1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Operator.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
42 /// markers.
43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
44                                       const LangOptions &LangOpts) {
45   // Asan uses markers for use-after-scope checks.
46   if (CGOpts.SanitizeAddressUseAfterScope)
47     return true;
48 
49   // Disable lifetime markers in msan builds.
50   // FIXME: Remove this when msan works with lifetime markers.
51   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
52     return false;
53 
54   // For now, only in optimized builds.
55   return CGOpts.OptimizationLevel != 0;
56 }
57 
58 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
59     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
60       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
61               CGBuilderInserterTy(this)),
62       CurFn(nullptr), ReturnValue(Address::invalid()),
63       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
64       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
65       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
66       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
67       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
68       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
69       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
70       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
71       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
72       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
73       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
74       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
75       CXXStructorImplicitParamDecl(nullptr),
76       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
77       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
78       TerminateHandler(nullptr), TrapBB(nullptr),
79       ShouldEmitLifetimeMarkers(
80           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
81   if (!suppressNewContext)
82     CGM.getCXXABI().getMangleContext().startNewFunction();
83 
84   llvm::FastMathFlags FMF;
85   if (CGM.getLangOpts().FastMath)
86     FMF.setUnsafeAlgebra();
87   if (CGM.getLangOpts().FiniteMathOnly) {
88     FMF.setNoNaNs();
89     FMF.setNoInfs();
90   }
91   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
92     FMF.setNoNaNs();
93   }
94   if (CGM.getCodeGenOpts().NoSignedZeros) {
95     FMF.setNoSignedZeros();
96   }
97   if (CGM.getCodeGenOpts().ReciprocalMath) {
98     FMF.setAllowReciprocal();
99   }
100   Builder.setFastMathFlags(FMF);
101 }
102 
103 CodeGenFunction::~CodeGenFunction() {
104   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
105 
106   // If there are any unclaimed block infos, go ahead and destroy them
107   // now.  This can happen if IR-gen gets clever and skips evaluating
108   // something.
109   if (FirstBlockInfo)
110     destroyBlockInfos(FirstBlockInfo);
111 
112   if (getLangOpts().OpenMP) {
113     CGM.getOpenMPRuntime().functionFinished(*this);
114   }
115 }
116 
117 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
118                                                      AlignmentSource *Source) {
119   return getNaturalTypeAlignment(T->getPointeeType(), Source,
120                                  /*forPointee*/ true);
121 }
122 
123 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
124                                                    AlignmentSource *Source,
125                                                    bool forPointeeType) {
126   // Honor alignment typedef attributes even on incomplete types.
127   // We also honor them straight for C++ class types, even as pointees;
128   // there's an expressivity gap here.
129   if (auto TT = T->getAs<TypedefType>()) {
130     if (auto Align = TT->getDecl()->getMaxAlignment()) {
131       if (Source) *Source = AlignmentSource::AttributedType;
132       return getContext().toCharUnitsFromBits(Align);
133     }
134   }
135 
136   if (Source) *Source = AlignmentSource::Type;
137 
138   CharUnits Alignment;
139   if (T->isIncompleteType()) {
140     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
141   } else {
142     // For C++ class pointees, we don't know whether we're pointing at a
143     // base or a complete object, so we generally need to use the
144     // non-virtual alignment.
145     const CXXRecordDecl *RD;
146     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
147       Alignment = CGM.getClassPointerAlignment(RD);
148     } else {
149       Alignment = getContext().getTypeAlignInChars(T);
150     }
151 
152     // Cap to the global maximum type alignment unless the alignment
153     // was somehow explicit on the type.
154     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
155       if (Alignment.getQuantity() > MaxAlign &&
156           !getContext().isAlignmentRequired(T))
157         Alignment = CharUnits::fromQuantity(MaxAlign);
158     }
159   }
160   return Alignment;
161 }
162 
163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
164   AlignmentSource AlignSource;
165   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
166   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
167                           CGM.getTBAAInfo(T));
168 }
169 
170 /// Given a value of type T* that may not be to a complete object,
171 /// construct an l-value with the natural pointee alignment of T.
172 LValue
173 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
174   AlignmentSource AlignSource;
175   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
176   return MakeAddrLValue(Address(V, Align), T, AlignSource);
177 }
178 
179 
180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
181   return CGM.getTypes().ConvertTypeForMem(T);
182 }
183 
184 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
185   return CGM.getTypes().ConvertType(T);
186 }
187 
188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
189   type = type.getCanonicalType();
190   while (true) {
191     switch (type->getTypeClass()) {
192 #define TYPE(name, parent)
193 #define ABSTRACT_TYPE(name, parent)
194 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
195 #define DEPENDENT_TYPE(name, parent) case Type::name:
196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
197 #include "clang/AST/TypeNodes.def"
198       llvm_unreachable("non-canonical or dependent type in IR-generation");
199 
200     case Type::Auto:
201       llvm_unreachable("undeduced auto type in IR-generation");
202 
203     // Various scalar types.
204     case Type::Builtin:
205     case Type::Pointer:
206     case Type::BlockPointer:
207     case Type::LValueReference:
208     case Type::RValueReference:
209     case Type::MemberPointer:
210     case Type::Vector:
211     case Type::ExtVector:
212     case Type::FunctionProto:
213     case Type::FunctionNoProto:
214     case Type::Enum:
215     case Type::ObjCObjectPointer:
216     case Type::Pipe:
217       return TEK_Scalar;
218 
219     // Complexes.
220     case Type::Complex:
221       return TEK_Complex;
222 
223     // Arrays, records, and Objective-C objects.
224     case Type::ConstantArray:
225     case Type::IncompleteArray:
226     case Type::VariableArray:
227     case Type::Record:
228     case Type::ObjCObject:
229     case Type::ObjCInterface:
230       return TEK_Aggregate;
231 
232     // We operate on atomic values according to their underlying type.
233     case Type::Atomic:
234       type = cast<AtomicType>(type)->getValueType();
235       continue;
236     }
237     llvm_unreachable("unknown type kind!");
238   }
239 }
240 
241 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
242   // For cleanliness, we try to avoid emitting the return block for
243   // simple cases.
244   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
245 
246   if (CurBB) {
247     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
248 
249     // We have a valid insert point, reuse it if it is empty or there are no
250     // explicit jumps to the return block.
251     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
252       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
253       delete ReturnBlock.getBlock();
254     } else
255       EmitBlock(ReturnBlock.getBlock());
256     return llvm::DebugLoc();
257   }
258 
259   // Otherwise, if the return block is the target of a single direct
260   // branch then we can just put the code in that block instead. This
261   // cleans up functions which started with a unified return block.
262   if (ReturnBlock.getBlock()->hasOneUse()) {
263     llvm::BranchInst *BI =
264       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
265     if (BI && BI->isUnconditional() &&
266         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
267       // Record/return the DebugLoc of the simple 'return' expression to be used
268       // later by the actual 'ret' instruction.
269       llvm::DebugLoc Loc = BI->getDebugLoc();
270       Builder.SetInsertPoint(BI->getParent());
271       BI->eraseFromParent();
272       delete ReturnBlock.getBlock();
273       return Loc;
274     }
275   }
276 
277   // FIXME: We are at an unreachable point, there is no reason to emit the block
278   // unless it has uses. However, we still need a place to put the debug
279   // region.end for now.
280 
281   EmitBlock(ReturnBlock.getBlock());
282   return llvm::DebugLoc();
283 }
284 
285 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
286   if (!BB) return;
287   if (!BB->use_empty())
288     return CGF.CurFn->getBasicBlockList().push_back(BB);
289   delete BB;
290 }
291 
292 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
293   assert(BreakContinueStack.empty() &&
294          "mismatched push/pop in break/continue stack!");
295 
296   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
297     && NumSimpleReturnExprs == NumReturnExprs
298     && ReturnBlock.getBlock()->use_empty();
299   // Usually the return expression is evaluated before the cleanup
300   // code.  If the function contains only a simple return statement,
301   // such as a constant, the location before the cleanup code becomes
302   // the last useful breakpoint in the function, because the simple
303   // return expression will be evaluated after the cleanup code. To be
304   // safe, set the debug location for cleanup code to the location of
305   // the return statement.  Otherwise the cleanup code should be at the
306   // end of the function's lexical scope.
307   //
308   // If there are multiple branches to the return block, the branch
309   // instructions will get the location of the return statements and
310   // all will be fine.
311   if (CGDebugInfo *DI = getDebugInfo()) {
312     if (OnlySimpleReturnStmts)
313       DI->EmitLocation(Builder, LastStopPoint);
314     else
315       DI->EmitLocation(Builder, EndLoc);
316   }
317 
318   // Pop any cleanups that might have been associated with the
319   // parameters.  Do this in whatever block we're currently in; it's
320   // important to do this before we enter the return block or return
321   // edges will be *really* confused.
322   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
323   bool HasOnlyLifetimeMarkers =
324       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
325   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
326   if (HasCleanups) {
327     // Make sure the line table doesn't jump back into the body for
328     // the ret after it's been at EndLoc.
329     if (CGDebugInfo *DI = getDebugInfo())
330       if (OnlySimpleReturnStmts)
331         DI->EmitLocation(Builder, EndLoc);
332 
333     PopCleanupBlocks(PrologueCleanupDepth);
334   }
335 
336   // Emit function epilog (to return).
337   llvm::DebugLoc Loc = EmitReturnBlock();
338 
339   if (ShouldInstrumentFunction())
340     EmitFunctionInstrumentation("__cyg_profile_func_exit");
341 
342   // Emit debug descriptor for function end.
343   if (CGDebugInfo *DI = getDebugInfo())
344     DI->EmitFunctionEnd(Builder);
345 
346   // Reset the debug location to that of the simple 'return' expression, if any
347   // rather than that of the end of the function's scope '}'.
348   ApplyDebugLocation AL(*this, Loc);
349   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
350   EmitEndEHSpec(CurCodeDecl);
351 
352   assert(EHStack.empty() &&
353          "did not remove all scopes from cleanup stack!");
354 
355   // If someone did an indirect goto, emit the indirect goto block at the end of
356   // the function.
357   if (IndirectBranch) {
358     EmitBlock(IndirectBranch->getParent());
359     Builder.ClearInsertionPoint();
360   }
361 
362   // If some of our locals escaped, insert a call to llvm.localescape in the
363   // entry block.
364   if (!EscapedLocals.empty()) {
365     // Invert the map from local to index into a simple vector. There should be
366     // no holes.
367     SmallVector<llvm::Value *, 4> EscapeArgs;
368     EscapeArgs.resize(EscapedLocals.size());
369     for (auto &Pair : EscapedLocals)
370       EscapeArgs[Pair.second] = Pair.first;
371     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
372         &CGM.getModule(), llvm::Intrinsic::localescape);
373     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
374   }
375 
376   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
377   llvm::Instruction *Ptr = AllocaInsertPt;
378   AllocaInsertPt = nullptr;
379   Ptr->eraseFromParent();
380 
381   // If someone took the address of a label but never did an indirect goto, we
382   // made a zero entry PHI node, which is illegal, zap it now.
383   if (IndirectBranch) {
384     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
385     if (PN->getNumIncomingValues() == 0) {
386       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
387       PN->eraseFromParent();
388     }
389   }
390 
391   EmitIfUsed(*this, EHResumeBlock);
392   EmitIfUsed(*this, TerminateLandingPad);
393   EmitIfUsed(*this, TerminateHandler);
394   EmitIfUsed(*this, UnreachableBlock);
395 
396   if (CGM.getCodeGenOpts().EmitDeclMetadata)
397     EmitDeclMetadata();
398 
399   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
400            I = DeferredReplacements.begin(),
401            E = DeferredReplacements.end();
402        I != E; ++I) {
403     I->first->replaceAllUsesWith(I->second);
404     I->first->eraseFromParent();
405   }
406 }
407 
408 /// ShouldInstrumentFunction - Return true if the current function should be
409 /// instrumented with __cyg_profile_func_* calls
410 bool CodeGenFunction::ShouldInstrumentFunction() {
411   if (!CGM.getCodeGenOpts().InstrumentFunctions)
412     return false;
413   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
414     return false;
415   return true;
416 }
417 
418 /// ShouldXRayInstrument - Return true if the current function should be
419 /// instrumented with XRay nop sleds.
420 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
421   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
422 }
423 
424 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
425 /// instrumentation function with the current function and the call site, if
426 /// function instrumentation is enabled.
427 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
428   auto NL = ApplyDebugLocation::CreateArtificial(*this);
429   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
430   llvm::PointerType *PointerTy = Int8PtrTy;
431   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
432   llvm::FunctionType *FunctionTy =
433     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
434 
435   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
436   llvm::CallInst *CallSite = Builder.CreateCall(
437     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
438     llvm::ConstantInt::get(Int32Ty, 0),
439     "callsite");
440 
441   llvm::Value *args[] = {
442     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
443     CallSite
444   };
445 
446   EmitNounwindRuntimeCall(F, args);
447 }
448 
449 static void removeImageAccessQualifier(std::string& TyName) {
450   std::string ReadOnlyQual("__read_only");
451   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
452   if (ReadOnlyPos != std::string::npos)
453     // "+ 1" for the space after access qualifier.
454     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
455   else {
456     std::string WriteOnlyQual("__write_only");
457     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
458     if (WriteOnlyPos != std::string::npos)
459       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
460     else {
461       std::string ReadWriteQual("__read_write");
462       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
463       if (ReadWritePos != std::string::npos)
464         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
465     }
466   }
467 }
468 
469 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
470 // information in the program executable. The argument information stored
471 // includes the argument name, its type, the address and access qualifiers used.
472 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
473                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
474                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
475   // Create MDNodes that represent the kernel arg metadata.
476   // Each MDNode is a list in the form of "key", N number of values which is
477   // the same number of values as their are kernel arguments.
478 
479   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
480 
481   // MDNode for the kernel argument address space qualifiers.
482   SmallVector<llvm::Metadata *, 8> addressQuals;
483 
484   // MDNode for the kernel argument access qualifiers (images only).
485   SmallVector<llvm::Metadata *, 8> accessQuals;
486 
487   // MDNode for the kernel argument type names.
488   SmallVector<llvm::Metadata *, 8> argTypeNames;
489 
490   // MDNode for the kernel argument base type names.
491   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
492 
493   // MDNode for the kernel argument type qualifiers.
494   SmallVector<llvm::Metadata *, 8> argTypeQuals;
495 
496   // MDNode for the kernel argument names.
497   SmallVector<llvm::Metadata *, 8> argNames;
498 
499   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
500     const ParmVarDecl *parm = FD->getParamDecl(i);
501     QualType ty = parm->getType();
502     std::string typeQuals;
503 
504     if (ty->isPointerType()) {
505       QualType pointeeTy = ty->getPointeeType();
506 
507       // Get address qualifier.
508       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
509           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
510 
511       // Get argument type name.
512       std::string typeName =
513           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
514 
515       // Turn "unsigned type" to "utype"
516       std::string::size_type pos = typeName.find("unsigned");
517       if (pointeeTy.isCanonical() && pos != std::string::npos)
518         typeName.erase(pos+1, 8);
519 
520       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
521 
522       std::string baseTypeName =
523           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
524               Policy) +
525           "*";
526 
527       // Turn "unsigned type" to "utype"
528       pos = baseTypeName.find("unsigned");
529       if (pos != std::string::npos)
530         baseTypeName.erase(pos+1, 8);
531 
532       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
533 
534       // Get argument type qualifiers:
535       if (ty.isRestrictQualified())
536         typeQuals = "restrict";
537       if (pointeeTy.isConstQualified() ||
538           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
539         typeQuals += typeQuals.empty() ? "const" : " const";
540       if (pointeeTy.isVolatileQualified())
541         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
542     } else {
543       uint32_t AddrSpc = 0;
544       bool isPipe = ty->isPipeType();
545       if (ty->isImageType() || isPipe)
546         AddrSpc =
547           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
548 
549       addressQuals.push_back(
550           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
551 
552       // Get argument type name.
553       std::string typeName;
554       if (isPipe)
555         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
556                      .getAsString(Policy);
557       else
558         typeName = ty.getUnqualifiedType().getAsString(Policy);
559 
560       // Turn "unsigned type" to "utype"
561       std::string::size_type pos = typeName.find("unsigned");
562       if (ty.isCanonical() && pos != std::string::npos)
563         typeName.erase(pos+1, 8);
564 
565       std::string baseTypeName;
566       if (isPipe)
567         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
568                           ->getElementType().getCanonicalType()
569                           .getAsString(Policy);
570       else
571         baseTypeName =
572           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
573 
574       // Remove access qualifiers on images
575       // (as they are inseparable from type in clang implementation,
576       // but OpenCL spec provides a special query to get access qualifier
577       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
578       if (ty->isImageType()) {
579         removeImageAccessQualifier(typeName);
580         removeImageAccessQualifier(baseTypeName);
581       }
582 
583       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
584 
585       // Turn "unsigned type" to "utype"
586       pos = baseTypeName.find("unsigned");
587       if (pos != std::string::npos)
588         baseTypeName.erase(pos+1, 8);
589 
590       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
591 
592       // Get argument type qualifiers:
593       if (ty.isConstQualified())
594         typeQuals = "const";
595       if (ty.isVolatileQualified())
596         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
597       if (isPipe)
598         typeQuals = "pipe";
599     }
600 
601     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
602 
603     // Get image and pipe access qualifier:
604     if (ty->isImageType()|| ty->isPipeType()) {
605       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
606       if (A && A->isWriteOnly())
607         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
608       else if (A && A->isReadWrite())
609         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
610       else
611         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
612     } else
613       accessQuals.push_back(llvm::MDString::get(Context, "none"));
614 
615     // Get argument name.
616     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
617   }
618 
619   Fn->setMetadata("kernel_arg_addr_space",
620                   llvm::MDNode::get(Context, addressQuals));
621   Fn->setMetadata("kernel_arg_access_qual",
622                   llvm::MDNode::get(Context, accessQuals));
623   Fn->setMetadata("kernel_arg_type",
624                   llvm::MDNode::get(Context, argTypeNames));
625   Fn->setMetadata("kernel_arg_base_type",
626                   llvm::MDNode::get(Context, argBaseTypeNames));
627   Fn->setMetadata("kernel_arg_type_qual",
628                   llvm::MDNode::get(Context, argTypeQuals));
629   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
630     Fn->setMetadata("kernel_arg_name",
631                     llvm::MDNode::get(Context, argNames));
632 }
633 
634 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
635                                                llvm::Function *Fn)
636 {
637   if (!FD->hasAttr<OpenCLKernelAttr>())
638     return;
639 
640   llvm::LLVMContext &Context = getLLVMContext();
641 
642   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
643 
644   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
645     QualType hintQTy = A->getTypeHint();
646     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
647     bool isSignedInteger =
648         hintQTy->isSignedIntegerType() ||
649         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
650     llvm::Metadata *attrMDArgs[] = {
651         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
652             CGM.getTypes().ConvertType(A->getTypeHint()))),
653         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
654             llvm::IntegerType::get(Context, 32),
655             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
656     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
657   }
658 
659   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
660     llvm::Metadata *attrMDArgs[] = {
661         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
662         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
663         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
664     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
665   }
666 
667   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
668     llvm::Metadata *attrMDArgs[] = {
669         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
670         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
671         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
672     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
673   }
674 }
675 
676 /// Determine whether the function F ends with a return stmt.
677 static bool endsWithReturn(const Decl* F) {
678   const Stmt *Body = nullptr;
679   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
680     Body = FD->getBody();
681   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
682     Body = OMD->getBody();
683 
684   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
685     auto LastStmt = CS->body_rbegin();
686     if (LastStmt != CS->body_rend())
687       return isa<ReturnStmt>(*LastStmt);
688   }
689   return false;
690 }
691 
692 void CodeGenFunction::StartFunction(GlobalDecl GD,
693                                     QualType RetTy,
694                                     llvm::Function *Fn,
695                                     const CGFunctionInfo &FnInfo,
696                                     const FunctionArgList &Args,
697                                     SourceLocation Loc,
698                                     SourceLocation StartLoc) {
699   assert(!CurFn &&
700          "Do not use a CodeGenFunction object for more than one function");
701 
702   const Decl *D = GD.getDecl();
703 
704   DidCallStackSave = false;
705   CurCodeDecl = D;
706   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
707     if (FD->usesSEHTry())
708       CurSEHParent = FD;
709   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
710   FnRetTy = RetTy;
711   CurFn = Fn;
712   CurFnInfo = &FnInfo;
713   assert(CurFn->isDeclaration() && "Function already has body?");
714 
715   if (CGM.isInSanitizerBlacklist(Fn, Loc))
716     SanOpts.clear();
717 
718   if (D) {
719     // Apply the no_sanitize* attributes to SanOpts.
720     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
721       SanOpts.Mask &= ~Attr->getMask();
722   }
723 
724   // Apply sanitizer attributes to the function.
725   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
726     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
727   if (SanOpts.has(SanitizerKind::Thread))
728     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
729   if (SanOpts.has(SanitizerKind::Memory))
730     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
731   if (SanOpts.has(SanitizerKind::SafeStack))
732     Fn->addFnAttr(llvm::Attribute::SafeStack);
733 
734   // Apply xray attributes to the function (as a string, for now)
735   if (D && ShouldXRayInstrumentFunction()) {
736     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
737       if (XRayAttr->alwaysXRayInstrument())
738         Fn->addFnAttr("function-instrument", "xray-always");
739       if (XRayAttr->neverXRayInstrument())
740         Fn->addFnAttr("function-instrument", "xray-never");
741     } else {
742       Fn->addFnAttr(
743           "xray-instruction-threshold",
744           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
745     }
746   }
747 
748   // Pass inline keyword to optimizer if it appears explicitly on any
749   // declaration. Also, in the case of -fno-inline attach NoInline
750   // attribute to all functions that are not marked AlwaysInline, or
751   // to all functions that are not marked inline or implicitly inline
752   // in the case of -finline-hint-functions.
753   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
754     const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts();
755     if (!CodeGenOpts.NoInline) {
756       for (auto RI : FD->redecls())
757         if (RI->isInlineSpecified()) {
758           Fn->addFnAttr(llvm::Attribute::InlineHint);
759           break;
760         }
761       if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining &&
762           !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint))
763         Fn->addFnAttr(llvm::Attribute::NoInline);
764     } else if (!FD->hasAttr<AlwaysInlineAttr>())
765       Fn->addFnAttr(llvm::Attribute::NoInline);
766     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
767       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
768   }
769 
770   // Add no-jump-tables value.
771   Fn->addFnAttr("no-jump-tables",
772                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
773 
774   if (getLangOpts().OpenCL) {
775     // Add metadata for a kernel function.
776     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
777       EmitOpenCLKernelMetadata(FD, Fn);
778   }
779 
780   // If we are checking function types, emit a function type signature as
781   // prologue data.
782   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
783     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
784       if (llvm::Constant *PrologueSig =
785               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
786         llvm::Constant *FTRTTIConst =
787             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
788         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
789         llvm::Constant *PrologueStructConst =
790             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
791         Fn->setPrologueData(PrologueStructConst);
792       }
793     }
794   }
795 
796   // If we're in C++ mode and the function name is "main", it is guaranteed
797   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
798   // used within a program").
799   if (getLangOpts().CPlusPlus)
800     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
801       if (FD->isMain())
802         Fn->addFnAttr(llvm::Attribute::NoRecurse);
803 
804   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
805 
806   // Create a marker to make it easy to insert allocas into the entryblock
807   // later.  Don't create this with the builder, because we don't want it
808   // folded.
809   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
810   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
811 
812   ReturnBlock = getJumpDestInCurrentScope("return");
813 
814   Builder.SetInsertPoint(EntryBB);
815 
816   // Emit subprogram debug descriptor.
817   if (CGDebugInfo *DI = getDebugInfo()) {
818     // Reconstruct the type from the argument list so that implicit parameters,
819     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
820     // convention.
821     CallingConv CC = CallingConv::CC_C;
822     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
823       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
824         CC = SrcFnTy->getCallConv();
825     SmallVector<QualType, 16> ArgTypes;
826     for (const VarDecl *VD : Args)
827       ArgTypes.push_back(VD->getType());
828     QualType FnType = getContext().getFunctionType(
829         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
830     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
831   }
832 
833   if (ShouldInstrumentFunction())
834     EmitFunctionInstrumentation("__cyg_profile_func_enter");
835 
836   // Since emitting the mcount call here impacts optimizations such as function
837   // inlining, we just add an attribute to insert a mcount call in backend.
838   // The attribute "counting-function" is set to mcount function name which is
839   // architecture dependent.
840   if (CGM.getCodeGenOpts().InstrumentForProfiling)
841     Fn->addFnAttr("counting-function", getTarget().getMCountName());
842 
843   if (RetTy->isVoidType()) {
844     // Void type; nothing to return.
845     ReturnValue = Address::invalid();
846 
847     // Count the implicit return.
848     if (!endsWithReturn(D))
849       ++NumReturnExprs;
850   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
851              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
852     // Indirect aggregate return; emit returned value directly into sret slot.
853     // This reduces code size, and affects correctness in C++.
854     auto AI = CurFn->arg_begin();
855     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
856       ++AI;
857     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
858   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
859              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
860     // Load the sret pointer from the argument struct and return into that.
861     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
862     llvm::Function::arg_iterator EI = CurFn->arg_end();
863     --EI;
864     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
865     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
866     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
867   } else {
868     ReturnValue = CreateIRTemp(RetTy, "retval");
869 
870     // Tell the epilog emitter to autorelease the result.  We do this
871     // now so that various specialized functions can suppress it
872     // during their IR-generation.
873     if (getLangOpts().ObjCAutoRefCount &&
874         !CurFnInfo->isReturnsRetained() &&
875         RetTy->isObjCRetainableType())
876       AutoreleaseResult = true;
877   }
878 
879   EmitStartEHSpec(CurCodeDecl);
880 
881   PrologueCleanupDepth = EHStack.stable_begin();
882   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
883 
884   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
885     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
886     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
887     if (MD->getParent()->isLambda() &&
888         MD->getOverloadedOperator() == OO_Call) {
889       // We're in a lambda; figure out the captures.
890       MD->getParent()->getCaptureFields(LambdaCaptureFields,
891                                         LambdaThisCaptureField);
892       if (LambdaThisCaptureField) {
893         // If the lambda captures the object referred to by '*this' - either by
894         // value or by reference, make sure CXXThisValue points to the correct
895         // object.
896 
897         // Get the lvalue for the field (which is a copy of the enclosing object
898         // or contains the address of the enclosing object).
899         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
900         if (!LambdaThisCaptureField->getType()->isPointerType()) {
901           // If the enclosing object was captured by value, just use its address.
902           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
903         } else {
904           // Load the lvalue pointed to by the field, since '*this' was captured
905           // by reference.
906           CXXThisValue =
907               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
908         }
909       }
910       for (auto *FD : MD->getParent()->fields()) {
911         if (FD->hasCapturedVLAType()) {
912           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
913                                            SourceLocation()).getScalarVal();
914           auto VAT = FD->getCapturedVLAType();
915           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
916         }
917       }
918     } else {
919       // Not in a lambda; just use 'this' from the method.
920       // FIXME: Should we generate a new load for each use of 'this'?  The
921       // fast register allocator would be happier...
922       CXXThisValue = CXXABIThisValue;
923     }
924   }
925 
926   // If any of the arguments have a variably modified type, make sure to
927   // emit the type size.
928   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
929        i != e; ++i) {
930     const VarDecl *VD = *i;
931 
932     // Dig out the type as written from ParmVarDecls; it's unclear whether
933     // the standard (C99 6.9.1p10) requires this, but we're following the
934     // precedent set by gcc.
935     QualType Ty;
936     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
937       Ty = PVD->getOriginalType();
938     else
939       Ty = VD->getType();
940 
941     if (Ty->isVariablyModifiedType())
942       EmitVariablyModifiedType(Ty);
943   }
944   // Emit a location at the end of the prologue.
945   if (CGDebugInfo *DI = getDebugInfo())
946     DI->EmitLocation(Builder, StartLoc);
947 }
948 
949 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
950                                        const Stmt *Body) {
951   incrementProfileCounter(Body);
952   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
953     EmitCompoundStmtWithoutScope(*S);
954   else
955     EmitStmt(Body);
956 }
957 
958 /// When instrumenting to collect profile data, the counts for some blocks
959 /// such as switch cases need to not include the fall-through counts, so
960 /// emit a branch around the instrumentation code. When not instrumenting,
961 /// this just calls EmitBlock().
962 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
963                                                const Stmt *S) {
964   llvm::BasicBlock *SkipCountBB = nullptr;
965   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
966     // When instrumenting for profiling, the fallthrough to certain
967     // statements needs to skip over the instrumentation code so that we
968     // get an accurate count.
969     SkipCountBB = createBasicBlock("skipcount");
970     EmitBranch(SkipCountBB);
971   }
972   EmitBlock(BB);
973   uint64_t CurrentCount = getCurrentProfileCount();
974   incrementProfileCounter(S);
975   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
976   if (SkipCountBB)
977     EmitBlock(SkipCountBB);
978 }
979 
980 /// Tries to mark the given function nounwind based on the
981 /// non-existence of any throwing calls within it.  We believe this is
982 /// lightweight enough to do at -O0.
983 static void TryMarkNoThrow(llvm::Function *F) {
984   // LLVM treats 'nounwind' on a function as part of the type, so we
985   // can't do this on functions that can be overwritten.
986   if (F->isInterposable()) return;
987 
988   for (llvm::BasicBlock &BB : *F)
989     for (llvm::Instruction &I : BB)
990       if (I.mayThrow())
991         return;
992 
993   F->setDoesNotThrow();
994 }
995 
996 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
997                                                FunctionArgList &Args) {
998   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
999   QualType ResTy = FD->getReturnType();
1000 
1001   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1002   if (MD && MD->isInstance()) {
1003     if (CGM.getCXXABI().HasThisReturn(GD))
1004       ResTy = MD->getThisType(getContext());
1005     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1006       ResTy = CGM.getContext().VoidPtrTy;
1007     CGM.getCXXABI().buildThisParam(*this, Args);
1008   }
1009 
1010   // The base version of an inheriting constructor whose constructed base is a
1011   // virtual base is not passed any arguments (because it doesn't actually call
1012   // the inherited constructor).
1013   bool PassedParams = true;
1014   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1015     if (auto Inherited = CD->getInheritedConstructor())
1016       PassedParams =
1017           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1018 
1019   if (PassedParams) {
1020     for (auto *Param : FD->parameters()) {
1021       Args.push_back(Param);
1022       if (!Param->hasAttr<PassObjectSizeAttr>())
1023         continue;
1024 
1025       IdentifierInfo *NoID = nullptr;
1026       auto *Implicit = ImplicitParamDecl::Create(
1027           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
1028           getContext().getSizeType());
1029       SizeArguments[Param] = Implicit;
1030       Args.push_back(Implicit);
1031     }
1032   }
1033 
1034   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1035     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1036 
1037   return ResTy;
1038 }
1039 
1040 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1041                                    const CGFunctionInfo &FnInfo) {
1042   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1043   CurGD = GD;
1044 
1045   FunctionArgList Args;
1046   QualType ResTy = BuildFunctionArgList(GD, Args);
1047 
1048   // Check if we should generate debug info for this function.
1049   if (FD->hasAttr<NoDebugAttr>())
1050     DebugInfo = nullptr; // disable debug info indefinitely for this function
1051 
1052   SourceRange BodyRange;
1053   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
1054   CurEHLocation = BodyRange.getEnd();
1055 
1056   // Use the location of the start of the function to determine where
1057   // the function definition is located. By default use the location
1058   // of the declaration as the location for the subprogram. A function
1059   // may lack a declaration in the source code if it is created by code
1060   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1061   SourceLocation Loc = FD->getLocation();
1062 
1063   // If this is a function specialization then use the pattern body
1064   // as the location for the function.
1065   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1066     if (SpecDecl->hasBody(SpecDecl))
1067       Loc = SpecDecl->getLocation();
1068 
1069   Stmt *Body = FD->getBody();
1070 
1071   // Initialize helper which will detect jumps which can cause invalid lifetime
1072   // markers.
1073   if (Body && ShouldEmitLifetimeMarkers)
1074     Bypasses.Init(Body);
1075 
1076   // Emit the standard function prologue.
1077   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1078 
1079   // Generate the body of the function.
1080   PGO.assignRegionCounters(GD, CurFn);
1081   if (isa<CXXDestructorDecl>(FD))
1082     EmitDestructorBody(Args);
1083   else if (isa<CXXConstructorDecl>(FD))
1084     EmitConstructorBody(Args);
1085   else if (getLangOpts().CUDA &&
1086            !getLangOpts().CUDAIsDevice &&
1087            FD->hasAttr<CUDAGlobalAttr>())
1088     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1089   else if (isa<CXXConversionDecl>(FD) &&
1090            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1091     // The lambda conversion to block pointer is special; the semantics can't be
1092     // expressed in the AST, so IRGen needs to special-case it.
1093     EmitLambdaToBlockPointerBody(Args);
1094   } else if (isa<CXXMethodDecl>(FD) &&
1095              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1096     // The lambda static invoker function is special, because it forwards or
1097     // clones the body of the function call operator (but is actually static).
1098     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1099   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1100              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1101               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1102     // Implicit copy-assignment gets the same special treatment as implicit
1103     // copy-constructors.
1104     emitImplicitAssignmentOperatorBody(Args);
1105   } else if (Body) {
1106     EmitFunctionBody(Args, Body);
1107   } else
1108     llvm_unreachable("no definition for emitted function");
1109 
1110   // C++11 [stmt.return]p2:
1111   //   Flowing off the end of a function [...] results in undefined behavior in
1112   //   a value-returning function.
1113   // C11 6.9.1p12:
1114   //   If the '}' that terminates a function is reached, and the value of the
1115   //   function call is used by the caller, the behavior is undefined.
1116   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1117       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1118     if (SanOpts.has(SanitizerKind::Return)) {
1119       SanitizerScope SanScope(this);
1120       llvm::Value *IsFalse = Builder.getFalse();
1121       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1122                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1123                 None);
1124     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1125       EmitTrapCall(llvm::Intrinsic::trap);
1126     }
1127     Builder.CreateUnreachable();
1128     Builder.ClearInsertionPoint();
1129   }
1130 
1131   // Emit the standard function epilogue.
1132   FinishFunction(BodyRange.getEnd());
1133 
1134   // If we haven't marked the function nothrow through other means, do
1135   // a quick pass now to see if we can.
1136   if (!CurFn->doesNotThrow())
1137     TryMarkNoThrow(CurFn);
1138 }
1139 
1140 /// ContainsLabel - Return true if the statement contains a label in it.  If
1141 /// this statement is not executed normally, it not containing a label means
1142 /// that we can just remove the code.
1143 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1144   // Null statement, not a label!
1145   if (!S) return false;
1146 
1147   // If this is a label, we have to emit the code, consider something like:
1148   // if (0) {  ...  foo:  bar(); }  goto foo;
1149   //
1150   // TODO: If anyone cared, we could track __label__'s, since we know that you
1151   // can't jump to one from outside their declared region.
1152   if (isa<LabelStmt>(S))
1153     return true;
1154 
1155   // If this is a case/default statement, and we haven't seen a switch, we have
1156   // to emit the code.
1157   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1158     return true;
1159 
1160   // If this is a switch statement, we want to ignore cases below it.
1161   if (isa<SwitchStmt>(S))
1162     IgnoreCaseStmts = true;
1163 
1164   // Scan subexpressions for verboten labels.
1165   for (const Stmt *SubStmt : S->children())
1166     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1167       return true;
1168 
1169   return false;
1170 }
1171 
1172 /// containsBreak - Return true if the statement contains a break out of it.
1173 /// If the statement (recursively) contains a switch or loop with a break
1174 /// inside of it, this is fine.
1175 bool CodeGenFunction::containsBreak(const Stmt *S) {
1176   // Null statement, not a label!
1177   if (!S) return false;
1178 
1179   // If this is a switch or loop that defines its own break scope, then we can
1180   // include it and anything inside of it.
1181   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1182       isa<ForStmt>(S))
1183     return false;
1184 
1185   if (isa<BreakStmt>(S))
1186     return true;
1187 
1188   // Scan subexpressions for verboten breaks.
1189   for (const Stmt *SubStmt : S->children())
1190     if (containsBreak(SubStmt))
1191       return true;
1192 
1193   return false;
1194 }
1195 
1196 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1197   if (!S) return false;
1198 
1199   // Some statement kinds add a scope and thus never add a decl to the current
1200   // scope. Note, this list is longer than the list of statements that might
1201   // have an unscoped decl nested within them, but this way is conservatively
1202   // correct even if more statement kinds are added.
1203   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1204       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1205       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1206       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1207     return false;
1208 
1209   if (isa<DeclStmt>(S))
1210     return true;
1211 
1212   for (const Stmt *SubStmt : S->children())
1213     if (mightAddDeclToScope(SubStmt))
1214       return true;
1215 
1216   return false;
1217 }
1218 
1219 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1220 /// to a constant, or if it does but contains a label, return false.  If it
1221 /// constant folds return true and set the boolean result in Result.
1222 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1223                                                    bool &ResultBool,
1224                                                    bool AllowLabels) {
1225   llvm::APSInt ResultInt;
1226   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1227     return false;
1228 
1229   ResultBool = ResultInt.getBoolValue();
1230   return true;
1231 }
1232 
1233 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1234 /// to a constant, or if it does but contains a label, return false.  If it
1235 /// constant folds return true and set the folded value.
1236 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1237                                                    llvm::APSInt &ResultInt,
1238                                                    bool AllowLabels) {
1239   // FIXME: Rename and handle conversion of other evaluatable things
1240   // to bool.
1241   llvm::APSInt Int;
1242   if (!Cond->EvaluateAsInt(Int, getContext()))
1243     return false;  // Not foldable, not integer or not fully evaluatable.
1244 
1245   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1246     return false;  // Contains a label.
1247 
1248   ResultInt = Int;
1249   return true;
1250 }
1251 
1252 
1253 
1254 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1255 /// statement) to the specified blocks.  Based on the condition, this might try
1256 /// to simplify the codegen of the conditional based on the branch.
1257 ///
1258 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1259                                            llvm::BasicBlock *TrueBlock,
1260                                            llvm::BasicBlock *FalseBlock,
1261                                            uint64_t TrueCount) {
1262   Cond = Cond->IgnoreParens();
1263 
1264   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1265 
1266     // Handle X && Y in a condition.
1267     if (CondBOp->getOpcode() == BO_LAnd) {
1268       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1269       // folded if the case was simple enough.
1270       bool ConstantBool = false;
1271       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1272           ConstantBool) {
1273         // br(1 && X) -> br(X).
1274         incrementProfileCounter(CondBOp);
1275         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1276                                     TrueCount);
1277       }
1278 
1279       // If we have "X && 1", simplify the code to use an uncond branch.
1280       // "X && 0" would have been constant folded to 0.
1281       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1282           ConstantBool) {
1283         // br(X && 1) -> br(X).
1284         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1285                                     TrueCount);
1286       }
1287 
1288       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1289       // want to jump to the FalseBlock.
1290       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1291       // The counter tells us how often we evaluate RHS, and all of TrueCount
1292       // can be propagated to that branch.
1293       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1294 
1295       ConditionalEvaluation eval(*this);
1296       {
1297         ApplyDebugLocation DL(*this, Cond);
1298         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1299         EmitBlock(LHSTrue);
1300       }
1301 
1302       incrementProfileCounter(CondBOp);
1303       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1304 
1305       // Any temporaries created here are conditional.
1306       eval.begin(*this);
1307       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1308       eval.end(*this);
1309 
1310       return;
1311     }
1312 
1313     if (CondBOp->getOpcode() == BO_LOr) {
1314       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1315       // folded if the case was simple enough.
1316       bool ConstantBool = false;
1317       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1318           !ConstantBool) {
1319         // br(0 || X) -> br(X).
1320         incrementProfileCounter(CondBOp);
1321         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1322                                     TrueCount);
1323       }
1324 
1325       // If we have "X || 0", simplify the code to use an uncond branch.
1326       // "X || 1" would have been constant folded to 1.
1327       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1328           !ConstantBool) {
1329         // br(X || 0) -> br(X).
1330         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1331                                     TrueCount);
1332       }
1333 
1334       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1335       // want to jump to the TrueBlock.
1336       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1337       // We have the count for entry to the RHS and for the whole expression
1338       // being true, so we can divy up True count between the short circuit and
1339       // the RHS.
1340       uint64_t LHSCount =
1341           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1342       uint64_t RHSCount = TrueCount - LHSCount;
1343 
1344       ConditionalEvaluation eval(*this);
1345       {
1346         ApplyDebugLocation DL(*this, Cond);
1347         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1348         EmitBlock(LHSFalse);
1349       }
1350 
1351       incrementProfileCounter(CondBOp);
1352       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1353 
1354       // Any temporaries created here are conditional.
1355       eval.begin(*this);
1356       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1357 
1358       eval.end(*this);
1359 
1360       return;
1361     }
1362   }
1363 
1364   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1365     // br(!x, t, f) -> br(x, f, t)
1366     if (CondUOp->getOpcode() == UO_LNot) {
1367       // Negate the count.
1368       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1369       // Negate the condition and swap the destination blocks.
1370       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1371                                   FalseCount);
1372     }
1373   }
1374 
1375   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1376     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1377     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1378     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1379 
1380     ConditionalEvaluation cond(*this);
1381     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1382                          getProfileCount(CondOp));
1383 
1384     // When computing PGO branch weights, we only know the overall count for
1385     // the true block. This code is essentially doing tail duplication of the
1386     // naive code-gen, introducing new edges for which counts are not
1387     // available. Divide the counts proportionally between the LHS and RHS of
1388     // the conditional operator.
1389     uint64_t LHSScaledTrueCount = 0;
1390     if (TrueCount) {
1391       double LHSRatio =
1392           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1393       LHSScaledTrueCount = TrueCount * LHSRatio;
1394     }
1395 
1396     cond.begin(*this);
1397     EmitBlock(LHSBlock);
1398     incrementProfileCounter(CondOp);
1399     {
1400       ApplyDebugLocation DL(*this, Cond);
1401       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1402                            LHSScaledTrueCount);
1403     }
1404     cond.end(*this);
1405 
1406     cond.begin(*this);
1407     EmitBlock(RHSBlock);
1408     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1409                          TrueCount - LHSScaledTrueCount);
1410     cond.end(*this);
1411 
1412     return;
1413   }
1414 
1415   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1416     // Conditional operator handling can give us a throw expression as a
1417     // condition for a case like:
1418     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1419     // Fold this to:
1420     //   br(c, throw x, br(y, t, f))
1421     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1422     return;
1423   }
1424 
1425   // If the branch has a condition wrapped by __builtin_unpredictable,
1426   // create metadata that specifies that the branch is unpredictable.
1427   // Don't bother if not optimizing because that metadata would not be used.
1428   llvm::MDNode *Unpredictable = nullptr;
1429   auto *Call = dyn_cast<CallExpr>(Cond);
1430   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1431     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1432     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1433       llvm::MDBuilder MDHelper(getLLVMContext());
1434       Unpredictable = MDHelper.createUnpredictable();
1435     }
1436   }
1437 
1438   // Create branch weights based on the number of times we get here and the
1439   // number of times the condition should be true.
1440   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1441   llvm::MDNode *Weights =
1442       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1443 
1444   // Emit the code with the fully general case.
1445   llvm::Value *CondV;
1446   {
1447     ApplyDebugLocation DL(*this, Cond);
1448     CondV = EvaluateExprAsBool(Cond);
1449   }
1450   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1451 }
1452 
1453 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1454 /// specified stmt yet.
1455 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1456   CGM.ErrorUnsupported(S, Type);
1457 }
1458 
1459 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1460 /// variable-length array whose elements have a non-zero bit-pattern.
1461 ///
1462 /// \param baseType the inner-most element type of the array
1463 /// \param src - a char* pointing to the bit-pattern for a single
1464 /// base element of the array
1465 /// \param sizeInChars - the total size of the VLA, in chars
1466 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1467                                Address dest, Address src,
1468                                llvm::Value *sizeInChars) {
1469   CGBuilderTy &Builder = CGF.Builder;
1470 
1471   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1472   llvm::Value *baseSizeInChars
1473     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1474 
1475   Address begin =
1476     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1477   llvm::Value *end =
1478     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1479 
1480   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1481   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1482   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1483 
1484   // Make a loop over the VLA.  C99 guarantees that the VLA element
1485   // count must be nonzero.
1486   CGF.EmitBlock(loopBB);
1487 
1488   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1489   cur->addIncoming(begin.getPointer(), originBB);
1490 
1491   CharUnits curAlign =
1492     dest.getAlignment().alignmentOfArrayElement(baseSize);
1493 
1494   // memcpy the individual element bit-pattern.
1495   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1496                        /*volatile*/ false);
1497 
1498   // Go to the next element.
1499   llvm::Value *next =
1500     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1501 
1502   // Leave if that's the end of the VLA.
1503   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1504   Builder.CreateCondBr(done, contBB, loopBB);
1505   cur->addIncoming(next, loopBB);
1506 
1507   CGF.EmitBlock(contBB);
1508 }
1509 
1510 void
1511 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1512   // Ignore empty classes in C++.
1513   if (getLangOpts().CPlusPlus) {
1514     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1515       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1516         return;
1517     }
1518   }
1519 
1520   // Cast the dest ptr to the appropriate i8 pointer type.
1521   if (DestPtr.getElementType() != Int8Ty)
1522     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1523 
1524   // Get size and alignment info for this aggregate.
1525   CharUnits size = getContext().getTypeSizeInChars(Ty);
1526 
1527   llvm::Value *SizeVal;
1528   const VariableArrayType *vla;
1529 
1530   // Don't bother emitting a zero-byte memset.
1531   if (size.isZero()) {
1532     // But note that getTypeInfo returns 0 for a VLA.
1533     if (const VariableArrayType *vlaType =
1534           dyn_cast_or_null<VariableArrayType>(
1535                                           getContext().getAsArrayType(Ty))) {
1536       QualType eltType;
1537       llvm::Value *numElts;
1538       std::tie(numElts, eltType) = getVLASize(vlaType);
1539 
1540       SizeVal = numElts;
1541       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1542       if (!eltSize.isOne())
1543         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1544       vla = vlaType;
1545     } else {
1546       return;
1547     }
1548   } else {
1549     SizeVal = CGM.getSize(size);
1550     vla = nullptr;
1551   }
1552 
1553   // If the type contains a pointer to data member we can't memset it to zero.
1554   // Instead, create a null constant and copy it to the destination.
1555   // TODO: there are other patterns besides zero that we can usefully memset,
1556   // like -1, which happens to be the pattern used by member-pointers.
1557   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1558     // For a VLA, emit a single element, then splat that over the VLA.
1559     if (vla) Ty = getContext().getBaseElementType(vla);
1560 
1561     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1562 
1563     llvm::GlobalVariable *NullVariable =
1564       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1565                                /*isConstant=*/true,
1566                                llvm::GlobalVariable::PrivateLinkage,
1567                                NullConstant, Twine());
1568     CharUnits NullAlign = DestPtr.getAlignment();
1569     NullVariable->setAlignment(NullAlign.getQuantity());
1570     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1571                    NullAlign);
1572 
1573     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1574 
1575     // Get and call the appropriate llvm.memcpy overload.
1576     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1577     return;
1578   }
1579 
1580   // Otherwise, just memset the whole thing to zero.  This is legal
1581   // because in LLVM, all default initializers (other than the ones we just
1582   // handled above) are guaranteed to have a bit pattern of all zeros.
1583   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1584 }
1585 
1586 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1587   // Make sure that there is a block for the indirect goto.
1588   if (!IndirectBranch)
1589     GetIndirectGotoBlock();
1590 
1591   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1592 
1593   // Make sure the indirect branch includes all of the address-taken blocks.
1594   IndirectBranch->addDestination(BB);
1595   return llvm::BlockAddress::get(CurFn, BB);
1596 }
1597 
1598 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1599   // If we already made the indirect branch for indirect goto, return its block.
1600   if (IndirectBranch) return IndirectBranch->getParent();
1601 
1602   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1603 
1604   // Create the PHI node that indirect gotos will add entries to.
1605   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1606                                               "indirect.goto.dest");
1607 
1608   // Create the indirect branch instruction.
1609   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1610   return IndirectBranch->getParent();
1611 }
1612 
1613 /// Computes the length of an array in elements, as well as the base
1614 /// element type and a properly-typed first element pointer.
1615 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1616                                               QualType &baseType,
1617                                               Address &addr) {
1618   const ArrayType *arrayType = origArrayType;
1619 
1620   // If it's a VLA, we have to load the stored size.  Note that
1621   // this is the size of the VLA in bytes, not its size in elements.
1622   llvm::Value *numVLAElements = nullptr;
1623   if (isa<VariableArrayType>(arrayType)) {
1624     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1625 
1626     // Walk into all VLAs.  This doesn't require changes to addr,
1627     // which has type T* where T is the first non-VLA element type.
1628     do {
1629       QualType elementType = arrayType->getElementType();
1630       arrayType = getContext().getAsArrayType(elementType);
1631 
1632       // If we only have VLA components, 'addr' requires no adjustment.
1633       if (!arrayType) {
1634         baseType = elementType;
1635         return numVLAElements;
1636       }
1637     } while (isa<VariableArrayType>(arrayType));
1638 
1639     // We get out here only if we find a constant array type
1640     // inside the VLA.
1641   }
1642 
1643   // We have some number of constant-length arrays, so addr should
1644   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1645   // down to the first element of addr.
1646   SmallVector<llvm::Value*, 8> gepIndices;
1647 
1648   // GEP down to the array type.
1649   llvm::ConstantInt *zero = Builder.getInt32(0);
1650   gepIndices.push_back(zero);
1651 
1652   uint64_t countFromCLAs = 1;
1653   QualType eltType;
1654 
1655   llvm::ArrayType *llvmArrayType =
1656     dyn_cast<llvm::ArrayType>(addr.getElementType());
1657   while (llvmArrayType) {
1658     assert(isa<ConstantArrayType>(arrayType));
1659     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1660              == llvmArrayType->getNumElements());
1661 
1662     gepIndices.push_back(zero);
1663     countFromCLAs *= llvmArrayType->getNumElements();
1664     eltType = arrayType->getElementType();
1665 
1666     llvmArrayType =
1667       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1668     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1669     assert((!llvmArrayType || arrayType) &&
1670            "LLVM and Clang types are out-of-synch");
1671   }
1672 
1673   if (arrayType) {
1674     // From this point onwards, the Clang array type has been emitted
1675     // as some other type (probably a packed struct). Compute the array
1676     // size, and just emit the 'begin' expression as a bitcast.
1677     while (arrayType) {
1678       countFromCLAs *=
1679           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1680       eltType = arrayType->getElementType();
1681       arrayType = getContext().getAsArrayType(eltType);
1682     }
1683 
1684     llvm::Type *baseType = ConvertType(eltType);
1685     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1686   } else {
1687     // Create the actual GEP.
1688     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1689                                              gepIndices, "array.begin"),
1690                    addr.getAlignment());
1691   }
1692 
1693   baseType = eltType;
1694 
1695   llvm::Value *numElements
1696     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1697 
1698   // If we had any VLA dimensions, factor them in.
1699   if (numVLAElements)
1700     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1701 
1702   return numElements;
1703 }
1704 
1705 std::pair<llvm::Value*, QualType>
1706 CodeGenFunction::getVLASize(QualType type) {
1707   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1708   assert(vla && "type was not a variable array type!");
1709   return getVLASize(vla);
1710 }
1711 
1712 std::pair<llvm::Value*, QualType>
1713 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1714   // The number of elements so far; always size_t.
1715   llvm::Value *numElements = nullptr;
1716 
1717   QualType elementType;
1718   do {
1719     elementType = type->getElementType();
1720     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1721     assert(vlaSize && "no size for VLA!");
1722     assert(vlaSize->getType() == SizeTy);
1723 
1724     if (!numElements) {
1725       numElements = vlaSize;
1726     } else {
1727       // It's undefined behavior if this wraps around, so mark it that way.
1728       // FIXME: Teach -fsanitize=undefined to trap this.
1729       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1730     }
1731   } while ((type = getContext().getAsVariableArrayType(elementType)));
1732 
1733   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1734 }
1735 
1736 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1737   assert(type->isVariablyModifiedType() &&
1738          "Must pass variably modified type to EmitVLASizes!");
1739 
1740   EnsureInsertPoint();
1741 
1742   // We're going to walk down into the type and look for VLA
1743   // expressions.
1744   do {
1745     assert(type->isVariablyModifiedType());
1746 
1747     const Type *ty = type.getTypePtr();
1748     switch (ty->getTypeClass()) {
1749 
1750 #define TYPE(Class, Base)
1751 #define ABSTRACT_TYPE(Class, Base)
1752 #define NON_CANONICAL_TYPE(Class, Base)
1753 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1754 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1755 #include "clang/AST/TypeNodes.def"
1756       llvm_unreachable("unexpected dependent type!");
1757 
1758     // These types are never variably-modified.
1759     case Type::Builtin:
1760     case Type::Complex:
1761     case Type::Vector:
1762     case Type::ExtVector:
1763     case Type::Record:
1764     case Type::Enum:
1765     case Type::Elaborated:
1766     case Type::TemplateSpecialization:
1767     case Type::ObjCTypeParam:
1768     case Type::ObjCObject:
1769     case Type::ObjCInterface:
1770     case Type::ObjCObjectPointer:
1771       llvm_unreachable("type class is never variably-modified!");
1772 
1773     case Type::Adjusted:
1774       type = cast<AdjustedType>(ty)->getAdjustedType();
1775       break;
1776 
1777     case Type::Decayed:
1778       type = cast<DecayedType>(ty)->getPointeeType();
1779       break;
1780 
1781     case Type::Pointer:
1782       type = cast<PointerType>(ty)->getPointeeType();
1783       break;
1784 
1785     case Type::BlockPointer:
1786       type = cast<BlockPointerType>(ty)->getPointeeType();
1787       break;
1788 
1789     case Type::LValueReference:
1790     case Type::RValueReference:
1791       type = cast<ReferenceType>(ty)->getPointeeType();
1792       break;
1793 
1794     case Type::MemberPointer:
1795       type = cast<MemberPointerType>(ty)->getPointeeType();
1796       break;
1797 
1798     case Type::ConstantArray:
1799     case Type::IncompleteArray:
1800       // Losing element qualification here is fine.
1801       type = cast<ArrayType>(ty)->getElementType();
1802       break;
1803 
1804     case Type::VariableArray: {
1805       // Losing element qualification here is fine.
1806       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1807 
1808       // Unknown size indication requires no size computation.
1809       // Otherwise, evaluate and record it.
1810       if (const Expr *size = vat->getSizeExpr()) {
1811         // It's possible that we might have emitted this already,
1812         // e.g. with a typedef and a pointer to it.
1813         llvm::Value *&entry = VLASizeMap[size];
1814         if (!entry) {
1815           llvm::Value *Size = EmitScalarExpr(size);
1816 
1817           // C11 6.7.6.2p5:
1818           //   If the size is an expression that is not an integer constant
1819           //   expression [...] each time it is evaluated it shall have a value
1820           //   greater than zero.
1821           if (SanOpts.has(SanitizerKind::VLABound) &&
1822               size->getType()->isSignedIntegerType()) {
1823             SanitizerScope SanScope(this);
1824             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1825             llvm::Constant *StaticArgs[] = {
1826               EmitCheckSourceLocation(size->getLocStart()),
1827               EmitCheckTypeDescriptor(size->getType())
1828             };
1829             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1830                                      SanitizerKind::VLABound),
1831                       "vla_bound_not_positive", StaticArgs, Size);
1832           }
1833 
1834           // Always zexting here would be wrong if it weren't
1835           // undefined behavior to have a negative bound.
1836           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1837         }
1838       }
1839       type = vat->getElementType();
1840       break;
1841     }
1842 
1843     case Type::FunctionProto:
1844     case Type::FunctionNoProto:
1845       type = cast<FunctionType>(ty)->getReturnType();
1846       break;
1847 
1848     case Type::Paren:
1849     case Type::TypeOf:
1850     case Type::UnaryTransform:
1851     case Type::Attributed:
1852     case Type::SubstTemplateTypeParm:
1853     case Type::PackExpansion:
1854       // Keep walking after single level desugaring.
1855       type = type.getSingleStepDesugaredType(getContext());
1856       break;
1857 
1858     case Type::Typedef:
1859     case Type::Decltype:
1860     case Type::Auto:
1861       // Stop walking: nothing to do.
1862       return;
1863 
1864     case Type::TypeOfExpr:
1865       // Stop walking: emit typeof expression.
1866       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1867       return;
1868 
1869     case Type::Atomic:
1870       type = cast<AtomicType>(ty)->getValueType();
1871       break;
1872 
1873     case Type::Pipe:
1874       type = cast<PipeType>(ty)->getElementType();
1875       break;
1876     }
1877   } while (type->isVariablyModifiedType());
1878 }
1879 
1880 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1881   if (getContext().getBuiltinVaListType()->isArrayType())
1882     return EmitPointerWithAlignment(E);
1883   return EmitLValue(E).getAddress();
1884 }
1885 
1886 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1887   return EmitLValue(E).getAddress();
1888 }
1889 
1890 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1891                                               const APValue &Init) {
1892   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
1893   if (CGDebugInfo *Dbg = getDebugInfo())
1894     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1895       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1896 }
1897 
1898 CodeGenFunction::PeepholeProtection
1899 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1900   // At the moment, the only aggressive peephole we do in IR gen
1901   // is trunc(zext) folding, but if we add more, we can easily
1902   // extend this protection.
1903 
1904   if (!rvalue.isScalar()) return PeepholeProtection();
1905   llvm::Value *value = rvalue.getScalarVal();
1906   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1907 
1908   // Just make an extra bitcast.
1909   assert(HaveInsertPoint());
1910   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1911                                                   Builder.GetInsertBlock());
1912 
1913   PeepholeProtection protection;
1914   protection.Inst = inst;
1915   return protection;
1916 }
1917 
1918 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1919   if (!protection.Inst) return;
1920 
1921   // In theory, we could try to duplicate the peepholes now, but whatever.
1922   protection.Inst->eraseFromParent();
1923 }
1924 
1925 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1926                                                  llvm::Value *AnnotatedVal,
1927                                                  StringRef AnnotationStr,
1928                                                  SourceLocation Location) {
1929   llvm::Value *Args[4] = {
1930     AnnotatedVal,
1931     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1932     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1933     CGM.EmitAnnotationLineNo(Location)
1934   };
1935   return Builder.CreateCall(AnnotationFn, Args);
1936 }
1937 
1938 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1939   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1940   // FIXME We create a new bitcast for every annotation because that's what
1941   // llvm-gcc was doing.
1942   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1943     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1944                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1945                        I->getAnnotation(), D->getLocation());
1946 }
1947 
1948 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1949                                               Address Addr) {
1950   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1951   llvm::Value *V = Addr.getPointer();
1952   llvm::Type *VTy = V->getType();
1953   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1954                                     CGM.Int8PtrTy);
1955 
1956   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1957     // FIXME Always emit the cast inst so we can differentiate between
1958     // annotation on the first field of a struct and annotation on the struct
1959     // itself.
1960     if (VTy != CGM.Int8PtrTy)
1961       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1962     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1963     V = Builder.CreateBitCast(V, VTy);
1964   }
1965 
1966   return Address(V, Addr.getAlignment());
1967 }
1968 
1969 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1970 
1971 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1972     : CGF(CGF) {
1973   assert(!CGF->IsSanitizerScope);
1974   CGF->IsSanitizerScope = true;
1975 }
1976 
1977 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1978   CGF->IsSanitizerScope = false;
1979 }
1980 
1981 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1982                                    const llvm::Twine &Name,
1983                                    llvm::BasicBlock *BB,
1984                                    llvm::BasicBlock::iterator InsertPt) const {
1985   LoopStack.InsertHelper(I);
1986   if (IsSanitizerScope)
1987     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1988 }
1989 
1990 void CGBuilderInserter::InsertHelper(
1991     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1992     llvm::BasicBlock::iterator InsertPt) const {
1993   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1994   if (CGF)
1995     CGF->InsertHelper(I, Name, BB, InsertPt);
1996 }
1997 
1998 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1999                                 CodeGenModule &CGM, const FunctionDecl *FD,
2000                                 std::string &FirstMissing) {
2001   // If there aren't any required features listed then go ahead and return.
2002   if (ReqFeatures.empty())
2003     return false;
2004 
2005   // Now build up the set of caller features and verify that all the required
2006   // features are there.
2007   llvm::StringMap<bool> CallerFeatureMap;
2008   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2009 
2010   // If we have at least one of the features in the feature list return
2011   // true, otherwise return false.
2012   return std::all_of(
2013       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2014         SmallVector<StringRef, 1> OrFeatures;
2015         Feature.split(OrFeatures, "|");
2016         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2017                            [&](StringRef Feature) {
2018                              if (!CallerFeatureMap.lookup(Feature)) {
2019                                FirstMissing = Feature.str();
2020                                return false;
2021                              }
2022                              return true;
2023                            });
2024       });
2025 }
2026 
2027 // Emits an error if we don't have a valid set of target features for the
2028 // called function.
2029 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2030                                           const FunctionDecl *TargetDecl) {
2031   // Early exit if this is an indirect call.
2032   if (!TargetDecl)
2033     return;
2034 
2035   // Get the current enclosing function if it exists. If it doesn't
2036   // we can't check the target features anyhow.
2037   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2038   if (!FD)
2039     return;
2040 
2041   // Grab the required features for the call. For a builtin this is listed in
2042   // the td file with the default cpu, for an always_inline function this is any
2043   // listed cpu and any listed features.
2044   unsigned BuiltinID = TargetDecl->getBuiltinID();
2045   std::string MissingFeature;
2046   if (BuiltinID) {
2047     SmallVector<StringRef, 1> ReqFeatures;
2048     const char *FeatureList =
2049         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2050     // Return if the builtin doesn't have any required features.
2051     if (!FeatureList || StringRef(FeatureList) == "")
2052       return;
2053     StringRef(FeatureList).split(ReqFeatures, ",");
2054     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2055       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2056           << TargetDecl->getDeclName()
2057           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2058 
2059   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2060     // Get the required features for the callee.
2061     SmallVector<StringRef, 1> ReqFeatures;
2062     llvm::StringMap<bool> CalleeFeatureMap;
2063     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2064     for (const auto &F : CalleeFeatureMap) {
2065       // Only positive features are "required".
2066       if (F.getValue())
2067         ReqFeatures.push_back(F.getKey());
2068     }
2069     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2070       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2071           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2072   }
2073 }
2074 
2075 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2076   if (!CGM.getCodeGenOpts().SanitizeStats)
2077     return;
2078 
2079   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2080   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2081   CGM.getSanStats().create(IRB, SSK);
2082 }
2083