1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Operator.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
34   : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
35     Builder(cgm.getModule().getContext()),
36     CapturedStmtInfo(0),
37     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
38                              CGM.getSanOpts().Alignment |
39                              CGM.getSanOpts().ObjectSize |
40                              CGM.getSanOpts().Vptr),
41     SanOpts(&CGM.getSanOpts()),
42     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
43     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
44     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
45     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
46     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
47     NumReturnExprs(0), NumSimpleReturnExprs(0),
48     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
49     CXXDefaultInitExprThis(0),
50     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
51     OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
52     TerminateHandler(0), TrapBB(0) {
53   if (!suppressNewContext)
54     CGM.getCXXABI().getMangleContext().startNewFunction();
55 
56   llvm::FastMathFlags FMF;
57   if (CGM.getLangOpts().FastMath)
58     FMF.setUnsafeAlgebra();
59   if (CGM.getLangOpts().FiniteMathOnly) {
60     FMF.setNoNaNs();
61     FMF.setNoInfs();
62   }
63   Builder.SetFastMathFlags(FMF);
64 }
65 
66 CodeGenFunction::~CodeGenFunction() {
67   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
68 
69   // If there are any unclaimed block infos, go ahead and destroy them
70   // now.  This can happen if IR-gen gets clever and skips evaluating
71   // something.
72   if (FirstBlockInfo)
73     destroyBlockInfos(FirstBlockInfo);
74 }
75 
76 
77 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
78   return CGM.getTypes().ConvertTypeForMem(T);
79 }
80 
81 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
82   return CGM.getTypes().ConvertType(T);
83 }
84 
85 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
86   type = type.getCanonicalType();
87   while (true) {
88     switch (type->getTypeClass()) {
89 #define TYPE(name, parent)
90 #define ABSTRACT_TYPE(name, parent)
91 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
92 #define DEPENDENT_TYPE(name, parent) case Type::name:
93 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
94 #include "clang/AST/TypeNodes.def"
95       llvm_unreachable("non-canonical or dependent type in IR-generation");
96 
97     case Type::Auto:
98       llvm_unreachable("undeduced auto type in IR-generation");
99 
100     // Various scalar types.
101     case Type::Builtin:
102     case Type::Pointer:
103     case Type::BlockPointer:
104     case Type::LValueReference:
105     case Type::RValueReference:
106     case Type::MemberPointer:
107     case Type::Vector:
108     case Type::ExtVector:
109     case Type::FunctionProto:
110     case Type::FunctionNoProto:
111     case Type::Enum:
112     case Type::ObjCObjectPointer:
113       return TEK_Scalar;
114 
115     // Complexes.
116     case Type::Complex:
117       return TEK_Complex;
118 
119     // Arrays, records, and Objective-C objects.
120     case Type::ConstantArray:
121     case Type::IncompleteArray:
122     case Type::VariableArray:
123     case Type::Record:
124     case Type::ObjCObject:
125     case Type::ObjCInterface:
126       return TEK_Aggregate;
127 
128     // We operate on atomic values according to their underlying type.
129     case Type::Atomic:
130       type = cast<AtomicType>(type)->getValueType();
131       continue;
132     }
133     llvm_unreachable("unknown type kind!");
134   }
135 }
136 
137 void CodeGenFunction::EmitReturnBlock() {
138   // For cleanliness, we try to avoid emitting the return block for
139   // simple cases.
140   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
141 
142   if (CurBB) {
143     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
144 
145     // We have a valid insert point, reuse it if it is empty or there are no
146     // explicit jumps to the return block.
147     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
148       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
149       delete ReturnBlock.getBlock();
150     } else
151       EmitBlock(ReturnBlock.getBlock());
152     return;
153   }
154 
155   // Otherwise, if the return block is the target of a single direct
156   // branch then we can just put the code in that block instead. This
157   // cleans up functions which started with a unified return block.
158   if (ReturnBlock.getBlock()->hasOneUse()) {
159     llvm::BranchInst *BI =
160       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
161     if (BI && BI->isUnconditional() &&
162         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
163       // Reset insertion point, including debug location, and delete the
164       // branch.  This is really subtle and only works because the next change
165       // in location will hit the caching in CGDebugInfo::EmitLocation and not
166       // override this.
167       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
168       Builder.SetInsertPoint(BI->getParent());
169       BI->eraseFromParent();
170       delete ReturnBlock.getBlock();
171       return;
172     }
173   }
174 
175   // FIXME: We are at an unreachable point, there is no reason to emit the block
176   // unless it has uses. However, we still need a place to put the debug
177   // region.end for now.
178 
179   EmitBlock(ReturnBlock.getBlock());
180 }
181 
182 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
183   if (!BB) return;
184   if (!BB->use_empty())
185     return CGF.CurFn->getBasicBlockList().push_back(BB);
186   delete BB;
187 }
188 
189 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
190   assert(BreakContinueStack.empty() &&
191          "mismatched push/pop in break/continue stack!");
192 
193   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
194     && NumSimpleReturnExprs == NumReturnExprs;
195   // If the function contains only a simple return statement, the
196   // location before the cleanup code becomes the last useful
197   // breakpoint in the function, because the simple return expression
198   // will be evaluated after the cleanup code. To be safe, set the
199   // debug location for cleanup code to the location of the return
200   // statement. Otherwise the cleanup code should be at the end of the
201   // function's lexical scope.
202   if (CGDebugInfo *DI = getDebugInfo()) {
203     if (OnlySimpleReturnStmts)
204       DI->EmitLocation(Builder, LastStopPoint);
205     else
206       DI->EmitLocation(Builder, EndLoc);
207   }
208 
209   // Pop any cleanups that might have been associated with the
210   // parameters.  Do this in whatever block we're currently in; it's
211   // important to do this before we enter the return block or return
212   // edges will be *really* confused.
213   bool EmitRetDbgLoc = true;
214   if (EHStack.stable_begin() != PrologueCleanupDepth) {
215     PopCleanupBlocks(PrologueCleanupDepth);
216 
217     // Make sure the line table doesn't jump back into the body for
218     // the ret after it's been at EndLoc.
219     EmitRetDbgLoc = false;
220 
221     if (CGDebugInfo *DI = getDebugInfo())
222       if (OnlySimpleReturnStmts)
223         DI->EmitLocation(Builder, EndLoc);
224   }
225 
226   // Emit function epilog (to return).
227   EmitReturnBlock();
228 
229   if (ShouldInstrumentFunction())
230     EmitFunctionInstrumentation("__cyg_profile_func_exit");
231 
232   // Emit debug descriptor for function end.
233   if (CGDebugInfo *DI = getDebugInfo()) {
234     DI->EmitFunctionEnd(Builder);
235   }
236 
237   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc);
238   EmitEndEHSpec(CurCodeDecl);
239 
240   assert(EHStack.empty() &&
241          "did not remove all scopes from cleanup stack!");
242 
243   // If someone did an indirect goto, emit the indirect goto block at the end of
244   // the function.
245   if (IndirectBranch) {
246     EmitBlock(IndirectBranch->getParent());
247     Builder.ClearInsertionPoint();
248   }
249 
250   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
251   llvm::Instruction *Ptr = AllocaInsertPt;
252   AllocaInsertPt = 0;
253   Ptr->eraseFromParent();
254 
255   // If someone took the address of a label but never did an indirect goto, we
256   // made a zero entry PHI node, which is illegal, zap it now.
257   if (IndirectBranch) {
258     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
259     if (PN->getNumIncomingValues() == 0) {
260       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
261       PN->eraseFromParent();
262     }
263   }
264 
265   EmitIfUsed(*this, EHResumeBlock);
266   EmitIfUsed(*this, TerminateLandingPad);
267   EmitIfUsed(*this, TerminateHandler);
268   EmitIfUsed(*this, UnreachableBlock);
269 
270   if (CGM.getCodeGenOpts().EmitDeclMetadata)
271     EmitDeclMetadata();
272 }
273 
274 /// ShouldInstrumentFunction - Return true if the current function should be
275 /// instrumented with __cyg_profile_func_* calls
276 bool CodeGenFunction::ShouldInstrumentFunction() {
277   if (!CGM.getCodeGenOpts().InstrumentFunctions)
278     return false;
279   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
280     return false;
281   return true;
282 }
283 
284 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
285 /// instrumentation function with the current function and the call site, if
286 /// function instrumentation is enabled.
287 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
288   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
289   llvm::PointerType *PointerTy = Int8PtrTy;
290   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
291   llvm::FunctionType *FunctionTy =
292     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
293 
294   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
295   llvm::CallInst *CallSite = Builder.CreateCall(
296     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
297     llvm::ConstantInt::get(Int32Ty, 0),
298     "callsite");
299 
300   llvm::Value *args[] = {
301     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
302     CallSite
303   };
304 
305   EmitNounwindRuntimeCall(F, args);
306 }
307 
308 void CodeGenFunction::EmitMCountInstrumentation() {
309   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
310 
311   llvm::Constant *MCountFn =
312     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
313   EmitNounwindRuntimeCall(MCountFn);
314 }
315 
316 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
317 // information in the program executable. The argument information stored
318 // includes the argument name, its type, the address and access qualifiers used.
319 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
320                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
321                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
322                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
323   // Create MDNodes that represent the kernel arg metadata.
324   // Each MDNode is a list in the form of "key", N number of values which is
325   // the same number of values as their are kernel arguments.
326 
327   // MDNode for the kernel argument address space qualifiers.
328   SmallVector<llvm::Value*, 8> addressQuals;
329   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
330 
331   // MDNode for the kernel argument access qualifiers (images only).
332   SmallVector<llvm::Value*, 8> accessQuals;
333   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
334 
335   // MDNode for the kernel argument type names.
336   SmallVector<llvm::Value*, 8> argTypeNames;
337   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
338 
339   // MDNode for the kernel argument type qualifiers.
340   SmallVector<llvm::Value*, 8> argTypeQuals;
341   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
342 
343   // MDNode for the kernel argument names.
344   SmallVector<llvm::Value*, 8> argNames;
345   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
346 
347   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
348     const ParmVarDecl *parm = FD->getParamDecl(i);
349     QualType ty = parm->getType();
350     std::string typeQuals;
351 
352     if (ty->isPointerType()) {
353       QualType pointeeTy = ty->getPointeeType();
354 
355       // Get address qualifier.
356       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
357         pointeeTy.getAddressSpace())));
358 
359       // Get argument type name.
360       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
361 
362       // Turn "unsigned type" to "utype"
363       std::string::size_type pos = typeName.find("unsigned");
364       if (pos != std::string::npos)
365         typeName.erase(pos+1, 8);
366 
367       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
368 
369       // Get argument type qualifiers:
370       if (ty.isRestrictQualified())
371         typeQuals = "restrict";
372       if (pointeeTy.isConstQualified() ||
373           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
374         typeQuals += typeQuals.empty() ? "const" : " const";
375       if (pointeeTy.isVolatileQualified())
376         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
377     } else {
378       addressQuals.push_back(Builder.getInt32(0));
379 
380       // Get argument type name.
381       std::string typeName = ty.getUnqualifiedType().getAsString();
382 
383       // Turn "unsigned type" to "utype"
384       std::string::size_type pos = typeName.find("unsigned");
385       if (pos != std::string::npos)
386         typeName.erase(pos+1, 8);
387 
388       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
389 
390       // Get argument type qualifiers:
391       if (ty.isConstQualified())
392         typeQuals = "const";
393       if (ty.isVolatileQualified())
394         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
395     }
396 
397     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
398 
399     // Get image access qualifier:
400     if (ty->isImageType()) {
401       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
402           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
403         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
404       else
405         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
406     } else
407       accessQuals.push_back(llvm::MDString::get(Context, "none"));
408 
409     // Get argument name.
410     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
411   }
412 
413   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
414   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
415   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
416   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
417   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
418 }
419 
420 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
421                                                llvm::Function *Fn)
422 {
423   if (!FD->hasAttr<OpenCLKernelAttr>())
424     return;
425 
426   llvm::LLVMContext &Context = getLLVMContext();
427 
428   SmallVector <llvm::Value*, 5> kernelMDArgs;
429   kernelMDArgs.push_back(Fn);
430 
431   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
432     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
433                          Builder, getContext());
434 
435   if (FD->hasAttr<VecTypeHintAttr>()) {
436     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
437     QualType hintQTy = attr->getTypeHint();
438     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
439     bool isSignedInteger =
440         hintQTy->isSignedIntegerType() ||
441         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
442     llvm::Value *attrMDArgs[] = {
443       llvm::MDString::get(Context, "vec_type_hint"),
444       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
445       llvm::ConstantInt::get(
446           llvm::IntegerType::get(Context, 32),
447           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
448     };
449     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
450   }
451 
452   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
453     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
454     llvm::Value *attrMDArgs[] = {
455       llvm::MDString::get(Context, "work_group_size_hint"),
456       Builder.getInt32(attr->getXDim()),
457       Builder.getInt32(attr->getYDim()),
458       Builder.getInt32(attr->getZDim())
459     };
460     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
461   }
462 
463   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
464     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
465     llvm::Value *attrMDArgs[] = {
466       llvm::MDString::get(Context, "reqd_work_group_size"),
467       Builder.getInt32(attr->getXDim()),
468       Builder.getInt32(attr->getYDim()),
469       Builder.getInt32(attr->getZDim())
470     };
471     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
472   }
473 
474   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
475   llvm::NamedMDNode *OpenCLKernelMetadata =
476     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
477   OpenCLKernelMetadata->addOperand(kernelMDNode);
478 }
479 
480 void CodeGenFunction::StartFunction(GlobalDecl GD,
481                                     QualType RetTy,
482                                     llvm::Function *Fn,
483                                     const CGFunctionInfo &FnInfo,
484                                     const FunctionArgList &Args,
485                                     SourceLocation StartLoc) {
486   const Decl *D = GD.getDecl();
487 
488   DidCallStackSave = false;
489   CurCodeDecl = D;
490   CurFuncDecl = (D ? D->getNonClosureContext() : 0);
491   FnRetTy = RetTy;
492   CurFn = Fn;
493   CurFnInfo = &FnInfo;
494   assert(CurFn->isDeclaration() && "Function already has body?");
495 
496   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
497     SanOpts = &SanitizerOptions::Disabled;
498     SanitizePerformTypeCheck = false;
499   }
500 
501   // Pass inline keyword to optimizer if it appears explicitly on any
502   // declaration.
503   if (!CGM.getCodeGenOpts().NoInline)
504     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
505       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
506              RE = FD->redecls_end(); RI != RE; ++RI)
507         if (RI->isInlineSpecified()) {
508           Fn->addFnAttr(llvm::Attribute::InlineHint);
509           break;
510         }
511 
512   if (getLangOpts().OpenCL) {
513     // Add metadata for a kernel function.
514     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
515       EmitOpenCLKernelMetadata(FD, Fn);
516   }
517 
518   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
519 
520   // Create a marker to make it easy to insert allocas into the entryblock
521   // later.  Don't create this with the builder, because we don't want it
522   // folded.
523   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
524   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
525   if (Builder.isNamePreserving())
526     AllocaInsertPt->setName("allocapt");
527 
528   ReturnBlock = getJumpDestInCurrentScope("return");
529 
530   Builder.SetInsertPoint(EntryBB);
531 
532   // Emit subprogram debug descriptor.
533   if (CGDebugInfo *DI = getDebugInfo()) {
534     SmallVector<QualType, 16> ArgTypes;
535     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
536 	 i != e; ++i) {
537       ArgTypes.push_back((*i)->getType());
538     }
539 
540     QualType FnType =
541       getContext().getFunctionType(RetTy, ArgTypes,
542                                    FunctionProtoType::ExtProtoInfo());
543 
544     DI->setLocation(StartLoc);
545     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
546   }
547 
548   if (ShouldInstrumentFunction())
549     EmitFunctionInstrumentation("__cyg_profile_func_enter");
550 
551   if (CGM.getCodeGenOpts().InstrumentForProfiling)
552     EmitMCountInstrumentation();
553 
554   if (RetTy->isVoidType()) {
555     // Void type; nothing to return.
556     ReturnValue = 0;
557   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
558              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
559     // Indirect aggregate return; emit returned value directly into sret slot.
560     // This reduces code size, and affects correctness in C++.
561     ReturnValue = CurFn->arg_begin();
562   } else {
563     ReturnValue = CreateIRTemp(RetTy, "retval");
564 
565     // Tell the epilog emitter to autorelease the result.  We do this
566     // now so that various specialized functions can suppress it
567     // during their IR-generation.
568     if (getLangOpts().ObjCAutoRefCount &&
569         !CurFnInfo->isReturnsRetained() &&
570         RetTy->isObjCRetainableType())
571       AutoreleaseResult = true;
572   }
573 
574   EmitStartEHSpec(CurCodeDecl);
575 
576   PrologueCleanupDepth = EHStack.stable_begin();
577   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
578 
579   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
580     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
581     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
582     if (MD->getParent()->isLambda() &&
583         MD->getOverloadedOperator() == OO_Call) {
584       // We're in a lambda; figure out the captures.
585       MD->getParent()->getCaptureFields(LambdaCaptureFields,
586                                         LambdaThisCaptureField);
587       if (LambdaThisCaptureField) {
588         // If this lambda captures this, load it.
589         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
590         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
591       }
592     } else {
593       // Not in a lambda; just use 'this' from the method.
594       // FIXME: Should we generate a new load for each use of 'this'?  The
595       // fast register allocator would be happier...
596       CXXThisValue = CXXABIThisValue;
597     }
598   }
599 
600   // If any of the arguments have a variably modified type, make sure to
601   // emit the type size.
602   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
603        i != e; ++i) {
604     const VarDecl *VD = *i;
605 
606     // Dig out the type as written from ParmVarDecls; it's unclear whether
607     // the standard (C99 6.9.1p10) requires this, but we're following the
608     // precedent set by gcc.
609     QualType Ty;
610     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
611       Ty = PVD->getOriginalType();
612     else
613       Ty = VD->getType();
614 
615     if (Ty->isVariablyModifiedType())
616       EmitVariablyModifiedType(Ty);
617   }
618   // Emit a location at the end of the prologue.
619   if (CGDebugInfo *DI = getDebugInfo())
620     DI->EmitLocation(Builder, StartLoc);
621 }
622 
623 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
624   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
625   assert(FD->getBody());
626   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
627     EmitCompoundStmtWithoutScope(*S);
628   else
629     EmitStmt(FD->getBody());
630 }
631 
632 /// Tries to mark the given function nounwind based on the
633 /// non-existence of any throwing calls within it.  We believe this is
634 /// lightweight enough to do at -O0.
635 static void TryMarkNoThrow(llvm::Function *F) {
636   // LLVM treats 'nounwind' on a function as part of the type, so we
637   // can't do this on functions that can be overwritten.
638   if (F->mayBeOverridden()) return;
639 
640   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
641     for (llvm::BasicBlock::iterator
642            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
643       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
644         if (!Call->doesNotThrow())
645           return;
646       } else if (isa<llvm::ResumeInst>(&*BI)) {
647         return;
648       }
649   F->setDoesNotThrow();
650 }
651 
652 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
653                                    const CGFunctionInfo &FnInfo) {
654   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
655 
656   // Check if we should generate debug info for this function.
657   if (!FD->hasAttr<NoDebugAttr>())
658     maybeInitializeDebugInfo();
659 
660   FunctionArgList Args;
661   QualType ResTy = FD->getResultType();
662 
663   CurGD = GD;
664   const CXXMethodDecl *MD;
665   if ((MD = dyn_cast<CXXMethodDecl>(FD)) && MD->isInstance()) {
666     if (CGM.getCXXABI().HasThisReturn(GD))
667       ResTy = MD->getThisType(getContext());
668     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
669   }
670 
671   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
672     Args.push_back(FD->getParamDecl(i));
673 
674   SourceRange BodyRange;
675   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
676   CurEHLocation = BodyRange.getEnd();
677 
678   // Emit the standard function prologue.
679   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
680 
681   // Generate the body of the function.
682   if (isa<CXXDestructorDecl>(FD))
683     EmitDestructorBody(Args);
684   else if (isa<CXXConstructorDecl>(FD))
685     EmitConstructorBody(Args);
686   else if (getLangOpts().CUDA &&
687            !CGM.getCodeGenOpts().CUDAIsDevice &&
688            FD->hasAttr<CUDAGlobalAttr>())
689     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
690   else if (isa<CXXConversionDecl>(FD) &&
691            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
692     // The lambda conversion to block pointer is special; the semantics can't be
693     // expressed in the AST, so IRGen needs to special-case it.
694     EmitLambdaToBlockPointerBody(Args);
695   } else if (isa<CXXMethodDecl>(FD) &&
696              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
697     // The lambda "__invoke" function is special, because it forwards or
698     // clones the body of the function call operator (but is actually static).
699     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
700   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
701              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
702     // Implicit copy-assignment gets the same special treatment as implicit
703     // copy-constructors.
704     emitImplicitAssignmentOperatorBody(Args);
705   }
706   else
707     EmitFunctionBody(Args);
708 
709   // C++11 [stmt.return]p2:
710   //   Flowing off the end of a function [...] results in undefined behavior in
711   //   a value-returning function.
712   // C11 6.9.1p12:
713   //   If the '}' that terminates a function is reached, and the value of the
714   //   function call is used by the caller, the behavior is undefined.
715   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
716       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
717     if (SanOpts->Return)
718       EmitCheck(Builder.getFalse(), "missing_return",
719                 EmitCheckSourceLocation(FD->getLocation()),
720                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
721     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
722       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
723     Builder.CreateUnreachable();
724     Builder.ClearInsertionPoint();
725   }
726 
727   // Emit the standard function epilogue.
728   FinishFunction(BodyRange.getEnd());
729 
730   // If we haven't marked the function nothrow through other means, do
731   // a quick pass now to see if we can.
732   if (!CurFn->doesNotThrow())
733     TryMarkNoThrow(CurFn);
734 }
735 
736 /// ContainsLabel - Return true if the statement contains a label in it.  If
737 /// this statement is not executed normally, it not containing a label means
738 /// that we can just remove the code.
739 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
740   // Null statement, not a label!
741   if (S == 0) return false;
742 
743   // If this is a label, we have to emit the code, consider something like:
744   // if (0) {  ...  foo:  bar(); }  goto foo;
745   //
746   // TODO: If anyone cared, we could track __label__'s, since we know that you
747   // can't jump to one from outside their declared region.
748   if (isa<LabelStmt>(S))
749     return true;
750 
751   // If this is a case/default statement, and we haven't seen a switch, we have
752   // to emit the code.
753   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
754     return true;
755 
756   // If this is a switch statement, we want to ignore cases below it.
757   if (isa<SwitchStmt>(S))
758     IgnoreCaseStmts = true;
759 
760   // Scan subexpressions for verboten labels.
761   for (Stmt::const_child_range I = S->children(); I; ++I)
762     if (ContainsLabel(*I, IgnoreCaseStmts))
763       return true;
764 
765   return false;
766 }
767 
768 /// containsBreak - Return true if the statement contains a break out of it.
769 /// If the statement (recursively) contains a switch or loop with a break
770 /// inside of it, this is fine.
771 bool CodeGenFunction::containsBreak(const Stmt *S) {
772   // Null statement, not a label!
773   if (S == 0) return false;
774 
775   // If this is a switch or loop that defines its own break scope, then we can
776   // include it and anything inside of it.
777   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
778       isa<ForStmt>(S))
779     return false;
780 
781   if (isa<BreakStmt>(S))
782     return true;
783 
784   // Scan subexpressions for verboten breaks.
785   for (Stmt::const_child_range I = S->children(); I; ++I)
786     if (containsBreak(*I))
787       return true;
788 
789   return false;
790 }
791 
792 
793 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
794 /// to a constant, or if it does but contains a label, return false.  If it
795 /// constant folds return true and set the boolean result in Result.
796 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
797                                                    bool &ResultBool) {
798   llvm::APSInt ResultInt;
799   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
800     return false;
801 
802   ResultBool = ResultInt.getBoolValue();
803   return true;
804 }
805 
806 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
807 /// to a constant, or if it does but contains a label, return false.  If it
808 /// constant folds return true and set the folded value.
809 bool CodeGenFunction::
810 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
811   // FIXME: Rename and handle conversion of other evaluatable things
812   // to bool.
813   llvm::APSInt Int;
814   if (!Cond->EvaluateAsInt(Int, getContext()))
815     return false;  // Not foldable, not integer or not fully evaluatable.
816 
817   if (CodeGenFunction::ContainsLabel(Cond))
818     return false;  // Contains a label.
819 
820   ResultInt = Int;
821   return true;
822 }
823 
824 
825 
826 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
827 /// statement) to the specified blocks.  Based on the condition, this might try
828 /// to simplify the codegen of the conditional based on the branch.
829 ///
830 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
831                                            llvm::BasicBlock *TrueBlock,
832                                            llvm::BasicBlock *FalseBlock) {
833   Cond = Cond->IgnoreParens();
834 
835   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
836     // Handle X && Y in a condition.
837     if (CondBOp->getOpcode() == BO_LAnd) {
838       // If we have "1 && X", simplify the code.  "0 && X" would have constant
839       // folded if the case was simple enough.
840       bool ConstantBool = false;
841       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
842           ConstantBool) {
843         // br(1 && X) -> br(X).
844         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
845       }
846 
847       // If we have "X && 1", simplify the code to use an uncond branch.
848       // "X && 0" would have been constant folded to 0.
849       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
850           ConstantBool) {
851         // br(X && 1) -> br(X).
852         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
853       }
854 
855       // Emit the LHS as a conditional.  If the LHS conditional is false, we
856       // want to jump to the FalseBlock.
857       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
858 
859       ConditionalEvaluation eval(*this);
860       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
861       EmitBlock(LHSTrue);
862 
863       // Any temporaries created here are conditional.
864       eval.begin(*this);
865       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
866       eval.end(*this);
867 
868       return;
869     }
870 
871     if (CondBOp->getOpcode() == BO_LOr) {
872       // If we have "0 || X", simplify the code.  "1 || X" would have constant
873       // folded if the case was simple enough.
874       bool ConstantBool = false;
875       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
876           !ConstantBool) {
877         // br(0 || X) -> br(X).
878         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
879       }
880 
881       // If we have "X || 0", simplify the code to use an uncond branch.
882       // "X || 1" would have been constant folded to 1.
883       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
884           !ConstantBool) {
885         // br(X || 0) -> br(X).
886         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
887       }
888 
889       // Emit the LHS as a conditional.  If the LHS conditional is true, we
890       // want to jump to the TrueBlock.
891       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
892 
893       ConditionalEvaluation eval(*this);
894       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
895       EmitBlock(LHSFalse);
896 
897       // Any temporaries created here are conditional.
898       eval.begin(*this);
899       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
900       eval.end(*this);
901 
902       return;
903     }
904   }
905 
906   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
907     // br(!x, t, f) -> br(x, f, t)
908     if (CondUOp->getOpcode() == UO_LNot)
909       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
910   }
911 
912   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
913     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
914     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
915     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
916 
917     ConditionalEvaluation cond(*this);
918     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
919 
920     cond.begin(*this);
921     EmitBlock(LHSBlock);
922     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
923     cond.end(*this);
924 
925     cond.begin(*this);
926     EmitBlock(RHSBlock);
927     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
928     cond.end(*this);
929 
930     return;
931   }
932 
933   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
934     // Conditional operator handling can give us a throw expression as a
935     // condition for a case like:
936     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
937     // Fold this to:
938     //   br(c, throw x, br(y, t, f))
939     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
940     return;
941   }
942 
943   // Emit the code with the fully general case.
944   llvm::Value *CondV = EvaluateExprAsBool(Cond);
945   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
946 }
947 
948 /// ErrorUnsupported - Print out an error that codegen doesn't support the
949 /// specified stmt yet.
950 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
951                                        bool OmitOnError) {
952   CGM.ErrorUnsupported(S, Type, OmitOnError);
953 }
954 
955 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
956 /// variable-length array whose elements have a non-zero bit-pattern.
957 ///
958 /// \param baseType the inner-most element type of the array
959 /// \param src - a char* pointing to the bit-pattern for a single
960 /// base element of the array
961 /// \param sizeInChars - the total size of the VLA, in chars
962 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
963                                llvm::Value *dest, llvm::Value *src,
964                                llvm::Value *sizeInChars) {
965   std::pair<CharUnits,CharUnits> baseSizeAndAlign
966     = CGF.getContext().getTypeInfoInChars(baseType);
967 
968   CGBuilderTy &Builder = CGF.Builder;
969 
970   llvm::Value *baseSizeInChars
971     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
972 
973   llvm::Type *i8p = Builder.getInt8PtrTy();
974 
975   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
976   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
977 
978   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
979   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
980   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
981 
982   // Make a loop over the VLA.  C99 guarantees that the VLA element
983   // count must be nonzero.
984   CGF.EmitBlock(loopBB);
985 
986   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
987   cur->addIncoming(begin, originBB);
988 
989   // memcpy the individual element bit-pattern.
990   Builder.CreateMemCpy(cur, src, baseSizeInChars,
991                        baseSizeAndAlign.second.getQuantity(),
992                        /*volatile*/ false);
993 
994   // Go to the next element.
995   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
996 
997   // Leave if that's the end of the VLA.
998   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
999   Builder.CreateCondBr(done, contBB, loopBB);
1000   cur->addIncoming(next, loopBB);
1001 
1002   CGF.EmitBlock(contBB);
1003 }
1004 
1005 void
1006 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1007   // Ignore empty classes in C++.
1008   if (getLangOpts().CPlusPlus) {
1009     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1010       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1011         return;
1012     }
1013   }
1014 
1015   // Cast the dest ptr to the appropriate i8 pointer type.
1016   unsigned DestAS =
1017     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1018   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1019   if (DestPtr->getType() != BP)
1020     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1021 
1022   // Get size and alignment info for this aggregate.
1023   std::pair<CharUnits, CharUnits> TypeInfo =
1024     getContext().getTypeInfoInChars(Ty);
1025   CharUnits Size = TypeInfo.first;
1026   CharUnits Align = TypeInfo.second;
1027 
1028   llvm::Value *SizeVal;
1029   const VariableArrayType *vla;
1030 
1031   // Don't bother emitting a zero-byte memset.
1032   if (Size.isZero()) {
1033     // But note that getTypeInfo returns 0 for a VLA.
1034     if (const VariableArrayType *vlaType =
1035           dyn_cast_or_null<VariableArrayType>(
1036                                           getContext().getAsArrayType(Ty))) {
1037       QualType eltType;
1038       llvm::Value *numElts;
1039       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1040 
1041       SizeVal = numElts;
1042       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1043       if (!eltSize.isOne())
1044         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1045       vla = vlaType;
1046     } else {
1047       return;
1048     }
1049   } else {
1050     SizeVal = CGM.getSize(Size);
1051     vla = 0;
1052   }
1053 
1054   // If the type contains a pointer to data member we can't memset it to zero.
1055   // Instead, create a null constant and copy it to the destination.
1056   // TODO: there are other patterns besides zero that we can usefully memset,
1057   // like -1, which happens to be the pattern used by member-pointers.
1058   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1059     // For a VLA, emit a single element, then splat that over the VLA.
1060     if (vla) Ty = getContext().getBaseElementType(vla);
1061 
1062     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1063 
1064     llvm::GlobalVariable *NullVariable =
1065       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1066                                /*isConstant=*/true,
1067                                llvm::GlobalVariable::PrivateLinkage,
1068                                NullConstant, Twine());
1069     llvm::Value *SrcPtr =
1070       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1071 
1072     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1073 
1074     // Get and call the appropriate llvm.memcpy overload.
1075     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1076     return;
1077   }
1078 
1079   // Otherwise, just memset the whole thing to zero.  This is legal
1080   // because in LLVM, all default initializers (other than the ones we just
1081   // handled above) are guaranteed to have a bit pattern of all zeros.
1082   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1083                        Align.getQuantity(), false);
1084 }
1085 
1086 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1087   // Make sure that there is a block for the indirect goto.
1088   if (IndirectBranch == 0)
1089     GetIndirectGotoBlock();
1090 
1091   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1092 
1093   // Make sure the indirect branch includes all of the address-taken blocks.
1094   IndirectBranch->addDestination(BB);
1095   return llvm::BlockAddress::get(CurFn, BB);
1096 }
1097 
1098 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1099   // If we already made the indirect branch for indirect goto, return its block.
1100   if (IndirectBranch) return IndirectBranch->getParent();
1101 
1102   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1103 
1104   // Create the PHI node that indirect gotos will add entries to.
1105   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1106                                               "indirect.goto.dest");
1107 
1108   // Create the indirect branch instruction.
1109   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1110   return IndirectBranch->getParent();
1111 }
1112 
1113 /// Computes the length of an array in elements, as well as the base
1114 /// element type and a properly-typed first element pointer.
1115 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1116                                               QualType &baseType,
1117                                               llvm::Value *&addr) {
1118   const ArrayType *arrayType = origArrayType;
1119 
1120   // If it's a VLA, we have to load the stored size.  Note that
1121   // this is the size of the VLA in bytes, not its size in elements.
1122   llvm::Value *numVLAElements = 0;
1123   if (isa<VariableArrayType>(arrayType)) {
1124     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1125 
1126     // Walk into all VLAs.  This doesn't require changes to addr,
1127     // which has type T* where T is the first non-VLA element type.
1128     do {
1129       QualType elementType = arrayType->getElementType();
1130       arrayType = getContext().getAsArrayType(elementType);
1131 
1132       // If we only have VLA components, 'addr' requires no adjustment.
1133       if (!arrayType) {
1134         baseType = elementType;
1135         return numVLAElements;
1136       }
1137     } while (isa<VariableArrayType>(arrayType));
1138 
1139     // We get out here only if we find a constant array type
1140     // inside the VLA.
1141   }
1142 
1143   // We have some number of constant-length arrays, so addr should
1144   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1145   // down to the first element of addr.
1146   SmallVector<llvm::Value*, 8> gepIndices;
1147 
1148   // GEP down to the array type.
1149   llvm::ConstantInt *zero = Builder.getInt32(0);
1150   gepIndices.push_back(zero);
1151 
1152   uint64_t countFromCLAs = 1;
1153   QualType eltType;
1154 
1155   llvm::ArrayType *llvmArrayType =
1156     dyn_cast<llvm::ArrayType>(
1157       cast<llvm::PointerType>(addr->getType())->getElementType());
1158   while (llvmArrayType) {
1159     assert(isa<ConstantArrayType>(arrayType));
1160     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1161              == llvmArrayType->getNumElements());
1162 
1163     gepIndices.push_back(zero);
1164     countFromCLAs *= llvmArrayType->getNumElements();
1165     eltType = arrayType->getElementType();
1166 
1167     llvmArrayType =
1168       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1169     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1170     assert((!llvmArrayType || arrayType) &&
1171            "LLVM and Clang types are out-of-synch");
1172   }
1173 
1174   if (arrayType) {
1175     // From this point onwards, the Clang array type has been emitted
1176     // as some other type (probably a packed struct). Compute the array
1177     // size, and just emit the 'begin' expression as a bitcast.
1178     while (arrayType) {
1179       countFromCLAs *=
1180           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1181       eltType = arrayType->getElementType();
1182       arrayType = getContext().getAsArrayType(eltType);
1183     }
1184 
1185     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1186     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1187     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1188   } else {
1189     // Create the actual GEP.
1190     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1191   }
1192 
1193   baseType = eltType;
1194 
1195   llvm::Value *numElements
1196     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1197 
1198   // If we had any VLA dimensions, factor them in.
1199   if (numVLAElements)
1200     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1201 
1202   return numElements;
1203 }
1204 
1205 std::pair<llvm::Value*, QualType>
1206 CodeGenFunction::getVLASize(QualType type) {
1207   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1208   assert(vla && "type was not a variable array type!");
1209   return getVLASize(vla);
1210 }
1211 
1212 std::pair<llvm::Value*, QualType>
1213 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1214   // The number of elements so far; always size_t.
1215   llvm::Value *numElements = 0;
1216 
1217   QualType elementType;
1218   do {
1219     elementType = type->getElementType();
1220     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1221     assert(vlaSize && "no size for VLA!");
1222     assert(vlaSize->getType() == SizeTy);
1223 
1224     if (!numElements) {
1225       numElements = vlaSize;
1226     } else {
1227       // It's undefined behavior if this wraps around, so mark it that way.
1228       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1229       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1230     }
1231   } while ((type = getContext().getAsVariableArrayType(elementType)));
1232 
1233   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1234 }
1235 
1236 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1237   assert(type->isVariablyModifiedType() &&
1238          "Must pass variably modified type to EmitVLASizes!");
1239 
1240   EnsureInsertPoint();
1241 
1242   // We're going to walk down into the type and look for VLA
1243   // expressions.
1244   do {
1245     assert(type->isVariablyModifiedType());
1246 
1247     const Type *ty = type.getTypePtr();
1248     switch (ty->getTypeClass()) {
1249 
1250 #define TYPE(Class, Base)
1251 #define ABSTRACT_TYPE(Class, Base)
1252 #define NON_CANONICAL_TYPE(Class, Base)
1253 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1254 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1255 #include "clang/AST/TypeNodes.def"
1256       llvm_unreachable("unexpected dependent type!");
1257 
1258     // These types are never variably-modified.
1259     case Type::Builtin:
1260     case Type::Complex:
1261     case Type::Vector:
1262     case Type::ExtVector:
1263     case Type::Record:
1264     case Type::Enum:
1265     case Type::Elaborated:
1266     case Type::TemplateSpecialization:
1267     case Type::ObjCObject:
1268     case Type::ObjCInterface:
1269     case Type::ObjCObjectPointer:
1270       llvm_unreachable("type class is never variably-modified!");
1271 
1272     case Type::Decayed:
1273       type = cast<DecayedType>(ty)->getPointeeType();
1274       break;
1275 
1276     case Type::Pointer:
1277       type = cast<PointerType>(ty)->getPointeeType();
1278       break;
1279 
1280     case Type::BlockPointer:
1281       type = cast<BlockPointerType>(ty)->getPointeeType();
1282       break;
1283 
1284     case Type::LValueReference:
1285     case Type::RValueReference:
1286       type = cast<ReferenceType>(ty)->getPointeeType();
1287       break;
1288 
1289     case Type::MemberPointer:
1290       type = cast<MemberPointerType>(ty)->getPointeeType();
1291       break;
1292 
1293     case Type::ConstantArray:
1294     case Type::IncompleteArray:
1295       // Losing element qualification here is fine.
1296       type = cast<ArrayType>(ty)->getElementType();
1297       break;
1298 
1299     case Type::VariableArray: {
1300       // Losing element qualification here is fine.
1301       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1302 
1303       // Unknown size indication requires no size computation.
1304       // Otherwise, evaluate and record it.
1305       if (const Expr *size = vat->getSizeExpr()) {
1306         // It's possible that we might have emitted this already,
1307         // e.g. with a typedef and a pointer to it.
1308         llvm::Value *&entry = VLASizeMap[size];
1309         if (!entry) {
1310           llvm::Value *Size = EmitScalarExpr(size);
1311 
1312           // C11 6.7.6.2p5:
1313           //   If the size is an expression that is not an integer constant
1314           //   expression [...] each time it is evaluated it shall have a value
1315           //   greater than zero.
1316           if (SanOpts->VLABound &&
1317               size->getType()->isSignedIntegerType()) {
1318             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1319             llvm::Constant *StaticArgs[] = {
1320               EmitCheckSourceLocation(size->getLocStart()),
1321               EmitCheckTypeDescriptor(size->getType())
1322             };
1323             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1324                       "vla_bound_not_positive", StaticArgs, Size,
1325                       CRK_Recoverable);
1326           }
1327 
1328           // Always zexting here would be wrong if it weren't
1329           // undefined behavior to have a negative bound.
1330           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1331         }
1332       }
1333       type = vat->getElementType();
1334       break;
1335     }
1336 
1337     case Type::FunctionProto:
1338     case Type::FunctionNoProto:
1339       type = cast<FunctionType>(ty)->getResultType();
1340       break;
1341 
1342     case Type::Paren:
1343     case Type::TypeOf:
1344     case Type::UnaryTransform:
1345     case Type::Attributed:
1346     case Type::SubstTemplateTypeParm:
1347     case Type::PackExpansion:
1348       // Keep walking after single level desugaring.
1349       type = type.getSingleStepDesugaredType(getContext());
1350       break;
1351 
1352     case Type::Typedef:
1353     case Type::Decltype:
1354     case Type::Auto:
1355       // Stop walking: nothing to do.
1356       return;
1357 
1358     case Type::TypeOfExpr:
1359       // Stop walking: emit typeof expression.
1360       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1361       return;
1362 
1363     case Type::Atomic:
1364       type = cast<AtomicType>(ty)->getValueType();
1365       break;
1366     }
1367   } while (type->isVariablyModifiedType());
1368 }
1369 
1370 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1371   if (getContext().getBuiltinVaListType()->isArrayType())
1372     return EmitScalarExpr(E);
1373   return EmitLValue(E).getAddress();
1374 }
1375 
1376 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1377                                               llvm::Constant *Init) {
1378   assert (Init && "Invalid DeclRefExpr initializer!");
1379   if (CGDebugInfo *Dbg = getDebugInfo())
1380     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1381       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1382 }
1383 
1384 CodeGenFunction::PeepholeProtection
1385 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1386   // At the moment, the only aggressive peephole we do in IR gen
1387   // is trunc(zext) folding, but if we add more, we can easily
1388   // extend this protection.
1389 
1390   if (!rvalue.isScalar()) return PeepholeProtection();
1391   llvm::Value *value = rvalue.getScalarVal();
1392   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1393 
1394   // Just make an extra bitcast.
1395   assert(HaveInsertPoint());
1396   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1397                                                   Builder.GetInsertBlock());
1398 
1399   PeepholeProtection protection;
1400   protection.Inst = inst;
1401   return protection;
1402 }
1403 
1404 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1405   if (!protection.Inst) return;
1406 
1407   // In theory, we could try to duplicate the peepholes now, but whatever.
1408   protection.Inst->eraseFromParent();
1409 }
1410 
1411 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1412                                                  llvm::Value *AnnotatedVal,
1413                                                  StringRef AnnotationStr,
1414                                                  SourceLocation Location) {
1415   llvm::Value *Args[4] = {
1416     AnnotatedVal,
1417     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1418     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1419     CGM.EmitAnnotationLineNo(Location)
1420   };
1421   return Builder.CreateCall(AnnotationFn, Args);
1422 }
1423 
1424 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1425   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1426   // FIXME We create a new bitcast for every annotation because that's what
1427   // llvm-gcc was doing.
1428   for (specific_attr_iterator<AnnotateAttr>
1429        ai = D->specific_attr_begin<AnnotateAttr>(),
1430        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1431     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1432                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1433                        (*ai)->getAnnotation(), D->getLocation());
1434 }
1435 
1436 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1437                                                    llvm::Value *V) {
1438   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1439   llvm::Type *VTy = V->getType();
1440   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1441                                     CGM.Int8PtrTy);
1442 
1443   for (specific_attr_iterator<AnnotateAttr>
1444        ai = D->specific_attr_begin<AnnotateAttr>(),
1445        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1446     // FIXME Always emit the cast inst so we can differentiate between
1447     // annotation on the first field of a struct and annotation on the struct
1448     // itself.
1449     if (VTy != CGM.Int8PtrTy)
1450       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1451     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1452     V = Builder.CreateBitCast(V, VTy);
1453   }
1454 
1455   return V;
1456 }
1457 
1458 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1459