTargetInfo().getTriple().isX86() &&
2431          "Only implemented for x86 targets");
2432 
2433   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2434 
2435   // Main function's basic block.
2436   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2437   Builder.SetInsertPoint(CurBlock);
2438   EmitX86CpuInit();
2439 
2440   for (const MultiVersionResolverOption &RO : Options) {
2441     Builder.SetInsertPoint(CurBlock);
2442     llvm::Value *Condition = FormResolverCondition(RO);
2443 
2444     // The 'default' or 'generic' case.
2445     if (!Condition) {
2446       assert(&RO == Options.end() - 1 &&
2447              "Default or Generic case must be last");
2448       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2449                                        SupportsIFunc);
2450       return;
2451     }
2452 
2453     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2454     CGBuilderTy RetBuilder(*this, RetBlock);
2455     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2456                                      SupportsIFunc);
2457     CurBlock = createBasicBlock("resolver_else", Resolver);
2458     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2459   }
2460 
2461   // If no generic/default, emit an unreachable.
2462   Builder.SetInsertPoint(CurBlock);
2463   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2464   TrapCall->setDoesNotReturn();
2465   TrapCall->setDoesNotThrow();
2466   Builder.CreateUnreachable();
2467   Builder.ClearInsertionPoint();
2468 }
2469 
2470 // Loc - where the diagnostic will point, where in the source code this
2471 //  alignment has failed.
2472 // SecondaryLoc - if present (will be present if sufficiently different from
2473 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2474 //  It should be the location where the __attribute__((assume_aligned))
2475 //  was written e.g.
2476 void CodeGenFunction::emitAlignmentAssumptionCheck(
2477     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2478     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2479     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2480     llvm::Instruction *Assumption) {
2481   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2482          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2483              llvm::Intrinsic::getDeclaration(
2484                  Builder.GetInsertBlock()->getParent()->getParent(),
2485                  llvm::Intrinsic::assume) &&
2486          "Assumption should be a call to llvm.assume().");
2487   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2488          "Assumption should be the last instruction of the basic block, "
2489          "since the basic block is still being generated.");
2490 
2491   if (!SanOpts.has(SanitizerKind::Alignment))
2492     return;
2493 
2494   // Don't check pointers to volatile data. The behavior here is implementation-
2495   // defined.
2496   if (Ty->getPointeeType().isVolatileQualified())
2497     return;
2498 
2499   // We need to temorairly remove the assumption so we can insert the
2500   // sanitizer check before it, else the check will be dropped by optimizations.
2501   Assumption->removeFromParent();
2502 
2503   {
2504     SanitizerScope SanScope(this);
2505 
2506     if (!OffsetValue)
2507       OffsetValue = Builder.getInt1(0); // no offset.
2508 
2509     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2510                                     EmitCheckSourceLocation(SecondaryLoc),
2511                                     EmitCheckTypeDescriptor(Ty)};
2512     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2513                                   EmitCheckValue(Alignment),
2514                                   EmitCheckValue(OffsetValue)};
2515     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2516               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2517   }
2518 
2519   // We are now in the (new, empty) "cont" basic block.
2520   // Reintroduce the assumption.
2521   Builder.Insert(Assumption);
2522   // FIXME: Assumption still has it's original basic block as it's Parent.
2523 }
2524 
2525 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2526   if (CGDebugInfo *DI = getDebugInfo())
2527     return DI->SourceLocToDebugLoc(Location);
2528 
2529   return llvm::DebugLoc();
2530 }
2531