1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
45 /// markers.
46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
47                                       const LangOptions &LangOpts) {
48   if (CGOpts.DisableLifetimeMarkers)
49     return false;
50 
51   // Disable lifetime markers in msan builds.
52   // FIXME: Remove this when msan works with lifetime markers.
53   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
54     return false;
55 
56   // Asan uses markers for use-after-scope checks.
57   if (CGOpts.SanitizeAddressUseAfterScope)
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       CurFn(nullptr), ReturnValue(Address::invalid()),
69       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
70       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
71       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
72       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
73       NormalCleanupDest(Address::invalid()), NextCleanupDestIndex(1),
74       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
75       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
76       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
77       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
78       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
79       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
80       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
81       CXXStructorImplicitParamDecl(nullptr),
82       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
83       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
84       TerminateHandler(nullptr), TrapBB(nullptr),
85       ShouldEmitLifetimeMarkers(
86           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
87   if (!suppressNewContext)
88     CGM.getCXXABI().getMangleContext().startNewFunction();
89 
90   llvm::FastMathFlags FMF;
91   if (CGM.getLangOpts().FastMath)
92     FMF.setFast();
93   if (CGM.getLangOpts().FiniteMathOnly) {
94     FMF.setNoNaNs();
95     FMF.setNoInfs();
96   }
97   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
98     FMF.setNoNaNs();
99   }
100   if (CGM.getCodeGenOpts().NoSignedZeros) {
101     FMF.setNoSignedZeros();
102   }
103   if (CGM.getCodeGenOpts().ReciprocalMath) {
104     FMF.setAllowReciprocal();
105   }
106   if (CGM.getCodeGenOpts().Reassociate) {
107     FMF.setAllowReassoc();
108   }
109   Builder.setFastMathFlags(FMF);
110 }
111 
112 CodeGenFunction::~CodeGenFunction() {
113   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
114 
115   // If there are any unclaimed block infos, go ahead and destroy them
116   // now.  This can happen if IR-gen gets clever and skips evaluating
117   // something.
118   if (FirstBlockInfo)
119     destroyBlockInfos(FirstBlockInfo);
120 
121   if (getLangOpts().OpenMP && CurFn)
122     CGM.getOpenMPRuntime().functionFinished(*this);
123 }
124 
125 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
126                                                     LValueBaseInfo *BaseInfo,
127                                                     TBAAAccessInfo *TBAAInfo) {
128   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
129                                  /* forPointeeType= */ true);
130 }
131 
132 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
133                                                    LValueBaseInfo *BaseInfo,
134                                                    TBAAAccessInfo *TBAAInfo,
135                                                    bool forPointeeType) {
136   if (TBAAInfo)
137     *TBAAInfo = CGM.getTBAAAccessInfo(T);
138 
139   // Honor alignment typedef attributes even on incomplete types.
140   // We also honor them straight for C++ class types, even as pointees;
141   // there's an expressivity gap here.
142   if (auto TT = T->getAs<TypedefType>()) {
143     if (auto Align = TT->getDecl()->getMaxAlignment()) {
144       if (BaseInfo)
145         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
146       return getContext().toCharUnitsFromBits(Align);
147     }
148   }
149 
150   if (BaseInfo)
151     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
152 
153   CharUnits Alignment;
154   if (T->isIncompleteType()) {
155     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
156   } else {
157     // For C++ class pointees, we don't know whether we're pointing at a
158     // base or a complete object, so we generally need to use the
159     // non-virtual alignment.
160     const CXXRecordDecl *RD;
161     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
162       Alignment = CGM.getClassPointerAlignment(RD);
163     } else {
164       Alignment = getContext().getTypeAlignInChars(T);
165       if (T.getQualifiers().hasUnaligned())
166         Alignment = CharUnits::One();
167     }
168 
169     // Cap to the global maximum type alignment unless the alignment
170     // was somehow explicit on the type.
171     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
172       if (Alignment.getQuantity() > MaxAlign &&
173           !getContext().isAlignmentRequired(T))
174         Alignment = CharUnits::fromQuantity(MaxAlign);
175     }
176   }
177   return Alignment;
178 }
179 
180 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
181   LValueBaseInfo BaseInfo;
182   TBAAAccessInfo TBAAInfo;
183   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
184   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
185                           TBAAInfo);
186 }
187 
188 /// Given a value of type T* that may not be to a complete object,
189 /// construct an l-value with the natural pointee alignment of T.
190 LValue
191 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
192   LValueBaseInfo BaseInfo;
193   TBAAAccessInfo TBAAInfo;
194   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
195                                             /* forPointeeType= */ true);
196   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
197 }
198 
199 
200 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
201   return CGM.getTypes().ConvertTypeForMem(T);
202 }
203 
204 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
205   return CGM.getTypes().ConvertType(T);
206 }
207 
208 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
209   type = type.getCanonicalType();
210   while (true) {
211     switch (type->getTypeClass()) {
212 #define TYPE(name, parent)
213 #define ABSTRACT_TYPE(name, parent)
214 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
215 #define DEPENDENT_TYPE(name, parent) case Type::name:
216 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
217 #include "clang/AST/TypeNodes.def"
218       llvm_unreachable("non-canonical or dependent type in IR-generation");
219 
220     case Type::Auto:
221     case Type::DeducedTemplateSpecialization:
222       llvm_unreachable("undeduced type in IR-generation");
223 
224     // Various scalar types.
225     case Type::Builtin:
226     case Type::Pointer:
227     case Type::BlockPointer:
228     case Type::LValueReference:
229     case Type::RValueReference:
230     case Type::MemberPointer:
231     case Type::Vector:
232     case Type::ExtVector:
233     case Type::FunctionProto:
234     case Type::FunctionNoProto:
235     case Type::Enum:
236     case Type::ObjCObjectPointer:
237     case Type::Pipe:
238       return TEK_Scalar;
239 
240     // Complexes.
241     case Type::Complex:
242       return TEK_Complex;
243 
244     // Arrays, records, and Objective-C objects.
245     case Type::ConstantArray:
246     case Type::IncompleteArray:
247     case Type::VariableArray:
248     case Type::Record:
249     case Type::ObjCObject:
250     case Type::ObjCInterface:
251       return TEK_Aggregate;
252 
253     // We operate on atomic values according to their underlying type.
254     case Type::Atomic:
255       type = cast<AtomicType>(type)->getValueType();
256       continue;
257     }
258     llvm_unreachable("unknown type kind!");
259   }
260 }
261 
262 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
263   // For cleanliness, we try to avoid emitting the return block for
264   // simple cases.
265   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
266 
267   if (CurBB) {
268     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
269 
270     // We have a valid insert point, reuse it if it is empty or there are no
271     // explicit jumps to the return block.
272     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
273       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
274       delete ReturnBlock.getBlock();
275     } else
276       EmitBlock(ReturnBlock.getBlock());
277     return llvm::DebugLoc();
278   }
279 
280   // Otherwise, if the return block is the target of a single direct
281   // branch then we can just put the code in that block instead. This
282   // cleans up functions which started with a unified return block.
283   if (ReturnBlock.getBlock()->hasOneUse()) {
284     llvm::BranchInst *BI =
285       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
286     if (BI && BI->isUnconditional() &&
287         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
288       // Record/return the DebugLoc of the simple 'return' expression to be used
289       // later by the actual 'ret' instruction.
290       llvm::DebugLoc Loc = BI->getDebugLoc();
291       Builder.SetInsertPoint(BI->getParent());
292       BI->eraseFromParent();
293       delete ReturnBlock.getBlock();
294       return Loc;
295     }
296   }
297 
298   // FIXME: We are at an unreachable point, there is no reason to emit the block
299   // unless it has uses. However, we still need a place to put the debug
300   // region.end for now.
301 
302   EmitBlock(ReturnBlock.getBlock());
303   return llvm::DebugLoc();
304 }
305 
306 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
307   if (!BB) return;
308   if (!BB->use_empty())
309     return CGF.CurFn->getBasicBlockList().push_back(BB);
310   delete BB;
311 }
312 
313 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
314   assert(BreakContinueStack.empty() &&
315          "mismatched push/pop in break/continue stack!");
316 
317   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
318     && NumSimpleReturnExprs == NumReturnExprs
319     && ReturnBlock.getBlock()->use_empty();
320   // Usually the return expression is evaluated before the cleanup
321   // code.  If the function contains only a simple return statement,
322   // such as a constant, the location before the cleanup code becomes
323   // the last useful breakpoint in the function, because the simple
324   // return expression will be evaluated after the cleanup code. To be
325   // safe, set the debug location for cleanup code to the location of
326   // the return statement.  Otherwise the cleanup code should be at the
327   // end of the function's lexical scope.
328   //
329   // If there are multiple branches to the return block, the branch
330   // instructions will get the location of the return statements and
331   // all will be fine.
332   if (CGDebugInfo *DI = getDebugInfo()) {
333     if (OnlySimpleReturnStmts)
334       DI->EmitLocation(Builder, LastStopPoint);
335     else
336       DI->EmitLocation(Builder, EndLoc);
337   }
338 
339   // Pop any cleanups that might have been associated with the
340   // parameters.  Do this in whatever block we're currently in; it's
341   // important to do this before we enter the return block or return
342   // edges will be *really* confused.
343   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
344   bool HasOnlyLifetimeMarkers =
345       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
346   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
347   if (HasCleanups) {
348     // Make sure the line table doesn't jump back into the body for
349     // the ret after it's been at EndLoc.
350     if (CGDebugInfo *DI = getDebugInfo())
351       if (OnlySimpleReturnStmts)
352         DI->EmitLocation(Builder, EndLoc);
353 
354     PopCleanupBlocks(PrologueCleanupDepth);
355   }
356 
357   // Emit function epilog (to return).
358   llvm::DebugLoc Loc = EmitReturnBlock();
359 
360   if (ShouldInstrumentFunction()) {
361     if (CGM.getCodeGenOpts().InstrumentFunctions)
362       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
363     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
364       CurFn->addFnAttr("instrument-function-exit-inlined",
365                        "__cyg_profile_func_exit");
366   }
367 
368   // Emit debug descriptor for function end.
369   if (CGDebugInfo *DI = getDebugInfo())
370     DI->EmitFunctionEnd(Builder, CurFn);
371 
372   // Reset the debug location to that of the simple 'return' expression, if any
373   // rather than that of the end of the function's scope '}'.
374   ApplyDebugLocation AL(*this, Loc);
375   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
376   EmitEndEHSpec(CurCodeDecl);
377 
378   assert(EHStack.empty() &&
379          "did not remove all scopes from cleanup stack!");
380 
381   // If someone did an indirect goto, emit the indirect goto block at the end of
382   // the function.
383   if (IndirectBranch) {
384     EmitBlock(IndirectBranch->getParent());
385     Builder.ClearInsertionPoint();
386   }
387 
388   // If some of our locals escaped, insert a call to llvm.localescape in the
389   // entry block.
390   if (!EscapedLocals.empty()) {
391     // Invert the map from local to index into a simple vector. There should be
392     // no holes.
393     SmallVector<llvm::Value *, 4> EscapeArgs;
394     EscapeArgs.resize(EscapedLocals.size());
395     for (auto &Pair : EscapedLocals)
396       EscapeArgs[Pair.second] = Pair.first;
397     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
398         &CGM.getModule(), llvm::Intrinsic::localescape);
399     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
400   }
401 
402   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
403   llvm::Instruction *Ptr = AllocaInsertPt;
404   AllocaInsertPt = nullptr;
405   Ptr->eraseFromParent();
406 
407   // If someone took the address of a label but never did an indirect goto, we
408   // made a zero entry PHI node, which is illegal, zap it now.
409   if (IndirectBranch) {
410     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
411     if (PN->getNumIncomingValues() == 0) {
412       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
413       PN->eraseFromParent();
414     }
415   }
416 
417   EmitIfUsed(*this, EHResumeBlock);
418   EmitIfUsed(*this, TerminateLandingPad);
419   EmitIfUsed(*this, TerminateHandler);
420   EmitIfUsed(*this, UnreachableBlock);
421 
422   for (const auto &FuncletAndParent : TerminateFunclets)
423     EmitIfUsed(*this, FuncletAndParent.second);
424 
425   if (CGM.getCodeGenOpts().EmitDeclMetadata)
426     EmitDeclMetadata();
427 
428   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
429            I = DeferredReplacements.begin(),
430            E = DeferredReplacements.end();
431        I != E; ++I) {
432     I->first->replaceAllUsesWith(I->second);
433     I->first->eraseFromParent();
434   }
435 
436   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
437   // PHIs if the current function is a coroutine. We don't do it for all
438   // functions as it may result in slight increase in numbers of instructions
439   // if compiled with no optimizations. We do it for coroutine as the lifetime
440   // of CleanupDestSlot alloca make correct coroutine frame building very
441   // difficult.
442   if (NormalCleanupDest.isValid() && isCoroutine()) {
443     llvm::DominatorTree DT(*CurFn);
444     llvm::PromoteMemToReg(
445         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
446     NormalCleanupDest = Address::invalid();
447   }
448 }
449 
450 /// ShouldInstrumentFunction - Return true if the current function should be
451 /// instrumented with __cyg_profile_func_* calls
452 bool CodeGenFunction::ShouldInstrumentFunction() {
453   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
454       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
455       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
456     return false;
457   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
458     return false;
459   return true;
460 }
461 
462 /// ShouldXRayInstrument - Return true if the current function should be
463 /// instrumented with XRay nop sleds.
464 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
465   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
466 }
467 
468 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
469 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation.
470 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
471   return CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents;
472 }
473 
474 llvm::Constant *
475 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
476                                             llvm::Constant *Addr) {
477   // Addresses stored in prologue data can't require run-time fixups and must
478   // be PC-relative. Run-time fixups are undesirable because they necessitate
479   // writable text segments, which are unsafe. And absolute addresses are
480   // undesirable because they break PIE mode.
481 
482   // Add a layer of indirection through a private global. Taking its address
483   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
484   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
485                                       /*isConstant=*/true,
486                                       llvm::GlobalValue::PrivateLinkage, Addr);
487 
488   // Create a PC-relative address.
489   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
490   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
491   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
492   return (IntPtrTy == Int32Ty)
493              ? PCRelAsInt
494              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
495 }
496 
497 llvm::Value *
498 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
499                                           llvm::Value *EncodedAddr) {
500   // Reconstruct the address of the global.
501   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
502   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
503   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
504   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
505 
506   // Load the original pointer through the global.
507   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
508                             "decoded_addr");
509 }
510 
511 static void removeImageAccessQualifier(std::string& TyName) {
512   std::string ReadOnlyQual("__read_only");
513   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
514   if (ReadOnlyPos != std::string::npos)
515     // "+ 1" for the space after access qualifier.
516     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
517   else {
518     std::string WriteOnlyQual("__write_only");
519     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
520     if (WriteOnlyPos != std::string::npos)
521       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
522     else {
523       std::string ReadWriteQual("__read_write");
524       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
525       if (ReadWritePos != std::string::npos)
526         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
527     }
528   }
529 }
530 
531 // Returns the address space id that should be produced to the
532 // kernel_arg_addr_space metadata. This is always fixed to the ids
533 // as specified in the SPIR 2.0 specification in order to differentiate
534 // for example in clGetKernelArgInfo() implementation between the address
535 // spaces with targets without unique mapping to the OpenCL address spaces
536 // (basically all single AS CPUs).
537 static unsigned ArgInfoAddressSpace(LangAS AS) {
538   switch (AS) {
539   case LangAS::opencl_global:   return 1;
540   case LangAS::opencl_constant: return 2;
541   case LangAS::opencl_local:    return 3;
542   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
543   default:
544     return 0; // Assume private.
545   }
546 }
547 
548 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
549 // information in the program executable. The argument information stored
550 // includes the argument name, its type, the address and access qualifiers used.
551 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
552                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
553                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
554   // Create MDNodes that represent the kernel arg metadata.
555   // Each MDNode is a list in the form of "key", N number of values which is
556   // the same number of values as their are kernel arguments.
557 
558   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
559 
560   // MDNode for the kernel argument address space qualifiers.
561   SmallVector<llvm::Metadata *, 8> addressQuals;
562 
563   // MDNode for the kernel argument access qualifiers (images only).
564   SmallVector<llvm::Metadata *, 8> accessQuals;
565 
566   // MDNode for the kernel argument type names.
567   SmallVector<llvm::Metadata *, 8> argTypeNames;
568 
569   // MDNode for the kernel argument base type names.
570   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
571 
572   // MDNode for the kernel argument type qualifiers.
573   SmallVector<llvm::Metadata *, 8> argTypeQuals;
574 
575   // MDNode for the kernel argument names.
576   SmallVector<llvm::Metadata *, 8> argNames;
577 
578   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
579     const ParmVarDecl *parm = FD->getParamDecl(i);
580     QualType ty = parm->getType();
581     std::string typeQuals;
582 
583     if (ty->isPointerType()) {
584       QualType pointeeTy = ty->getPointeeType();
585 
586       // Get address qualifier.
587       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
588         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
589 
590       // Get argument type name.
591       std::string typeName =
592           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
593 
594       // Turn "unsigned type" to "utype"
595       std::string::size_type pos = typeName.find("unsigned");
596       if (pointeeTy.isCanonical() && pos != std::string::npos)
597         typeName.erase(pos+1, 8);
598 
599       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
600 
601       std::string baseTypeName =
602           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
603               Policy) +
604           "*";
605 
606       // Turn "unsigned type" to "utype"
607       pos = baseTypeName.find("unsigned");
608       if (pos != std::string::npos)
609         baseTypeName.erase(pos+1, 8);
610 
611       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
612 
613       // Get argument type qualifiers:
614       if (ty.isRestrictQualified())
615         typeQuals = "restrict";
616       if (pointeeTy.isConstQualified() ||
617           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
618         typeQuals += typeQuals.empty() ? "const" : " const";
619       if (pointeeTy.isVolatileQualified())
620         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
621     } else {
622       uint32_t AddrSpc = 0;
623       bool isPipe = ty->isPipeType();
624       if (ty->isImageType() || isPipe)
625         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
626 
627       addressQuals.push_back(
628           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
629 
630       // Get argument type name.
631       std::string typeName;
632       if (isPipe)
633         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
634                      .getAsString(Policy);
635       else
636         typeName = ty.getUnqualifiedType().getAsString(Policy);
637 
638       // Turn "unsigned type" to "utype"
639       std::string::size_type pos = typeName.find("unsigned");
640       if (ty.isCanonical() && pos != std::string::npos)
641         typeName.erase(pos+1, 8);
642 
643       std::string baseTypeName;
644       if (isPipe)
645         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
646                           ->getElementType().getCanonicalType()
647                           .getAsString(Policy);
648       else
649         baseTypeName =
650           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
651 
652       // Remove access qualifiers on images
653       // (as they are inseparable from type in clang implementation,
654       // but OpenCL spec provides a special query to get access qualifier
655       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
656       if (ty->isImageType()) {
657         removeImageAccessQualifier(typeName);
658         removeImageAccessQualifier(baseTypeName);
659       }
660 
661       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
662 
663       // Turn "unsigned type" to "utype"
664       pos = baseTypeName.find("unsigned");
665       if (pos != std::string::npos)
666         baseTypeName.erase(pos+1, 8);
667 
668       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
669 
670       if (isPipe)
671         typeQuals = "pipe";
672     }
673 
674     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
675 
676     // Get image and pipe access qualifier:
677     if (ty->isImageType()|| ty->isPipeType()) {
678       const Decl *PDecl = parm;
679       if (auto *TD = dyn_cast<TypedefType>(ty))
680         PDecl = TD->getDecl();
681       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
682       if (A && A->isWriteOnly())
683         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
684       else if (A && A->isReadWrite())
685         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
686       else
687         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
688     } else
689       accessQuals.push_back(llvm::MDString::get(Context, "none"));
690 
691     // Get argument name.
692     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
693   }
694 
695   Fn->setMetadata("kernel_arg_addr_space",
696                   llvm::MDNode::get(Context, addressQuals));
697   Fn->setMetadata("kernel_arg_access_qual",
698                   llvm::MDNode::get(Context, accessQuals));
699   Fn->setMetadata("kernel_arg_type",
700                   llvm::MDNode::get(Context, argTypeNames));
701   Fn->setMetadata("kernel_arg_base_type",
702                   llvm::MDNode::get(Context, argBaseTypeNames));
703   Fn->setMetadata("kernel_arg_type_qual",
704                   llvm::MDNode::get(Context, argTypeQuals));
705   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
706     Fn->setMetadata("kernel_arg_name",
707                     llvm::MDNode::get(Context, argNames));
708 }
709 
710 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
711                                                llvm::Function *Fn)
712 {
713   if (!FD->hasAttr<OpenCLKernelAttr>())
714     return;
715 
716   llvm::LLVMContext &Context = getLLVMContext();
717 
718   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
719 
720   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
721     QualType HintQTy = A->getTypeHint();
722     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
723     bool IsSignedInteger =
724         HintQTy->isSignedIntegerType() ||
725         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
726     llvm::Metadata *AttrMDArgs[] = {
727         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
728             CGM.getTypes().ConvertType(A->getTypeHint()))),
729         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
730             llvm::IntegerType::get(Context, 32),
731             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
732     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
733   }
734 
735   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
736     llvm::Metadata *AttrMDArgs[] = {
737         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
738         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
739         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
740     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
741   }
742 
743   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
744     llvm::Metadata *AttrMDArgs[] = {
745         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
746         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
747         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
748     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
749   }
750 
751   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
752           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
753     llvm::Metadata *AttrMDArgs[] = {
754         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
755     Fn->setMetadata("intel_reqd_sub_group_size",
756                     llvm::MDNode::get(Context, AttrMDArgs));
757   }
758 }
759 
760 /// Determine whether the function F ends with a return stmt.
761 static bool endsWithReturn(const Decl* F) {
762   const Stmt *Body = nullptr;
763   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
764     Body = FD->getBody();
765   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
766     Body = OMD->getBody();
767 
768   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
769     auto LastStmt = CS->body_rbegin();
770     if (LastStmt != CS->body_rend())
771       return isa<ReturnStmt>(*LastStmt);
772   }
773   return false;
774 }
775 
776 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
777   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
778   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
779 }
780 
781 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
782   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
783   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
784       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
785       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
786     return false;
787 
788   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
789     return false;
790 
791   if (MD->getNumParams() == 2) {
792     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
793     if (!PT || !PT->isVoidPointerType() ||
794         !PT->getPointeeType().isConstQualified())
795       return false;
796   }
797 
798   return true;
799 }
800 
801 /// Return the UBSan prologue signature for \p FD if one is available.
802 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
803                                             const FunctionDecl *FD) {
804   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
805     if (!MD->isStatic())
806       return nullptr;
807   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
808 }
809 
810 void CodeGenFunction::StartFunction(GlobalDecl GD,
811                                     QualType RetTy,
812                                     llvm::Function *Fn,
813                                     const CGFunctionInfo &FnInfo,
814                                     const FunctionArgList &Args,
815                                     SourceLocation Loc,
816                                     SourceLocation StartLoc) {
817   assert(!CurFn &&
818          "Do not use a CodeGenFunction object for more than one function");
819 
820   const Decl *D = GD.getDecl();
821 
822   DidCallStackSave = false;
823   CurCodeDecl = D;
824   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
825     if (FD->usesSEHTry())
826       CurSEHParent = FD;
827   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
828   FnRetTy = RetTy;
829   CurFn = Fn;
830   CurFnInfo = &FnInfo;
831   assert(CurFn->isDeclaration() && "Function already has body?");
832 
833   // If this function has been blacklisted for any of the enabled sanitizers,
834   // disable the sanitizer for the function.
835   do {
836 #define SANITIZER(NAME, ID)                                                    \
837   if (SanOpts.empty())                                                         \
838     break;                                                                     \
839   if (SanOpts.has(SanitizerKind::ID))                                          \
840     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
841       SanOpts.set(SanitizerKind::ID, false);
842 
843 #include "clang/Basic/Sanitizers.def"
844 #undef SANITIZER
845   } while (0);
846 
847   if (D) {
848     // Apply the no_sanitize* attributes to SanOpts.
849     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
850       SanOpts.Mask &= ~Attr->getMask();
851   }
852 
853   // Apply sanitizer attributes to the function.
854   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
855     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
856   if (SanOpts.hasOneOf(SanitizerKind::HWAddress))
857     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
858   if (SanOpts.has(SanitizerKind::Thread))
859     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
860   if (SanOpts.has(SanitizerKind::Memory))
861     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
862   if (SanOpts.has(SanitizerKind::SafeStack))
863     Fn->addFnAttr(llvm::Attribute::SafeStack);
864   if (SanOpts.has(SanitizerKind::ShadowCallStack))
865     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
866 
867   // Apply fuzzing attribute to the function.
868   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
869     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
870 
871   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
872   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
873   if (SanOpts.has(SanitizerKind::Thread)) {
874     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
875       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
876       if (OMD->getMethodFamily() == OMF_dealloc ||
877           OMD->getMethodFamily() == OMF_initialize ||
878           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
879         markAsIgnoreThreadCheckingAtRuntime(Fn);
880       }
881     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
882       IdentifierInfo *II = FD->getIdentifier();
883       if (II && II->isStr("__destroy_helper_block_"))
884         markAsIgnoreThreadCheckingAtRuntime(Fn);
885     }
886   }
887 
888   // Ignore unrelated casts in STL allocate() since the allocator must cast
889   // from void* to T* before object initialization completes. Don't match on the
890   // namespace because not all allocators are in std::
891   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
892     if (matchesStlAllocatorFn(D, getContext()))
893       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
894   }
895 
896   // Apply xray attributes to the function (as a string, for now)
897   bool InstrumentXray = ShouldXRayInstrumentFunction();
898   if (D && InstrumentXray) {
899     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
900       if (XRayAttr->alwaysXRayInstrument())
901         Fn->addFnAttr("function-instrument", "xray-always");
902       if (XRayAttr->neverXRayInstrument())
903         Fn->addFnAttr("function-instrument", "xray-never");
904       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
905         Fn->addFnAttr("xray-log-args",
906                       llvm::utostr(LogArgs->getArgumentCount()));
907       }
908     } else {
909       if (!CGM.imbueXRayAttrs(Fn, Loc))
910         Fn->addFnAttr(
911             "xray-instruction-threshold",
912             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
913     }
914   }
915 
916   // Add no-jump-tables value.
917   Fn->addFnAttr("no-jump-tables",
918                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
919 
920   // Add profile-sample-accurate value.
921   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
922     Fn->addFnAttr("profile-sample-accurate");
923 
924   if (getLangOpts().OpenCL) {
925     // Add metadata for a kernel function.
926     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
927       EmitOpenCLKernelMetadata(FD, Fn);
928   }
929 
930   // If we are checking function types, emit a function type signature as
931   // prologue data.
932   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
933     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
934       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
935         // Remove any (C++17) exception specifications, to allow calling e.g. a
936         // noexcept function through a non-noexcept pointer.
937         auto ProtoTy =
938           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
939                                                         EST_None);
940         llvm::Constant *FTRTTIConst =
941             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
942         llvm::Constant *FTRTTIConstEncoded =
943             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
944         llvm::Constant *PrologueStructElems[] = {PrologueSig,
945                                                  FTRTTIConstEncoded};
946         llvm::Constant *PrologueStructConst =
947             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
948         Fn->setPrologueData(PrologueStructConst);
949       }
950     }
951   }
952 
953   // If we're checking nullability, we need to know whether we can check the
954   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
955   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
956     auto Nullability = FnRetTy->getNullability(getContext());
957     if (Nullability && *Nullability == NullabilityKind::NonNull) {
958       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
959             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
960         RetValNullabilityPrecondition =
961             llvm::ConstantInt::getTrue(getLLVMContext());
962     }
963   }
964 
965   // If we're in C++ mode and the function name is "main", it is guaranteed
966   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
967   // used within a program").
968   if (getLangOpts().CPlusPlus)
969     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
970       if (FD->isMain())
971         Fn->addFnAttr(llvm::Attribute::NoRecurse);
972 
973   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
974 
975   // Create a marker to make it easy to insert allocas into the entryblock
976   // later.  Don't create this with the builder, because we don't want it
977   // folded.
978   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
979   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
980 
981   ReturnBlock = getJumpDestInCurrentScope("return");
982 
983   Builder.SetInsertPoint(EntryBB);
984 
985   // If we're checking the return value, allocate space for a pointer to a
986   // precise source location of the checked return statement.
987   if (requiresReturnValueCheck()) {
988     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
989     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
990   }
991 
992   // Emit subprogram debug descriptor.
993   if (CGDebugInfo *DI = getDebugInfo()) {
994     // Reconstruct the type from the argument list so that implicit parameters,
995     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
996     // convention.
997     CallingConv CC = CallingConv::CC_C;
998     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
999       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
1000         CC = SrcFnTy->getCallConv();
1001     SmallVector<QualType, 16> ArgTypes;
1002     for (const VarDecl *VD : Args)
1003       ArgTypes.push_back(VD->getType());
1004     QualType FnType = getContext().getFunctionType(
1005         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
1006     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
1007   }
1008 
1009   if (ShouldInstrumentFunction()) {
1010     if (CGM.getCodeGenOpts().InstrumentFunctions)
1011       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1012     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1013       CurFn->addFnAttr("instrument-function-entry-inlined",
1014                        "__cyg_profile_func_enter");
1015     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1016       CurFn->addFnAttr("instrument-function-entry-inlined",
1017                        "__cyg_profile_func_enter_bare");
1018   }
1019 
1020   // Since emitting the mcount call here impacts optimizations such as function
1021   // inlining, we just add an attribute to insert a mcount call in backend.
1022   // The attribute "counting-function" is set to mcount function name which is
1023   // architecture dependent.
1024   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1025     // Calls to fentry/mcount should not be generated if function has
1026     // the no_instrument_function attribute.
1027     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1028       if (CGM.getCodeGenOpts().CallFEntry)
1029         Fn->addFnAttr("fentry-call", "true");
1030       else {
1031         Fn->addFnAttr("instrument-function-entry-inlined",
1032                       getTarget().getMCountName());
1033       }
1034     }
1035   }
1036 
1037   if (RetTy->isVoidType()) {
1038     // Void type; nothing to return.
1039     ReturnValue = Address::invalid();
1040 
1041     // Count the implicit return.
1042     if (!endsWithReturn(D))
1043       ++NumReturnExprs;
1044   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
1045              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1046     // Indirect aggregate return; emit returned value directly into sret slot.
1047     // This reduces code size, and affects correctness in C++.
1048     auto AI = CurFn->arg_begin();
1049     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1050       ++AI;
1051     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1052   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1053              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1054     // Load the sret pointer from the argument struct and return into that.
1055     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1056     llvm::Function::arg_iterator EI = CurFn->arg_end();
1057     --EI;
1058     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1059     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1060     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1061   } else {
1062     ReturnValue = CreateIRTemp(RetTy, "retval");
1063 
1064     // Tell the epilog emitter to autorelease the result.  We do this
1065     // now so that various specialized functions can suppress it
1066     // during their IR-generation.
1067     if (getLangOpts().ObjCAutoRefCount &&
1068         !CurFnInfo->isReturnsRetained() &&
1069         RetTy->isObjCRetainableType())
1070       AutoreleaseResult = true;
1071   }
1072 
1073   EmitStartEHSpec(CurCodeDecl);
1074 
1075   PrologueCleanupDepth = EHStack.stable_begin();
1076 
1077   // Emit OpenMP specific initialization of the device functions.
1078   if (getLangOpts().OpenMP && CurCodeDecl)
1079     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1080 
1081   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1082 
1083   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1084     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1085     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1086     if (MD->getParent()->isLambda() &&
1087         MD->getOverloadedOperator() == OO_Call) {
1088       // We're in a lambda; figure out the captures.
1089       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1090                                         LambdaThisCaptureField);
1091       if (LambdaThisCaptureField) {
1092         // If the lambda captures the object referred to by '*this' - either by
1093         // value or by reference, make sure CXXThisValue points to the correct
1094         // object.
1095 
1096         // Get the lvalue for the field (which is a copy of the enclosing object
1097         // or contains the address of the enclosing object).
1098         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1099         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1100           // If the enclosing object was captured by value, just use its address.
1101           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
1102         } else {
1103           // Load the lvalue pointed to by the field, since '*this' was captured
1104           // by reference.
1105           CXXThisValue =
1106               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1107         }
1108       }
1109       for (auto *FD : MD->getParent()->fields()) {
1110         if (FD->hasCapturedVLAType()) {
1111           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1112                                            SourceLocation()).getScalarVal();
1113           auto VAT = FD->getCapturedVLAType();
1114           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1115         }
1116       }
1117     } else {
1118       // Not in a lambda; just use 'this' from the method.
1119       // FIXME: Should we generate a new load for each use of 'this'?  The
1120       // fast register allocator would be happier...
1121       CXXThisValue = CXXABIThisValue;
1122     }
1123 
1124     // Check the 'this' pointer once per function, if it's available.
1125     if (CXXABIThisValue) {
1126       SanitizerSet SkippedChecks;
1127       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1128       QualType ThisTy = MD->getThisType(getContext());
1129 
1130       // If this is the call operator of a lambda with no capture-default, it
1131       // may have a static invoker function, which may call this operator with
1132       // a null 'this' pointer.
1133       if (isLambdaCallOperator(MD) &&
1134           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1135         SkippedChecks.set(SanitizerKind::Null, true);
1136 
1137       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1138                                                 : TCK_MemberCall,
1139                     Loc, CXXABIThisValue, ThisTy,
1140                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1141                     SkippedChecks);
1142     }
1143   }
1144 
1145   // If any of the arguments have a variably modified type, make sure to
1146   // emit the type size.
1147   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1148        i != e; ++i) {
1149     const VarDecl *VD = *i;
1150 
1151     // Dig out the type as written from ParmVarDecls; it's unclear whether
1152     // the standard (C99 6.9.1p10) requires this, but we're following the
1153     // precedent set by gcc.
1154     QualType Ty;
1155     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1156       Ty = PVD->getOriginalType();
1157     else
1158       Ty = VD->getType();
1159 
1160     if (Ty->isVariablyModifiedType())
1161       EmitVariablyModifiedType(Ty);
1162   }
1163   // Emit a location at the end of the prologue.
1164   if (CGDebugInfo *DI = getDebugInfo())
1165     DI->EmitLocation(Builder, StartLoc);
1166 }
1167 
1168 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1169                                        const Stmt *Body) {
1170   incrementProfileCounter(Body);
1171   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1172     EmitCompoundStmtWithoutScope(*S);
1173   else
1174     EmitStmt(Body);
1175 }
1176 
1177 /// When instrumenting to collect profile data, the counts for some blocks
1178 /// such as switch cases need to not include the fall-through counts, so
1179 /// emit a branch around the instrumentation code. When not instrumenting,
1180 /// this just calls EmitBlock().
1181 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1182                                                const Stmt *S) {
1183   llvm::BasicBlock *SkipCountBB = nullptr;
1184   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1185     // When instrumenting for profiling, the fallthrough to certain
1186     // statements needs to skip over the instrumentation code so that we
1187     // get an accurate count.
1188     SkipCountBB = createBasicBlock("skipcount");
1189     EmitBranch(SkipCountBB);
1190   }
1191   EmitBlock(BB);
1192   uint64_t CurrentCount = getCurrentProfileCount();
1193   incrementProfileCounter(S);
1194   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1195   if (SkipCountBB)
1196     EmitBlock(SkipCountBB);
1197 }
1198 
1199 /// Tries to mark the given function nounwind based on the
1200 /// non-existence of any throwing calls within it.  We believe this is
1201 /// lightweight enough to do at -O0.
1202 static void TryMarkNoThrow(llvm::Function *F) {
1203   // LLVM treats 'nounwind' on a function as part of the type, so we
1204   // can't do this on functions that can be overwritten.
1205   if (F->isInterposable()) return;
1206 
1207   for (llvm::BasicBlock &BB : *F)
1208     for (llvm::Instruction &I : BB)
1209       if (I.mayThrow())
1210         return;
1211 
1212   F->setDoesNotThrow();
1213 }
1214 
1215 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1216                                                FunctionArgList &Args) {
1217   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1218   QualType ResTy = FD->getReturnType();
1219 
1220   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1221   if (MD && MD->isInstance()) {
1222     if (CGM.getCXXABI().HasThisReturn(GD))
1223       ResTy = MD->getThisType(getContext());
1224     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1225       ResTy = CGM.getContext().VoidPtrTy;
1226     CGM.getCXXABI().buildThisParam(*this, Args);
1227   }
1228 
1229   // The base version of an inheriting constructor whose constructed base is a
1230   // virtual base is not passed any arguments (because it doesn't actually call
1231   // the inherited constructor).
1232   bool PassedParams = true;
1233   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1234     if (auto Inherited = CD->getInheritedConstructor())
1235       PassedParams =
1236           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1237 
1238   if (PassedParams) {
1239     for (auto *Param : FD->parameters()) {
1240       Args.push_back(Param);
1241       if (!Param->hasAttr<PassObjectSizeAttr>())
1242         continue;
1243 
1244       auto *Implicit = ImplicitParamDecl::Create(
1245           getContext(), Param->getDeclContext(), Param->getLocation(),
1246           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1247       SizeArguments[Param] = Implicit;
1248       Args.push_back(Implicit);
1249     }
1250   }
1251 
1252   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1253     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1254 
1255   return ResTy;
1256 }
1257 
1258 static bool
1259 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1260                                              const ASTContext &Context) {
1261   QualType T = FD->getReturnType();
1262   // Avoid the optimization for functions that return a record type with a
1263   // trivial destructor or another trivially copyable type.
1264   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1265     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1266       return !ClassDecl->hasTrivialDestructor();
1267   }
1268   return !T.isTriviallyCopyableType(Context);
1269 }
1270 
1271 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1272                                    const CGFunctionInfo &FnInfo) {
1273   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1274   CurGD = GD;
1275 
1276   FunctionArgList Args;
1277   QualType ResTy = BuildFunctionArgList(GD, Args);
1278 
1279   // Check if we should generate debug info for this function.
1280   if (FD->hasAttr<NoDebugAttr>())
1281     DebugInfo = nullptr; // disable debug info indefinitely for this function
1282 
1283   // The function might not have a body if we're generating thunks for a
1284   // function declaration.
1285   SourceRange BodyRange;
1286   if (Stmt *Body = FD->getBody())
1287     BodyRange = Body->getSourceRange();
1288   else
1289     BodyRange = FD->getLocation();
1290   CurEHLocation = BodyRange.getEnd();
1291 
1292   // Use the location of the start of the function to determine where
1293   // the function definition is located. By default use the location
1294   // of the declaration as the location for the subprogram. A function
1295   // may lack a declaration in the source code if it is created by code
1296   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1297   SourceLocation Loc = FD->getLocation();
1298 
1299   // If this is a function specialization then use the pattern body
1300   // as the location for the function.
1301   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1302     if (SpecDecl->hasBody(SpecDecl))
1303       Loc = SpecDecl->getLocation();
1304 
1305   Stmt *Body = FD->getBody();
1306 
1307   // Initialize helper which will detect jumps which can cause invalid lifetime
1308   // markers.
1309   if (Body && ShouldEmitLifetimeMarkers)
1310     Bypasses.Init(Body);
1311 
1312   // Emit the standard function prologue.
1313   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1314 
1315   // Generate the body of the function.
1316   PGO.assignRegionCounters(GD, CurFn);
1317   if (isa<CXXDestructorDecl>(FD))
1318     EmitDestructorBody(Args);
1319   else if (isa<CXXConstructorDecl>(FD))
1320     EmitConstructorBody(Args);
1321   else if (getLangOpts().CUDA &&
1322            !getLangOpts().CUDAIsDevice &&
1323            FD->hasAttr<CUDAGlobalAttr>())
1324     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1325   else if (isa<CXXMethodDecl>(FD) &&
1326            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1327     // The lambda static invoker function is special, because it forwards or
1328     // clones the body of the function call operator (but is actually static).
1329     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1330   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1331              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1332               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1333     // Implicit copy-assignment gets the same special treatment as implicit
1334     // copy-constructors.
1335     emitImplicitAssignmentOperatorBody(Args);
1336   } else if (Body) {
1337     EmitFunctionBody(Args, Body);
1338   } else
1339     llvm_unreachable("no definition for emitted function");
1340 
1341   // C++11 [stmt.return]p2:
1342   //   Flowing off the end of a function [...] results in undefined behavior in
1343   //   a value-returning function.
1344   // C11 6.9.1p12:
1345   //   If the '}' that terminates a function is reached, and the value of the
1346   //   function call is used by the caller, the behavior is undefined.
1347   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1348       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1349     bool ShouldEmitUnreachable =
1350         CGM.getCodeGenOpts().StrictReturn ||
1351         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1352     if (SanOpts.has(SanitizerKind::Return)) {
1353       SanitizerScope SanScope(this);
1354       llvm::Value *IsFalse = Builder.getFalse();
1355       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1356                 SanitizerHandler::MissingReturn,
1357                 EmitCheckSourceLocation(FD->getLocation()), None);
1358     } else if (ShouldEmitUnreachable) {
1359       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1360         EmitTrapCall(llvm::Intrinsic::trap);
1361     }
1362     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1363       Builder.CreateUnreachable();
1364       Builder.ClearInsertionPoint();
1365     }
1366   }
1367 
1368   // Emit the standard function epilogue.
1369   FinishFunction(BodyRange.getEnd());
1370 
1371   // If we haven't marked the function nothrow through other means, do
1372   // a quick pass now to see if we can.
1373   if (!CurFn->doesNotThrow())
1374     TryMarkNoThrow(CurFn);
1375 }
1376 
1377 /// ContainsLabel - Return true if the statement contains a label in it.  If
1378 /// this statement is not executed normally, it not containing a label means
1379 /// that we can just remove the code.
1380 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1381   // Null statement, not a label!
1382   if (!S) return false;
1383 
1384   // If this is a label, we have to emit the code, consider something like:
1385   // if (0) {  ...  foo:  bar(); }  goto foo;
1386   //
1387   // TODO: If anyone cared, we could track __label__'s, since we know that you
1388   // can't jump to one from outside their declared region.
1389   if (isa<LabelStmt>(S))
1390     return true;
1391 
1392   // If this is a case/default statement, and we haven't seen a switch, we have
1393   // to emit the code.
1394   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1395     return true;
1396 
1397   // If this is a switch statement, we want to ignore cases below it.
1398   if (isa<SwitchStmt>(S))
1399     IgnoreCaseStmts = true;
1400 
1401   // Scan subexpressions for verboten labels.
1402   for (const Stmt *SubStmt : S->children())
1403     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1404       return true;
1405 
1406   return false;
1407 }
1408 
1409 /// containsBreak - Return true if the statement contains a break out of it.
1410 /// If the statement (recursively) contains a switch or loop with a break
1411 /// inside of it, this is fine.
1412 bool CodeGenFunction::containsBreak(const Stmt *S) {
1413   // Null statement, not a label!
1414   if (!S) return false;
1415 
1416   // If this is a switch or loop that defines its own break scope, then we can
1417   // include it and anything inside of it.
1418   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1419       isa<ForStmt>(S))
1420     return false;
1421 
1422   if (isa<BreakStmt>(S))
1423     return true;
1424 
1425   // Scan subexpressions for verboten breaks.
1426   for (const Stmt *SubStmt : S->children())
1427     if (containsBreak(SubStmt))
1428       return true;
1429 
1430   return false;
1431 }
1432 
1433 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1434   if (!S) return false;
1435 
1436   // Some statement kinds add a scope and thus never add a decl to the current
1437   // scope. Note, this list is longer than the list of statements that might
1438   // have an unscoped decl nested within them, but this way is conservatively
1439   // correct even if more statement kinds are added.
1440   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1441       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1442       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1443       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1444     return false;
1445 
1446   if (isa<DeclStmt>(S))
1447     return true;
1448 
1449   for (const Stmt *SubStmt : S->children())
1450     if (mightAddDeclToScope(SubStmt))
1451       return true;
1452 
1453   return false;
1454 }
1455 
1456 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1457 /// to a constant, or if it does but contains a label, return false.  If it
1458 /// constant folds return true and set the boolean result in Result.
1459 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1460                                                    bool &ResultBool,
1461                                                    bool AllowLabels) {
1462   llvm::APSInt ResultInt;
1463   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1464     return false;
1465 
1466   ResultBool = ResultInt.getBoolValue();
1467   return true;
1468 }
1469 
1470 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1471 /// to a constant, or if it does but contains a label, return false.  If it
1472 /// constant folds return true and set the folded value.
1473 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1474                                                    llvm::APSInt &ResultInt,
1475                                                    bool AllowLabels) {
1476   // FIXME: Rename and handle conversion of other evaluatable things
1477   // to bool.
1478   llvm::APSInt Int;
1479   if (!Cond->EvaluateAsInt(Int, getContext()))
1480     return false;  // Not foldable, not integer or not fully evaluatable.
1481 
1482   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1483     return false;  // Contains a label.
1484 
1485   ResultInt = Int;
1486   return true;
1487 }
1488 
1489 
1490 
1491 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1492 /// statement) to the specified blocks.  Based on the condition, this might try
1493 /// to simplify the codegen of the conditional based on the branch.
1494 ///
1495 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1496                                            llvm::BasicBlock *TrueBlock,
1497                                            llvm::BasicBlock *FalseBlock,
1498                                            uint64_t TrueCount) {
1499   Cond = Cond->IgnoreParens();
1500 
1501   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1502 
1503     // Handle X && Y in a condition.
1504     if (CondBOp->getOpcode() == BO_LAnd) {
1505       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1506       // folded if the case was simple enough.
1507       bool ConstantBool = false;
1508       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1509           ConstantBool) {
1510         // br(1 && X) -> br(X).
1511         incrementProfileCounter(CondBOp);
1512         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1513                                     TrueCount);
1514       }
1515 
1516       // If we have "X && 1", simplify the code to use an uncond branch.
1517       // "X && 0" would have been constant folded to 0.
1518       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1519           ConstantBool) {
1520         // br(X && 1) -> br(X).
1521         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1522                                     TrueCount);
1523       }
1524 
1525       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1526       // want to jump to the FalseBlock.
1527       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1528       // The counter tells us how often we evaluate RHS, and all of TrueCount
1529       // can be propagated to that branch.
1530       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1531 
1532       ConditionalEvaluation eval(*this);
1533       {
1534         ApplyDebugLocation DL(*this, Cond);
1535         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1536         EmitBlock(LHSTrue);
1537       }
1538 
1539       incrementProfileCounter(CondBOp);
1540       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1541 
1542       // Any temporaries created here are conditional.
1543       eval.begin(*this);
1544       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1545       eval.end(*this);
1546 
1547       return;
1548     }
1549 
1550     if (CondBOp->getOpcode() == BO_LOr) {
1551       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1552       // folded if the case was simple enough.
1553       bool ConstantBool = false;
1554       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1555           !ConstantBool) {
1556         // br(0 || X) -> br(X).
1557         incrementProfileCounter(CondBOp);
1558         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1559                                     TrueCount);
1560       }
1561 
1562       // If we have "X || 0", simplify the code to use an uncond branch.
1563       // "X || 1" would have been constant folded to 1.
1564       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1565           !ConstantBool) {
1566         // br(X || 0) -> br(X).
1567         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1568                                     TrueCount);
1569       }
1570 
1571       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1572       // want to jump to the TrueBlock.
1573       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1574       // We have the count for entry to the RHS and for the whole expression
1575       // being true, so we can divy up True count between the short circuit and
1576       // the RHS.
1577       uint64_t LHSCount =
1578           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1579       uint64_t RHSCount = TrueCount - LHSCount;
1580 
1581       ConditionalEvaluation eval(*this);
1582       {
1583         ApplyDebugLocation DL(*this, Cond);
1584         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1585         EmitBlock(LHSFalse);
1586       }
1587 
1588       incrementProfileCounter(CondBOp);
1589       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1590 
1591       // Any temporaries created here are conditional.
1592       eval.begin(*this);
1593       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1594 
1595       eval.end(*this);
1596 
1597       return;
1598     }
1599   }
1600 
1601   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1602     // br(!x, t, f) -> br(x, f, t)
1603     if (CondUOp->getOpcode() == UO_LNot) {
1604       // Negate the count.
1605       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1606       // Negate the condition and swap the destination blocks.
1607       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1608                                   FalseCount);
1609     }
1610   }
1611 
1612   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1613     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1614     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1615     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1616 
1617     ConditionalEvaluation cond(*this);
1618     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1619                          getProfileCount(CondOp));
1620 
1621     // When computing PGO branch weights, we only know the overall count for
1622     // the true block. This code is essentially doing tail duplication of the
1623     // naive code-gen, introducing new edges for which counts are not
1624     // available. Divide the counts proportionally between the LHS and RHS of
1625     // the conditional operator.
1626     uint64_t LHSScaledTrueCount = 0;
1627     if (TrueCount) {
1628       double LHSRatio =
1629           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1630       LHSScaledTrueCount = TrueCount * LHSRatio;
1631     }
1632 
1633     cond.begin(*this);
1634     EmitBlock(LHSBlock);
1635     incrementProfileCounter(CondOp);
1636     {
1637       ApplyDebugLocation DL(*this, Cond);
1638       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1639                            LHSScaledTrueCount);
1640     }
1641     cond.end(*this);
1642 
1643     cond.begin(*this);
1644     EmitBlock(RHSBlock);
1645     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1646                          TrueCount - LHSScaledTrueCount);
1647     cond.end(*this);
1648 
1649     return;
1650   }
1651 
1652   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1653     // Conditional operator handling can give us a throw expression as a
1654     // condition for a case like:
1655     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1656     // Fold this to:
1657     //   br(c, throw x, br(y, t, f))
1658     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1659     return;
1660   }
1661 
1662   // If the branch has a condition wrapped by __builtin_unpredictable,
1663   // create metadata that specifies that the branch is unpredictable.
1664   // Don't bother if not optimizing because that metadata would not be used.
1665   llvm::MDNode *Unpredictable = nullptr;
1666   auto *Call = dyn_cast<CallExpr>(Cond);
1667   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1668     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1669     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1670       llvm::MDBuilder MDHelper(getLLVMContext());
1671       Unpredictable = MDHelper.createUnpredictable();
1672     }
1673   }
1674 
1675   // Create branch weights based on the number of times we get here and the
1676   // number of times the condition should be true.
1677   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1678   llvm::MDNode *Weights =
1679       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1680 
1681   // Emit the code with the fully general case.
1682   llvm::Value *CondV;
1683   {
1684     ApplyDebugLocation DL(*this, Cond);
1685     CondV = EvaluateExprAsBool(Cond);
1686   }
1687   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1688 }
1689 
1690 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1691 /// specified stmt yet.
1692 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1693   CGM.ErrorUnsupported(S, Type);
1694 }
1695 
1696 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1697 /// variable-length array whose elements have a non-zero bit-pattern.
1698 ///
1699 /// \param baseType the inner-most element type of the array
1700 /// \param src - a char* pointing to the bit-pattern for a single
1701 /// base element of the array
1702 /// \param sizeInChars - the total size of the VLA, in chars
1703 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1704                                Address dest, Address src,
1705                                llvm::Value *sizeInChars) {
1706   CGBuilderTy &Builder = CGF.Builder;
1707 
1708   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1709   llvm::Value *baseSizeInChars
1710     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1711 
1712   Address begin =
1713     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1714   llvm::Value *end =
1715     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1716 
1717   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1718   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1719   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1720 
1721   // Make a loop over the VLA.  C99 guarantees that the VLA element
1722   // count must be nonzero.
1723   CGF.EmitBlock(loopBB);
1724 
1725   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1726   cur->addIncoming(begin.getPointer(), originBB);
1727 
1728   CharUnits curAlign =
1729     dest.getAlignment().alignmentOfArrayElement(baseSize);
1730 
1731   // memcpy the individual element bit-pattern.
1732   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1733                        /*volatile*/ false);
1734 
1735   // Go to the next element.
1736   llvm::Value *next =
1737     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1738 
1739   // Leave if that's the end of the VLA.
1740   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1741   Builder.CreateCondBr(done, contBB, loopBB);
1742   cur->addIncoming(next, loopBB);
1743 
1744   CGF.EmitBlock(contBB);
1745 }
1746 
1747 void
1748 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1749   // Ignore empty classes in C++.
1750   if (getLangOpts().CPlusPlus) {
1751     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1752       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1753         return;
1754     }
1755   }
1756 
1757   // Cast the dest ptr to the appropriate i8 pointer type.
1758   if (DestPtr.getElementType() != Int8Ty)
1759     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1760 
1761   // Get size and alignment info for this aggregate.
1762   CharUnits size = getContext().getTypeSizeInChars(Ty);
1763 
1764   llvm::Value *SizeVal;
1765   const VariableArrayType *vla;
1766 
1767   // Don't bother emitting a zero-byte memset.
1768   if (size.isZero()) {
1769     // But note that getTypeInfo returns 0 for a VLA.
1770     if (const VariableArrayType *vlaType =
1771           dyn_cast_or_null<VariableArrayType>(
1772                                           getContext().getAsArrayType(Ty))) {
1773       auto VlaSize = getVLASize(vlaType);
1774       SizeVal = VlaSize.NumElts;
1775       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1776       if (!eltSize.isOne())
1777         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1778       vla = vlaType;
1779     } else {
1780       return;
1781     }
1782   } else {
1783     SizeVal = CGM.getSize(size);
1784     vla = nullptr;
1785   }
1786 
1787   // If the type contains a pointer to data member we can't memset it to zero.
1788   // Instead, create a null constant and copy it to the destination.
1789   // TODO: there are other patterns besides zero that we can usefully memset,
1790   // like -1, which happens to be the pattern used by member-pointers.
1791   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1792     // For a VLA, emit a single element, then splat that over the VLA.
1793     if (vla) Ty = getContext().getBaseElementType(vla);
1794 
1795     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1796 
1797     llvm::GlobalVariable *NullVariable =
1798       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1799                                /*isConstant=*/true,
1800                                llvm::GlobalVariable::PrivateLinkage,
1801                                NullConstant, Twine());
1802     CharUnits NullAlign = DestPtr.getAlignment();
1803     NullVariable->setAlignment(NullAlign.getQuantity());
1804     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1805                    NullAlign);
1806 
1807     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1808 
1809     // Get and call the appropriate llvm.memcpy overload.
1810     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1811     return;
1812   }
1813 
1814   // Otherwise, just memset the whole thing to zero.  This is legal
1815   // because in LLVM, all default initializers (other than the ones we just
1816   // handled above) are guaranteed to have a bit pattern of all zeros.
1817   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1818 }
1819 
1820 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1821   // Make sure that there is a block for the indirect goto.
1822   if (!IndirectBranch)
1823     GetIndirectGotoBlock();
1824 
1825   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1826 
1827   // Make sure the indirect branch includes all of the address-taken blocks.
1828   IndirectBranch->addDestination(BB);
1829   return llvm::BlockAddress::get(CurFn, BB);
1830 }
1831 
1832 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1833   // If we already made the indirect branch for indirect goto, return its block.
1834   if (IndirectBranch) return IndirectBranch->getParent();
1835 
1836   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1837 
1838   // Create the PHI node that indirect gotos will add entries to.
1839   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1840                                               "indirect.goto.dest");
1841 
1842   // Create the indirect branch instruction.
1843   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1844   return IndirectBranch->getParent();
1845 }
1846 
1847 /// Computes the length of an array in elements, as well as the base
1848 /// element type and a properly-typed first element pointer.
1849 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1850                                               QualType &baseType,
1851                                               Address &addr) {
1852   const ArrayType *arrayType = origArrayType;
1853 
1854   // If it's a VLA, we have to load the stored size.  Note that
1855   // this is the size of the VLA in bytes, not its size in elements.
1856   llvm::Value *numVLAElements = nullptr;
1857   if (isa<VariableArrayType>(arrayType)) {
1858     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1859 
1860     // Walk into all VLAs.  This doesn't require changes to addr,
1861     // which has type T* where T is the first non-VLA element type.
1862     do {
1863       QualType elementType = arrayType->getElementType();
1864       arrayType = getContext().getAsArrayType(elementType);
1865 
1866       // If we only have VLA components, 'addr' requires no adjustment.
1867       if (!arrayType) {
1868         baseType = elementType;
1869         return numVLAElements;
1870       }
1871     } while (isa<VariableArrayType>(arrayType));
1872 
1873     // We get out here only if we find a constant array type
1874     // inside the VLA.
1875   }
1876 
1877   // We have some number of constant-length arrays, so addr should
1878   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1879   // down to the first element of addr.
1880   SmallVector<llvm::Value*, 8> gepIndices;
1881 
1882   // GEP down to the array type.
1883   llvm::ConstantInt *zero = Builder.getInt32(0);
1884   gepIndices.push_back(zero);
1885 
1886   uint64_t countFromCLAs = 1;
1887   QualType eltType;
1888 
1889   llvm::ArrayType *llvmArrayType =
1890     dyn_cast<llvm::ArrayType>(addr.getElementType());
1891   while (llvmArrayType) {
1892     assert(isa<ConstantArrayType>(arrayType));
1893     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1894              == llvmArrayType->getNumElements());
1895 
1896     gepIndices.push_back(zero);
1897     countFromCLAs *= llvmArrayType->getNumElements();
1898     eltType = arrayType->getElementType();
1899 
1900     llvmArrayType =
1901       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1902     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1903     assert((!llvmArrayType || arrayType) &&
1904            "LLVM and Clang types are out-of-synch");
1905   }
1906 
1907   if (arrayType) {
1908     // From this point onwards, the Clang array type has been emitted
1909     // as some other type (probably a packed struct). Compute the array
1910     // size, and just emit the 'begin' expression as a bitcast.
1911     while (arrayType) {
1912       countFromCLAs *=
1913           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1914       eltType = arrayType->getElementType();
1915       arrayType = getContext().getAsArrayType(eltType);
1916     }
1917 
1918     llvm::Type *baseType = ConvertType(eltType);
1919     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1920   } else {
1921     // Create the actual GEP.
1922     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1923                                              gepIndices, "array.begin"),
1924                    addr.getAlignment());
1925   }
1926 
1927   baseType = eltType;
1928 
1929   llvm::Value *numElements
1930     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1931 
1932   // If we had any VLA dimensions, factor them in.
1933   if (numVLAElements)
1934     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1935 
1936   return numElements;
1937 }
1938 
1939 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1940   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1941   assert(vla && "type was not a variable array type!");
1942   return getVLASize(vla);
1943 }
1944 
1945 CodeGenFunction::VlaSizePair
1946 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1947   // The number of elements so far; always size_t.
1948   llvm::Value *numElements = nullptr;
1949 
1950   QualType elementType;
1951   do {
1952     elementType = type->getElementType();
1953     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1954     assert(vlaSize && "no size for VLA!");
1955     assert(vlaSize->getType() == SizeTy);
1956 
1957     if (!numElements) {
1958       numElements = vlaSize;
1959     } else {
1960       // It's undefined behavior if this wraps around, so mark it that way.
1961       // FIXME: Teach -fsanitize=undefined to trap this.
1962       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1963     }
1964   } while ((type = getContext().getAsVariableArrayType(elementType)));
1965 
1966   return { numElements, elementType };
1967 }
1968 
1969 CodeGenFunction::VlaSizePair
1970 CodeGenFunction::getVLAElements1D(QualType type) {
1971   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1972   assert(vla && "type was not a variable array type!");
1973   return getVLAElements1D(vla);
1974 }
1975 
1976 CodeGenFunction::VlaSizePair
1977 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1978   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1979   assert(VlaSize && "no size for VLA!");
1980   assert(VlaSize->getType() == SizeTy);
1981   return { VlaSize, Vla->getElementType() };
1982 }
1983 
1984 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1985   assert(type->isVariablyModifiedType() &&
1986          "Must pass variably modified type to EmitVLASizes!");
1987 
1988   EnsureInsertPoint();
1989 
1990   // We're going to walk down into the type and look for VLA
1991   // expressions.
1992   do {
1993     assert(type->isVariablyModifiedType());
1994 
1995     const Type *ty = type.getTypePtr();
1996     switch (ty->getTypeClass()) {
1997 
1998 #define TYPE(Class, Base)
1999 #define ABSTRACT_TYPE(Class, Base)
2000 #define NON_CANONICAL_TYPE(Class, Base)
2001 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2002 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2003 #include "clang/AST/TypeNodes.def"
2004       llvm_unreachable("unexpected dependent type!");
2005 
2006     // These types are never variably-modified.
2007     case Type::Builtin:
2008     case Type::Complex:
2009     case Type::Vector:
2010     case Type::ExtVector:
2011     case Type::Record:
2012     case Type::Enum:
2013     case Type::Elaborated:
2014     case Type::TemplateSpecialization:
2015     case Type::ObjCTypeParam:
2016     case Type::ObjCObject:
2017     case Type::ObjCInterface:
2018     case Type::ObjCObjectPointer:
2019       llvm_unreachable("type class is never variably-modified!");
2020 
2021     case Type::Adjusted:
2022       type = cast<AdjustedType>(ty)->getAdjustedType();
2023       break;
2024 
2025     case Type::Decayed:
2026       type = cast<DecayedType>(ty)->getPointeeType();
2027       break;
2028 
2029     case Type::Pointer:
2030       type = cast<PointerType>(ty)->getPointeeType();
2031       break;
2032 
2033     case Type::BlockPointer:
2034       type = cast<BlockPointerType>(ty)->getPointeeType();
2035       break;
2036 
2037     case Type::LValueReference:
2038     case Type::RValueReference:
2039       type = cast<ReferenceType>(ty)->getPointeeType();
2040       break;
2041 
2042     case Type::MemberPointer:
2043       type = cast<MemberPointerType>(ty)->getPointeeType();
2044       break;
2045 
2046     case Type::ConstantArray:
2047     case Type::IncompleteArray:
2048       // Losing element qualification here is fine.
2049       type = cast<ArrayType>(ty)->getElementType();
2050       break;
2051 
2052     case Type::VariableArray: {
2053       // Losing element qualification here is fine.
2054       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2055 
2056       // Unknown size indication requires no size computation.
2057       // Otherwise, evaluate and record it.
2058       if (const Expr *size = vat->getSizeExpr()) {
2059         // It's possible that we might have emitted this already,
2060         // e.g. with a typedef and a pointer to it.
2061         llvm::Value *&entry = VLASizeMap[size];
2062         if (!entry) {
2063           llvm::Value *Size = EmitScalarExpr(size);
2064 
2065           // C11 6.7.6.2p5:
2066           //   If the size is an expression that is not an integer constant
2067           //   expression [...] each time it is evaluated it shall have a value
2068           //   greater than zero.
2069           if (SanOpts.has(SanitizerKind::VLABound) &&
2070               size->getType()->isSignedIntegerType()) {
2071             SanitizerScope SanScope(this);
2072             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2073             llvm::Constant *StaticArgs[] = {
2074               EmitCheckSourceLocation(size->getLocStart()),
2075               EmitCheckTypeDescriptor(size->getType())
2076             };
2077             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2078                                      SanitizerKind::VLABound),
2079                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2080           }
2081 
2082           // Always zexting here would be wrong if it weren't
2083           // undefined behavior to have a negative bound.
2084           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2085         }
2086       }
2087       type = vat->getElementType();
2088       break;
2089     }
2090 
2091     case Type::FunctionProto:
2092     case Type::FunctionNoProto:
2093       type = cast<FunctionType>(ty)->getReturnType();
2094       break;
2095 
2096     case Type::Paren:
2097     case Type::TypeOf:
2098     case Type::UnaryTransform:
2099     case Type::Attributed:
2100     case Type::SubstTemplateTypeParm:
2101     case Type::PackExpansion:
2102       // Keep walking after single level desugaring.
2103       type = type.getSingleStepDesugaredType(getContext());
2104       break;
2105 
2106     case Type::Typedef:
2107     case Type::Decltype:
2108     case Type::Auto:
2109     case Type::DeducedTemplateSpecialization:
2110       // Stop walking: nothing to do.
2111       return;
2112 
2113     case Type::TypeOfExpr:
2114       // Stop walking: emit typeof expression.
2115       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2116       return;
2117 
2118     case Type::Atomic:
2119       type = cast<AtomicType>(ty)->getValueType();
2120       break;
2121 
2122     case Type::Pipe:
2123       type = cast<PipeType>(ty)->getElementType();
2124       break;
2125     }
2126   } while (type->isVariablyModifiedType());
2127 }
2128 
2129 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2130   if (getContext().getBuiltinVaListType()->isArrayType())
2131     return EmitPointerWithAlignment(E);
2132   return EmitLValue(E).getAddress();
2133 }
2134 
2135 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2136   return EmitLValue(E).getAddress();
2137 }
2138 
2139 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2140                                               const APValue &Init) {
2141   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2142   if (CGDebugInfo *Dbg = getDebugInfo())
2143     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2144       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2145 }
2146 
2147 CodeGenFunction::PeepholeProtection
2148 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2149   // At the moment, the only aggressive peephole we do in IR gen
2150   // is trunc(zext) folding, but if we add more, we can easily
2151   // extend this protection.
2152 
2153   if (!rvalue.isScalar()) return PeepholeProtection();
2154   llvm::Value *value = rvalue.getScalarVal();
2155   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2156 
2157   // Just make an extra bitcast.
2158   assert(HaveInsertPoint());
2159   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2160                                                   Builder.GetInsertBlock());
2161 
2162   PeepholeProtection protection;
2163   protection.Inst = inst;
2164   return protection;
2165 }
2166 
2167 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2168   if (!protection.Inst) return;
2169 
2170   // In theory, we could try to duplicate the peepholes now, but whatever.
2171   protection.Inst->eraseFromParent();
2172 }
2173 
2174 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2175                                                  llvm::Value *AnnotatedVal,
2176                                                  StringRef AnnotationStr,
2177                                                  SourceLocation Location) {
2178   llvm::Value *Args[4] = {
2179     AnnotatedVal,
2180     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2181     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2182     CGM.EmitAnnotationLineNo(Location)
2183   };
2184   return Builder.CreateCall(AnnotationFn, Args);
2185 }
2186 
2187 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2188   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2189   // FIXME We create a new bitcast for every annotation because that's what
2190   // llvm-gcc was doing.
2191   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2192     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2193                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2194                        I->getAnnotation(), D->getLocation());
2195 }
2196 
2197 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2198                                               Address Addr) {
2199   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2200   llvm::Value *V = Addr.getPointer();
2201   llvm::Type *VTy = V->getType();
2202   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2203                                     CGM.Int8PtrTy);
2204 
2205   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2206     // FIXME Always emit the cast inst so we can differentiate between
2207     // annotation on the first field of a struct and annotation on the struct
2208     // itself.
2209     if (VTy != CGM.Int8PtrTy)
2210       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2211     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2212     V = Builder.CreateBitCast(V, VTy);
2213   }
2214 
2215   return Address(V, Addr.getAlignment());
2216 }
2217 
2218 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2219 
2220 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2221     : CGF(CGF) {
2222   assert(!CGF->IsSanitizerScope);
2223   CGF->IsSanitizerScope = true;
2224 }
2225 
2226 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2227   CGF->IsSanitizerScope = false;
2228 }
2229 
2230 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2231                                    const llvm::Twine &Name,
2232                                    llvm::BasicBlock *BB,
2233                                    llvm::BasicBlock::iterator InsertPt) const {
2234   LoopStack.InsertHelper(I);
2235   if (IsSanitizerScope)
2236     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2237 }
2238 
2239 void CGBuilderInserter::InsertHelper(
2240     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2241     llvm::BasicBlock::iterator InsertPt) const {
2242   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2243   if (CGF)
2244     CGF->InsertHelper(I, Name, BB, InsertPt);
2245 }
2246 
2247 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2248                                 CodeGenModule &CGM, const FunctionDecl *FD,
2249                                 std::string &FirstMissing) {
2250   // If there aren't any required features listed then go ahead and return.
2251   if (ReqFeatures.empty())
2252     return false;
2253 
2254   // Now build up the set of caller features and verify that all the required
2255   // features are there.
2256   llvm::StringMap<bool> CallerFeatureMap;
2257   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2258 
2259   // If we have at least one of the features in the feature list return
2260   // true, otherwise return false.
2261   return std::all_of(
2262       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2263         SmallVector<StringRef, 1> OrFeatures;
2264         Feature.split(OrFeatures, "|");
2265         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2266                            [&](StringRef Feature) {
2267                              if (!CallerFeatureMap.lookup(Feature)) {
2268                                FirstMissing = Feature.str();
2269                                return false;
2270                              }
2271                              return true;
2272                            });
2273       });
2274 }
2275 
2276 // Emits an error if we don't have a valid set of target features for the
2277 // called function.
2278 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2279                                           const FunctionDecl *TargetDecl) {
2280   // Early exit if this is an indirect call.
2281   if (!TargetDecl)
2282     return;
2283 
2284   // Get the current enclosing function if it exists. If it doesn't
2285   // we can't check the target features anyhow.
2286   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2287   if (!FD)
2288     return;
2289 
2290   // Grab the required features for the call. For a builtin this is listed in
2291   // the td file with the default cpu, for an always_inline function this is any
2292   // listed cpu and any listed features.
2293   unsigned BuiltinID = TargetDecl->getBuiltinID();
2294   std::string MissingFeature;
2295   if (BuiltinID) {
2296     SmallVector<StringRef, 1> ReqFeatures;
2297     const char *FeatureList =
2298         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2299     // Return if the builtin doesn't have any required features.
2300     if (!FeatureList || StringRef(FeatureList) == "")
2301       return;
2302     StringRef(FeatureList).split(ReqFeatures, ",");
2303     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2304       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2305           << TargetDecl->getDeclName()
2306           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2307 
2308   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2309     // Get the required features for the callee.
2310     SmallVector<StringRef, 1> ReqFeatures;
2311     llvm::StringMap<bool> CalleeFeatureMap;
2312     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2313     for (const auto &F : CalleeFeatureMap) {
2314       // Only positive features are "required".
2315       if (F.getValue())
2316         ReqFeatures.push_back(F.getKey());
2317     }
2318     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2319       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2320           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2321   }
2322 }
2323 
2324 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2325   if (!CGM.getCodeGenOpts().SanitizeStats)
2326     return;
2327 
2328   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2329   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2330   CGM.getSanStats().create(IRB, SSK);
2331 }
2332 
2333 llvm::Value *
2334 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2335   llvm::Value *TrueCondition = nullptr;
2336   if (!RO.ParsedAttribute.Architecture.empty())
2337     TrueCondition = EmitX86CpuIs(RO.ParsedAttribute.Architecture);
2338 
2339   if (!RO.ParsedAttribute.Features.empty()) {
2340     SmallVector<StringRef, 8> FeatureList;
2341     llvm::for_each(RO.ParsedAttribute.Features,
2342                    [&FeatureList](const std::string &Feature) {
2343                      FeatureList.push_back(StringRef{Feature}.substr(1));
2344                    });
2345     llvm::Value *FeatureCmp = EmitX86CpuSupports(FeatureList);
2346     TrueCondition = TrueCondition ? Builder.CreateAnd(TrueCondition, FeatureCmp)
2347                                   : FeatureCmp;
2348   }
2349   return TrueCondition;
2350 }
2351 
2352 void CodeGenFunction::EmitMultiVersionResolver(
2353     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2354   assert((getContext().getTargetInfo().getTriple().getArch() ==
2355               llvm::Triple::x86 ||
2356           getContext().getTargetInfo().getTriple().getArch() ==
2357               llvm::Triple::x86_64) &&
2358          "Only implemented for x86 targets");
2359 
2360   // Main function's basic block.
2361   llvm::BasicBlock *CurBlock = createBasicBlock("entry", Resolver);
2362   Builder.SetInsertPoint(CurBlock);
2363   EmitX86CpuInit();
2364 
2365   llvm::Function *DefaultFunc = nullptr;
2366   for (const MultiVersionResolverOption &RO : Options) {
2367     Builder.SetInsertPoint(CurBlock);
2368     llvm::Value *TrueCondition = FormResolverCondition(RO);
2369 
2370     if (!TrueCondition) {
2371       DefaultFunc = RO.Function;
2372     } else {
2373       llvm::BasicBlock *RetBlock = createBasicBlock("ro_ret", Resolver);
2374       llvm::IRBuilder<> RetBuilder(RetBlock);
2375       RetBuilder.CreateRet(RO.Function);
2376       CurBlock = createBasicBlock("ro_else", Resolver);
2377       Builder.CreateCondBr(TrueCondition, RetBlock, CurBlock);
2378     }
2379   }
2380 
2381   assert(DefaultFunc && "No default version?");
2382   // Emit return from the 'else-ist' block.
2383   Builder.SetInsertPoint(CurBlock);
2384   Builder.CreateRet(DefaultFunc);
2385 }
2386 
2387 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2388   if (CGDebugInfo *DI = getDebugInfo())
2389     return DI->SourceLocToDebugLoc(Location);
2390 
2391   return llvm::DebugLoc();
2392 }
2393