1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 CurFn(nullptr), ReturnValue(Address::invalid()), 69 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 70 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 71 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 72 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 73 NormalCleanupDest(Address::invalid()), NextCleanupDestIndex(1), 74 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 75 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 76 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 77 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 78 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 79 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 80 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 81 CXXStructorImplicitParamDecl(nullptr), 82 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 83 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 84 TerminateHandler(nullptr), TrapBB(nullptr), 85 ShouldEmitLifetimeMarkers( 86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 87 if (!suppressNewContext) 88 CGM.getCXXABI().getMangleContext().startNewFunction(); 89 90 llvm::FastMathFlags FMF; 91 if (CGM.getLangOpts().FastMath) 92 FMF.setFast(); 93 if (CGM.getLangOpts().FiniteMathOnly) { 94 FMF.setNoNaNs(); 95 FMF.setNoInfs(); 96 } 97 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 98 FMF.setNoNaNs(); 99 } 100 if (CGM.getCodeGenOpts().NoSignedZeros) { 101 FMF.setNoSignedZeros(); 102 } 103 if (CGM.getCodeGenOpts().ReciprocalMath) { 104 FMF.setAllowReciprocal(); 105 } 106 if (CGM.getCodeGenOpts().Reassociate) { 107 FMF.setAllowReassoc(); 108 } 109 Builder.setFastMathFlags(FMF); 110 } 111 112 CodeGenFunction::~CodeGenFunction() { 113 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 114 115 // If there are any unclaimed block infos, go ahead and destroy them 116 // now. This can happen if IR-gen gets clever and skips evaluating 117 // something. 118 if (FirstBlockInfo) 119 destroyBlockInfos(FirstBlockInfo); 120 121 if (getLangOpts().OpenMP && CurFn) 122 CGM.getOpenMPRuntime().functionFinished(*this); 123 } 124 125 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 TBAAAccessInfo *TBAAInfo) { 128 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 129 /* forPointeeType= */ true); 130 } 131 132 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 133 LValueBaseInfo *BaseInfo, 134 TBAAAccessInfo *TBAAInfo, 135 bool forPointeeType) { 136 if (TBAAInfo) 137 *TBAAInfo = CGM.getTBAAAccessInfo(T); 138 139 // Honor alignment typedef attributes even on incomplete types. 140 // We also honor them straight for C++ class types, even as pointees; 141 // there's an expressivity gap here. 142 if (auto TT = T->getAs<TypedefType>()) { 143 if (auto Align = TT->getDecl()->getMaxAlignment()) { 144 if (BaseInfo) 145 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 146 return getContext().toCharUnitsFromBits(Align); 147 } 148 } 149 150 if (BaseInfo) 151 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 152 153 CharUnits Alignment; 154 if (T->isIncompleteType()) { 155 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 156 } else { 157 // For C++ class pointees, we don't know whether we're pointing at a 158 // base or a complete object, so we generally need to use the 159 // non-virtual alignment. 160 const CXXRecordDecl *RD; 161 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 162 Alignment = CGM.getClassPointerAlignment(RD); 163 } else { 164 Alignment = getContext().getTypeAlignInChars(T); 165 if (T.getQualifiers().hasUnaligned()) 166 Alignment = CharUnits::One(); 167 } 168 169 // Cap to the global maximum type alignment unless the alignment 170 // was somehow explicit on the type. 171 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 172 if (Alignment.getQuantity() > MaxAlign && 173 !getContext().isAlignmentRequired(T)) 174 Alignment = CharUnits::fromQuantity(MaxAlign); 175 } 176 } 177 return Alignment; 178 } 179 180 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 TBAAAccessInfo TBAAInfo; 183 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 184 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 185 TBAAInfo); 186 } 187 188 /// Given a value of type T* that may not be to a complete object, 189 /// construct an l-value with the natural pointee alignment of T. 190 LValue 191 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 195 /* forPointeeType= */ true); 196 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 197 } 198 199 200 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 201 return CGM.getTypes().ConvertTypeForMem(T); 202 } 203 204 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 205 return CGM.getTypes().ConvertType(T); 206 } 207 208 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 209 type = type.getCanonicalType(); 210 while (true) { 211 switch (type->getTypeClass()) { 212 #define TYPE(name, parent) 213 #define ABSTRACT_TYPE(name, parent) 214 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 215 #define DEPENDENT_TYPE(name, parent) case Type::name: 216 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 217 #include "clang/AST/TypeNodes.def" 218 llvm_unreachable("non-canonical or dependent type in IR-generation"); 219 220 case Type::Auto: 221 case Type::DeducedTemplateSpecialization: 222 llvm_unreachable("undeduced type in IR-generation"); 223 224 // Various scalar types. 225 case Type::Builtin: 226 case Type::Pointer: 227 case Type::BlockPointer: 228 case Type::LValueReference: 229 case Type::RValueReference: 230 case Type::MemberPointer: 231 case Type::Vector: 232 case Type::ExtVector: 233 case Type::FunctionProto: 234 case Type::FunctionNoProto: 235 case Type::Enum: 236 case Type::ObjCObjectPointer: 237 case Type::Pipe: 238 return TEK_Scalar; 239 240 // Complexes. 241 case Type::Complex: 242 return TEK_Complex; 243 244 // Arrays, records, and Objective-C objects. 245 case Type::ConstantArray: 246 case Type::IncompleteArray: 247 case Type::VariableArray: 248 case Type::Record: 249 case Type::ObjCObject: 250 case Type::ObjCInterface: 251 return TEK_Aggregate; 252 253 // We operate on atomic values according to their underlying type. 254 case Type::Atomic: 255 type = cast<AtomicType>(type)->getValueType(); 256 continue; 257 } 258 llvm_unreachable("unknown type kind!"); 259 } 260 } 261 262 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 263 // For cleanliness, we try to avoid emitting the return block for 264 // simple cases. 265 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 266 267 if (CurBB) { 268 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 269 270 // We have a valid insert point, reuse it if it is empty or there are no 271 // explicit jumps to the return block. 272 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 273 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 274 delete ReturnBlock.getBlock(); 275 } else 276 EmitBlock(ReturnBlock.getBlock()); 277 return llvm::DebugLoc(); 278 } 279 280 // Otherwise, if the return block is the target of a single direct 281 // branch then we can just put the code in that block instead. This 282 // cleans up functions which started with a unified return block. 283 if (ReturnBlock.getBlock()->hasOneUse()) { 284 llvm::BranchInst *BI = 285 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 286 if (BI && BI->isUnconditional() && 287 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 288 // Record/return the DebugLoc of the simple 'return' expression to be used 289 // later by the actual 'ret' instruction. 290 llvm::DebugLoc Loc = BI->getDebugLoc(); 291 Builder.SetInsertPoint(BI->getParent()); 292 BI->eraseFromParent(); 293 delete ReturnBlock.getBlock(); 294 return Loc; 295 } 296 } 297 298 // FIXME: We are at an unreachable point, there is no reason to emit the block 299 // unless it has uses. However, we still need a place to put the debug 300 // region.end for now. 301 302 EmitBlock(ReturnBlock.getBlock()); 303 return llvm::DebugLoc(); 304 } 305 306 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 307 if (!BB) return; 308 if (!BB->use_empty()) 309 return CGF.CurFn->getBasicBlockList().push_back(BB); 310 delete BB; 311 } 312 313 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 314 assert(BreakContinueStack.empty() && 315 "mismatched push/pop in break/continue stack!"); 316 317 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 318 && NumSimpleReturnExprs == NumReturnExprs 319 && ReturnBlock.getBlock()->use_empty(); 320 // Usually the return expression is evaluated before the cleanup 321 // code. If the function contains only a simple return statement, 322 // such as a constant, the location before the cleanup code becomes 323 // the last useful breakpoint in the function, because the simple 324 // return expression will be evaluated after the cleanup code. To be 325 // safe, set the debug location for cleanup code to the location of 326 // the return statement. Otherwise the cleanup code should be at the 327 // end of the function's lexical scope. 328 // 329 // If there are multiple branches to the return block, the branch 330 // instructions will get the location of the return statements and 331 // all will be fine. 332 if (CGDebugInfo *DI = getDebugInfo()) { 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, LastStopPoint); 335 else 336 DI->EmitLocation(Builder, EndLoc); 337 } 338 339 // Pop any cleanups that might have been associated with the 340 // parameters. Do this in whatever block we're currently in; it's 341 // important to do this before we enter the return block or return 342 // edges will be *really* confused. 343 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 344 bool HasOnlyLifetimeMarkers = 345 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 346 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 347 if (HasCleanups) { 348 // Make sure the line table doesn't jump back into the body for 349 // the ret after it's been at EndLoc. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, EndLoc); 353 354 PopCleanupBlocks(PrologueCleanupDepth); 355 } 356 357 // Emit function epilog (to return). 358 llvm::DebugLoc Loc = EmitReturnBlock(); 359 360 if (ShouldInstrumentFunction()) { 361 if (CGM.getCodeGenOpts().InstrumentFunctions) 362 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 363 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 364 CurFn->addFnAttr("instrument-function-exit-inlined", 365 "__cyg_profile_func_exit"); 366 } 367 368 // Emit debug descriptor for function end. 369 if (CGDebugInfo *DI = getDebugInfo()) 370 DI->EmitFunctionEnd(Builder, CurFn); 371 372 // Reset the debug location to that of the simple 'return' expression, if any 373 // rather than that of the end of the function's scope '}'. 374 ApplyDebugLocation AL(*this, Loc); 375 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 376 EmitEndEHSpec(CurCodeDecl); 377 378 assert(EHStack.empty() && 379 "did not remove all scopes from cleanup stack!"); 380 381 // If someone did an indirect goto, emit the indirect goto block at the end of 382 // the function. 383 if (IndirectBranch) { 384 EmitBlock(IndirectBranch->getParent()); 385 Builder.ClearInsertionPoint(); 386 } 387 388 // If some of our locals escaped, insert a call to llvm.localescape in the 389 // entry block. 390 if (!EscapedLocals.empty()) { 391 // Invert the map from local to index into a simple vector. There should be 392 // no holes. 393 SmallVector<llvm::Value *, 4> EscapeArgs; 394 EscapeArgs.resize(EscapedLocals.size()); 395 for (auto &Pair : EscapedLocals) 396 EscapeArgs[Pair.second] = Pair.first; 397 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 398 &CGM.getModule(), llvm::Intrinsic::localescape); 399 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 400 } 401 402 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 403 llvm::Instruction *Ptr = AllocaInsertPt; 404 AllocaInsertPt = nullptr; 405 Ptr->eraseFromParent(); 406 407 // If someone took the address of a label but never did an indirect goto, we 408 // made a zero entry PHI node, which is illegal, zap it now. 409 if (IndirectBranch) { 410 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 411 if (PN->getNumIncomingValues() == 0) { 412 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 413 PN->eraseFromParent(); 414 } 415 } 416 417 EmitIfUsed(*this, EHResumeBlock); 418 EmitIfUsed(*this, TerminateLandingPad); 419 EmitIfUsed(*this, TerminateHandler); 420 EmitIfUsed(*this, UnreachableBlock); 421 422 for (const auto &FuncletAndParent : TerminateFunclets) 423 EmitIfUsed(*this, FuncletAndParent.second); 424 425 if (CGM.getCodeGenOpts().EmitDeclMetadata) 426 EmitDeclMetadata(); 427 428 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 429 I = DeferredReplacements.begin(), 430 E = DeferredReplacements.end(); 431 I != E; ++I) { 432 I->first->replaceAllUsesWith(I->second); 433 I->first->eraseFromParent(); 434 } 435 436 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 437 // PHIs if the current function is a coroutine. We don't do it for all 438 // functions as it may result in slight increase in numbers of instructions 439 // if compiled with no optimizations. We do it for coroutine as the lifetime 440 // of CleanupDestSlot alloca make correct coroutine frame building very 441 // difficult. 442 if (NormalCleanupDest.isValid() && isCoroutine()) { 443 llvm::DominatorTree DT(*CurFn); 444 llvm::PromoteMemToReg( 445 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 446 NormalCleanupDest = Address::invalid(); 447 } 448 } 449 450 /// ShouldInstrumentFunction - Return true if the current function should be 451 /// instrumented with __cyg_profile_func_* calls 452 bool CodeGenFunction::ShouldInstrumentFunction() { 453 if (!CGM.getCodeGenOpts().InstrumentFunctions && 454 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 455 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 456 return false; 457 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 458 return false; 459 return true; 460 } 461 462 /// ShouldXRayInstrument - Return true if the current function should be 463 /// instrumented with XRay nop sleds. 464 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 465 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 466 } 467 468 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 469 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation. 470 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 471 return CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents; 472 } 473 474 llvm::Constant * 475 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 476 llvm::Constant *Addr) { 477 // Addresses stored in prologue data can't require run-time fixups and must 478 // be PC-relative. Run-time fixups are undesirable because they necessitate 479 // writable text segments, which are unsafe. And absolute addresses are 480 // undesirable because they break PIE mode. 481 482 // Add a layer of indirection through a private global. Taking its address 483 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 484 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 485 /*isConstant=*/true, 486 llvm::GlobalValue::PrivateLinkage, Addr); 487 488 // Create a PC-relative address. 489 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 490 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 491 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 492 return (IntPtrTy == Int32Ty) 493 ? PCRelAsInt 494 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 495 } 496 497 llvm::Value * 498 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 499 llvm::Value *EncodedAddr) { 500 // Reconstruct the address of the global. 501 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 502 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 503 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 504 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 505 506 // Load the original pointer through the global. 507 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 508 "decoded_addr"); 509 } 510 511 static void removeImageAccessQualifier(std::string& TyName) { 512 std::string ReadOnlyQual("__read_only"); 513 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 514 if (ReadOnlyPos != std::string::npos) 515 // "+ 1" for the space after access qualifier. 516 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 517 else { 518 std::string WriteOnlyQual("__write_only"); 519 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 520 if (WriteOnlyPos != std::string::npos) 521 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 522 else { 523 std::string ReadWriteQual("__read_write"); 524 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 525 if (ReadWritePos != std::string::npos) 526 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 527 } 528 } 529 } 530 531 // Returns the address space id that should be produced to the 532 // kernel_arg_addr_space metadata. This is always fixed to the ids 533 // as specified in the SPIR 2.0 specification in order to differentiate 534 // for example in clGetKernelArgInfo() implementation between the address 535 // spaces with targets without unique mapping to the OpenCL address spaces 536 // (basically all single AS CPUs). 537 static unsigned ArgInfoAddressSpace(LangAS AS) { 538 switch (AS) { 539 case LangAS::opencl_global: return 1; 540 case LangAS::opencl_constant: return 2; 541 case LangAS::opencl_local: return 3; 542 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 543 default: 544 return 0; // Assume private. 545 } 546 } 547 548 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 549 // information in the program executable. The argument information stored 550 // includes the argument name, its type, the address and access qualifiers used. 551 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 552 CodeGenModule &CGM, llvm::LLVMContext &Context, 553 CGBuilderTy &Builder, ASTContext &ASTCtx) { 554 // Create MDNodes that represent the kernel arg metadata. 555 // Each MDNode is a list in the form of "key", N number of values which is 556 // the same number of values as their are kernel arguments. 557 558 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 559 560 // MDNode for the kernel argument address space qualifiers. 561 SmallVector<llvm::Metadata *, 8> addressQuals; 562 563 // MDNode for the kernel argument access qualifiers (images only). 564 SmallVector<llvm::Metadata *, 8> accessQuals; 565 566 // MDNode for the kernel argument type names. 567 SmallVector<llvm::Metadata *, 8> argTypeNames; 568 569 // MDNode for the kernel argument base type names. 570 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 571 572 // MDNode for the kernel argument type qualifiers. 573 SmallVector<llvm::Metadata *, 8> argTypeQuals; 574 575 // MDNode for the kernel argument names. 576 SmallVector<llvm::Metadata *, 8> argNames; 577 578 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 579 const ParmVarDecl *parm = FD->getParamDecl(i); 580 QualType ty = parm->getType(); 581 std::string typeQuals; 582 583 if (ty->isPointerType()) { 584 QualType pointeeTy = ty->getPointeeType(); 585 586 // Get address qualifier. 587 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 588 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 589 590 // Get argument type name. 591 std::string typeName = 592 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 593 594 // Turn "unsigned type" to "utype" 595 std::string::size_type pos = typeName.find("unsigned"); 596 if (pointeeTy.isCanonical() && pos != std::string::npos) 597 typeName.erase(pos+1, 8); 598 599 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 600 601 std::string baseTypeName = 602 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 603 Policy) + 604 "*"; 605 606 // Turn "unsigned type" to "utype" 607 pos = baseTypeName.find("unsigned"); 608 if (pos != std::string::npos) 609 baseTypeName.erase(pos+1, 8); 610 611 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 612 613 // Get argument type qualifiers: 614 if (ty.isRestrictQualified()) 615 typeQuals = "restrict"; 616 if (pointeeTy.isConstQualified() || 617 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 618 typeQuals += typeQuals.empty() ? "const" : " const"; 619 if (pointeeTy.isVolatileQualified()) 620 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 621 } else { 622 uint32_t AddrSpc = 0; 623 bool isPipe = ty->isPipeType(); 624 if (ty->isImageType() || isPipe) 625 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 626 627 addressQuals.push_back( 628 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 629 630 // Get argument type name. 631 std::string typeName; 632 if (isPipe) 633 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 634 .getAsString(Policy); 635 else 636 typeName = ty.getUnqualifiedType().getAsString(Policy); 637 638 // Turn "unsigned type" to "utype" 639 std::string::size_type pos = typeName.find("unsigned"); 640 if (ty.isCanonical() && pos != std::string::npos) 641 typeName.erase(pos+1, 8); 642 643 std::string baseTypeName; 644 if (isPipe) 645 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 646 ->getElementType().getCanonicalType() 647 .getAsString(Policy); 648 else 649 baseTypeName = 650 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 651 652 // Remove access qualifiers on images 653 // (as they are inseparable from type in clang implementation, 654 // but OpenCL spec provides a special query to get access qualifier 655 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 656 if (ty->isImageType()) { 657 removeImageAccessQualifier(typeName); 658 removeImageAccessQualifier(baseTypeName); 659 } 660 661 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 662 663 // Turn "unsigned type" to "utype" 664 pos = baseTypeName.find("unsigned"); 665 if (pos != std::string::npos) 666 baseTypeName.erase(pos+1, 8); 667 668 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 669 670 if (isPipe) 671 typeQuals = "pipe"; 672 } 673 674 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 675 676 // Get image and pipe access qualifier: 677 if (ty->isImageType()|| ty->isPipeType()) { 678 const Decl *PDecl = parm; 679 if (auto *TD = dyn_cast<TypedefType>(ty)) 680 PDecl = TD->getDecl(); 681 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 682 if (A && A->isWriteOnly()) 683 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 684 else if (A && A->isReadWrite()) 685 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 686 else 687 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 688 } else 689 accessQuals.push_back(llvm::MDString::get(Context, "none")); 690 691 // Get argument name. 692 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 693 } 694 695 Fn->setMetadata("kernel_arg_addr_space", 696 llvm::MDNode::get(Context, addressQuals)); 697 Fn->setMetadata("kernel_arg_access_qual", 698 llvm::MDNode::get(Context, accessQuals)); 699 Fn->setMetadata("kernel_arg_type", 700 llvm::MDNode::get(Context, argTypeNames)); 701 Fn->setMetadata("kernel_arg_base_type", 702 llvm::MDNode::get(Context, argBaseTypeNames)); 703 Fn->setMetadata("kernel_arg_type_qual", 704 llvm::MDNode::get(Context, argTypeQuals)); 705 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 706 Fn->setMetadata("kernel_arg_name", 707 llvm::MDNode::get(Context, argNames)); 708 } 709 710 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 711 llvm::Function *Fn) 712 { 713 if (!FD->hasAttr<OpenCLKernelAttr>()) 714 return; 715 716 llvm::LLVMContext &Context = getLLVMContext(); 717 718 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 719 720 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 721 QualType HintQTy = A->getTypeHint(); 722 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 723 bool IsSignedInteger = 724 HintQTy->isSignedIntegerType() || 725 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 726 llvm::Metadata *AttrMDArgs[] = { 727 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 728 CGM.getTypes().ConvertType(A->getTypeHint()))), 729 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 730 llvm::IntegerType::get(Context, 32), 731 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 732 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 733 } 734 735 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 736 llvm::Metadata *AttrMDArgs[] = { 737 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 738 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 739 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 740 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 741 } 742 743 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 744 llvm::Metadata *AttrMDArgs[] = { 745 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 746 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 747 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 748 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 749 } 750 751 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 752 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 753 llvm::Metadata *AttrMDArgs[] = { 754 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 755 Fn->setMetadata("intel_reqd_sub_group_size", 756 llvm::MDNode::get(Context, AttrMDArgs)); 757 } 758 } 759 760 /// Determine whether the function F ends with a return stmt. 761 static bool endsWithReturn(const Decl* F) { 762 const Stmt *Body = nullptr; 763 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 764 Body = FD->getBody(); 765 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 766 Body = OMD->getBody(); 767 768 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 769 auto LastStmt = CS->body_rbegin(); 770 if (LastStmt != CS->body_rend()) 771 return isa<ReturnStmt>(*LastStmt); 772 } 773 return false; 774 } 775 776 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 777 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 778 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 779 } 780 781 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 782 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 783 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 784 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 785 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 786 return false; 787 788 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 789 return false; 790 791 if (MD->getNumParams() == 2) { 792 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 793 if (!PT || !PT->isVoidPointerType() || 794 !PT->getPointeeType().isConstQualified()) 795 return false; 796 } 797 798 return true; 799 } 800 801 /// Return the UBSan prologue signature for \p FD if one is available. 802 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 803 const FunctionDecl *FD) { 804 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 805 if (!MD->isStatic()) 806 return nullptr; 807 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 808 } 809 810 void CodeGenFunction::StartFunction(GlobalDecl GD, 811 QualType RetTy, 812 llvm::Function *Fn, 813 const CGFunctionInfo &FnInfo, 814 const FunctionArgList &Args, 815 SourceLocation Loc, 816 SourceLocation StartLoc) { 817 assert(!CurFn && 818 "Do not use a CodeGenFunction object for more than one function"); 819 820 const Decl *D = GD.getDecl(); 821 822 DidCallStackSave = false; 823 CurCodeDecl = D; 824 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 825 if (FD->usesSEHTry()) 826 CurSEHParent = FD; 827 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 828 FnRetTy = RetTy; 829 CurFn = Fn; 830 CurFnInfo = &FnInfo; 831 assert(CurFn->isDeclaration() && "Function already has body?"); 832 833 // If this function has been blacklisted for any of the enabled sanitizers, 834 // disable the sanitizer for the function. 835 do { 836 #define SANITIZER(NAME, ID) \ 837 if (SanOpts.empty()) \ 838 break; \ 839 if (SanOpts.has(SanitizerKind::ID)) \ 840 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 841 SanOpts.set(SanitizerKind::ID, false); 842 843 #include "clang/Basic/Sanitizers.def" 844 #undef SANITIZER 845 } while (0); 846 847 if (D) { 848 // Apply the no_sanitize* attributes to SanOpts. 849 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 850 SanOpts.Mask &= ~Attr->getMask(); 851 } 852 853 // Apply sanitizer attributes to the function. 854 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 855 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 856 if (SanOpts.hasOneOf(SanitizerKind::HWAddress)) 857 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 858 if (SanOpts.has(SanitizerKind::Thread)) 859 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 860 if (SanOpts.has(SanitizerKind::Memory)) 861 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 862 if (SanOpts.has(SanitizerKind::SafeStack)) 863 Fn->addFnAttr(llvm::Attribute::SafeStack); 864 865 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 866 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 867 if (SanOpts.has(SanitizerKind::Thread)) { 868 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 869 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 870 if (OMD->getMethodFamily() == OMF_dealloc || 871 OMD->getMethodFamily() == OMF_initialize || 872 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 873 markAsIgnoreThreadCheckingAtRuntime(Fn); 874 } 875 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 876 IdentifierInfo *II = FD->getIdentifier(); 877 if (II && II->isStr("__destroy_helper_block_")) 878 markAsIgnoreThreadCheckingAtRuntime(Fn); 879 } 880 } 881 882 // Ignore unrelated casts in STL allocate() since the allocator must cast 883 // from void* to T* before object initialization completes. Don't match on the 884 // namespace because not all allocators are in std:: 885 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 886 if (matchesStlAllocatorFn(D, getContext())) 887 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 888 } 889 890 // Apply xray attributes to the function (as a string, for now) 891 bool InstrumentXray = ShouldXRayInstrumentFunction(); 892 if (D && InstrumentXray) { 893 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 894 if (XRayAttr->alwaysXRayInstrument()) 895 Fn->addFnAttr("function-instrument", "xray-always"); 896 if (XRayAttr->neverXRayInstrument()) 897 Fn->addFnAttr("function-instrument", "xray-never"); 898 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 899 Fn->addFnAttr("xray-log-args", 900 llvm::utostr(LogArgs->getArgumentCount())); 901 } 902 } else { 903 if (!CGM.imbueXRayAttrs(Fn, Loc)) 904 Fn->addFnAttr( 905 "xray-instruction-threshold", 906 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 907 } 908 } 909 910 // Add no-jump-tables value. 911 Fn->addFnAttr("no-jump-tables", 912 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 913 914 // Add profile-sample-accurate value. 915 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 916 Fn->addFnAttr("profile-sample-accurate"); 917 918 if (getLangOpts().OpenCL) { 919 // Add metadata for a kernel function. 920 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 921 EmitOpenCLKernelMetadata(FD, Fn); 922 } 923 924 // If we are checking function types, emit a function type signature as 925 // prologue data. 926 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 927 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 928 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 929 // Remove any (C++17) exception specifications, to allow calling e.g. a 930 // noexcept function through a non-noexcept pointer. 931 auto ProtoTy = 932 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 933 EST_None); 934 llvm::Constant *FTRTTIConst = 935 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 936 llvm::Constant *FTRTTIConstEncoded = 937 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 938 llvm::Constant *PrologueStructElems[] = {PrologueSig, 939 FTRTTIConstEncoded}; 940 llvm::Constant *PrologueStructConst = 941 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 942 Fn->setPrologueData(PrologueStructConst); 943 } 944 } 945 } 946 947 // If we're checking nullability, we need to know whether we can check the 948 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 949 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 950 auto Nullability = FnRetTy->getNullability(getContext()); 951 if (Nullability && *Nullability == NullabilityKind::NonNull) { 952 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 953 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 954 RetValNullabilityPrecondition = 955 llvm::ConstantInt::getTrue(getLLVMContext()); 956 } 957 } 958 959 // If we're in C++ mode and the function name is "main", it is guaranteed 960 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 961 // used within a program"). 962 if (getLangOpts().CPlusPlus) 963 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 964 if (FD->isMain()) 965 Fn->addFnAttr(llvm::Attribute::NoRecurse); 966 967 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 968 969 // Create a marker to make it easy to insert allocas into the entryblock 970 // later. Don't create this with the builder, because we don't want it 971 // folded. 972 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 973 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 974 975 ReturnBlock = getJumpDestInCurrentScope("return"); 976 977 Builder.SetInsertPoint(EntryBB); 978 979 // If we're checking the return value, allocate space for a pointer to a 980 // precise source location of the checked return statement. 981 if (requiresReturnValueCheck()) { 982 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 983 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 984 } 985 986 // Emit subprogram debug descriptor. 987 if (CGDebugInfo *DI = getDebugInfo()) { 988 // Reconstruct the type from the argument list so that implicit parameters, 989 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 990 // convention. 991 CallingConv CC = CallingConv::CC_C; 992 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 993 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 994 CC = SrcFnTy->getCallConv(); 995 SmallVector<QualType, 16> ArgTypes; 996 for (const VarDecl *VD : Args) 997 ArgTypes.push_back(VD->getType()); 998 QualType FnType = getContext().getFunctionType( 999 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1000 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 1001 } 1002 1003 if (ShouldInstrumentFunction()) { 1004 if (CGM.getCodeGenOpts().InstrumentFunctions) 1005 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1006 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1007 CurFn->addFnAttr("instrument-function-entry-inlined", 1008 "__cyg_profile_func_enter"); 1009 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1010 CurFn->addFnAttr("instrument-function-entry-inlined", 1011 "__cyg_profile_func_enter_bare"); 1012 } 1013 1014 // Since emitting the mcount call here impacts optimizations such as function 1015 // inlining, we just add an attribute to insert a mcount call in backend. 1016 // The attribute "counting-function" is set to mcount function name which is 1017 // architecture dependent. 1018 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1019 // Calls to fentry/mcount should not be generated if function has 1020 // the no_instrument_function attribute. 1021 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1022 if (CGM.getCodeGenOpts().CallFEntry) 1023 Fn->addFnAttr("fentry-call", "true"); 1024 else { 1025 Fn->addFnAttr("instrument-function-entry-inlined", 1026 getTarget().getMCountName()); 1027 } 1028 } 1029 } 1030 1031 if (RetTy->isVoidType()) { 1032 // Void type; nothing to return. 1033 ReturnValue = Address::invalid(); 1034 1035 // Count the implicit return. 1036 if (!endsWithReturn(D)) 1037 ++NumReturnExprs; 1038 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1039 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1040 // Indirect aggregate return; emit returned value directly into sret slot. 1041 // This reduces code size, and affects correctness in C++. 1042 auto AI = CurFn->arg_begin(); 1043 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1044 ++AI; 1045 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1046 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1047 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1048 // Load the sret pointer from the argument struct and return into that. 1049 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1050 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1051 --EI; 1052 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1053 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1054 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1055 } else { 1056 ReturnValue = CreateIRTemp(RetTy, "retval"); 1057 1058 // Tell the epilog emitter to autorelease the result. We do this 1059 // now so that various specialized functions can suppress it 1060 // during their IR-generation. 1061 if (getLangOpts().ObjCAutoRefCount && 1062 !CurFnInfo->isReturnsRetained() && 1063 RetTy->isObjCRetainableType()) 1064 AutoreleaseResult = true; 1065 } 1066 1067 EmitStartEHSpec(CurCodeDecl); 1068 1069 PrologueCleanupDepth = EHStack.stable_begin(); 1070 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1071 1072 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1073 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1074 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1075 if (MD->getParent()->isLambda() && 1076 MD->getOverloadedOperator() == OO_Call) { 1077 // We're in a lambda; figure out the captures. 1078 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1079 LambdaThisCaptureField); 1080 if (LambdaThisCaptureField) { 1081 // If the lambda captures the object referred to by '*this' - either by 1082 // value or by reference, make sure CXXThisValue points to the correct 1083 // object. 1084 1085 // Get the lvalue for the field (which is a copy of the enclosing object 1086 // or contains the address of the enclosing object). 1087 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1088 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1089 // If the enclosing object was captured by value, just use its address. 1090 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1091 } else { 1092 // Load the lvalue pointed to by the field, since '*this' was captured 1093 // by reference. 1094 CXXThisValue = 1095 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1096 } 1097 } 1098 for (auto *FD : MD->getParent()->fields()) { 1099 if (FD->hasCapturedVLAType()) { 1100 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1101 SourceLocation()).getScalarVal(); 1102 auto VAT = FD->getCapturedVLAType(); 1103 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1104 } 1105 } 1106 } else { 1107 // Not in a lambda; just use 'this' from the method. 1108 // FIXME: Should we generate a new load for each use of 'this'? The 1109 // fast register allocator would be happier... 1110 CXXThisValue = CXXABIThisValue; 1111 } 1112 1113 // Check the 'this' pointer once per function, if it's available. 1114 if (CXXABIThisValue) { 1115 SanitizerSet SkippedChecks; 1116 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1117 QualType ThisTy = MD->getThisType(getContext()); 1118 1119 // If this is the call operator of a lambda with no capture-default, it 1120 // may have a static invoker function, which may call this operator with 1121 // a null 'this' pointer. 1122 if (isLambdaCallOperator(MD) && 1123 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1124 SkippedChecks.set(SanitizerKind::Null, true); 1125 1126 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1127 : TCK_MemberCall, 1128 Loc, CXXABIThisValue, ThisTy, 1129 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1130 SkippedChecks); 1131 } 1132 } 1133 1134 // If any of the arguments have a variably modified type, make sure to 1135 // emit the type size. 1136 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1137 i != e; ++i) { 1138 const VarDecl *VD = *i; 1139 1140 // Dig out the type as written from ParmVarDecls; it's unclear whether 1141 // the standard (C99 6.9.1p10) requires this, but we're following the 1142 // precedent set by gcc. 1143 QualType Ty; 1144 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1145 Ty = PVD->getOriginalType(); 1146 else 1147 Ty = VD->getType(); 1148 1149 if (Ty->isVariablyModifiedType()) 1150 EmitVariablyModifiedType(Ty); 1151 } 1152 // Emit a location at the end of the prologue. 1153 if (CGDebugInfo *DI = getDebugInfo()) 1154 DI->EmitLocation(Builder, StartLoc); 1155 } 1156 1157 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1158 const Stmt *Body) { 1159 incrementProfileCounter(Body); 1160 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1161 EmitCompoundStmtWithoutScope(*S); 1162 else 1163 EmitStmt(Body); 1164 } 1165 1166 /// When instrumenting to collect profile data, the counts for some blocks 1167 /// such as switch cases need to not include the fall-through counts, so 1168 /// emit a branch around the instrumentation code. When not instrumenting, 1169 /// this just calls EmitBlock(). 1170 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1171 const Stmt *S) { 1172 llvm::BasicBlock *SkipCountBB = nullptr; 1173 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1174 // When instrumenting for profiling, the fallthrough to certain 1175 // statements needs to skip over the instrumentation code so that we 1176 // get an accurate count. 1177 SkipCountBB = createBasicBlock("skipcount"); 1178 EmitBranch(SkipCountBB); 1179 } 1180 EmitBlock(BB); 1181 uint64_t CurrentCount = getCurrentProfileCount(); 1182 incrementProfileCounter(S); 1183 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1184 if (SkipCountBB) 1185 EmitBlock(SkipCountBB); 1186 } 1187 1188 /// Tries to mark the given function nounwind based on the 1189 /// non-existence of any throwing calls within it. We believe this is 1190 /// lightweight enough to do at -O0. 1191 static void TryMarkNoThrow(llvm::Function *F) { 1192 // LLVM treats 'nounwind' on a function as part of the type, so we 1193 // can't do this on functions that can be overwritten. 1194 if (F->isInterposable()) return; 1195 1196 for (llvm::BasicBlock &BB : *F) 1197 for (llvm::Instruction &I : BB) 1198 if (I.mayThrow()) 1199 return; 1200 1201 F->setDoesNotThrow(); 1202 } 1203 1204 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1205 FunctionArgList &Args) { 1206 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1207 QualType ResTy = FD->getReturnType(); 1208 1209 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1210 if (MD && MD->isInstance()) { 1211 if (CGM.getCXXABI().HasThisReturn(GD)) 1212 ResTy = MD->getThisType(getContext()); 1213 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1214 ResTy = CGM.getContext().VoidPtrTy; 1215 CGM.getCXXABI().buildThisParam(*this, Args); 1216 } 1217 1218 // The base version of an inheriting constructor whose constructed base is a 1219 // virtual base is not passed any arguments (because it doesn't actually call 1220 // the inherited constructor). 1221 bool PassedParams = true; 1222 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1223 if (auto Inherited = CD->getInheritedConstructor()) 1224 PassedParams = 1225 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1226 1227 if (PassedParams) { 1228 for (auto *Param : FD->parameters()) { 1229 Args.push_back(Param); 1230 if (!Param->hasAttr<PassObjectSizeAttr>()) 1231 continue; 1232 1233 auto *Implicit = ImplicitParamDecl::Create( 1234 getContext(), Param->getDeclContext(), Param->getLocation(), 1235 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1236 SizeArguments[Param] = Implicit; 1237 Args.push_back(Implicit); 1238 } 1239 } 1240 1241 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1242 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1243 1244 return ResTy; 1245 } 1246 1247 static bool 1248 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1249 const ASTContext &Context) { 1250 QualType T = FD->getReturnType(); 1251 // Avoid the optimization for functions that return a record type with a 1252 // trivial destructor or another trivially copyable type. 1253 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1254 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1255 return !ClassDecl->hasTrivialDestructor(); 1256 } 1257 return !T.isTriviallyCopyableType(Context); 1258 } 1259 1260 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1261 const CGFunctionInfo &FnInfo) { 1262 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1263 CurGD = GD; 1264 1265 FunctionArgList Args; 1266 QualType ResTy = BuildFunctionArgList(GD, Args); 1267 1268 // Check if we should generate debug info for this function. 1269 if (FD->hasAttr<NoDebugAttr>()) 1270 DebugInfo = nullptr; // disable debug info indefinitely for this function 1271 1272 // The function might not have a body if we're generating thunks for a 1273 // function declaration. 1274 SourceRange BodyRange; 1275 if (Stmt *Body = FD->getBody()) 1276 BodyRange = Body->getSourceRange(); 1277 else 1278 BodyRange = FD->getLocation(); 1279 CurEHLocation = BodyRange.getEnd(); 1280 1281 // Use the location of the start of the function to determine where 1282 // the function definition is located. By default use the location 1283 // of the declaration as the location for the subprogram. A function 1284 // may lack a declaration in the source code if it is created by code 1285 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1286 SourceLocation Loc = FD->getLocation(); 1287 1288 // If this is a function specialization then use the pattern body 1289 // as the location for the function. 1290 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1291 if (SpecDecl->hasBody(SpecDecl)) 1292 Loc = SpecDecl->getLocation(); 1293 1294 Stmt *Body = FD->getBody(); 1295 1296 // Initialize helper which will detect jumps which can cause invalid lifetime 1297 // markers. 1298 if (Body && ShouldEmitLifetimeMarkers) 1299 Bypasses.Init(Body); 1300 1301 // Emit the standard function prologue. 1302 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1303 1304 // Generate the body of the function. 1305 PGO.assignRegionCounters(GD, CurFn); 1306 if (isa<CXXDestructorDecl>(FD)) 1307 EmitDestructorBody(Args); 1308 else if (isa<CXXConstructorDecl>(FD)) 1309 EmitConstructorBody(Args); 1310 else if (getLangOpts().CUDA && 1311 !getLangOpts().CUDAIsDevice && 1312 FD->hasAttr<CUDAGlobalAttr>()) 1313 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1314 else if (isa<CXXMethodDecl>(FD) && 1315 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1316 // The lambda static invoker function is special, because it forwards or 1317 // clones the body of the function call operator (but is actually static). 1318 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1319 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1320 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1321 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1322 // Implicit copy-assignment gets the same special treatment as implicit 1323 // copy-constructors. 1324 emitImplicitAssignmentOperatorBody(Args); 1325 } else if (Body) { 1326 EmitFunctionBody(Args, Body); 1327 } else 1328 llvm_unreachable("no definition for emitted function"); 1329 1330 // C++11 [stmt.return]p2: 1331 // Flowing off the end of a function [...] results in undefined behavior in 1332 // a value-returning function. 1333 // C11 6.9.1p12: 1334 // If the '}' that terminates a function is reached, and the value of the 1335 // function call is used by the caller, the behavior is undefined. 1336 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1337 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1338 bool ShouldEmitUnreachable = 1339 CGM.getCodeGenOpts().StrictReturn || 1340 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1341 if (SanOpts.has(SanitizerKind::Return)) { 1342 SanitizerScope SanScope(this); 1343 llvm::Value *IsFalse = Builder.getFalse(); 1344 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1345 SanitizerHandler::MissingReturn, 1346 EmitCheckSourceLocation(FD->getLocation()), None); 1347 } else if (ShouldEmitUnreachable) { 1348 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1349 EmitTrapCall(llvm::Intrinsic::trap); 1350 } 1351 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1352 Builder.CreateUnreachable(); 1353 Builder.ClearInsertionPoint(); 1354 } 1355 } 1356 1357 // Emit the standard function epilogue. 1358 FinishFunction(BodyRange.getEnd()); 1359 1360 // If we haven't marked the function nothrow through other means, do 1361 // a quick pass now to see if we can. 1362 if (!CurFn->doesNotThrow()) 1363 TryMarkNoThrow(CurFn); 1364 } 1365 1366 /// ContainsLabel - Return true if the statement contains a label in it. If 1367 /// this statement is not executed normally, it not containing a label means 1368 /// that we can just remove the code. 1369 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1370 // Null statement, not a label! 1371 if (!S) return false; 1372 1373 // If this is a label, we have to emit the code, consider something like: 1374 // if (0) { ... foo: bar(); } goto foo; 1375 // 1376 // TODO: If anyone cared, we could track __label__'s, since we know that you 1377 // can't jump to one from outside their declared region. 1378 if (isa<LabelStmt>(S)) 1379 return true; 1380 1381 // If this is a case/default statement, and we haven't seen a switch, we have 1382 // to emit the code. 1383 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1384 return true; 1385 1386 // If this is a switch statement, we want to ignore cases below it. 1387 if (isa<SwitchStmt>(S)) 1388 IgnoreCaseStmts = true; 1389 1390 // Scan subexpressions for verboten labels. 1391 for (const Stmt *SubStmt : S->children()) 1392 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1393 return true; 1394 1395 return false; 1396 } 1397 1398 /// containsBreak - Return true if the statement contains a break out of it. 1399 /// If the statement (recursively) contains a switch or loop with a break 1400 /// inside of it, this is fine. 1401 bool CodeGenFunction::containsBreak(const Stmt *S) { 1402 // Null statement, not a label! 1403 if (!S) return false; 1404 1405 // If this is a switch or loop that defines its own break scope, then we can 1406 // include it and anything inside of it. 1407 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1408 isa<ForStmt>(S)) 1409 return false; 1410 1411 if (isa<BreakStmt>(S)) 1412 return true; 1413 1414 // Scan subexpressions for verboten breaks. 1415 for (const Stmt *SubStmt : S->children()) 1416 if (containsBreak(SubStmt)) 1417 return true; 1418 1419 return false; 1420 } 1421 1422 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1423 if (!S) return false; 1424 1425 // Some statement kinds add a scope and thus never add a decl to the current 1426 // scope. Note, this list is longer than the list of statements that might 1427 // have an unscoped decl nested within them, but this way is conservatively 1428 // correct even if more statement kinds are added. 1429 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1430 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1431 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1432 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1433 return false; 1434 1435 if (isa<DeclStmt>(S)) 1436 return true; 1437 1438 for (const Stmt *SubStmt : S->children()) 1439 if (mightAddDeclToScope(SubStmt)) 1440 return true; 1441 1442 return false; 1443 } 1444 1445 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1446 /// to a constant, or if it does but contains a label, return false. If it 1447 /// constant folds return true and set the boolean result in Result. 1448 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1449 bool &ResultBool, 1450 bool AllowLabels) { 1451 llvm::APSInt ResultInt; 1452 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1453 return false; 1454 1455 ResultBool = ResultInt.getBoolValue(); 1456 return true; 1457 } 1458 1459 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1460 /// to a constant, or if it does but contains a label, return false. If it 1461 /// constant folds return true and set the folded value. 1462 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1463 llvm::APSInt &ResultInt, 1464 bool AllowLabels) { 1465 // FIXME: Rename and handle conversion of other evaluatable things 1466 // to bool. 1467 llvm::APSInt Int; 1468 if (!Cond->EvaluateAsInt(Int, getContext())) 1469 return false; // Not foldable, not integer or not fully evaluatable. 1470 1471 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1472 return false; // Contains a label. 1473 1474 ResultInt = Int; 1475 return true; 1476 } 1477 1478 1479 1480 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1481 /// statement) to the specified blocks. Based on the condition, this might try 1482 /// to simplify the codegen of the conditional based on the branch. 1483 /// 1484 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1485 llvm::BasicBlock *TrueBlock, 1486 llvm::BasicBlock *FalseBlock, 1487 uint64_t TrueCount) { 1488 Cond = Cond->IgnoreParens(); 1489 1490 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1491 1492 // Handle X && Y in a condition. 1493 if (CondBOp->getOpcode() == BO_LAnd) { 1494 // If we have "1 && X", simplify the code. "0 && X" would have constant 1495 // folded if the case was simple enough. 1496 bool ConstantBool = false; 1497 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1498 ConstantBool) { 1499 // br(1 && X) -> br(X). 1500 incrementProfileCounter(CondBOp); 1501 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1502 TrueCount); 1503 } 1504 1505 // If we have "X && 1", simplify the code to use an uncond branch. 1506 // "X && 0" would have been constant folded to 0. 1507 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1508 ConstantBool) { 1509 // br(X && 1) -> br(X). 1510 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1511 TrueCount); 1512 } 1513 1514 // Emit the LHS as a conditional. If the LHS conditional is false, we 1515 // want to jump to the FalseBlock. 1516 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1517 // The counter tells us how often we evaluate RHS, and all of TrueCount 1518 // can be propagated to that branch. 1519 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1520 1521 ConditionalEvaluation eval(*this); 1522 { 1523 ApplyDebugLocation DL(*this, Cond); 1524 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1525 EmitBlock(LHSTrue); 1526 } 1527 1528 incrementProfileCounter(CondBOp); 1529 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1530 1531 // Any temporaries created here are conditional. 1532 eval.begin(*this); 1533 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1534 eval.end(*this); 1535 1536 return; 1537 } 1538 1539 if (CondBOp->getOpcode() == BO_LOr) { 1540 // If we have "0 || X", simplify the code. "1 || X" would have constant 1541 // folded if the case was simple enough. 1542 bool ConstantBool = false; 1543 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1544 !ConstantBool) { 1545 // br(0 || X) -> br(X). 1546 incrementProfileCounter(CondBOp); 1547 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1548 TrueCount); 1549 } 1550 1551 // If we have "X || 0", simplify the code to use an uncond branch. 1552 // "X || 1" would have been constant folded to 1. 1553 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1554 !ConstantBool) { 1555 // br(X || 0) -> br(X). 1556 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1557 TrueCount); 1558 } 1559 1560 // Emit the LHS as a conditional. If the LHS conditional is true, we 1561 // want to jump to the TrueBlock. 1562 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1563 // We have the count for entry to the RHS and for the whole expression 1564 // being true, so we can divy up True count between the short circuit and 1565 // the RHS. 1566 uint64_t LHSCount = 1567 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1568 uint64_t RHSCount = TrueCount - LHSCount; 1569 1570 ConditionalEvaluation eval(*this); 1571 { 1572 ApplyDebugLocation DL(*this, Cond); 1573 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1574 EmitBlock(LHSFalse); 1575 } 1576 1577 incrementProfileCounter(CondBOp); 1578 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1579 1580 // Any temporaries created here are conditional. 1581 eval.begin(*this); 1582 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1583 1584 eval.end(*this); 1585 1586 return; 1587 } 1588 } 1589 1590 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1591 // br(!x, t, f) -> br(x, f, t) 1592 if (CondUOp->getOpcode() == UO_LNot) { 1593 // Negate the count. 1594 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1595 // Negate the condition and swap the destination blocks. 1596 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1597 FalseCount); 1598 } 1599 } 1600 1601 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1602 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1603 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1604 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1605 1606 ConditionalEvaluation cond(*this); 1607 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1608 getProfileCount(CondOp)); 1609 1610 // When computing PGO branch weights, we only know the overall count for 1611 // the true block. This code is essentially doing tail duplication of the 1612 // naive code-gen, introducing new edges for which counts are not 1613 // available. Divide the counts proportionally between the LHS and RHS of 1614 // the conditional operator. 1615 uint64_t LHSScaledTrueCount = 0; 1616 if (TrueCount) { 1617 double LHSRatio = 1618 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1619 LHSScaledTrueCount = TrueCount * LHSRatio; 1620 } 1621 1622 cond.begin(*this); 1623 EmitBlock(LHSBlock); 1624 incrementProfileCounter(CondOp); 1625 { 1626 ApplyDebugLocation DL(*this, Cond); 1627 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1628 LHSScaledTrueCount); 1629 } 1630 cond.end(*this); 1631 1632 cond.begin(*this); 1633 EmitBlock(RHSBlock); 1634 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1635 TrueCount - LHSScaledTrueCount); 1636 cond.end(*this); 1637 1638 return; 1639 } 1640 1641 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1642 // Conditional operator handling can give us a throw expression as a 1643 // condition for a case like: 1644 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1645 // Fold this to: 1646 // br(c, throw x, br(y, t, f)) 1647 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1648 return; 1649 } 1650 1651 // If the branch has a condition wrapped by __builtin_unpredictable, 1652 // create metadata that specifies that the branch is unpredictable. 1653 // Don't bother if not optimizing because that metadata would not be used. 1654 llvm::MDNode *Unpredictable = nullptr; 1655 auto *Call = dyn_cast<CallExpr>(Cond); 1656 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1657 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1658 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1659 llvm::MDBuilder MDHelper(getLLVMContext()); 1660 Unpredictable = MDHelper.createUnpredictable(); 1661 } 1662 } 1663 1664 // Create branch weights based on the number of times we get here and the 1665 // number of times the condition should be true. 1666 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1667 llvm::MDNode *Weights = 1668 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1669 1670 // Emit the code with the fully general case. 1671 llvm::Value *CondV; 1672 { 1673 ApplyDebugLocation DL(*this, Cond); 1674 CondV = EvaluateExprAsBool(Cond); 1675 } 1676 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1677 } 1678 1679 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1680 /// specified stmt yet. 1681 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1682 CGM.ErrorUnsupported(S, Type); 1683 } 1684 1685 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1686 /// variable-length array whose elements have a non-zero bit-pattern. 1687 /// 1688 /// \param baseType the inner-most element type of the array 1689 /// \param src - a char* pointing to the bit-pattern for a single 1690 /// base element of the array 1691 /// \param sizeInChars - the total size of the VLA, in chars 1692 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1693 Address dest, Address src, 1694 llvm::Value *sizeInChars) { 1695 CGBuilderTy &Builder = CGF.Builder; 1696 1697 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1698 llvm::Value *baseSizeInChars 1699 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1700 1701 Address begin = 1702 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1703 llvm::Value *end = 1704 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1705 1706 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1707 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1708 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1709 1710 // Make a loop over the VLA. C99 guarantees that the VLA element 1711 // count must be nonzero. 1712 CGF.EmitBlock(loopBB); 1713 1714 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1715 cur->addIncoming(begin.getPointer(), originBB); 1716 1717 CharUnits curAlign = 1718 dest.getAlignment().alignmentOfArrayElement(baseSize); 1719 1720 // memcpy the individual element bit-pattern. 1721 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1722 /*volatile*/ false); 1723 1724 // Go to the next element. 1725 llvm::Value *next = 1726 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1727 1728 // Leave if that's the end of the VLA. 1729 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1730 Builder.CreateCondBr(done, contBB, loopBB); 1731 cur->addIncoming(next, loopBB); 1732 1733 CGF.EmitBlock(contBB); 1734 } 1735 1736 void 1737 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1738 // Ignore empty classes in C++. 1739 if (getLangOpts().CPlusPlus) { 1740 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1741 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1742 return; 1743 } 1744 } 1745 1746 // Cast the dest ptr to the appropriate i8 pointer type. 1747 if (DestPtr.getElementType() != Int8Ty) 1748 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1749 1750 // Get size and alignment info for this aggregate. 1751 CharUnits size = getContext().getTypeSizeInChars(Ty); 1752 1753 llvm::Value *SizeVal; 1754 const VariableArrayType *vla; 1755 1756 // Don't bother emitting a zero-byte memset. 1757 if (size.isZero()) { 1758 // But note that getTypeInfo returns 0 for a VLA. 1759 if (const VariableArrayType *vlaType = 1760 dyn_cast_or_null<VariableArrayType>( 1761 getContext().getAsArrayType(Ty))) { 1762 auto VlaSize = getVLASize(vlaType); 1763 SizeVal = VlaSize.NumElts; 1764 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1765 if (!eltSize.isOne()) 1766 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1767 vla = vlaType; 1768 } else { 1769 return; 1770 } 1771 } else { 1772 SizeVal = CGM.getSize(size); 1773 vla = nullptr; 1774 } 1775 1776 // If the type contains a pointer to data member we can't memset it to zero. 1777 // Instead, create a null constant and copy it to the destination. 1778 // TODO: there are other patterns besides zero that we can usefully memset, 1779 // like -1, which happens to be the pattern used by member-pointers. 1780 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1781 // For a VLA, emit a single element, then splat that over the VLA. 1782 if (vla) Ty = getContext().getBaseElementType(vla); 1783 1784 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1785 1786 llvm::GlobalVariable *NullVariable = 1787 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1788 /*isConstant=*/true, 1789 llvm::GlobalVariable::PrivateLinkage, 1790 NullConstant, Twine()); 1791 CharUnits NullAlign = DestPtr.getAlignment(); 1792 NullVariable->setAlignment(NullAlign.getQuantity()); 1793 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1794 NullAlign); 1795 1796 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1797 1798 // Get and call the appropriate llvm.memcpy overload. 1799 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1800 return; 1801 } 1802 1803 // Otherwise, just memset the whole thing to zero. This is legal 1804 // because in LLVM, all default initializers (other than the ones we just 1805 // handled above) are guaranteed to have a bit pattern of all zeros. 1806 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1807 } 1808 1809 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1810 // Make sure that there is a block for the indirect goto. 1811 if (!IndirectBranch) 1812 GetIndirectGotoBlock(); 1813 1814 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1815 1816 // Make sure the indirect branch includes all of the address-taken blocks. 1817 IndirectBranch->addDestination(BB); 1818 return llvm::BlockAddress::get(CurFn, BB); 1819 } 1820 1821 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1822 // If we already made the indirect branch for indirect goto, return its block. 1823 if (IndirectBranch) return IndirectBranch->getParent(); 1824 1825 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1826 1827 // Create the PHI node that indirect gotos will add entries to. 1828 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1829 "indirect.goto.dest"); 1830 1831 // Create the indirect branch instruction. 1832 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1833 return IndirectBranch->getParent(); 1834 } 1835 1836 /// Computes the length of an array in elements, as well as the base 1837 /// element type and a properly-typed first element pointer. 1838 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1839 QualType &baseType, 1840 Address &addr) { 1841 const ArrayType *arrayType = origArrayType; 1842 1843 // If it's a VLA, we have to load the stored size. Note that 1844 // this is the size of the VLA in bytes, not its size in elements. 1845 llvm::Value *numVLAElements = nullptr; 1846 if (isa<VariableArrayType>(arrayType)) { 1847 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1848 1849 // Walk into all VLAs. This doesn't require changes to addr, 1850 // which has type T* where T is the first non-VLA element type. 1851 do { 1852 QualType elementType = arrayType->getElementType(); 1853 arrayType = getContext().getAsArrayType(elementType); 1854 1855 // If we only have VLA components, 'addr' requires no adjustment. 1856 if (!arrayType) { 1857 baseType = elementType; 1858 return numVLAElements; 1859 } 1860 } while (isa<VariableArrayType>(arrayType)); 1861 1862 // We get out here only if we find a constant array type 1863 // inside the VLA. 1864 } 1865 1866 // We have some number of constant-length arrays, so addr should 1867 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1868 // down to the first element of addr. 1869 SmallVector<llvm::Value*, 8> gepIndices; 1870 1871 // GEP down to the array type. 1872 llvm::ConstantInt *zero = Builder.getInt32(0); 1873 gepIndices.push_back(zero); 1874 1875 uint64_t countFromCLAs = 1; 1876 QualType eltType; 1877 1878 llvm::ArrayType *llvmArrayType = 1879 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1880 while (llvmArrayType) { 1881 assert(isa<ConstantArrayType>(arrayType)); 1882 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1883 == llvmArrayType->getNumElements()); 1884 1885 gepIndices.push_back(zero); 1886 countFromCLAs *= llvmArrayType->getNumElements(); 1887 eltType = arrayType->getElementType(); 1888 1889 llvmArrayType = 1890 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1891 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1892 assert((!llvmArrayType || arrayType) && 1893 "LLVM and Clang types are out-of-synch"); 1894 } 1895 1896 if (arrayType) { 1897 // From this point onwards, the Clang array type has been emitted 1898 // as some other type (probably a packed struct). Compute the array 1899 // size, and just emit the 'begin' expression as a bitcast. 1900 while (arrayType) { 1901 countFromCLAs *= 1902 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1903 eltType = arrayType->getElementType(); 1904 arrayType = getContext().getAsArrayType(eltType); 1905 } 1906 1907 llvm::Type *baseType = ConvertType(eltType); 1908 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1909 } else { 1910 // Create the actual GEP. 1911 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1912 gepIndices, "array.begin"), 1913 addr.getAlignment()); 1914 } 1915 1916 baseType = eltType; 1917 1918 llvm::Value *numElements 1919 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1920 1921 // If we had any VLA dimensions, factor them in. 1922 if (numVLAElements) 1923 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1924 1925 return numElements; 1926 } 1927 1928 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1929 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1930 assert(vla && "type was not a variable array type!"); 1931 return getVLASize(vla); 1932 } 1933 1934 CodeGenFunction::VlaSizePair 1935 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1936 // The number of elements so far; always size_t. 1937 llvm::Value *numElements = nullptr; 1938 1939 QualType elementType; 1940 do { 1941 elementType = type->getElementType(); 1942 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1943 assert(vlaSize && "no size for VLA!"); 1944 assert(vlaSize->getType() == SizeTy); 1945 1946 if (!numElements) { 1947 numElements = vlaSize; 1948 } else { 1949 // It's undefined behavior if this wraps around, so mark it that way. 1950 // FIXME: Teach -fsanitize=undefined to trap this. 1951 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1952 } 1953 } while ((type = getContext().getAsVariableArrayType(elementType))); 1954 1955 return { numElements, elementType }; 1956 } 1957 1958 CodeGenFunction::VlaSizePair 1959 CodeGenFunction::getVLAElements1D(QualType type) { 1960 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1961 assert(vla && "type was not a variable array type!"); 1962 return getVLAElements1D(vla); 1963 } 1964 1965 CodeGenFunction::VlaSizePair 1966 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1967 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1968 assert(VlaSize && "no size for VLA!"); 1969 assert(VlaSize->getType() == SizeTy); 1970 return { VlaSize, Vla->getElementType() }; 1971 } 1972 1973 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1974 assert(type->isVariablyModifiedType() && 1975 "Must pass variably modified type to EmitVLASizes!"); 1976 1977 EnsureInsertPoint(); 1978 1979 // We're going to walk down into the type and look for VLA 1980 // expressions. 1981 do { 1982 assert(type->isVariablyModifiedType()); 1983 1984 const Type *ty = type.getTypePtr(); 1985 switch (ty->getTypeClass()) { 1986 1987 #define TYPE(Class, Base) 1988 #define ABSTRACT_TYPE(Class, Base) 1989 #define NON_CANONICAL_TYPE(Class, Base) 1990 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1991 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1992 #include "clang/AST/TypeNodes.def" 1993 llvm_unreachable("unexpected dependent type!"); 1994 1995 // These types are never variably-modified. 1996 case Type::Builtin: 1997 case Type::Complex: 1998 case Type::Vector: 1999 case Type::ExtVector: 2000 case Type::Record: 2001 case Type::Enum: 2002 case Type::Elaborated: 2003 case Type::TemplateSpecialization: 2004 case Type::ObjCTypeParam: 2005 case Type::ObjCObject: 2006 case Type::ObjCInterface: 2007 case Type::ObjCObjectPointer: 2008 llvm_unreachable("type class is never variably-modified!"); 2009 2010 case Type::Adjusted: 2011 type = cast<AdjustedType>(ty)->getAdjustedType(); 2012 break; 2013 2014 case Type::Decayed: 2015 type = cast<DecayedType>(ty)->getPointeeType(); 2016 break; 2017 2018 case Type::Pointer: 2019 type = cast<PointerType>(ty)->getPointeeType(); 2020 break; 2021 2022 case Type::BlockPointer: 2023 type = cast<BlockPointerType>(ty)->getPointeeType(); 2024 break; 2025 2026 case Type::LValueReference: 2027 case Type::RValueReference: 2028 type = cast<ReferenceType>(ty)->getPointeeType(); 2029 break; 2030 2031 case Type::MemberPointer: 2032 type = cast<MemberPointerType>(ty)->getPointeeType(); 2033 break; 2034 2035 case Type::ConstantArray: 2036 case Type::IncompleteArray: 2037 // Losing element qualification here is fine. 2038 type = cast<ArrayType>(ty)->getElementType(); 2039 break; 2040 2041 case Type::VariableArray: { 2042 // Losing element qualification here is fine. 2043 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2044 2045 // Unknown size indication requires no size computation. 2046 // Otherwise, evaluate and record it. 2047 if (const Expr *size = vat->getSizeExpr()) { 2048 // It's possible that we might have emitted this already, 2049 // e.g. with a typedef and a pointer to it. 2050 llvm::Value *&entry = VLASizeMap[size]; 2051 if (!entry) { 2052 llvm::Value *Size = EmitScalarExpr(size); 2053 2054 // C11 6.7.6.2p5: 2055 // If the size is an expression that is not an integer constant 2056 // expression [...] each time it is evaluated it shall have a value 2057 // greater than zero. 2058 if (SanOpts.has(SanitizerKind::VLABound) && 2059 size->getType()->isSignedIntegerType()) { 2060 SanitizerScope SanScope(this); 2061 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2062 llvm::Constant *StaticArgs[] = { 2063 EmitCheckSourceLocation(size->getLocStart()), 2064 EmitCheckTypeDescriptor(size->getType()) 2065 }; 2066 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2067 SanitizerKind::VLABound), 2068 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2069 } 2070 2071 // Always zexting here would be wrong if it weren't 2072 // undefined behavior to have a negative bound. 2073 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2074 } 2075 } 2076 type = vat->getElementType(); 2077 break; 2078 } 2079 2080 case Type::FunctionProto: 2081 case Type::FunctionNoProto: 2082 type = cast<FunctionType>(ty)->getReturnType(); 2083 break; 2084 2085 case Type::Paren: 2086 case Type::TypeOf: 2087 case Type::UnaryTransform: 2088 case Type::Attributed: 2089 case Type::SubstTemplateTypeParm: 2090 case Type::PackExpansion: 2091 // Keep walking after single level desugaring. 2092 type = type.getSingleStepDesugaredType(getContext()); 2093 break; 2094 2095 case Type::Typedef: 2096 case Type::Decltype: 2097 case Type::Auto: 2098 case Type::DeducedTemplateSpecialization: 2099 // Stop walking: nothing to do. 2100 return; 2101 2102 case Type::TypeOfExpr: 2103 // Stop walking: emit typeof expression. 2104 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2105 return; 2106 2107 case Type::Atomic: 2108 type = cast<AtomicType>(ty)->getValueType(); 2109 break; 2110 2111 case Type::Pipe: 2112 type = cast<PipeType>(ty)->getElementType(); 2113 break; 2114 } 2115 } while (type->isVariablyModifiedType()); 2116 } 2117 2118 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2119 if (getContext().getBuiltinVaListType()->isArrayType()) 2120 return EmitPointerWithAlignment(E); 2121 return EmitLValue(E).getAddress(); 2122 } 2123 2124 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2125 return EmitLValue(E).getAddress(); 2126 } 2127 2128 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2129 const APValue &Init) { 2130 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2131 if (CGDebugInfo *Dbg = getDebugInfo()) 2132 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2133 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2134 } 2135 2136 CodeGenFunction::PeepholeProtection 2137 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2138 // At the moment, the only aggressive peephole we do in IR gen 2139 // is trunc(zext) folding, but if we add more, we can easily 2140 // extend this protection. 2141 2142 if (!rvalue.isScalar()) return PeepholeProtection(); 2143 llvm::Value *value = rvalue.getScalarVal(); 2144 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2145 2146 // Just make an extra bitcast. 2147 assert(HaveInsertPoint()); 2148 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2149 Builder.GetInsertBlock()); 2150 2151 PeepholeProtection protection; 2152 protection.Inst = inst; 2153 return protection; 2154 } 2155 2156 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2157 if (!protection.Inst) return; 2158 2159 // In theory, we could try to duplicate the peepholes now, but whatever. 2160 protection.Inst->eraseFromParent(); 2161 } 2162 2163 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2164 llvm::Value *AnnotatedVal, 2165 StringRef AnnotationStr, 2166 SourceLocation Location) { 2167 llvm::Value *Args[4] = { 2168 AnnotatedVal, 2169 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2170 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2171 CGM.EmitAnnotationLineNo(Location) 2172 }; 2173 return Builder.CreateCall(AnnotationFn, Args); 2174 } 2175 2176 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2177 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2178 // FIXME We create a new bitcast for every annotation because that's what 2179 // llvm-gcc was doing. 2180 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2181 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2182 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2183 I->getAnnotation(), D->getLocation()); 2184 } 2185 2186 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2187 Address Addr) { 2188 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2189 llvm::Value *V = Addr.getPointer(); 2190 llvm::Type *VTy = V->getType(); 2191 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2192 CGM.Int8PtrTy); 2193 2194 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2195 // FIXME Always emit the cast inst so we can differentiate between 2196 // annotation on the first field of a struct and annotation on the struct 2197 // itself. 2198 if (VTy != CGM.Int8PtrTy) 2199 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2200 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2201 V = Builder.CreateBitCast(V, VTy); 2202 } 2203 2204 return Address(V, Addr.getAlignment()); 2205 } 2206 2207 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2208 2209 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2210 : CGF(CGF) { 2211 assert(!CGF->IsSanitizerScope); 2212 CGF->IsSanitizerScope = true; 2213 } 2214 2215 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2216 CGF->IsSanitizerScope = false; 2217 } 2218 2219 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2220 const llvm::Twine &Name, 2221 llvm::BasicBlock *BB, 2222 llvm::BasicBlock::iterator InsertPt) const { 2223 LoopStack.InsertHelper(I); 2224 if (IsSanitizerScope) 2225 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2226 } 2227 2228 void CGBuilderInserter::InsertHelper( 2229 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2230 llvm::BasicBlock::iterator InsertPt) const { 2231 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2232 if (CGF) 2233 CGF->InsertHelper(I, Name, BB, InsertPt); 2234 } 2235 2236 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2237 CodeGenModule &CGM, const FunctionDecl *FD, 2238 std::string &FirstMissing) { 2239 // If there aren't any required features listed then go ahead and return. 2240 if (ReqFeatures.empty()) 2241 return false; 2242 2243 // Now build up the set of caller features and verify that all the required 2244 // features are there. 2245 llvm::StringMap<bool> CallerFeatureMap; 2246 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2247 2248 // If we have at least one of the features in the feature list return 2249 // true, otherwise return false. 2250 return std::all_of( 2251 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2252 SmallVector<StringRef, 1> OrFeatures; 2253 Feature.split(OrFeatures, "|"); 2254 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2255 [&](StringRef Feature) { 2256 if (!CallerFeatureMap.lookup(Feature)) { 2257 FirstMissing = Feature.str(); 2258 return false; 2259 } 2260 return true; 2261 }); 2262 }); 2263 } 2264 2265 // Emits an error if we don't have a valid set of target features for the 2266 // called function. 2267 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2268 const FunctionDecl *TargetDecl) { 2269 // Early exit if this is an indirect call. 2270 if (!TargetDecl) 2271 return; 2272 2273 // Get the current enclosing function if it exists. If it doesn't 2274 // we can't check the target features anyhow. 2275 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2276 if (!FD) 2277 return; 2278 2279 // Grab the required features for the call. For a builtin this is listed in 2280 // the td file with the default cpu, for an always_inline function this is any 2281 // listed cpu and any listed features. 2282 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2283 std::string MissingFeature; 2284 if (BuiltinID) { 2285 SmallVector<StringRef, 1> ReqFeatures; 2286 const char *FeatureList = 2287 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2288 // Return if the builtin doesn't have any required features. 2289 if (!FeatureList || StringRef(FeatureList) == "") 2290 return; 2291 StringRef(FeatureList).split(ReqFeatures, ","); 2292 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2293 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2294 << TargetDecl->getDeclName() 2295 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2296 2297 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2298 // Get the required features for the callee. 2299 SmallVector<StringRef, 1> ReqFeatures; 2300 llvm::StringMap<bool> CalleeFeatureMap; 2301 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2302 for (const auto &F : CalleeFeatureMap) { 2303 // Only positive features are "required". 2304 if (F.getValue()) 2305 ReqFeatures.push_back(F.getKey()); 2306 } 2307 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2308 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2309 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2310 } 2311 } 2312 2313 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2314 if (!CGM.getCodeGenOpts().SanitizeStats) 2315 return; 2316 2317 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2318 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2319 CGM.getSanStats().create(IRB, SSK); 2320 } 2321 2322 llvm::Value * 2323 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2324 llvm::Value *TrueCondition = nullptr; 2325 if (!RO.ParsedAttribute.Architecture.empty()) 2326 TrueCondition = EmitX86CpuIs(RO.ParsedAttribute.Architecture); 2327 2328 if (!RO.ParsedAttribute.Features.empty()) { 2329 SmallVector<StringRef, 8> FeatureList; 2330 llvm::for_each(RO.ParsedAttribute.Features, 2331 [&FeatureList](const std::string &Feature) { 2332 FeatureList.push_back(StringRef{Feature}.substr(1)); 2333 }); 2334 llvm::Value *FeatureCmp = EmitX86CpuSupports(FeatureList); 2335 TrueCondition = TrueCondition ? Builder.CreateAnd(TrueCondition, FeatureCmp) 2336 : FeatureCmp; 2337 } 2338 return TrueCondition; 2339 } 2340 2341 void CodeGenFunction::EmitMultiVersionResolver( 2342 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2343 assert((getContext().getTargetInfo().getTriple().getArch() == 2344 llvm::Triple::x86 || 2345 getContext().getTargetInfo().getTriple().getArch() == 2346 llvm::Triple::x86_64) && 2347 "Only implemented for x86 targets"); 2348 2349 // Main function's basic block. 2350 llvm::BasicBlock *CurBlock = createBasicBlock("entry", Resolver); 2351 Builder.SetInsertPoint(CurBlock); 2352 EmitX86CpuInit(); 2353 2354 llvm::Function *DefaultFunc = nullptr; 2355 for (const MultiVersionResolverOption &RO : Options) { 2356 Builder.SetInsertPoint(CurBlock); 2357 llvm::Value *TrueCondition = FormResolverCondition(RO); 2358 2359 if (!TrueCondition) { 2360 DefaultFunc = RO.Function; 2361 } else { 2362 llvm::BasicBlock *RetBlock = createBasicBlock("ro_ret", Resolver); 2363 llvm::IRBuilder<> RetBuilder(RetBlock); 2364 RetBuilder.CreateRet(RO.Function); 2365 CurBlock = createBasicBlock("ro_else", Resolver); 2366 Builder.CreateCondBr(TrueCondition, RetBlock, CurBlock); 2367 } 2368 } 2369 2370 assert(DefaultFunc && "No default version?"); 2371 // Emit return from the 'else-ist' block. 2372 Builder.SetInsertPoint(CurBlock); 2373 Builder.CreateRet(DefaultFunc); 2374 } 2375 2376 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2377 if (CGDebugInfo *DI = getDebugInfo()) 2378 return DI->SourceLocToDebugLoc(Location); 2379 2380 return llvm::DebugLoc(); 2381 } 2382