1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
48 /// markers.
49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
50                                       const LangOptions &LangOpts) {
51   if (CGOpts.DisableLifetimeMarkers)
52     return false;
53 
54   // Sanitizers may use markers.
55   if (CGOpts.SanitizeAddressUseAfterScope ||
56       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
57       LangOpts.Sanitize.has(SanitizerKind::Memory))
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   llvm::FastMathFlags FMF;
75   if (CGM.getLangOpts().FastMath)
76     FMF.setFast();
77   if (CGM.getLangOpts().FiniteMathOnly) {
78     FMF.setNoNaNs();
79     FMF.setNoInfs();
80   }
81   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
82     FMF.setNoNaNs();
83   }
84   if (CGM.getCodeGenOpts().NoSignedZeros) {
85     FMF.setNoSignedZeros();
86   }
87   if (CGM.getCodeGenOpts().ReciprocalMath) {
88     FMF.setAllowReciprocal();
89   }
90   if (CGM.getCodeGenOpts().Reassociate) {
91     FMF.setAllowReassoc();
92   }
93   Builder.setFastMathFlags(FMF);
94   SetFPModel();
95 }
96 
97 CodeGenFunction::~CodeGenFunction() {
98   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
99 
100   // If there are any unclaimed block infos, go ahead and destroy them
101   // now.  This can happen if IR-gen gets clever and skips evaluating
102   // something.
103   if (FirstBlockInfo)
104     destroyBlockInfos(FirstBlockInfo);
105 
106   if (getLangOpts().OpenMP && CurFn)
107     CGM.getOpenMPRuntime().functionFinished(*this);
108 
109   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
110   // outlining etc) at some point. Doing it once the function codegen is done
111   // seems to be a reasonable spot. We do it here, as opposed to the deletion
112   // time of the CodeGenModule, because we have to ensure the IR has not yet
113   // been "emitted" to the outside, thus, modifications are still sensible.
114   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder())
115     OMPBuilder->finalize();
116 }
117 
118 // Map the LangOption for exception behavior into
119 // the corresponding enum in the IR.
120 llvm::fp::ExceptionBehavior
121 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
122 
123   switch (Kind) {
124   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
125   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
126   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
127   }
128   llvm_unreachable("Unsupported FP Exception Behavior");
129 }
130 
131 void CodeGenFunction::SetFPModel() {
132   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
133   auto fpExceptionBehavior = ToConstrainedExceptMD(
134                                getLangOpts().getFPExceptionMode());
135 
136   Builder.setDefaultConstrainedRounding(RM);
137   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
138   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
139                              RM != llvm::RoundingMode::NearestTiesToEven);
140 }
141 
142 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
143                                                     LValueBaseInfo *BaseInfo,
144                                                     TBAAAccessInfo *TBAAInfo) {
145   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
146                                  /* forPointeeType= */ true);
147 }
148 
149 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
150                                                    LValueBaseInfo *BaseInfo,
151                                                    TBAAAccessInfo *TBAAInfo,
152                                                    bool forPointeeType) {
153   if (TBAAInfo)
154     *TBAAInfo = CGM.getTBAAAccessInfo(T);
155 
156   // Honor alignment typedef attributes even on incomplete types.
157   // We also honor them straight for C++ class types, even as pointees;
158   // there's an expressivity gap here.
159   if (auto TT = T->getAs<TypedefType>()) {
160     if (auto Align = TT->getDecl()->getMaxAlignment()) {
161       if (BaseInfo)
162         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
163       return getContext().toCharUnitsFromBits(Align);
164     }
165   }
166 
167   if (BaseInfo)
168     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
169 
170   CharUnits Alignment;
171   if (T->isIncompleteType()) {
172     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
173   } else {
174     // For C++ class pointees, we don't know whether we're pointing at a
175     // base or a complete object, so we generally need to use the
176     // non-virtual alignment.
177     const CXXRecordDecl *RD;
178     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
179       Alignment = CGM.getClassPointerAlignment(RD);
180     } else {
181       Alignment = getContext().getTypeAlignInChars(T);
182       if (T.getQualifiers().hasUnaligned())
183         Alignment = CharUnits::One();
184     }
185 
186     // Cap to the global maximum type alignment unless the alignment
187     // was somehow explicit on the type.
188     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
189       if (Alignment.getQuantity() > MaxAlign &&
190           !getContext().isAlignmentRequired(T))
191         Alignment = CharUnits::fromQuantity(MaxAlign);
192     }
193   }
194   return Alignment;
195 }
196 
197 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
198   LValueBaseInfo BaseInfo;
199   TBAAAccessInfo TBAAInfo;
200   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
201   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
202                           TBAAInfo);
203 }
204 
205 /// Given a value of type T* that may not be to a complete object,
206 /// construct an l-value with the natural pointee alignment of T.
207 LValue
208 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
209   LValueBaseInfo BaseInfo;
210   TBAAAccessInfo TBAAInfo;
211   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
212                                             /* forPointeeType= */ true);
213   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
214 }
215 
216 
217 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
218   return CGM.getTypes().ConvertTypeForMem(T);
219 }
220 
221 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
222   return CGM.getTypes().ConvertType(T);
223 }
224 
225 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
226   type = type.getCanonicalType();
227   while (true) {
228     switch (type->getTypeClass()) {
229 #define TYPE(name, parent)
230 #define ABSTRACT_TYPE(name, parent)
231 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
232 #define DEPENDENT_TYPE(name, parent) case Type::name:
233 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
234 #include "clang/AST/TypeNodes.inc"
235       llvm_unreachable("non-canonical or dependent type in IR-generation");
236 
237     case Type::Auto:
238     case Type::DeducedTemplateSpecialization:
239       llvm_unreachable("undeduced type in IR-generation");
240 
241     // Various scalar types.
242     case Type::Builtin:
243     case Type::Pointer:
244     case Type::BlockPointer:
245     case Type::LValueReference:
246     case Type::RValueReference:
247     case Type::MemberPointer:
248     case Type::Vector:
249     case Type::ExtVector:
250     case Type::FunctionProto:
251     case Type::FunctionNoProto:
252     case Type::Enum:
253     case Type::ObjCObjectPointer:
254     case Type::Pipe:
255     case Type::ExtInt:
256       return TEK_Scalar;
257 
258     // Complexes.
259     case Type::Complex:
260       return TEK_Complex;
261 
262     // Arrays, records, and Objective-C objects.
263     case Type::ConstantArray:
264     case Type::IncompleteArray:
265     case Type::VariableArray:
266     case Type::Record:
267     case Type::ObjCObject:
268     case Type::ObjCInterface:
269       return TEK_Aggregate;
270 
271     // We operate on atomic values according to their underlying type.
272     case Type::Atomic:
273       type = cast<AtomicType>(type)->getValueType();
274       continue;
275     }
276     llvm_unreachable("unknown type kind!");
277   }
278 }
279 
280 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
281   // For cleanliness, we try to avoid emitting the return block for
282   // simple cases.
283   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
284 
285   if (CurBB) {
286     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
287 
288     // We have a valid insert point, reuse it if it is empty or there are no
289     // explicit jumps to the return block.
290     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
291       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
292       delete ReturnBlock.getBlock();
293       ReturnBlock = JumpDest();
294     } else
295       EmitBlock(ReturnBlock.getBlock());
296     return llvm::DebugLoc();
297   }
298 
299   // Otherwise, if the return block is the target of a single direct
300   // branch then we can just put the code in that block instead. This
301   // cleans up functions which started with a unified return block.
302   if (ReturnBlock.getBlock()->hasOneUse()) {
303     llvm::BranchInst *BI =
304       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
305     if (BI && BI->isUnconditional() &&
306         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
307       // Record/return the DebugLoc of the simple 'return' expression to be used
308       // later by the actual 'ret' instruction.
309       llvm::DebugLoc Loc = BI->getDebugLoc();
310       Builder.SetInsertPoint(BI->getParent());
311       BI->eraseFromParent();
312       delete ReturnBlock.getBlock();
313       ReturnBlock = JumpDest();
314       return Loc;
315     }
316   }
317 
318   // FIXME: We are at an unreachable point, there is no reason to emit the block
319   // unless it has uses. However, we still need a place to put the debug
320   // region.end for now.
321 
322   EmitBlock(ReturnBlock.getBlock());
323   return llvm::DebugLoc();
324 }
325 
326 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
327   if (!BB) return;
328   if (!BB->use_empty())
329     return CGF.CurFn->getBasicBlockList().push_back(BB);
330   delete BB;
331 }
332 
333 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
334   assert(BreakContinueStack.empty() &&
335          "mismatched push/pop in break/continue stack!");
336 
337   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
338     && NumSimpleReturnExprs == NumReturnExprs
339     && ReturnBlock.getBlock()->use_empty();
340   // Usually the return expression is evaluated before the cleanup
341   // code.  If the function contains only a simple return statement,
342   // such as a constant, the location before the cleanup code becomes
343   // the last useful breakpoint in the function, because the simple
344   // return expression will be evaluated after the cleanup code. To be
345   // safe, set the debug location for cleanup code to the location of
346   // the return statement.  Otherwise the cleanup code should be at the
347   // end of the function's lexical scope.
348   //
349   // If there are multiple branches to the return block, the branch
350   // instructions will get the location of the return statements and
351   // all will be fine.
352   if (CGDebugInfo *DI = getDebugInfo()) {
353     if (OnlySimpleReturnStmts)
354       DI->EmitLocation(Builder, LastStopPoint);
355     else
356       DI->EmitLocation(Builder, EndLoc);
357   }
358 
359   // Pop any cleanups that might have been associated with the
360   // parameters.  Do this in whatever block we're currently in; it's
361   // important to do this before we enter the return block or return
362   // edges will be *really* confused.
363   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
364   bool HasOnlyLifetimeMarkers =
365       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
366   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
367   if (HasCleanups) {
368     // Make sure the line table doesn't jump back into the body for
369     // the ret after it's been at EndLoc.
370     Optional<ApplyDebugLocation> AL;
371     if (CGDebugInfo *DI = getDebugInfo()) {
372       if (OnlySimpleReturnStmts)
373         DI->EmitLocation(Builder, EndLoc);
374       else
375         // We may not have a valid end location. Try to apply it anyway, and
376         // fall back to an artificial location if needed.
377         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
378     }
379 
380     PopCleanupBlocks(PrologueCleanupDepth);
381   }
382 
383   // Emit function epilog (to return).
384   llvm::DebugLoc Loc = EmitReturnBlock();
385 
386   if (ShouldInstrumentFunction()) {
387     if (CGM.getCodeGenOpts().InstrumentFunctions)
388       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
389     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
390       CurFn->addFnAttr("instrument-function-exit-inlined",
391                        "__cyg_profile_func_exit");
392   }
393 
394   // Emit debug descriptor for function end.
395   if (CGDebugInfo *DI = getDebugInfo())
396     DI->EmitFunctionEnd(Builder, CurFn);
397 
398   // Reset the debug location to that of the simple 'return' expression, if any
399   // rather than that of the end of the function's scope '}'.
400   ApplyDebugLocation AL(*this, Loc);
401   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
402   EmitEndEHSpec(CurCodeDecl);
403 
404   assert(EHStack.empty() &&
405          "did not remove all scopes from cleanup stack!");
406 
407   // If someone did an indirect goto, emit the indirect goto block at the end of
408   // the function.
409   if (IndirectBranch) {
410     EmitBlock(IndirectBranch->getParent());
411     Builder.ClearInsertionPoint();
412   }
413 
414   // If some of our locals escaped, insert a call to llvm.localescape in the
415   // entry block.
416   if (!EscapedLocals.empty()) {
417     // Invert the map from local to index into a simple vector. There should be
418     // no holes.
419     SmallVector<llvm::Value *, 4> EscapeArgs;
420     EscapeArgs.resize(EscapedLocals.size());
421     for (auto &Pair : EscapedLocals)
422       EscapeArgs[Pair.second] = Pair.first;
423     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
424         &CGM.getModule(), llvm::Intrinsic::localescape);
425     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
426   }
427 
428   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
429   llvm::Instruction *Ptr = AllocaInsertPt;
430   AllocaInsertPt = nullptr;
431   Ptr->eraseFromParent();
432 
433   // If someone took the address of a label but never did an indirect goto, we
434   // made a zero entry PHI node, which is illegal, zap it now.
435   if (IndirectBranch) {
436     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
437     if (PN->getNumIncomingValues() == 0) {
438       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
439       PN->eraseFromParent();
440     }
441   }
442 
443   EmitIfUsed(*this, EHResumeBlock);
444   EmitIfUsed(*this, TerminateLandingPad);
445   EmitIfUsed(*this, TerminateHandler);
446   EmitIfUsed(*this, UnreachableBlock);
447 
448   for (const auto &FuncletAndParent : TerminateFunclets)
449     EmitIfUsed(*this, FuncletAndParent.second);
450 
451   if (CGM.getCodeGenOpts().EmitDeclMetadata)
452     EmitDeclMetadata();
453 
454   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
455            I = DeferredReplacements.begin(),
456            E = DeferredReplacements.end();
457        I != E; ++I) {
458     I->first->replaceAllUsesWith(I->second);
459     I->first->eraseFromParent();
460   }
461 
462   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
463   // PHIs if the current function is a coroutine. We don't do it for all
464   // functions as it may result in slight increase in numbers of instructions
465   // if compiled with no optimizations. We do it for coroutine as the lifetime
466   // of CleanupDestSlot alloca make correct coroutine frame building very
467   // difficult.
468   if (NormalCleanupDest.isValid() && isCoroutine()) {
469     llvm::DominatorTree DT(*CurFn);
470     llvm::PromoteMemToReg(
471         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
472     NormalCleanupDest = Address::invalid();
473   }
474 
475   // Scan function arguments for vector width.
476   for (llvm::Argument &A : CurFn->args())
477     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
478       LargestVectorWidth =
479           std::max((uint64_t)LargestVectorWidth,
480                    VT->getPrimitiveSizeInBits().getKnownMinSize());
481 
482   // Update vector width based on return type.
483   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
484     LargestVectorWidth =
485         std::max((uint64_t)LargestVectorWidth,
486                  VT->getPrimitiveSizeInBits().getKnownMinSize());
487 
488   // Add the required-vector-width attribute. This contains the max width from:
489   // 1. min-vector-width attribute used in the source program.
490   // 2. Any builtins used that have a vector width specified.
491   // 3. Values passed in and out of inline assembly.
492   // 4. Width of vector arguments and return types for this function.
493   // 5. Width of vector aguments and return types for functions called by this
494   //    function.
495   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
496 
497   // If we generated an unreachable return block, delete it now.
498   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
499     Builder.ClearInsertionPoint();
500     ReturnBlock.getBlock()->eraseFromParent();
501   }
502   if (ReturnValue.isValid()) {
503     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
504     if (RetAlloca && RetAlloca->use_empty()) {
505       RetAlloca->eraseFromParent();
506       ReturnValue = Address::invalid();
507     }
508   }
509 }
510 
511 /// ShouldInstrumentFunction - Return true if the current function should be
512 /// instrumented with __cyg_profile_func_* calls
513 bool CodeGenFunction::ShouldInstrumentFunction() {
514   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
515       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
516       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
517     return false;
518   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
519     return false;
520   return true;
521 }
522 
523 /// ShouldXRayInstrument - Return true if the current function should be
524 /// instrumented with XRay nop sleds.
525 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
526   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
527 }
528 
529 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
530 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
531 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
532   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
533          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
534           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
535               XRayInstrKind::Custom);
536 }
537 
538 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
539   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
540          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
541           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
542               XRayInstrKind::Typed);
543 }
544 
545 llvm::Constant *
546 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
547                                             llvm::Constant *Addr) {
548   // Addresses stored in prologue data can't require run-time fixups and must
549   // be PC-relative. Run-time fixups are undesirable because they necessitate
550   // writable text segments, which are unsafe. And absolute addresses are
551   // undesirable because they break PIE mode.
552 
553   // Add a layer of indirection through a private global. Taking its address
554   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
555   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
556                                       /*isConstant=*/true,
557                                       llvm::GlobalValue::PrivateLinkage, Addr);
558 
559   // Create a PC-relative address.
560   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
561   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
562   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
563   return (IntPtrTy == Int32Ty)
564              ? PCRelAsInt
565              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
566 }
567 
568 llvm::Value *
569 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
570                                           llvm::Value *EncodedAddr) {
571   // Reconstruct the address of the global.
572   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
573   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
574   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
575   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
576 
577   // Load the original pointer through the global.
578   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
579                             "decoded_addr");
580 }
581 
582 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
583                                                llvm::Function *Fn)
584 {
585   if (!FD->hasAttr<OpenCLKernelAttr>())
586     return;
587 
588   llvm::LLVMContext &Context = getLLVMContext();
589 
590   CGM.GenOpenCLArgMetadata(Fn, FD, this);
591 
592   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
593     QualType HintQTy = A->getTypeHint();
594     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
595     bool IsSignedInteger =
596         HintQTy->isSignedIntegerType() ||
597         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
598     llvm::Metadata *AttrMDArgs[] = {
599         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
600             CGM.getTypes().ConvertType(A->getTypeHint()))),
601         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
602             llvm::IntegerType::get(Context, 32),
603             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
604     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
605   }
606 
607   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
608     llvm::Metadata *AttrMDArgs[] = {
609         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
610         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
611         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
612     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
613   }
614 
615   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
616     llvm::Metadata *AttrMDArgs[] = {
617         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
620     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
621   }
622 
623   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
624           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
625     llvm::Metadata *AttrMDArgs[] = {
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
627     Fn->setMetadata("intel_reqd_sub_group_size",
628                     llvm::MDNode::get(Context, AttrMDArgs));
629   }
630 }
631 
632 /// Determine whether the function F ends with a return stmt.
633 static bool endsWithReturn(const Decl* F) {
634   const Stmt *Body = nullptr;
635   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
636     Body = FD->getBody();
637   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
638     Body = OMD->getBody();
639 
640   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
641     auto LastStmt = CS->body_rbegin();
642     if (LastStmt != CS->body_rend())
643       return isa<ReturnStmt>(*LastStmt);
644   }
645   return false;
646 }
647 
648 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
649   if (SanOpts.has(SanitizerKind::Thread)) {
650     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
651     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
652   }
653 }
654 
655 /// Check if the return value of this function requires sanitization.
656 bool CodeGenFunction::requiresReturnValueCheck() const {
657   return requiresReturnValueNullabilityCheck() ||
658          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
659           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
660 }
661 
662 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
663   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
664   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
665       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
666       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
667     return false;
668 
669   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
670     return false;
671 
672   if (MD->getNumParams() == 2) {
673     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
674     if (!PT || !PT->isVoidPointerType() ||
675         !PT->getPointeeType().isConstQualified())
676       return false;
677   }
678 
679   return true;
680 }
681 
682 /// Return the UBSan prologue signature for \p FD if one is available.
683 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
684                                             const FunctionDecl *FD) {
685   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
686     if (!MD->isStatic())
687       return nullptr;
688   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
689 }
690 
691 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
692                                     llvm::Function *Fn,
693                                     const CGFunctionInfo &FnInfo,
694                                     const FunctionArgList &Args,
695                                     SourceLocation Loc,
696                                     SourceLocation StartLoc) {
697   assert(!CurFn &&
698          "Do not use a CodeGenFunction object for more than one function");
699 
700   const Decl *D = GD.getDecl();
701 
702   DidCallStackSave = false;
703   CurCodeDecl = D;
704   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
705     if (FD->usesSEHTry())
706       CurSEHParent = FD;
707   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
708   FnRetTy = RetTy;
709   CurFn = Fn;
710   CurFnInfo = &FnInfo;
711   assert(CurFn->isDeclaration() && "Function already has body?");
712 
713   // If this function has been blacklisted for any of the enabled sanitizers,
714   // disable the sanitizer for the function.
715   do {
716 #define SANITIZER(NAME, ID)                                                    \
717   if (SanOpts.empty())                                                         \
718     break;                                                                     \
719   if (SanOpts.has(SanitizerKind::ID))                                          \
720     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
721       SanOpts.set(SanitizerKind::ID, false);
722 
723 #include "clang/Basic/Sanitizers.def"
724 #undef SANITIZER
725   } while (0);
726 
727   if (D) {
728     // Apply the no_sanitize* attributes to SanOpts.
729     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
730       SanitizerMask mask = Attr->getMask();
731       SanOpts.Mask &= ~mask;
732       if (mask & SanitizerKind::Address)
733         SanOpts.set(SanitizerKind::KernelAddress, false);
734       if (mask & SanitizerKind::KernelAddress)
735         SanOpts.set(SanitizerKind::Address, false);
736       if (mask & SanitizerKind::HWAddress)
737         SanOpts.set(SanitizerKind::KernelHWAddress, false);
738       if (mask & SanitizerKind::KernelHWAddress)
739         SanOpts.set(SanitizerKind::HWAddress, false);
740     }
741   }
742 
743   // Apply sanitizer attributes to the function.
744   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
745     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
746   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
747     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
748   if (SanOpts.has(SanitizerKind::MemTag))
749     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
750   if (SanOpts.has(SanitizerKind::Thread))
751     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
752   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
753     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
754   if (SanOpts.has(SanitizerKind::SafeStack))
755     Fn->addFnAttr(llvm::Attribute::SafeStack);
756   if (SanOpts.has(SanitizerKind::ShadowCallStack))
757     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
758 
759   // Apply fuzzing attribute to the function.
760   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
761     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
762 
763   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
764   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
765   if (SanOpts.has(SanitizerKind::Thread)) {
766     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
767       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
768       if (OMD->getMethodFamily() == OMF_dealloc ||
769           OMD->getMethodFamily() == OMF_initialize ||
770           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
771         markAsIgnoreThreadCheckingAtRuntime(Fn);
772       }
773     }
774   }
775 
776   // Ignore unrelated casts in STL allocate() since the allocator must cast
777   // from void* to T* before object initialization completes. Don't match on the
778   // namespace because not all allocators are in std::
779   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
780     if (matchesStlAllocatorFn(D, getContext()))
781       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
782   }
783 
784   // Ignore null checks in coroutine functions since the coroutines passes
785   // are not aware of how to move the extra UBSan instructions across the split
786   // coroutine boundaries.
787   if (D && SanOpts.has(SanitizerKind::Null))
788     if (const auto *FD = dyn_cast<FunctionDecl>(D))
789       if (FD->getBody() &&
790           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
791         SanOpts.Mask &= ~SanitizerKind::Null;
792 
793   // Apply xray attributes to the function (as a string, for now)
794   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
795     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
796             XRayInstrKind::FunctionEntry) ||
797         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
798             XRayInstrKind::FunctionExit)) {
799       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
800         Fn->addFnAttr("function-instrument", "xray-always");
801       if (XRayAttr->neverXRayInstrument())
802         Fn->addFnAttr("function-instrument", "xray-never");
803       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
804         if (ShouldXRayInstrumentFunction())
805           Fn->addFnAttr("xray-log-args",
806                         llvm::utostr(LogArgs->getArgumentCount()));
807     }
808   } else {
809     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
810       Fn->addFnAttr(
811           "xray-instruction-threshold",
812           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
813   }
814 
815   if (ShouldXRayInstrumentFunction()) {
816     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
817       Fn->addFnAttr("xray-ignore-loops");
818 
819     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
820             XRayInstrKind::FunctionExit))
821       Fn->addFnAttr("xray-skip-exit");
822 
823     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
824             XRayInstrKind::FunctionEntry))
825       Fn->addFnAttr("xray-skip-entry");
826   }
827 
828   unsigned Count, Offset;
829   if (const auto *Attr =
830           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
831     Count = Attr->getCount();
832     Offset = Attr->getOffset();
833   } else {
834     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
835     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
836   }
837   if (Count && Offset <= Count) {
838     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
839     if (Offset)
840       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
841   }
842 
843   // Add no-jump-tables value.
844   Fn->addFnAttr("no-jump-tables",
845                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
846 
847   // Add no-inline-line-tables value.
848   if (CGM.getCodeGenOpts().NoInlineLineTables)
849     Fn->addFnAttr("no-inline-line-tables");
850 
851   // Add profile-sample-accurate value.
852   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
853     Fn->addFnAttr("profile-sample-accurate");
854 
855   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
856     Fn->addFnAttr("cfi-canonical-jump-table");
857 
858   if (getLangOpts().OpenCL) {
859     // Add metadata for a kernel function.
860     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
861       EmitOpenCLKernelMetadata(FD, Fn);
862   }
863 
864   // If we are checking function types, emit a function type signature as
865   // prologue data.
866   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
867     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
868       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
869         // Remove any (C++17) exception specifications, to allow calling e.g. a
870         // noexcept function through a non-noexcept pointer.
871         auto ProtoTy =
872           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
873                                                         EST_None);
874         llvm::Constant *FTRTTIConst =
875             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
876         llvm::Constant *FTRTTIConstEncoded =
877             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
878         llvm::Constant *PrologueStructElems[] = {PrologueSig,
879                                                  FTRTTIConstEncoded};
880         llvm::Constant *PrologueStructConst =
881             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
882         Fn->setPrologueData(PrologueStructConst);
883       }
884     }
885   }
886 
887   // If we're checking nullability, we need to know whether we can check the
888   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
889   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
890     auto Nullability = FnRetTy->getNullability(getContext());
891     if (Nullability && *Nullability == NullabilityKind::NonNull) {
892       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
893             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
894         RetValNullabilityPrecondition =
895             llvm::ConstantInt::getTrue(getLLVMContext());
896     }
897   }
898 
899   // If we're in C++ mode and the function name is "main", it is guaranteed
900   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
901   // used within a program").
902   //
903   // OpenCL C 2.0 v2.2-11 s6.9.i:
904   //     Recursion is not supported.
905   //
906   // SYCL v1.2.1 s3.10:
907   //     kernels cannot include RTTI information, exception classes,
908   //     recursive code, virtual functions or make use of C++ libraries that
909   //     are not compiled for the device.
910   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
911     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
912         getLangOpts().SYCLIsDevice ||
913         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
914       Fn->addFnAttr(llvm::Attribute::NoRecurse);
915   }
916 
917   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
918     Builder.setIsFPConstrained(FD->usesFPIntrin());
919     if (FD->usesFPIntrin())
920       Fn->addFnAttr(llvm::Attribute::StrictFP);
921   }
922 
923   // If a custom alignment is used, force realigning to this alignment on
924   // any main function which certainly will need it.
925   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
926     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
927         CGM.getCodeGenOpts().StackAlignment)
928       Fn->addFnAttr("stackrealign");
929 
930   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
931 
932   // Create a marker to make it easy to insert allocas into the entryblock
933   // later.  Don't create this with the builder, because we don't want it
934   // folded.
935   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
936   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
937 
938   ReturnBlock = getJumpDestInCurrentScope("return");
939 
940   Builder.SetInsertPoint(EntryBB);
941 
942   // If we're checking the return value, allocate space for a pointer to a
943   // precise source location of the checked return statement.
944   if (requiresReturnValueCheck()) {
945     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
946     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
947   }
948 
949   // Emit subprogram debug descriptor.
950   if (CGDebugInfo *DI = getDebugInfo()) {
951     // Reconstruct the type from the argument list so that implicit parameters,
952     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
953     // convention.
954     CallingConv CC = CallingConv::CC_C;
955     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
956       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
957         CC = SrcFnTy->getCallConv();
958     SmallVector<QualType, 16> ArgTypes;
959     for (const VarDecl *VD : Args)
960       ArgTypes.push_back(VD->getType());
961     QualType FnType = getContext().getFunctionType(
962         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
963     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
964                           Builder);
965   }
966 
967   if (ShouldInstrumentFunction()) {
968     if (CGM.getCodeGenOpts().InstrumentFunctions)
969       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
970     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
971       CurFn->addFnAttr("instrument-function-entry-inlined",
972                        "__cyg_profile_func_enter");
973     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
974       CurFn->addFnAttr("instrument-function-entry-inlined",
975                        "__cyg_profile_func_enter_bare");
976   }
977 
978   // Since emitting the mcount call here impacts optimizations such as function
979   // inlining, we just add an attribute to insert a mcount call in backend.
980   // The attribute "counting-function" is set to mcount function name which is
981   // architecture dependent.
982   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
983     // Calls to fentry/mcount should not be generated if function has
984     // the no_instrument_function attribute.
985     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
986       if (CGM.getCodeGenOpts().CallFEntry)
987         Fn->addFnAttr("fentry-call", "true");
988       else {
989         Fn->addFnAttr("instrument-function-entry-inlined",
990                       getTarget().getMCountName());
991       }
992       if (CGM.getCodeGenOpts().MNopMCount) {
993         if (!CGM.getCodeGenOpts().CallFEntry)
994           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
995             << "-mnop-mcount" << "-mfentry";
996         Fn->addFnAttr("mnop-mcount");
997       }
998 
999       if (CGM.getCodeGenOpts().RecordMCount) {
1000         if (!CGM.getCodeGenOpts().CallFEntry)
1001           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1002             << "-mrecord-mcount" << "-mfentry";
1003         Fn->addFnAttr("mrecord-mcount");
1004       }
1005     }
1006   }
1007 
1008   if (CGM.getCodeGenOpts().PackedStack) {
1009     if (getContext().getTargetInfo().getTriple().getArch() !=
1010         llvm::Triple::systemz)
1011       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1012         << "-mpacked-stack";
1013     Fn->addFnAttr("packed-stack");
1014   }
1015 
1016   if (RetTy->isVoidType()) {
1017     // Void type; nothing to return.
1018     ReturnValue = Address::invalid();
1019 
1020     // Count the implicit return.
1021     if (!endsWithReturn(D))
1022       ++NumReturnExprs;
1023   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1024     // Indirect return; emit returned value directly into sret slot.
1025     // This reduces code size, and affects correctness in C++.
1026     auto AI = CurFn->arg_begin();
1027     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1028       ++AI;
1029     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1030     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1031       ReturnValuePointer =
1032           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1033       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1034                               ReturnValue.getPointer(), Int8PtrTy),
1035                           ReturnValuePointer);
1036     }
1037   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1038              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1039     // Load the sret pointer from the argument struct and return into that.
1040     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1041     llvm::Function::arg_iterator EI = CurFn->arg_end();
1042     --EI;
1043     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1044     ReturnValuePointer = Address(Addr, getPointerAlign());
1045     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
1046     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
1047   } else {
1048     ReturnValue = CreateIRTemp(RetTy, "retval");
1049 
1050     // Tell the epilog emitter to autorelease the result.  We do this
1051     // now so that various specialized functions can suppress it
1052     // during their IR-generation.
1053     if (getLangOpts().ObjCAutoRefCount &&
1054         !CurFnInfo->isReturnsRetained() &&
1055         RetTy->isObjCRetainableType())
1056       AutoreleaseResult = true;
1057   }
1058 
1059   EmitStartEHSpec(CurCodeDecl);
1060 
1061   PrologueCleanupDepth = EHStack.stable_begin();
1062 
1063   // Emit OpenMP specific initialization of the device functions.
1064   if (getLangOpts().OpenMP && CurCodeDecl)
1065     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1066 
1067   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1068 
1069   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1070     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1071     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1072     if (MD->getParent()->isLambda() &&
1073         MD->getOverloadedOperator() == OO_Call) {
1074       // We're in a lambda; figure out the captures.
1075       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1076                                         LambdaThisCaptureField);
1077       if (LambdaThisCaptureField) {
1078         // If the lambda captures the object referred to by '*this' - either by
1079         // value or by reference, make sure CXXThisValue points to the correct
1080         // object.
1081 
1082         // Get the lvalue for the field (which is a copy of the enclosing object
1083         // or contains the address of the enclosing object).
1084         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1085         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1086           // If the enclosing object was captured by value, just use its address.
1087           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1088         } else {
1089           // Load the lvalue pointed to by the field, since '*this' was captured
1090           // by reference.
1091           CXXThisValue =
1092               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1093         }
1094       }
1095       for (auto *FD : MD->getParent()->fields()) {
1096         if (FD->hasCapturedVLAType()) {
1097           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1098                                            SourceLocation()).getScalarVal();
1099           auto VAT = FD->getCapturedVLAType();
1100           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1101         }
1102       }
1103     } else {
1104       // Not in a lambda; just use 'this' from the method.
1105       // FIXME: Should we generate a new load for each use of 'this'?  The
1106       // fast register allocator would be happier...
1107       CXXThisValue = CXXABIThisValue;
1108     }
1109 
1110     // Check the 'this' pointer once per function, if it's available.
1111     if (CXXABIThisValue) {
1112       SanitizerSet SkippedChecks;
1113       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1114       QualType ThisTy = MD->getThisType();
1115 
1116       // If this is the call operator of a lambda with no capture-default, it
1117       // may have a static invoker function, which may call this operator with
1118       // a null 'this' pointer.
1119       if (isLambdaCallOperator(MD) &&
1120           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1121         SkippedChecks.set(SanitizerKind::Null, true);
1122 
1123       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1124                                                 : TCK_MemberCall,
1125                     Loc, CXXABIThisValue, ThisTy,
1126                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1127                     SkippedChecks);
1128     }
1129   }
1130 
1131   // If any of the arguments have a variably modified type, make sure to
1132   // emit the type size.
1133   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1134        i != e; ++i) {
1135     const VarDecl *VD = *i;
1136 
1137     // Dig out the type as written from ParmVarDecls; it's unclear whether
1138     // the standard (C99 6.9.1p10) requires this, but we're following the
1139     // precedent set by gcc.
1140     QualType Ty;
1141     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1142       Ty = PVD->getOriginalType();
1143     else
1144       Ty = VD->getType();
1145 
1146     if (Ty->isVariablyModifiedType())
1147       EmitVariablyModifiedType(Ty);
1148   }
1149   // Emit a location at the end of the prologue.
1150   if (CGDebugInfo *DI = getDebugInfo())
1151     DI->EmitLocation(Builder, StartLoc);
1152 
1153   // TODO: Do we need to handle this in two places like we do with
1154   // target-features/target-cpu?
1155   if (CurFuncDecl)
1156     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1157       LargestVectorWidth = VecWidth->getVectorWidth();
1158 }
1159 
1160 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1161   incrementProfileCounter(Body);
1162   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1163     EmitCompoundStmtWithoutScope(*S);
1164   else
1165     EmitStmt(Body);
1166 }
1167 
1168 /// When instrumenting to collect profile data, the counts for some blocks
1169 /// such as switch cases need to not include the fall-through counts, so
1170 /// emit a branch around the instrumentation code. When not instrumenting,
1171 /// this just calls EmitBlock().
1172 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1173                                                const Stmt *S) {
1174   llvm::BasicBlock *SkipCountBB = nullptr;
1175   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1176     // When instrumenting for profiling, the fallthrough to certain
1177     // statements needs to skip over the instrumentation code so that we
1178     // get an accurate count.
1179     SkipCountBB = createBasicBlock("skipcount");
1180     EmitBranch(SkipCountBB);
1181   }
1182   EmitBlock(BB);
1183   uint64_t CurrentCount = getCurrentProfileCount();
1184   incrementProfileCounter(S);
1185   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1186   if (SkipCountBB)
1187     EmitBlock(SkipCountBB);
1188 }
1189 
1190 /// Tries to mark the given function nounwind based on the
1191 /// non-existence of any throwing calls within it.  We believe this is
1192 /// lightweight enough to do at -O0.
1193 static void TryMarkNoThrow(llvm::Function *F) {
1194   // LLVM treats 'nounwind' on a function as part of the type, so we
1195   // can't do this on functions that can be overwritten.
1196   if (F->isInterposable()) return;
1197 
1198   for (llvm::BasicBlock &BB : *F)
1199     for (llvm::Instruction &I : BB)
1200       if (I.mayThrow())
1201         return;
1202 
1203   F->setDoesNotThrow();
1204 }
1205 
1206 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1207                                                FunctionArgList &Args) {
1208   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1209   QualType ResTy = FD->getReturnType();
1210 
1211   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1212   if (MD && MD->isInstance()) {
1213     if (CGM.getCXXABI().HasThisReturn(GD))
1214       ResTy = MD->getThisType();
1215     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1216       ResTy = CGM.getContext().VoidPtrTy;
1217     CGM.getCXXABI().buildThisParam(*this, Args);
1218   }
1219 
1220   // The base version of an inheriting constructor whose constructed base is a
1221   // virtual base is not passed any arguments (because it doesn't actually call
1222   // the inherited constructor).
1223   bool PassedParams = true;
1224   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1225     if (auto Inherited = CD->getInheritedConstructor())
1226       PassedParams =
1227           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1228 
1229   if (PassedParams) {
1230     for (auto *Param : FD->parameters()) {
1231       Args.push_back(Param);
1232       if (!Param->hasAttr<PassObjectSizeAttr>())
1233         continue;
1234 
1235       auto *Implicit = ImplicitParamDecl::Create(
1236           getContext(), Param->getDeclContext(), Param->getLocation(),
1237           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1238       SizeArguments[Param] = Implicit;
1239       Args.push_back(Implicit);
1240     }
1241   }
1242 
1243   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1244     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1245 
1246   return ResTy;
1247 }
1248 
1249 static bool
1250 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1251                                              const ASTContext &Context) {
1252   QualType T = FD->getReturnType();
1253   // Avoid the optimization for functions that return a record type with a
1254   // trivial destructor or another trivially copyable type.
1255   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1256     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1257       return !ClassDecl->hasTrivialDestructor();
1258   }
1259   return !T.isTriviallyCopyableType(Context);
1260 }
1261 
1262 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1263                                    const CGFunctionInfo &FnInfo) {
1264   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1265   CurGD = GD;
1266 
1267   FunctionArgList Args;
1268   QualType ResTy = BuildFunctionArgList(GD, Args);
1269 
1270   // Check if we should generate debug info for this function.
1271   if (FD->hasAttr<NoDebugAttr>())
1272     DebugInfo = nullptr; // disable debug info indefinitely for this function
1273 
1274   // The function might not have a body if we're generating thunks for a
1275   // function declaration.
1276   SourceRange BodyRange;
1277   if (Stmt *Body = FD->getBody())
1278     BodyRange = Body->getSourceRange();
1279   else
1280     BodyRange = FD->getLocation();
1281   CurEHLocation = BodyRange.getEnd();
1282 
1283   // Use the location of the start of the function to determine where
1284   // the function definition is located. By default use the location
1285   // of the declaration as the location for the subprogram. A function
1286   // may lack a declaration in the source code if it is created by code
1287   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1288   SourceLocation Loc = FD->getLocation();
1289 
1290   // If this is a function specialization then use the pattern body
1291   // as the location for the function.
1292   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1293     if (SpecDecl->hasBody(SpecDecl))
1294       Loc = SpecDecl->getLocation();
1295 
1296   Stmt *Body = FD->getBody();
1297 
1298   // Initialize helper which will detect jumps which can cause invalid lifetime
1299   // markers.
1300   if (Body && ShouldEmitLifetimeMarkers)
1301     Bypasses.Init(Body);
1302 
1303   // Emit the standard function prologue.
1304   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1305 
1306   // Generate the body of the function.
1307   PGO.assignRegionCounters(GD, CurFn);
1308   if (isa<CXXDestructorDecl>(FD))
1309     EmitDestructorBody(Args);
1310   else if (isa<CXXConstructorDecl>(FD))
1311     EmitConstructorBody(Args);
1312   else if (getLangOpts().CUDA &&
1313            !getLangOpts().CUDAIsDevice &&
1314            FD->hasAttr<CUDAGlobalAttr>())
1315     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1316   else if (isa<CXXMethodDecl>(FD) &&
1317            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1318     // The lambda static invoker function is special, because it forwards or
1319     // clones the body of the function call operator (but is actually static).
1320     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1321   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1322              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1323               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1324     // Implicit copy-assignment gets the same special treatment as implicit
1325     // copy-constructors.
1326     emitImplicitAssignmentOperatorBody(Args);
1327   } else if (Body) {
1328     EmitFunctionBody(Body);
1329   } else
1330     llvm_unreachable("no definition for emitted function");
1331 
1332   // C++11 [stmt.return]p2:
1333   //   Flowing off the end of a function [...] results in undefined behavior in
1334   //   a value-returning function.
1335   // C11 6.9.1p12:
1336   //   If the '}' that terminates a function is reached, and the value of the
1337   //   function call is used by the caller, the behavior is undefined.
1338   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1339       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1340     bool ShouldEmitUnreachable =
1341         CGM.getCodeGenOpts().StrictReturn ||
1342         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1343     if (SanOpts.has(SanitizerKind::Return)) {
1344       SanitizerScope SanScope(this);
1345       llvm::Value *IsFalse = Builder.getFalse();
1346       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1347                 SanitizerHandler::MissingReturn,
1348                 EmitCheckSourceLocation(FD->getLocation()), None);
1349     } else if (ShouldEmitUnreachable) {
1350       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1351         EmitTrapCall(llvm::Intrinsic::trap);
1352     }
1353     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1354       Builder.CreateUnreachable();
1355       Builder.ClearInsertionPoint();
1356     }
1357   }
1358 
1359   // Emit the standard function epilogue.
1360   FinishFunction(BodyRange.getEnd());
1361 
1362   // If we haven't marked the function nothrow through other means, do
1363   // a quick pass now to see if we can.
1364   if (!CurFn->doesNotThrow())
1365     TryMarkNoThrow(CurFn);
1366 }
1367 
1368 /// ContainsLabel - Return true if the statement contains a label in it.  If
1369 /// this statement is not executed normally, it not containing a label means
1370 /// that we can just remove the code.
1371 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1372   // Null statement, not a label!
1373   if (!S) return false;
1374 
1375   // If this is a label, we have to emit the code, consider something like:
1376   // if (0) {  ...  foo:  bar(); }  goto foo;
1377   //
1378   // TODO: If anyone cared, we could track __label__'s, since we know that you
1379   // can't jump to one from outside their declared region.
1380   if (isa<LabelStmt>(S))
1381     return true;
1382 
1383   // If this is a case/default statement, and we haven't seen a switch, we have
1384   // to emit the code.
1385   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1386     return true;
1387 
1388   // If this is a switch statement, we want to ignore cases below it.
1389   if (isa<SwitchStmt>(S))
1390     IgnoreCaseStmts = true;
1391 
1392   // Scan subexpressions for verboten labels.
1393   for (const Stmt *SubStmt : S->children())
1394     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1395       return true;
1396 
1397   return false;
1398 }
1399 
1400 /// containsBreak - Return true if the statement contains a break out of it.
1401 /// If the statement (recursively) contains a switch or loop with a break
1402 /// inside of it, this is fine.
1403 bool CodeGenFunction::containsBreak(const Stmt *S) {
1404   // Null statement, not a label!
1405   if (!S) return false;
1406 
1407   // If this is a switch or loop that defines its own break scope, then we can
1408   // include it and anything inside of it.
1409   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1410       isa<ForStmt>(S))
1411     return false;
1412 
1413   if (isa<BreakStmt>(S))
1414     return true;
1415 
1416   // Scan subexpressions for verboten breaks.
1417   for (const Stmt *SubStmt : S->children())
1418     if (containsBreak(SubStmt))
1419       return true;
1420 
1421   return false;
1422 }
1423 
1424 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1425   if (!S) return false;
1426 
1427   // Some statement kinds add a scope and thus never add a decl to the current
1428   // scope. Note, this list is longer than the list of statements that might
1429   // have an unscoped decl nested within them, but this way is conservatively
1430   // correct even if more statement kinds are added.
1431   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1432       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1433       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1434       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1435     return false;
1436 
1437   if (isa<DeclStmt>(S))
1438     return true;
1439 
1440   for (const Stmt *SubStmt : S->children())
1441     if (mightAddDeclToScope(SubStmt))
1442       return true;
1443 
1444   return false;
1445 }
1446 
1447 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1448 /// to a constant, or if it does but contains a label, return false.  If it
1449 /// constant folds return true and set the boolean result in Result.
1450 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1451                                                    bool &ResultBool,
1452                                                    bool AllowLabels) {
1453   llvm::APSInt ResultInt;
1454   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1455     return false;
1456 
1457   ResultBool = ResultInt.getBoolValue();
1458   return true;
1459 }
1460 
1461 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1462 /// to a constant, or if it does but contains a label, return false.  If it
1463 /// constant folds return true and set the folded value.
1464 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1465                                                    llvm::APSInt &ResultInt,
1466                                                    bool AllowLabels) {
1467   // FIXME: Rename and handle conversion of other evaluatable things
1468   // to bool.
1469   Expr::EvalResult Result;
1470   if (!Cond->EvaluateAsInt(Result, getContext()))
1471     return false;  // Not foldable, not integer or not fully evaluatable.
1472 
1473   llvm::APSInt Int = Result.Val.getInt();
1474   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1475     return false;  // Contains a label.
1476 
1477   ResultInt = Int;
1478   return true;
1479 }
1480 
1481 
1482 
1483 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1484 /// statement) to the specified blocks.  Based on the condition, this might try
1485 /// to simplify the codegen of the conditional based on the branch.
1486 ///
1487 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1488                                            llvm::BasicBlock *TrueBlock,
1489                                            llvm::BasicBlock *FalseBlock,
1490                                            uint64_t TrueCount) {
1491   Cond = Cond->IgnoreParens();
1492 
1493   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1494 
1495     // Handle X && Y in a condition.
1496     if (CondBOp->getOpcode() == BO_LAnd) {
1497       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1498       // folded if the case was simple enough.
1499       bool ConstantBool = false;
1500       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1501           ConstantBool) {
1502         // br(1 && X) -> br(X).
1503         incrementProfileCounter(CondBOp);
1504         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1505                                     TrueCount);
1506       }
1507 
1508       // If we have "X && 1", simplify the code to use an uncond branch.
1509       // "X && 0" would have been constant folded to 0.
1510       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1511           ConstantBool) {
1512         // br(X && 1) -> br(X).
1513         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1514                                     TrueCount);
1515       }
1516 
1517       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1518       // want to jump to the FalseBlock.
1519       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1520       // The counter tells us how often we evaluate RHS, and all of TrueCount
1521       // can be propagated to that branch.
1522       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1523 
1524       ConditionalEvaluation eval(*this);
1525       {
1526         ApplyDebugLocation DL(*this, Cond);
1527         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1528         EmitBlock(LHSTrue);
1529       }
1530 
1531       incrementProfileCounter(CondBOp);
1532       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1533 
1534       // Any temporaries created here are conditional.
1535       eval.begin(*this);
1536       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1537       eval.end(*this);
1538 
1539       return;
1540     }
1541 
1542     if (CondBOp->getOpcode() == BO_LOr) {
1543       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1544       // folded if the case was simple enough.
1545       bool ConstantBool = false;
1546       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1547           !ConstantBool) {
1548         // br(0 || X) -> br(X).
1549         incrementProfileCounter(CondBOp);
1550         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1551                                     TrueCount);
1552       }
1553 
1554       // If we have "X || 0", simplify the code to use an uncond branch.
1555       // "X || 1" would have been constant folded to 1.
1556       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1557           !ConstantBool) {
1558         // br(X || 0) -> br(X).
1559         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1560                                     TrueCount);
1561       }
1562 
1563       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1564       // want to jump to the TrueBlock.
1565       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1566       // We have the count for entry to the RHS and for the whole expression
1567       // being true, so we can divy up True count between the short circuit and
1568       // the RHS.
1569       uint64_t LHSCount =
1570           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1571       uint64_t RHSCount = TrueCount - LHSCount;
1572 
1573       ConditionalEvaluation eval(*this);
1574       {
1575         ApplyDebugLocation DL(*this, Cond);
1576         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1577         EmitBlock(LHSFalse);
1578       }
1579 
1580       incrementProfileCounter(CondBOp);
1581       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1582 
1583       // Any temporaries created here are conditional.
1584       eval.begin(*this);
1585       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1586 
1587       eval.end(*this);
1588 
1589       return;
1590     }
1591   }
1592 
1593   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1594     // br(!x, t, f) -> br(x, f, t)
1595     if (CondUOp->getOpcode() == UO_LNot) {
1596       // Negate the count.
1597       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1598       // Negate the condition and swap the destination blocks.
1599       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1600                                   FalseCount);
1601     }
1602   }
1603 
1604   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1605     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1606     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1607     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1608 
1609     ConditionalEvaluation cond(*this);
1610     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1611                          getProfileCount(CondOp));
1612 
1613     // When computing PGO branch weights, we only know the overall count for
1614     // the true block. This code is essentially doing tail duplication of the
1615     // naive code-gen, introducing new edges for which counts are not
1616     // available. Divide the counts proportionally between the LHS and RHS of
1617     // the conditional operator.
1618     uint64_t LHSScaledTrueCount = 0;
1619     if (TrueCount) {
1620       double LHSRatio =
1621           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1622       LHSScaledTrueCount = TrueCount * LHSRatio;
1623     }
1624 
1625     cond.begin(*this);
1626     EmitBlock(LHSBlock);
1627     incrementProfileCounter(CondOp);
1628     {
1629       ApplyDebugLocation DL(*this, Cond);
1630       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1631                            LHSScaledTrueCount);
1632     }
1633     cond.end(*this);
1634 
1635     cond.begin(*this);
1636     EmitBlock(RHSBlock);
1637     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1638                          TrueCount - LHSScaledTrueCount);
1639     cond.end(*this);
1640 
1641     return;
1642   }
1643 
1644   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1645     // Conditional operator handling can give us a throw expression as a
1646     // condition for a case like:
1647     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1648     // Fold this to:
1649     //   br(c, throw x, br(y, t, f))
1650     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1651     return;
1652   }
1653 
1654   // If the branch has a condition wrapped by __builtin_unpredictable,
1655   // create metadata that specifies that the branch is unpredictable.
1656   // Don't bother if not optimizing because that metadata would not be used.
1657   llvm::MDNode *Unpredictable = nullptr;
1658   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1659   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1660     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1661     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1662       llvm::MDBuilder MDHelper(getLLVMContext());
1663       Unpredictable = MDHelper.createUnpredictable();
1664     }
1665   }
1666 
1667   // Create branch weights based on the number of times we get here and the
1668   // number of times the condition should be true.
1669   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1670   llvm::MDNode *Weights =
1671       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1672 
1673   // Emit the code with the fully general case.
1674   llvm::Value *CondV;
1675   {
1676     ApplyDebugLocation DL(*this, Cond);
1677     CondV = EvaluateExprAsBool(Cond);
1678   }
1679   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1680 }
1681 
1682 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1683 /// specified stmt yet.
1684 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1685   CGM.ErrorUnsupported(S, Type);
1686 }
1687 
1688 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1689 /// variable-length array whose elements have a non-zero bit-pattern.
1690 ///
1691 /// \param baseType the inner-most element type of the array
1692 /// \param src - a char* pointing to the bit-pattern for a single
1693 /// base element of the array
1694 /// \param sizeInChars - the total size of the VLA, in chars
1695 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1696                                Address dest, Address src,
1697                                llvm::Value *sizeInChars) {
1698   CGBuilderTy &Builder = CGF.Builder;
1699 
1700   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1701   llvm::Value *baseSizeInChars
1702     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1703 
1704   Address begin =
1705     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1706   llvm::Value *end =
1707     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1708 
1709   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1710   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1711   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1712 
1713   // Make a loop over the VLA.  C99 guarantees that the VLA element
1714   // count must be nonzero.
1715   CGF.EmitBlock(loopBB);
1716 
1717   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1718   cur->addIncoming(begin.getPointer(), originBB);
1719 
1720   CharUnits curAlign =
1721     dest.getAlignment().alignmentOfArrayElement(baseSize);
1722 
1723   // memcpy the individual element bit-pattern.
1724   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1725                        /*volatile*/ false);
1726 
1727   // Go to the next element.
1728   llvm::Value *next =
1729     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1730 
1731   // Leave if that's the end of the VLA.
1732   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1733   Builder.CreateCondBr(done, contBB, loopBB);
1734   cur->addIncoming(next, loopBB);
1735 
1736   CGF.EmitBlock(contBB);
1737 }
1738 
1739 void
1740 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1741   // Ignore empty classes in C++.
1742   if (getLangOpts().CPlusPlus) {
1743     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1744       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1745         return;
1746     }
1747   }
1748 
1749   // Cast the dest ptr to the appropriate i8 pointer type.
1750   if (DestPtr.getElementType() != Int8Ty)
1751     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1752 
1753   // Get size and alignment info for this aggregate.
1754   CharUnits size = getContext().getTypeSizeInChars(Ty);
1755 
1756   llvm::Value *SizeVal;
1757   const VariableArrayType *vla;
1758 
1759   // Don't bother emitting a zero-byte memset.
1760   if (size.isZero()) {
1761     // But note that getTypeInfo returns 0 for a VLA.
1762     if (const VariableArrayType *vlaType =
1763           dyn_cast_or_null<VariableArrayType>(
1764                                           getContext().getAsArrayType(Ty))) {
1765       auto VlaSize = getVLASize(vlaType);
1766       SizeVal = VlaSize.NumElts;
1767       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1768       if (!eltSize.isOne())
1769         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1770       vla = vlaType;
1771     } else {
1772       return;
1773     }
1774   } else {
1775     SizeVal = CGM.getSize(size);
1776     vla = nullptr;
1777   }
1778 
1779   // If the type contains a pointer to data member we can't memset it to zero.
1780   // Instead, create a null constant and copy it to the destination.
1781   // TODO: there are other patterns besides zero that we can usefully memset,
1782   // like -1, which happens to be the pattern used by member-pointers.
1783   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1784     // For a VLA, emit a single element, then splat that over the VLA.
1785     if (vla) Ty = getContext().getBaseElementType(vla);
1786 
1787     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1788 
1789     llvm::GlobalVariable *NullVariable =
1790       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1791                                /*isConstant=*/true,
1792                                llvm::GlobalVariable::PrivateLinkage,
1793                                NullConstant, Twine());
1794     CharUnits NullAlign = DestPtr.getAlignment();
1795     NullVariable->setAlignment(NullAlign.getAsAlign());
1796     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1797                    NullAlign);
1798 
1799     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1800 
1801     // Get and call the appropriate llvm.memcpy overload.
1802     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1803     return;
1804   }
1805 
1806   // Otherwise, just memset the whole thing to zero.  This is legal
1807   // because in LLVM, all default initializers (other than the ones we just
1808   // handled above) are guaranteed to have a bit pattern of all zeros.
1809   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1810 }
1811 
1812 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1813   // Make sure that there is a block for the indirect goto.
1814   if (!IndirectBranch)
1815     GetIndirectGotoBlock();
1816 
1817   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1818 
1819   // Make sure the indirect branch includes all of the address-taken blocks.
1820   IndirectBranch->addDestination(BB);
1821   return llvm::BlockAddress::get(CurFn, BB);
1822 }
1823 
1824 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1825   // If we already made the indirect branch for indirect goto, return its block.
1826   if (IndirectBranch) return IndirectBranch->getParent();
1827 
1828   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1829 
1830   // Create the PHI node that indirect gotos will add entries to.
1831   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1832                                               "indirect.goto.dest");
1833 
1834   // Create the indirect branch instruction.
1835   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1836   return IndirectBranch->getParent();
1837 }
1838 
1839 /// Computes the length of an array in elements, as well as the base
1840 /// element type and a properly-typed first element pointer.
1841 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1842                                               QualType &baseType,
1843                                               Address &addr) {
1844   const ArrayType *arrayType = origArrayType;
1845 
1846   // If it's a VLA, we have to load the stored size.  Note that
1847   // this is the size of the VLA in bytes, not its size in elements.
1848   llvm::Value *numVLAElements = nullptr;
1849   if (isa<VariableArrayType>(arrayType)) {
1850     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1851 
1852     // Walk into all VLAs.  This doesn't require changes to addr,
1853     // which has type T* where T is the first non-VLA element type.
1854     do {
1855       QualType elementType = arrayType->getElementType();
1856       arrayType = getContext().getAsArrayType(elementType);
1857 
1858       // If we only have VLA components, 'addr' requires no adjustment.
1859       if (!arrayType) {
1860         baseType = elementType;
1861         return numVLAElements;
1862       }
1863     } while (isa<VariableArrayType>(arrayType));
1864 
1865     // We get out here only if we find a constant array type
1866     // inside the VLA.
1867   }
1868 
1869   // We have some number of constant-length arrays, so addr should
1870   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1871   // down to the first element of addr.
1872   SmallVector<llvm::Value*, 8> gepIndices;
1873 
1874   // GEP down to the array type.
1875   llvm::ConstantInt *zero = Builder.getInt32(0);
1876   gepIndices.push_back(zero);
1877 
1878   uint64_t countFromCLAs = 1;
1879   QualType eltType;
1880 
1881   llvm::ArrayType *llvmArrayType =
1882     dyn_cast<llvm::ArrayType>(addr.getElementType());
1883   while (llvmArrayType) {
1884     assert(isa<ConstantArrayType>(arrayType));
1885     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1886              == llvmArrayType->getNumElements());
1887 
1888     gepIndices.push_back(zero);
1889     countFromCLAs *= llvmArrayType->getNumElements();
1890     eltType = arrayType->getElementType();
1891 
1892     llvmArrayType =
1893       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1894     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1895     assert((!llvmArrayType || arrayType) &&
1896            "LLVM and Clang types are out-of-synch");
1897   }
1898 
1899   if (arrayType) {
1900     // From this point onwards, the Clang array type has been emitted
1901     // as some other type (probably a packed struct). Compute the array
1902     // size, and just emit the 'begin' expression as a bitcast.
1903     while (arrayType) {
1904       countFromCLAs *=
1905           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1906       eltType = arrayType->getElementType();
1907       arrayType = getContext().getAsArrayType(eltType);
1908     }
1909 
1910     llvm::Type *baseType = ConvertType(eltType);
1911     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1912   } else {
1913     // Create the actual GEP.
1914     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1915                                              gepIndices, "array.begin"),
1916                    addr.getAlignment());
1917   }
1918 
1919   baseType = eltType;
1920 
1921   llvm::Value *numElements
1922     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1923 
1924   // If we had any VLA dimensions, factor them in.
1925   if (numVLAElements)
1926     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1927 
1928   return numElements;
1929 }
1930 
1931 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1932   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1933   assert(vla && "type was not a variable array type!");
1934   return getVLASize(vla);
1935 }
1936 
1937 CodeGenFunction::VlaSizePair
1938 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1939   // The number of elements so far; always size_t.
1940   llvm::Value *numElements = nullptr;
1941 
1942   QualType elementType;
1943   do {
1944     elementType = type->getElementType();
1945     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1946     assert(vlaSize && "no size for VLA!");
1947     assert(vlaSize->getType() == SizeTy);
1948 
1949     if (!numElements) {
1950       numElements = vlaSize;
1951     } else {
1952       // It's undefined behavior if this wraps around, so mark it that way.
1953       // FIXME: Teach -fsanitize=undefined to trap this.
1954       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1955     }
1956   } while ((type = getContext().getAsVariableArrayType(elementType)));
1957 
1958   return { numElements, elementType };
1959 }
1960 
1961 CodeGenFunction::VlaSizePair
1962 CodeGenFunction::getVLAElements1D(QualType type) {
1963   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1964   assert(vla && "type was not a variable array type!");
1965   return getVLAElements1D(vla);
1966 }
1967 
1968 CodeGenFunction::VlaSizePair
1969 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1970   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1971   assert(VlaSize && "no size for VLA!");
1972   assert(VlaSize->getType() == SizeTy);
1973   return { VlaSize, Vla->getElementType() };
1974 }
1975 
1976 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1977   assert(type->isVariablyModifiedType() &&
1978          "Must pass variably modified type to EmitVLASizes!");
1979 
1980   EnsureInsertPoint();
1981 
1982   // We're going to walk down into the type and look for VLA
1983   // expressions.
1984   do {
1985     assert(type->isVariablyModifiedType());
1986 
1987     const Type *ty = type.getTypePtr();
1988     switch (ty->getTypeClass()) {
1989 
1990 #define TYPE(Class, Base)
1991 #define ABSTRACT_TYPE(Class, Base)
1992 #define NON_CANONICAL_TYPE(Class, Base)
1993 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1994 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1995 #include "clang/AST/TypeNodes.inc"
1996       llvm_unreachable("unexpected dependent type!");
1997 
1998     // These types are never variably-modified.
1999     case Type::Builtin:
2000     case Type::Complex:
2001     case Type::Vector:
2002     case Type::ExtVector:
2003     case Type::Record:
2004     case Type::Enum:
2005     case Type::Elaborated:
2006     case Type::TemplateSpecialization:
2007     case Type::ObjCTypeParam:
2008     case Type::ObjCObject:
2009     case Type::ObjCInterface:
2010     case Type::ObjCObjectPointer:
2011     case Type::ExtInt:
2012       llvm_unreachable("type class is never variably-modified!");
2013 
2014     case Type::Adjusted:
2015       type = cast<AdjustedType>(ty)->getAdjustedType();
2016       break;
2017 
2018     case Type::Decayed:
2019       type = cast<DecayedType>(ty)->getPointeeType();
2020       break;
2021 
2022     case Type::Pointer:
2023       type = cast<PointerType>(ty)->getPointeeType();
2024       break;
2025 
2026     case Type::BlockPointer:
2027       type = cast<BlockPointerType>(ty)->getPointeeType();
2028       break;
2029 
2030     case Type::LValueReference:
2031     case Type::RValueReference:
2032       type = cast<ReferenceType>(ty)->getPointeeType();
2033       break;
2034 
2035     case Type::MemberPointer:
2036       type = cast<MemberPointerType>(ty)->getPointeeType();
2037       break;
2038 
2039     case Type::ConstantArray:
2040     case Type::IncompleteArray:
2041       // Losing element qualification here is fine.
2042       type = cast<ArrayType>(ty)->getElementType();
2043       break;
2044 
2045     case Type::VariableArray: {
2046       // Losing element qualification here is fine.
2047       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2048 
2049       // Unknown size indication requires no size computation.
2050       // Otherwise, evaluate and record it.
2051       if (const Expr *size = vat->getSizeExpr()) {
2052         // It's possible that we might have emitted this already,
2053         // e.g. with a typedef and a pointer to it.
2054         llvm::Value *&entry = VLASizeMap[size];
2055         if (!entry) {
2056           llvm::Value *Size = EmitScalarExpr(size);
2057 
2058           // C11 6.7.6.2p5:
2059           //   If the size is an expression that is not an integer constant
2060           //   expression [...] each time it is evaluated it shall have a value
2061           //   greater than zero.
2062           if (SanOpts.has(SanitizerKind::VLABound) &&
2063               size->getType()->isSignedIntegerType()) {
2064             SanitizerScope SanScope(this);
2065             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2066             llvm::Constant *StaticArgs[] = {
2067                 EmitCheckSourceLocation(size->getBeginLoc()),
2068                 EmitCheckTypeDescriptor(size->getType())};
2069             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2070                                      SanitizerKind::VLABound),
2071                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2072           }
2073 
2074           // Always zexting here would be wrong if it weren't
2075           // undefined behavior to have a negative bound.
2076           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2077         }
2078       }
2079       type = vat->getElementType();
2080       break;
2081     }
2082 
2083     case Type::FunctionProto:
2084     case Type::FunctionNoProto:
2085       type = cast<FunctionType>(ty)->getReturnType();
2086       break;
2087 
2088     case Type::Paren:
2089     case Type::TypeOf:
2090     case Type::UnaryTransform:
2091     case Type::Attributed:
2092     case Type::SubstTemplateTypeParm:
2093     case Type::PackExpansion:
2094     case Type::MacroQualified:
2095       // Keep walking after single level desugaring.
2096       type = type.getSingleStepDesugaredType(getContext());
2097       break;
2098 
2099     case Type::Typedef:
2100     case Type::Decltype:
2101     case Type::Auto:
2102     case Type::DeducedTemplateSpecialization:
2103       // Stop walking: nothing to do.
2104       return;
2105 
2106     case Type::TypeOfExpr:
2107       // Stop walking: emit typeof expression.
2108       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2109       return;
2110 
2111     case Type::Atomic:
2112       type = cast<AtomicType>(ty)->getValueType();
2113       break;
2114 
2115     case Type::Pipe:
2116       type = cast<PipeType>(ty)->getElementType();
2117       break;
2118     }
2119   } while (type->isVariablyModifiedType());
2120 }
2121 
2122 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2123   if (getContext().getBuiltinVaListType()->isArrayType())
2124     return EmitPointerWithAlignment(E);
2125   return EmitLValue(E).getAddress(*this);
2126 }
2127 
2128 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2129   return EmitLValue(E).getAddress(*this);
2130 }
2131 
2132 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2133                                               const APValue &Init) {
2134   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2135   if (CGDebugInfo *Dbg = getDebugInfo())
2136     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2137       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2138 }
2139 
2140 CodeGenFunction::PeepholeProtection
2141 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2142   // At the moment, the only aggressive peephole we do in IR gen
2143   // is trunc(zext) folding, but if we add more, we can easily
2144   // extend this protection.
2145 
2146   if (!rvalue.isScalar()) return PeepholeProtection();
2147   llvm::Value *value = rvalue.getScalarVal();
2148   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2149 
2150   // Just make an extra bitcast.
2151   assert(HaveInsertPoint());
2152   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2153                                                   Builder.GetInsertBlock());
2154 
2155   PeepholeProtection protection;
2156   protection.Inst = inst;
2157   return protection;
2158 }
2159 
2160 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2161   if (!protection.Inst) return;
2162 
2163   // In theory, we could try to duplicate the peepholes now, but whatever.
2164   protection.Inst->eraseFromParent();
2165 }
2166 
2167 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2168                                               QualType Ty, SourceLocation Loc,
2169                                               SourceLocation AssumptionLoc,
2170                                               llvm::Value *Alignment,
2171                                               llvm::Value *OffsetValue) {
2172   llvm::Value *TheCheck;
2173   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2174       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2175   if (SanOpts.has(SanitizerKind::Alignment)) {
2176     emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2177                                  OffsetValue, TheCheck, Assumption);
2178   }
2179 }
2180 
2181 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2182                                               const Expr *E,
2183                                               SourceLocation AssumptionLoc,
2184                                               llvm::Value *Alignment,
2185                                               llvm::Value *OffsetValue) {
2186   if (auto *CE = dyn_cast<CastExpr>(E))
2187     E = CE->getSubExprAsWritten();
2188   QualType Ty = E->getType();
2189   SourceLocation Loc = E->getExprLoc();
2190 
2191   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2192                           OffsetValue);
2193 }
2194 
2195 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2196                                                  llvm::Value *AnnotatedVal,
2197                                                  StringRef AnnotationStr,
2198                                                  SourceLocation Location) {
2199   llvm::Value *Args[4] = {
2200     AnnotatedVal,
2201     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2202     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2203     CGM.EmitAnnotationLineNo(Location)
2204   };
2205   return Builder.CreateCall(AnnotationFn, Args);
2206 }
2207 
2208 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2209   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2210   // FIXME We create a new bitcast for every annotation because that's what
2211   // llvm-gcc was doing.
2212   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2213     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2214                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2215                        I->getAnnotation(), D->getLocation());
2216 }
2217 
2218 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2219                                               Address Addr) {
2220   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2221   llvm::Value *V = Addr.getPointer();
2222   llvm::Type *VTy = V->getType();
2223   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2224                                     CGM.Int8PtrTy);
2225 
2226   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2227     // FIXME Always emit the cast inst so we can differentiate between
2228     // annotation on the first field of a struct and annotation on the struct
2229     // itself.
2230     if (VTy != CGM.Int8PtrTy)
2231       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2232     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2233     V = Builder.CreateBitCast(V, VTy);
2234   }
2235 
2236   return Address(V, Addr.getAlignment());
2237 }
2238 
2239 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2240 
2241 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2242     : CGF(CGF) {
2243   assert(!CGF->IsSanitizerScope);
2244   CGF->IsSanitizerScope = true;
2245 }
2246 
2247 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2248   CGF->IsSanitizerScope = false;
2249 }
2250 
2251 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2252                                    const llvm::Twine &Name,
2253                                    llvm::BasicBlock *BB,
2254                                    llvm::BasicBlock::iterator InsertPt) const {
2255   LoopStack.InsertHelper(I);
2256   if (IsSanitizerScope)
2257     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2258 }
2259 
2260 void CGBuilderInserter::InsertHelper(
2261     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2262     llvm::BasicBlock::iterator InsertPt) const {
2263   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2264   if (CGF)
2265     CGF->InsertHelper(I, Name, BB, InsertPt);
2266 }
2267 
2268 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2269                                 CodeGenModule &CGM, const FunctionDecl *FD,
2270                                 std::string &FirstMissing) {
2271   // If there aren't any required features listed then go ahead and return.
2272   if (ReqFeatures.empty())
2273     return false;
2274 
2275   // Now build up the set of caller features and verify that all the required
2276   // features are there.
2277   llvm::StringMap<bool> CallerFeatureMap;
2278   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2279 
2280   // If we have at least one of the features in the feature list return
2281   // true, otherwise return false.
2282   return std::all_of(
2283       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2284         SmallVector<StringRef, 1> OrFeatures;
2285         Feature.split(OrFeatures, '|');
2286         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2287           if (!CallerFeatureMap.lookup(Feature)) {
2288             FirstMissing = Feature.str();
2289             return false;
2290           }
2291           return true;
2292         });
2293       });
2294 }
2295 
2296 // Emits an error if we don't have a valid set of target features for the
2297 // called function.
2298 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2299                                           const FunctionDecl *TargetDecl) {
2300   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2301 }
2302 
2303 // Emits an error if we don't have a valid set of target features for the
2304 // called function.
2305 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2306                                           const FunctionDecl *TargetDecl) {
2307   // Early exit if this is an indirect call.
2308   if (!TargetDecl)
2309     return;
2310 
2311   // Get the current enclosing function if it exists. If it doesn't
2312   // we can't check the target features anyhow.
2313   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2314   if (!FD)
2315     return;
2316 
2317   // Grab the required features for the call. For a builtin this is listed in
2318   // the td file with the default cpu, for an always_inline function this is any
2319   // listed cpu and any listed features.
2320   unsigned BuiltinID = TargetDecl->getBuiltinID();
2321   std::string MissingFeature;
2322   if (BuiltinID) {
2323     SmallVector<StringRef, 1> ReqFeatures;
2324     const char *FeatureList =
2325         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2326     // Return if the builtin doesn't have any required features.
2327     if (!FeatureList || StringRef(FeatureList) == "")
2328       return;
2329     StringRef(FeatureList).split(ReqFeatures, ',');
2330     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2331       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2332           << TargetDecl->getDeclName()
2333           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2334 
2335   } else if (!TargetDecl->isMultiVersion() &&
2336              TargetDecl->hasAttr<TargetAttr>()) {
2337     // Get the required features for the callee.
2338 
2339     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2340     ParsedTargetAttr ParsedAttr =
2341         CGM.getContext().filterFunctionTargetAttrs(TD);
2342 
2343     SmallVector<StringRef, 1> ReqFeatures;
2344     llvm::StringMap<bool> CalleeFeatureMap;
2345     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2346 
2347     for (const auto &F : ParsedAttr.Features) {
2348       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2349         ReqFeatures.push_back(StringRef(F).substr(1));
2350     }
2351 
2352     for (const auto &F : CalleeFeatureMap) {
2353       // Only positive features are "required".
2354       if (F.getValue())
2355         ReqFeatures.push_back(F.getKey());
2356     }
2357     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2358       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2359           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2360   }
2361 }
2362 
2363 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2364   if (!CGM.getCodeGenOpts().SanitizeStats)
2365     return;
2366 
2367   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2368   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2369   CGM.getSanStats().create(IRB, SSK);
2370 }
2371 
2372 llvm::Value *
2373 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2374   llvm::Value *Condition = nullptr;
2375 
2376   if (!RO.Conditions.Architecture.empty())
2377     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2378 
2379   if (!RO.Conditions.Features.empty()) {
2380     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2381     Condition =
2382         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2383   }
2384   return Condition;
2385 }
2386 
2387 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2388                                              llvm::Function *Resolver,
2389                                              CGBuilderTy &Builder,
2390                                              llvm::Function *FuncToReturn,
2391                                              bool SupportsIFunc) {
2392   if (SupportsIFunc) {
2393     Builder.CreateRet(FuncToReturn);
2394     return;
2395   }
2396 
2397   llvm::SmallVector<llvm::Value *, 10> Args;
2398   llvm::for_each(Resolver->args(),
2399                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2400 
2401   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2402   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2403 
2404   if (Resolver->getReturnType()->isVoidTy())
2405     Builder.CreateRetVoid();
2406   else
2407     Builder.CreateRet(Result);
2408 }
2409 
2410 void CodeGenFunction::EmitMultiVersionResolver(
2411     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2412   assert(getContext().getTargetInfo().getTriple().isX86() &&
2413          "Only implemented for x86 targets");
2414 
2415   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2416 
2417   // Main function's basic block.
2418   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2419   Builder.SetInsertPoint(CurBlock);
2420   EmitX86CpuInit();
2421 
2422   for (const MultiVersionResolverOption &RO : Options) {
2423     Builder.SetInsertPoint(CurBlock);
2424     llvm::Value *Condition = FormResolverCondition(RO);
2425 
2426     // The 'default' or 'generic' case.
2427     if (!Condition) {
2428       assert(&RO == Options.end() - 1 &&
2429              "Default or Generic case must be last");
2430       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2431                                        SupportsIFunc);
2432       return;
2433     }
2434 
2435     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2436     CGBuilderTy RetBuilder(*this, RetBlock);
2437     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2438                                      SupportsIFunc);
2439     CurBlock = createBasicBlock("resolver_else", Resolver);
2440     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2441   }
2442 
2443   // If no generic/default, emit an unreachable.
2444   Builder.SetInsertPoint(CurBlock);
2445   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2446   TrapCall->setDoesNotReturn();
2447   TrapCall->setDoesNotThrow();
2448   Builder.CreateUnreachable();
2449   Builder.ClearInsertionPoint();
2450 }
2451 
2452 // Loc - where the diagnostic will point, where in the source code this
2453 //  alignment has failed.
2454 // SecondaryLoc - if present (will be present if sufficiently different from
2455 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2456 //  It should be the location where the __attribute__((assume_aligned))
2457 //  was written e.g.
2458 void CodeGenFunction::emitAlignmentAssumptionCheck(
2459     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2460     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2461     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2462     llvm::Instruction *Assumption) {
2463   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2464          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2465              llvm::Intrinsic::getDeclaration(
2466                  Builder.GetInsertBlock()->getParent()->getParent(),
2467                  llvm::Intrinsic::assume) &&
2468          "Assumption should be a call to llvm.assume().");
2469   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2470          "Assumption should be the last instruction of the basic block, "
2471          "since the basic block is still being generated.");
2472 
2473   if (!SanOpts.has(SanitizerKind::Alignment))
2474     return;
2475 
2476   // Don't check pointers to volatile data. The behavior here is implementation-
2477   // defined.
2478   if (Ty->getPointeeType().isVolatileQualified())
2479     return;
2480 
2481   // We need to temorairly remove the assumption so we can insert the
2482   // sanitizer check before it, else the check will be dropped by optimizations.
2483   Assumption->removeFromParent();
2484 
2485   {
2486     SanitizerScope SanScope(this);
2487 
2488     if (!OffsetValue)
2489       OffsetValue = Builder.getInt1(0); // no offset.
2490 
2491     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2492                                     EmitCheckSourceLocation(SecondaryLoc),
2493                                     EmitCheckTypeDescriptor(Ty)};
2494     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2495                                   EmitCheckValue(Alignment),
2496                                   EmitCheckValue(OffsetValue)};
2497     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2498               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2499   }
2500 
2501   // We are now in the (new, empty) "cont" basic block.
2502   // Reintroduce the assumption.
2503   Builder.Insert(Assumption);
2504   // FIXME: Assumption still has it's original basic block as it's Parent.
2505 }
2506 
2507 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2508   if (CGDebugInfo *DI = getDebugInfo())
2509     return DI->SourceLocToDebugLoc(Location);
2510 
2511   return llvm::DebugLoc();
2512 }
2513