1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 // Asan uses markers for use-after-scope checks. 46 if (CGOpts.SanitizeAddressUseAfterScope) 47 return true; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // For now, only in optimized builds. 55 return CGOpts.OptimizationLevel != 0; 56 } 57 58 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 59 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 60 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 61 CGBuilderInserterTy(this)), 62 CurFn(nullptr), ReturnValue(Address::invalid()), 63 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 64 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 65 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 66 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 67 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 68 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 69 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 70 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 71 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 72 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 73 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 74 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 75 CXXStructorImplicitParamDecl(nullptr), 76 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 77 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 78 TerminateHandler(nullptr), TrapBB(nullptr), 79 ShouldEmitLifetimeMarkers( 80 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 81 if (!suppressNewContext) 82 CGM.getCXXABI().getMangleContext().startNewFunction(); 83 84 llvm::FastMathFlags FMF; 85 if (CGM.getLangOpts().FastMath) 86 FMF.setUnsafeAlgebra(); 87 if (CGM.getLangOpts().FiniteMathOnly) { 88 FMF.setNoNaNs(); 89 FMF.setNoInfs(); 90 } 91 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 92 FMF.setNoNaNs(); 93 } 94 if (CGM.getCodeGenOpts().NoSignedZeros) { 95 FMF.setNoSignedZeros(); 96 } 97 if (CGM.getCodeGenOpts().ReciprocalMath) { 98 FMF.setAllowReciprocal(); 99 } 100 Builder.setFastMathFlags(FMF); 101 } 102 103 CodeGenFunction::~CodeGenFunction() { 104 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 105 106 // If there are any unclaimed block infos, go ahead and destroy them 107 // now. This can happen if IR-gen gets clever and skips evaluating 108 // something. 109 if (FirstBlockInfo) 110 destroyBlockInfos(FirstBlockInfo); 111 112 if (getLangOpts().OpenMP) { 113 CGM.getOpenMPRuntime().functionFinished(*this); 114 } 115 } 116 117 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 118 AlignmentSource *Source) { 119 return getNaturalTypeAlignment(T->getPointeeType(), Source, 120 /*forPointee*/ true); 121 } 122 123 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 124 AlignmentSource *Source, 125 bool forPointeeType) { 126 // Honor alignment typedef attributes even on incomplete types. 127 // We also honor them straight for C++ class types, even as pointees; 128 // there's an expressivity gap here. 129 if (auto TT = T->getAs<TypedefType>()) { 130 if (auto Align = TT->getDecl()->getMaxAlignment()) { 131 if (Source) *Source = AlignmentSource::AttributedType; 132 return getContext().toCharUnitsFromBits(Align); 133 } 134 } 135 136 if (Source) *Source = AlignmentSource::Type; 137 138 CharUnits Alignment; 139 if (T->isIncompleteType()) { 140 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 141 } else { 142 // For C++ class pointees, we don't know whether we're pointing at a 143 // base or a complete object, so we generally need to use the 144 // non-virtual alignment. 145 const CXXRecordDecl *RD; 146 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 147 Alignment = CGM.getClassPointerAlignment(RD); 148 } else { 149 Alignment = getContext().getTypeAlignInChars(T); 150 } 151 152 // Cap to the global maximum type alignment unless the alignment 153 // was somehow explicit on the type. 154 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 155 if (Alignment.getQuantity() > MaxAlign && 156 !getContext().isAlignmentRequired(T)) 157 Alignment = CharUnits::fromQuantity(MaxAlign); 158 } 159 } 160 return Alignment; 161 } 162 163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 164 AlignmentSource AlignSource; 165 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 166 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 167 CGM.getTBAAInfo(T)); 168 } 169 170 /// Given a value of type T* that may not be to a complete object, 171 /// construct an l-value with the natural pointee alignment of T. 172 LValue 173 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 174 AlignmentSource AlignSource; 175 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 176 return MakeAddrLValue(Address(V, Align), T, AlignSource); 177 } 178 179 180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 181 return CGM.getTypes().ConvertTypeForMem(T); 182 } 183 184 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 185 return CGM.getTypes().ConvertType(T); 186 } 187 188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 189 type = type.getCanonicalType(); 190 while (true) { 191 switch (type->getTypeClass()) { 192 #define TYPE(name, parent) 193 #define ABSTRACT_TYPE(name, parent) 194 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 195 #define DEPENDENT_TYPE(name, parent) case Type::name: 196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 197 #include "clang/AST/TypeNodes.def" 198 llvm_unreachable("non-canonical or dependent type in IR-generation"); 199 200 case Type::Auto: 201 llvm_unreachable("undeduced auto type in IR-generation"); 202 203 // Various scalar types. 204 case Type::Builtin: 205 case Type::Pointer: 206 case Type::BlockPointer: 207 case Type::LValueReference: 208 case Type::RValueReference: 209 case Type::MemberPointer: 210 case Type::Vector: 211 case Type::ExtVector: 212 case Type::FunctionProto: 213 case Type::FunctionNoProto: 214 case Type::Enum: 215 case Type::ObjCObjectPointer: 216 case Type::Pipe: 217 return TEK_Scalar; 218 219 // Complexes. 220 case Type::Complex: 221 return TEK_Complex; 222 223 // Arrays, records, and Objective-C objects. 224 case Type::ConstantArray: 225 case Type::IncompleteArray: 226 case Type::VariableArray: 227 case Type::Record: 228 case Type::ObjCObject: 229 case Type::ObjCInterface: 230 return TEK_Aggregate; 231 232 // We operate on atomic values according to their underlying type. 233 case Type::Atomic: 234 type = cast<AtomicType>(type)->getValueType(); 235 continue; 236 } 237 llvm_unreachable("unknown type kind!"); 238 } 239 } 240 241 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 242 // For cleanliness, we try to avoid emitting the return block for 243 // simple cases. 244 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 245 246 if (CurBB) { 247 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 248 249 // We have a valid insert point, reuse it if it is empty or there are no 250 // explicit jumps to the return block. 251 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 252 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 253 delete ReturnBlock.getBlock(); 254 } else 255 EmitBlock(ReturnBlock.getBlock()); 256 return llvm::DebugLoc(); 257 } 258 259 // Otherwise, if the return block is the target of a single direct 260 // branch then we can just put the code in that block instead. This 261 // cleans up functions which started with a unified return block. 262 if (ReturnBlock.getBlock()->hasOneUse()) { 263 llvm::BranchInst *BI = 264 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 265 if (BI && BI->isUnconditional() && 266 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 267 // Record/return the DebugLoc of the simple 'return' expression to be used 268 // later by the actual 'ret' instruction. 269 llvm::DebugLoc Loc = BI->getDebugLoc(); 270 Builder.SetInsertPoint(BI->getParent()); 271 BI->eraseFromParent(); 272 delete ReturnBlock.getBlock(); 273 return Loc; 274 } 275 } 276 277 // FIXME: We are at an unreachable point, there is no reason to emit the block 278 // unless it has uses. However, we still need a place to put the debug 279 // region.end for now. 280 281 EmitBlock(ReturnBlock.getBlock()); 282 return llvm::DebugLoc(); 283 } 284 285 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 286 if (!BB) return; 287 if (!BB->use_empty()) 288 return CGF.CurFn->getBasicBlockList().push_back(BB); 289 delete BB; 290 } 291 292 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 293 assert(BreakContinueStack.empty() && 294 "mismatched push/pop in break/continue stack!"); 295 296 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 297 && NumSimpleReturnExprs == NumReturnExprs 298 && ReturnBlock.getBlock()->use_empty(); 299 // Usually the return expression is evaluated before the cleanup 300 // code. If the function contains only a simple return statement, 301 // such as a constant, the location before the cleanup code becomes 302 // the last useful breakpoint in the function, because the simple 303 // return expression will be evaluated after the cleanup code. To be 304 // safe, set the debug location for cleanup code to the location of 305 // the return statement. Otherwise the cleanup code should be at the 306 // end of the function's lexical scope. 307 // 308 // If there are multiple branches to the return block, the branch 309 // instructions will get the location of the return statements and 310 // all will be fine. 311 if (CGDebugInfo *DI = getDebugInfo()) { 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, LastStopPoint); 314 else 315 DI->EmitLocation(Builder, EndLoc); 316 } 317 318 // Pop any cleanups that might have been associated with the 319 // parameters. Do this in whatever block we're currently in; it's 320 // important to do this before we enter the return block or return 321 // edges will be *really* confused. 322 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 323 bool HasOnlyLifetimeMarkers = 324 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 325 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 326 if (HasCleanups) { 327 // Make sure the line table doesn't jump back into the body for 328 // the ret after it's been at EndLoc. 329 if (CGDebugInfo *DI = getDebugInfo()) 330 if (OnlySimpleReturnStmts) 331 DI->EmitLocation(Builder, EndLoc); 332 333 PopCleanupBlocks(PrologueCleanupDepth); 334 } 335 336 // Emit function epilog (to return). 337 llvm::DebugLoc Loc = EmitReturnBlock(); 338 339 if (ShouldInstrumentFunction()) 340 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 341 342 // Emit debug descriptor for function end. 343 if (CGDebugInfo *DI = getDebugInfo()) 344 DI->EmitFunctionEnd(Builder); 345 346 // Reset the debug location to that of the simple 'return' expression, if any 347 // rather than that of the end of the function's scope '}'. 348 ApplyDebugLocation AL(*this, Loc); 349 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 350 EmitEndEHSpec(CurCodeDecl); 351 352 assert(EHStack.empty() && 353 "did not remove all scopes from cleanup stack!"); 354 355 // If someone did an indirect goto, emit the indirect goto block at the end of 356 // the function. 357 if (IndirectBranch) { 358 EmitBlock(IndirectBranch->getParent()); 359 Builder.ClearInsertionPoint(); 360 } 361 362 // If some of our locals escaped, insert a call to llvm.localescape in the 363 // entry block. 364 if (!EscapedLocals.empty()) { 365 // Invert the map from local to index into a simple vector. There should be 366 // no holes. 367 SmallVector<llvm::Value *, 4> EscapeArgs; 368 EscapeArgs.resize(EscapedLocals.size()); 369 for (auto &Pair : EscapedLocals) 370 EscapeArgs[Pair.second] = Pair.first; 371 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 372 &CGM.getModule(), llvm::Intrinsic::localescape); 373 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 374 } 375 376 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 377 llvm::Instruction *Ptr = AllocaInsertPt; 378 AllocaInsertPt = nullptr; 379 Ptr->eraseFromParent(); 380 381 // If someone took the address of a label but never did an indirect goto, we 382 // made a zero entry PHI node, which is illegal, zap it now. 383 if (IndirectBranch) { 384 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 385 if (PN->getNumIncomingValues() == 0) { 386 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 387 PN->eraseFromParent(); 388 } 389 } 390 391 EmitIfUsed(*this, EHResumeBlock); 392 EmitIfUsed(*this, TerminateLandingPad); 393 EmitIfUsed(*this, TerminateHandler); 394 EmitIfUsed(*this, UnreachableBlock); 395 396 if (CGM.getCodeGenOpts().EmitDeclMetadata) 397 EmitDeclMetadata(); 398 399 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 400 I = DeferredReplacements.begin(), 401 E = DeferredReplacements.end(); 402 I != E; ++I) { 403 I->first->replaceAllUsesWith(I->second); 404 I->first->eraseFromParent(); 405 } 406 } 407 408 /// ShouldInstrumentFunction - Return true if the current function should be 409 /// instrumented with __cyg_profile_func_* calls 410 bool CodeGenFunction::ShouldInstrumentFunction() { 411 if (!CGM.getCodeGenOpts().InstrumentFunctions) 412 return false; 413 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 414 return false; 415 return true; 416 } 417 418 /// ShouldXRayInstrument - Return true if the current function should be 419 /// instrumented with XRay nop sleds. 420 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 421 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 422 } 423 424 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 425 /// instrumentation function with the current function and the call site, if 426 /// function instrumentation is enabled. 427 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 428 auto NL = ApplyDebugLocation::CreateArtificial(*this); 429 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 430 llvm::PointerType *PointerTy = Int8PtrTy; 431 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 432 llvm::FunctionType *FunctionTy = 433 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 434 435 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 436 llvm::CallInst *CallSite = Builder.CreateCall( 437 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 438 llvm::ConstantInt::get(Int32Ty, 0), 439 "callsite"); 440 441 llvm::Value *args[] = { 442 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 443 CallSite 444 }; 445 446 EmitNounwindRuntimeCall(F, args); 447 } 448 449 static void removeImageAccessQualifier(std::string& TyName) { 450 std::string ReadOnlyQual("__read_only"); 451 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 452 if (ReadOnlyPos != std::string::npos) 453 // "+ 1" for the space after access qualifier. 454 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 455 else { 456 std::string WriteOnlyQual("__write_only"); 457 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 458 if (WriteOnlyPos != std::string::npos) 459 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 460 else { 461 std::string ReadWriteQual("__read_write"); 462 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 463 if (ReadWritePos != std::string::npos) 464 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 465 } 466 } 467 } 468 469 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 470 // information in the program executable. The argument information stored 471 // includes the argument name, its type, the address and access qualifiers used. 472 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 473 CodeGenModule &CGM, llvm::LLVMContext &Context, 474 CGBuilderTy &Builder, ASTContext &ASTCtx) { 475 // Create MDNodes that represent the kernel arg metadata. 476 // Each MDNode is a list in the form of "key", N number of values which is 477 // the same number of values as their are kernel arguments. 478 479 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 480 481 // MDNode for the kernel argument address space qualifiers. 482 SmallVector<llvm::Metadata *, 8> addressQuals; 483 484 // MDNode for the kernel argument access qualifiers (images only). 485 SmallVector<llvm::Metadata *, 8> accessQuals; 486 487 // MDNode for the kernel argument type names. 488 SmallVector<llvm::Metadata *, 8> argTypeNames; 489 490 // MDNode for the kernel argument base type names. 491 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 492 493 // MDNode for the kernel argument type qualifiers. 494 SmallVector<llvm::Metadata *, 8> argTypeQuals; 495 496 // MDNode for the kernel argument names. 497 SmallVector<llvm::Metadata *, 8> argNames; 498 499 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 500 const ParmVarDecl *parm = FD->getParamDecl(i); 501 QualType ty = parm->getType(); 502 std::string typeQuals; 503 504 if (ty->isPointerType()) { 505 QualType pointeeTy = ty->getPointeeType(); 506 507 // Get address qualifier. 508 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 509 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 510 511 // Get argument type name. 512 std::string typeName = 513 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 514 515 // Turn "unsigned type" to "utype" 516 std::string::size_type pos = typeName.find("unsigned"); 517 if (pointeeTy.isCanonical() && pos != std::string::npos) 518 typeName.erase(pos+1, 8); 519 520 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 521 522 std::string baseTypeName = 523 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 524 Policy) + 525 "*"; 526 527 // Turn "unsigned type" to "utype" 528 pos = baseTypeName.find("unsigned"); 529 if (pos != std::string::npos) 530 baseTypeName.erase(pos+1, 8); 531 532 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 533 534 // Get argument type qualifiers: 535 if (ty.isRestrictQualified()) 536 typeQuals = "restrict"; 537 if (pointeeTy.isConstQualified() || 538 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 539 typeQuals += typeQuals.empty() ? "const" : " const"; 540 if (pointeeTy.isVolatileQualified()) 541 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 542 } else { 543 uint32_t AddrSpc = 0; 544 bool isPipe = ty->isPipeType(); 545 if (ty->isImageType() || isPipe) 546 AddrSpc = 547 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 548 549 addressQuals.push_back( 550 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 551 552 // Get argument type name. 553 std::string typeName; 554 if (isPipe) 555 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 556 .getAsString(Policy); 557 else 558 typeName = ty.getUnqualifiedType().getAsString(Policy); 559 560 // Turn "unsigned type" to "utype" 561 std::string::size_type pos = typeName.find("unsigned"); 562 if (ty.isCanonical() && pos != std::string::npos) 563 typeName.erase(pos+1, 8); 564 565 std::string baseTypeName; 566 if (isPipe) 567 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 568 ->getElementType().getCanonicalType() 569 .getAsString(Policy); 570 else 571 baseTypeName = 572 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 573 574 // Remove access qualifiers on images 575 // (as they are inseparable from type in clang implementation, 576 // but OpenCL spec provides a special query to get access qualifier 577 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 578 if (ty->isImageType()) { 579 removeImageAccessQualifier(typeName); 580 removeImageAccessQualifier(baseTypeName); 581 } 582 583 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 584 585 // Turn "unsigned type" to "utype" 586 pos = baseTypeName.find("unsigned"); 587 if (pos != std::string::npos) 588 baseTypeName.erase(pos+1, 8); 589 590 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 591 592 // Get argument type qualifiers: 593 if (ty.isConstQualified()) 594 typeQuals = "const"; 595 if (ty.isVolatileQualified()) 596 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 597 if (isPipe) 598 typeQuals = "pipe"; 599 } 600 601 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 602 603 // Get image and pipe access qualifier: 604 if (ty->isImageType()|| ty->isPipeType()) { 605 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 606 if (A && A->isWriteOnly()) 607 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 608 else if (A && A->isReadWrite()) 609 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 610 else 611 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 612 } else 613 accessQuals.push_back(llvm::MDString::get(Context, "none")); 614 615 // Get argument name. 616 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 617 } 618 619 Fn->setMetadata("kernel_arg_addr_space", 620 llvm::MDNode::get(Context, addressQuals)); 621 Fn->setMetadata("kernel_arg_access_qual", 622 llvm::MDNode::get(Context, accessQuals)); 623 Fn->setMetadata("kernel_arg_type", 624 llvm::MDNode::get(Context, argTypeNames)); 625 Fn->setMetadata("kernel_arg_base_type", 626 llvm::MDNode::get(Context, argBaseTypeNames)); 627 Fn->setMetadata("kernel_arg_type_qual", 628 llvm::MDNode::get(Context, argTypeQuals)); 629 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 630 Fn->setMetadata("kernel_arg_name", 631 llvm::MDNode::get(Context, argNames)); 632 } 633 634 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 635 llvm::Function *Fn) 636 { 637 if (!FD->hasAttr<OpenCLKernelAttr>()) 638 return; 639 640 llvm::LLVMContext &Context = getLLVMContext(); 641 642 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 643 644 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 645 QualType hintQTy = A->getTypeHint(); 646 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 647 bool isSignedInteger = 648 hintQTy->isSignedIntegerType() || 649 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 650 llvm::Metadata *attrMDArgs[] = { 651 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 652 CGM.getTypes().ConvertType(A->getTypeHint()))), 653 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 654 llvm::IntegerType::get(Context, 32), 655 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 656 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 657 } 658 659 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 660 llvm::Metadata *attrMDArgs[] = { 661 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 662 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 663 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 664 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 665 } 666 667 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 668 llvm::Metadata *attrMDArgs[] = { 669 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 670 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 671 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 672 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 673 } 674 } 675 676 /// Determine whether the function F ends with a return stmt. 677 static bool endsWithReturn(const Decl* F) { 678 const Stmt *Body = nullptr; 679 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 680 Body = FD->getBody(); 681 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 682 Body = OMD->getBody(); 683 684 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 685 auto LastStmt = CS->body_rbegin(); 686 if (LastStmt != CS->body_rend()) 687 return isa<ReturnStmt>(*LastStmt); 688 } 689 return false; 690 } 691 692 void CodeGenFunction::StartFunction(GlobalDecl GD, 693 QualType RetTy, 694 llvm::Function *Fn, 695 const CGFunctionInfo &FnInfo, 696 const FunctionArgList &Args, 697 SourceLocation Loc, 698 SourceLocation StartLoc) { 699 assert(!CurFn && 700 "Do not use a CodeGenFunction object for more than one function"); 701 702 const Decl *D = GD.getDecl(); 703 704 DidCallStackSave = false; 705 CurCodeDecl = D; 706 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 707 if (FD->usesSEHTry()) 708 CurSEHParent = FD; 709 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 710 FnRetTy = RetTy; 711 CurFn = Fn; 712 CurFnInfo = &FnInfo; 713 assert(CurFn->isDeclaration() && "Function already has body?"); 714 715 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 716 SanOpts.clear(); 717 718 if (D) { 719 // Apply the no_sanitize* attributes to SanOpts. 720 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 721 SanOpts.Mask &= ~Attr->getMask(); 722 } 723 724 // Apply sanitizer attributes to the function. 725 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 726 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 727 if (SanOpts.has(SanitizerKind::Thread)) 728 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 729 if (SanOpts.has(SanitizerKind::Memory)) 730 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 731 if (SanOpts.has(SanitizerKind::SafeStack)) 732 Fn->addFnAttr(llvm::Attribute::SafeStack); 733 734 // Apply xray attributes to the function (as a string, for now) 735 if (D && ShouldXRayInstrumentFunction()) { 736 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 737 if (XRayAttr->alwaysXRayInstrument()) 738 Fn->addFnAttr("function-instrument", "xray-always"); 739 if (XRayAttr->neverXRayInstrument()) 740 Fn->addFnAttr("function-instrument", "xray-never"); 741 } else { 742 Fn->addFnAttr( 743 "xray-instruction-threshold", 744 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 745 } 746 } 747 748 // Pass inline keyword to optimizer if it appears explicitly on any 749 // declaration. Also, in the case of -fno-inline attach NoInline 750 // attribute to all functions that are not marked AlwaysInline, or 751 // to all functions that are not marked inline or implicitly inline 752 // in the case of -finline-hint-functions. 753 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 754 const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts(); 755 if (!CodeGenOpts.NoInline) { 756 for (auto RI : FD->redecls()) 757 if (RI->isInlineSpecified()) { 758 Fn->addFnAttr(llvm::Attribute::InlineHint); 759 break; 760 } 761 if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining && 762 !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint)) 763 Fn->addFnAttr(llvm::Attribute::NoInline); 764 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 765 Fn->addFnAttr(llvm::Attribute::NoInline); 766 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 767 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 768 } 769 770 // Add no-jump-tables value. 771 Fn->addFnAttr("no-jump-tables", 772 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 773 774 if (getLangOpts().OpenCL) { 775 // Add metadata for a kernel function. 776 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 777 EmitOpenCLKernelMetadata(FD, Fn); 778 } 779 780 // If we are checking function types, emit a function type signature as 781 // prologue data. 782 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 783 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 784 if (llvm::Constant *PrologueSig = 785 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 786 llvm::Constant *FTRTTIConst = 787 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 788 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 789 llvm::Constant *PrologueStructConst = 790 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 791 Fn->setPrologueData(PrologueStructConst); 792 } 793 } 794 } 795 796 // If we're in C++ mode and the function name is "main", it is guaranteed 797 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 798 // used within a program"). 799 if (getLangOpts().CPlusPlus) 800 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 801 if (FD->isMain()) 802 Fn->addFnAttr(llvm::Attribute::NoRecurse); 803 804 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 805 806 // Create a marker to make it easy to insert allocas into the entryblock 807 // later. Don't create this with the builder, because we don't want it 808 // folded. 809 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 810 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 811 812 ReturnBlock = getJumpDestInCurrentScope("return"); 813 814 Builder.SetInsertPoint(EntryBB); 815 816 // Emit subprogram debug descriptor. 817 if (CGDebugInfo *DI = getDebugInfo()) { 818 // Reconstruct the type from the argument list so that implicit parameters, 819 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 820 // convention. 821 CallingConv CC = CallingConv::CC_C; 822 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 823 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 824 CC = SrcFnTy->getCallConv(); 825 SmallVector<QualType, 16> ArgTypes; 826 for (const VarDecl *VD : Args) 827 ArgTypes.push_back(VD->getType()); 828 QualType FnType = getContext().getFunctionType( 829 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 830 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 831 } 832 833 if (ShouldInstrumentFunction()) 834 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 835 836 // Since emitting the mcount call here impacts optimizations such as function 837 // inlining, we just add an attribute to insert a mcount call in backend. 838 // The attribute "counting-function" is set to mcount function name which is 839 // architecture dependent. 840 if (CGM.getCodeGenOpts().InstrumentForProfiling) 841 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 842 843 if (RetTy->isVoidType()) { 844 // Void type; nothing to return. 845 ReturnValue = Address::invalid(); 846 847 // Count the implicit return. 848 if (!endsWithReturn(D)) 849 ++NumReturnExprs; 850 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 851 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 852 // Indirect aggregate return; emit returned value directly into sret slot. 853 // This reduces code size, and affects correctness in C++. 854 auto AI = CurFn->arg_begin(); 855 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 856 ++AI; 857 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 858 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 859 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 860 // Load the sret pointer from the argument struct and return into that. 861 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 862 llvm::Function::arg_iterator EI = CurFn->arg_end(); 863 --EI; 864 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 865 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 866 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 867 } else { 868 ReturnValue = CreateIRTemp(RetTy, "retval"); 869 870 // Tell the epilog emitter to autorelease the result. We do this 871 // now so that various specialized functions can suppress it 872 // during their IR-generation. 873 if (getLangOpts().ObjCAutoRefCount && 874 !CurFnInfo->isReturnsRetained() && 875 RetTy->isObjCRetainableType()) 876 AutoreleaseResult = true; 877 } 878 879 EmitStartEHSpec(CurCodeDecl); 880 881 PrologueCleanupDepth = EHStack.stable_begin(); 882 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 883 884 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 885 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 886 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 887 if (MD->getParent()->isLambda() && 888 MD->getOverloadedOperator() == OO_Call) { 889 // We're in a lambda; figure out the captures. 890 MD->getParent()->getCaptureFields(LambdaCaptureFields, 891 LambdaThisCaptureField); 892 if (LambdaThisCaptureField) { 893 // If the lambda captures the object referred to by '*this' - either by 894 // value or by reference, make sure CXXThisValue points to the correct 895 // object. 896 897 // Get the lvalue for the field (which is a copy of the enclosing object 898 // or contains the address of the enclosing object). 899 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 900 if (!LambdaThisCaptureField->getType()->isPointerType()) { 901 // If the enclosing object was captured by value, just use its address. 902 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 903 } else { 904 // Load the lvalue pointed to by the field, since '*this' was captured 905 // by reference. 906 CXXThisValue = 907 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 908 } 909 } 910 for (auto *FD : MD->getParent()->fields()) { 911 if (FD->hasCapturedVLAType()) { 912 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 913 SourceLocation()).getScalarVal(); 914 auto VAT = FD->getCapturedVLAType(); 915 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 916 } 917 } 918 } else { 919 // Not in a lambda; just use 'this' from the method. 920 // FIXME: Should we generate a new load for each use of 'this'? The 921 // fast register allocator would be happier... 922 CXXThisValue = CXXABIThisValue; 923 } 924 } 925 926 // If any of the arguments have a variably modified type, make sure to 927 // emit the type size. 928 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 929 i != e; ++i) { 930 const VarDecl *VD = *i; 931 932 // Dig out the type as written from ParmVarDecls; it's unclear whether 933 // the standard (C99 6.9.1p10) requires this, but we're following the 934 // precedent set by gcc. 935 QualType Ty; 936 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 937 Ty = PVD->getOriginalType(); 938 else 939 Ty = VD->getType(); 940 941 if (Ty->isVariablyModifiedType()) 942 EmitVariablyModifiedType(Ty); 943 } 944 // Emit a location at the end of the prologue. 945 if (CGDebugInfo *DI = getDebugInfo()) 946 DI->EmitLocation(Builder, StartLoc); 947 } 948 949 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 950 const Stmt *Body) { 951 incrementProfileCounter(Body); 952 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 953 EmitCompoundStmtWithoutScope(*S); 954 else 955 EmitStmt(Body); 956 } 957 958 /// When instrumenting to collect profile data, the counts for some blocks 959 /// such as switch cases need to not include the fall-through counts, so 960 /// emit a branch around the instrumentation code. When not instrumenting, 961 /// this just calls EmitBlock(). 962 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 963 const Stmt *S) { 964 llvm::BasicBlock *SkipCountBB = nullptr; 965 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 966 // When instrumenting for profiling, the fallthrough to certain 967 // statements needs to skip over the instrumentation code so that we 968 // get an accurate count. 969 SkipCountBB = createBasicBlock("skipcount"); 970 EmitBranch(SkipCountBB); 971 } 972 EmitBlock(BB); 973 uint64_t CurrentCount = getCurrentProfileCount(); 974 incrementProfileCounter(S); 975 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 976 if (SkipCountBB) 977 EmitBlock(SkipCountBB); 978 } 979 980 /// Tries to mark the given function nounwind based on the 981 /// non-existence of any throwing calls within it. We believe this is 982 /// lightweight enough to do at -O0. 983 static void TryMarkNoThrow(llvm::Function *F) { 984 // LLVM treats 'nounwind' on a function as part of the type, so we 985 // can't do this on functions that can be overwritten. 986 if (F->isInterposable()) return; 987 988 for (llvm::BasicBlock &BB : *F) 989 for (llvm::Instruction &I : BB) 990 if (I.mayThrow()) 991 return; 992 993 F->setDoesNotThrow(); 994 } 995 996 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 997 FunctionArgList &Args) { 998 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 999 QualType ResTy = FD->getReturnType(); 1000 1001 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1002 if (MD && MD->isInstance()) { 1003 if (CGM.getCXXABI().HasThisReturn(GD)) 1004 ResTy = MD->getThisType(getContext()); 1005 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1006 ResTy = CGM.getContext().VoidPtrTy; 1007 CGM.getCXXABI().buildThisParam(*this, Args); 1008 } 1009 1010 // The base version of an inheriting constructor whose constructed base is a 1011 // virtual base is not passed any arguments (because it doesn't actually call 1012 // the inherited constructor). 1013 bool PassedParams = true; 1014 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1015 if (auto Inherited = CD->getInheritedConstructor()) 1016 PassedParams = 1017 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1018 1019 if (PassedParams) { 1020 for (auto *Param : FD->parameters()) { 1021 Args.push_back(Param); 1022 if (!Param->hasAttr<PassObjectSizeAttr>()) 1023 continue; 1024 1025 IdentifierInfo *NoID = nullptr; 1026 auto *Implicit = ImplicitParamDecl::Create( 1027 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1028 getContext().getSizeType()); 1029 SizeArguments[Param] = Implicit; 1030 Args.push_back(Implicit); 1031 } 1032 } 1033 1034 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1035 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1036 1037 return ResTy; 1038 } 1039 1040 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1041 const CGFunctionInfo &FnInfo) { 1042 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1043 CurGD = GD; 1044 1045 FunctionArgList Args; 1046 QualType ResTy = BuildFunctionArgList(GD, Args); 1047 1048 // Check if we should generate debug info for this function. 1049 if (FD->hasAttr<NoDebugAttr>()) 1050 DebugInfo = nullptr; // disable debug info indefinitely for this function 1051 1052 SourceRange BodyRange; 1053 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1054 CurEHLocation = BodyRange.getEnd(); 1055 1056 // Use the location of the start of the function to determine where 1057 // the function definition is located. By default use the location 1058 // of the declaration as the location for the subprogram. A function 1059 // may lack a declaration in the source code if it is created by code 1060 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1061 SourceLocation Loc = FD->getLocation(); 1062 1063 // If this is a function specialization then use the pattern body 1064 // as the location for the function. 1065 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1066 if (SpecDecl->hasBody(SpecDecl)) 1067 Loc = SpecDecl->getLocation(); 1068 1069 Stmt *Body = FD->getBody(); 1070 1071 // Initialize helper which will detect jumps which can cause invalid lifetime 1072 // markers. 1073 if (Body && ShouldEmitLifetimeMarkers) 1074 Bypasses.Init(Body); 1075 1076 // Emit the standard function prologue. 1077 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1078 1079 // Generate the body of the function. 1080 PGO.assignRegionCounters(GD, CurFn); 1081 if (isa<CXXDestructorDecl>(FD)) 1082 EmitDestructorBody(Args); 1083 else if (isa<CXXConstructorDecl>(FD)) 1084 EmitConstructorBody(Args); 1085 else if (getLangOpts().CUDA && 1086 !getLangOpts().CUDAIsDevice && 1087 FD->hasAttr<CUDAGlobalAttr>()) 1088 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1089 else if (isa<CXXConversionDecl>(FD) && 1090 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1091 // The lambda conversion to block pointer is special; the semantics can't be 1092 // expressed in the AST, so IRGen needs to special-case it. 1093 EmitLambdaToBlockPointerBody(Args); 1094 } else if (isa<CXXMethodDecl>(FD) && 1095 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1096 // The lambda static invoker function is special, because it forwards or 1097 // clones the body of the function call operator (but is actually static). 1098 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1099 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1100 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1101 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1102 // Implicit copy-assignment gets the same special treatment as implicit 1103 // copy-constructors. 1104 emitImplicitAssignmentOperatorBody(Args); 1105 } else if (Body) { 1106 EmitFunctionBody(Args, Body); 1107 } else 1108 llvm_unreachable("no definition for emitted function"); 1109 1110 // C++11 [stmt.return]p2: 1111 // Flowing off the end of a function [...] results in undefined behavior in 1112 // a value-returning function. 1113 // C11 6.9.1p12: 1114 // If the '}' that terminates a function is reached, and the value of the 1115 // function call is used by the caller, the behavior is undefined. 1116 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1117 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1118 if (SanOpts.has(SanitizerKind::Return)) { 1119 SanitizerScope SanScope(this); 1120 llvm::Value *IsFalse = Builder.getFalse(); 1121 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1122 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1123 None); 1124 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1125 EmitTrapCall(llvm::Intrinsic::trap); 1126 } 1127 Builder.CreateUnreachable(); 1128 Builder.ClearInsertionPoint(); 1129 } 1130 1131 // Emit the standard function epilogue. 1132 FinishFunction(BodyRange.getEnd()); 1133 1134 // If we haven't marked the function nothrow through other means, do 1135 // a quick pass now to see if we can. 1136 if (!CurFn->doesNotThrow()) 1137 TryMarkNoThrow(CurFn); 1138 } 1139 1140 /// ContainsLabel - Return true if the statement contains a label in it. If 1141 /// this statement is not executed normally, it not containing a label means 1142 /// that we can just remove the code. 1143 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1144 // Null statement, not a label! 1145 if (!S) return false; 1146 1147 // If this is a label, we have to emit the code, consider something like: 1148 // if (0) { ... foo: bar(); } goto foo; 1149 // 1150 // TODO: If anyone cared, we could track __label__'s, since we know that you 1151 // can't jump to one from outside their declared region. 1152 if (isa<LabelStmt>(S)) 1153 return true; 1154 1155 // If this is a case/default statement, and we haven't seen a switch, we have 1156 // to emit the code. 1157 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1158 return true; 1159 1160 // If this is a switch statement, we want to ignore cases below it. 1161 if (isa<SwitchStmt>(S)) 1162 IgnoreCaseStmts = true; 1163 1164 // Scan subexpressions for verboten labels. 1165 for (const Stmt *SubStmt : S->children()) 1166 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1167 return true; 1168 1169 return false; 1170 } 1171 1172 /// containsBreak - Return true if the statement contains a break out of it. 1173 /// If the statement (recursively) contains a switch or loop with a break 1174 /// inside of it, this is fine. 1175 bool CodeGenFunction::containsBreak(const Stmt *S) { 1176 // Null statement, not a label! 1177 if (!S) return false; 1178 1179 // If this is a switch or loop that defines its own break scope, then we can 1180 // include it and anything inside of it. 1181 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1182 isa<ForStmt>(S)) 1183 return false; 1184 1185 if (isa<BreakStmt>(S)) 1186 return true; 1187 1188 // Scan subexpressions for verboten breaks. 1189 for (const Stmt *SubStmt : S->children()) 1190 if (containsBreak(SubStmt)) 1191 return true; 1192 1193 return false; 1194 } 1195 1196 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1197 if (!S) return false; 1198 1199 // Some statement kinds add a scope and thus never add a decl to the current 1200 // scope. Note, this list is longer than the list of statements that might 1201 // have an unscoped decl nested within them, but this way is conservatively 1202 // correct even if more statement kinds are added. 1203 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1204 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1205 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1206 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1207 return false; 1208 1209 if (isa<DeclStmt>(S)) 1210 return true; 1211 1212 for (const Stmt *SubStmt : S->children()) 1213 if (mightAddDeclToScope(SubStmt)) 1214 return true; 1215 1216 return false; 1217 } 1218 1219 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1220 /// to a constant, or if it does but contains a label, return false. If it 1221 /// constant folds return true and set the boolean result in Result. 1222 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1223 bool &ResultBool, 1224 bool AllowLabels) { 1225 llvm::APSInt ResultInt; 1226 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1227 return false; 1228 1229 ResultBool = ResultInt.getBoolValue(); 1230 return true; 1231 } 1232 1233 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1234 /// to a constant, or if it does but contains a label, return false. If it 1235 /// constant folds return true and set the folded value. 1236 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1237 llvm::APSInt &ResultInt, 1238 bool AllowLabels) { 1239 // FIXME: Rename and handle conversion of other evaluatable things 1240 // to bool. 1241 llvm::APSInt Int; 1242 if (!Cond->EvaluateAsInt(Int, getContext())) 1243 return false; // Not foldable, not integer or not fully evaluatable. 1244 1245 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1246 return false; // Contains a label. 1247 1248 ResultInt = Int; 1249 return true; 1250 } 1251 1252 1253 1254 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1255 /// statement) to the specified blocks. Based on the condition, this might try 1256 /// to simplify the codegen of the conditional based on the branch. 1257 /// 1258 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1259 llvm::BasicBlock *TrueBlock, 1260 llvm::BasicBlock *FalseBlock, 1261 uint64_t TrueCount) { 1262 Cond = Cond->IgnoreParens(); 1263 1264 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1265 1266 // Handle X && Y in a condition. 1267 if (CondBOp->getOpcode() == BO_LAnd) { 1268 // If we have "1 && X", simplify the code. "0 && X" would have constant 1269 // folded if the case was simple enough. 1270 bool ConstantBool = false; 1271 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1272 ConstantBool) { 1273 // br(1 && X) -> br(X). 1274 incrementProfileCounter(CondBOp); 1275 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1276 TrueCount); 1277 } 1278 1279 // If we have "X && 1", simplify the code to use an uncond branch. 1280 // "X && 0" would have been constant folded to 0. 1281 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1282 ConstantBool) { 1283 // br(X && 1) -> br(X). 1284 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1285 TrueCount); 1286 } 1287 1288 // Emit the LHS as a conditional. If the LHS conditional is false, we 1289 // want to jump to the FalseBlock. 1290 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1291 // The counter tells us how often we evaluate RHS, and all of TrueCount 1292 // can be propagated to that branch. 1293 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1294 1295 ConditionalEvaluation eval(*this); 1296 { 1297 ApplyDebugLocation DL(*this, Cond); 1298 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1299 EmitBlock(LHSTrue); 1300 } 1301 1302 incrementProfileCounter(CondBOp); 1303 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1304 1305 // Any temporaries created here are conditional. 1306 eval.begin(*this); 1307 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1308 eval.end(*this); 1309 1310 return; 1311 } 1312 1313 if (CondBOp->getOpcode() == BO_LOr) { 1314 // If we have "0 || X", simplify the code. "1 || X" would have constant 1315 // folded if the case was simple enough. 1316 bool ConstantBool = false; 1317 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1318 !ConstantBool) { 1319 // br(0 || X) -> br(X). 1320 incrementProfileCounter(CondBOp); 1321 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1322 TrueCount); 1323 } 1324 1325 // If we have "X || 0", simplify the code to use an uncond branch. 1326 // "X || 1" would have been constant folded to 1. 1327 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1328 !ConstantBool) { 1329 // br(X || 0) -> br(X). 1330 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1331 TrueCount); 1332 } 1333 1334 // Emit the LHS as a conditional. If the LHS conditional is true, we 1335 // want to jump to the TrueBlock. 1336 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1337 // We have the count for entry to the RHS and for the whole expression 1338 // being true, so we can divy up True count between the short circuit and 1339 // the RHS. 1340 uint64_t LHSCount = 1341 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1342 uint64_t RHSCount = TrueCount - LHSCount; 1343 1344 ConditionalEvaluation eval(*this); 1345 { 1346 ApplyDebugLocation DL(*this, Cond); 1347 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1348 EmitBlock(LHSFalse); 1349 } 1350 1351 incrementProfileCounter(CondBOp); 1352 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1353 1354 // Any temporaries created here are conditional. 1355 eval.begin(*this); 1356 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1357 1358 eval.end(*this); 1359 1360 return; 1361 } 1362 } 1363 1364 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1365 // br(!x, t, f) -> br(x, f, t) 1366 if (CondUOp->getOpcode() == UO_LNot) { 1367 // Negate the count. 1368 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1369 // Negate the condition and swap the destination blocks. 1370 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1371 FalseCount); 1372 } 1373 } 1374 1375 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1376 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1377 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1378 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1379 1380 ConditionalEvaluation cond(*this); 1381 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1382 getProfileCount(CondOp)); 1383 1384 // When computing PGO branch weights, we only know the overall count for 1385 // the true block. This code is essentially doing tail duplication of the 1386 // naive code-gen, introducing new edges for which counts are not 1387 // available. Divide the counts proportionally between the LHS and RHS of 1388 // the conditional operator. 1389 uint64_t LHSScaledTrueCount = 0; 1390 if (TrueCount) { 1391 double LHSRatio = 1392 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1393 LHSScaledTrueCount = TrueCount * LHSRatio; 1394 } 1395 1396 cond.begin(*this); 1397 EmitBlock(LHSBlock); 1398 incrementProfileCounter(CondOp); 1399 { 1400 ApplyDebugLocation DL(*this, Cond); 1401 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1402 LHSScaledTrueCount); 1403 } 1404 cond.end(*this); 1405 1406 cond.begin(*this); 1407 EmitBlock(RHSBlock); 1408 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1409 TrueCount - LHSScaledTrueCount); 1410 cond.end(*this); 1411 1412 return; 1413 } 1414 1415 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1416 // Conditional operator handling can give us a throw expression as a 1417 // condition for a case like: 1418 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1419 // Fold this to: 1420 // br(c, throw x, br(y, t, f)) 1421 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1422 return; 1423 } 1424 1425 // If the branch has a condition wrapped by __builtin_unpredictable, 1426 // create metadata that specifies that the branch is unpredictable. 1427 // Don't bother if not optimizing because that metadata would not be used. 1428 llvm::MDNode *Unpredictable = nullptr; 1429 auto *Call = dyn_cast<CallExpr>(Cond); 1430 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1431 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1432 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1433 llvm::MDBuilder MDHelper(getLLVMContext()); 1434 Unpredictable = MDHelper.createUnpredictable(); 1435 } 1436 } 1437 1438 // Create branch weights based on the number of times we get here and the 1439 // number of times the condition should be true. 1440 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1441 llvm::MDNode *Weights = 1442 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1443 1444 // Emit the code with the fully general case. 1445 llvm::Value *CondV; 1446 { 1447 ApplyDebugLocation DL(*this, Cond); 1448 CondV = EvaluateExprAsBool(Cond); 1449 } 1450 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1451 } 1452 1453 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1454 /// specified stmt yet. 1455 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1456 CGM.ErrorUnsupported(S, Type); 1457 } 1458 1459 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1460 /// variable-length array whose elements have a non-zero bit-pattern. 1461 /// 1462 /// \param baseType the inner-most element type of the array 1463 /// \param src - a char* pointing to the bit-pattern for a single 1464 /// base element of the array 1465 /// \param sizeInChars - the total size of the VLA, in chars 1466 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1467 Address dest, Address src, 1468 llvm::Value *sizeInChars) { 1469 CGBuilderTy &Builder = CGF.Builder; 1470 1471 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1472 llvm::Value *baseSizeInChars 1473 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1474 1475 Address begin = 1476 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1477 llvm::Value *end = 1478 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1479 1480 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1481 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1482 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1483 1484 // Make a loop over the VLA. C99 guarantees that the VLA element 1485 // count must be nonzero. 1486 CGF.EmitBlock(loopBB); 1487 1488 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1489 cur->addIncoming(begin.getPointer(), originBB); 1490 1491 CharUnits curAlign = 1492 dest.getAlignment().alignmentOfArrayElement(baseSize); 1493 1494 // memcpy the individual element bit-pattern. 1495 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1496 /*volatile*/ false); 1497 1498 // Go to the next element. 1499 llvm::Value *next = 1500 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1501 1502 // Leave if that's the end of the VLA. 1503 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1504 Builder.CreateCondBr(done, contBB, loopBB); 1505 cur->addIncoming(next, loopBB); 1506 1507 CGF.EmitBlock(contBB); 1508 } 1509 1510 void 1511 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1512 // Ignore empty classes in C++. 1513 if (getLangOpts().CPlusPlus) { 1514 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1515 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1516 return; 1517 } 1518 } 1519 1520 // Cast the dest ptr to the appropriate i8 pointer type. 1521 if (DestPtr.getElementType() != Int8Ty) 1522 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1523 1524 // Get size and alignment info for this aggregate. 1525 CharUnits size = getContext().getTypeSizeInChars(Ty); 1526 1527 llvm::Value *SizeVal; 1528 const VariableArrayType *vla; 1529 1530 // Don't bother emitting a zero-byte memset. 1531 if (size.isZero()) { 1532 // But note that getTypeInfo returns 0 for a VLA. 1533 if (const VariableArrayType *vlaType = 1534 dyn_cast_or_null<VariableArrayType>( 1535 getContext().getAsArrayType(Ty))) { 1536 QualType eltType; 1537 llvm::Value *numElts; 1538 std::tie(numElts, eltType) = getVLASize(vlaType); 1539 1540 SizeVal = numElts; 1541 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1542 if (!eltSize.isOne()) 1543 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1544 vla = vlaType; 1545 } else { 1546 return; 1547 } 1548 } else { 1549 SizeVal = CGM.getSize(size); 1550 vla = nullptr; 1551 } 1552 1553 // If the type contains a pointer to data member we can't memset it to zero. 1554 // Instead, create a null constant and copy it to the destination. 1555 // TODO: there are other patterns besides zero that we can usefully memset, 1556 // like -1, which happens to be the pattern used by member-pointers. 1557 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1558 // For a VLA, emit a single element, then splat that over the VLA. 1559 if (vla) Ty = getContext().getBaseElementType(vla); 1560 1561 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1562 1563 llvm::GlobalVariable *NullVariable = 1564 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1565 /*isConstant=*/true, 1566 llvm::GlobalVariable::PrivateLinkage, 1567 NullConstant, Twine()); 1568 CharUnits NullAlign = DestPtr.getAlignment(); 1569 NullVariable->setAlignment(NullAlign.getQuantity()); 1570 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1571 NullAlign); 1572 1573 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1574 1575 // Get and call the appropriate llvm.memcpy overload. 1576 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1577 return; 1578 } 1579 1580 // Otherwise, just memset the whole thing to zero. This is legal 1581 // because in LLVM, all default initializers (other than the ones we just 1582 // handled above) are guaranteed to have a bit pattern of all zeros. 1583 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1584 } 1585 1586 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1587 // Make sure that there is a block for the indirect goto. 1588 if (!IndirectBranch) 1589 GetIndirectGotoBlock(); 1590 1591 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1592 1593 // Make sure the indirect branch includes all of the address-taken blocks. 1594 IndirectBranch->addDestination(BB); 1595 return llvm::BlockAddress::get(CurFn, BB); 1596 } 1597 1598 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1599 // If we already made the indirect branch for indirect goto, return its block. 1600 if (IndirectBranch) return IndirectBranch->getParent(); 1601 1602 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1603 1604 // Create the PHI node that indirect gotos will add entries to. 1605 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1606 "indirect.goto.dest"); 1607 1608 // Create the indirect branch instruction. 1609 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1610 return IndirectBranch->getParent(); 1611 } 1612 1613 /// Computes the length of an array in elements, as well as the base 1614 /// element type and a properly-typed first element pointer. 1615 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1616 QualType &baseType, 1617 Address &addr) { 1618 const ArrayType *arrayType = origArrayType; 1619 1620 // If it's a VLA, we have to load the stored size. Note that 1621 // this is the size of the VLA in bytes, not its size in elements. 1622 llvm::Value *numVLAElements = nullptr; 1623 if (isa<VariableArrayType>(arrayType)) { 1624 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1625 1626 // Walk into all VLAs. This doesn't require changes to addr, 1627 // which has type T* where T is the first non-VLA element type. 1628 do { 1629 QualType elementType = arrayType->getElementType(); 1630 arrayType = getContext().getAsArrayType(elementType); 1631 1632 // If we only have VLA components, 'addr' requires no adjustment. 1633 if (!arrayType) { 1634 baseType = elementType; 1635 return numVLAElements; 1636 } 1637 } while (isa<VariableArrayType>(arrayType)); 1638 1639 // We get out here only if we find a constant array type 1640 // inside the VLA. 1641 } 1642 1643 // We have some number of constant-length arrays, so addr should 1644 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1645 // down to the first element of addr. 1646 SmallVector<llvm::Value*, 8> gepIndices; 1647 1648 // GEP down to the array type. 1649 llvm::ConstantInt *zero = Builder.getInt32(0); 1650 gepIndices.push_back(zero); 1651 1652 uint64_t countFromCLAs = 1; 1653 QualType eltType; 1654 1655 llvm::ArrayType *llvmArrayType = 1656 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1657 while (llvmArrayType) { 1658 assert(isa<ConstantArrayType>(arrayType)); 1659 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1660 == llvmArrayType->getNumElements()); 1661 1662 gepIndices.push_back(zero); 1663 countFromCLAs *= llvmArrayType->getNumElements(); 1664 eltType = arrayType->getElementType(); 1665 1666 llvmArrayType = 1667 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1668 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1669 assert((!llvmArrayType || arrayType) && 1670 "LLVM and Clang types are out-of-synch"); 1671 } 1672 1673 if (arrayType) { 1674 // From this point onwards, the Clang array type has been emitted 1675 // as some other type (probably a packed struct). Compute the array 1676 // size, and just emit the 'begin' expression as a bitcast. 1677 while (arrayType) { 1678 countFromCLAs *= 1679 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1680 eltType = arrayType->getElementType(); 1681 arrayType = getContext().getAsArrayType(eltType); 1682 } 1683 1684 llvm::Type *baseType = ConvertType(eltType); 1685 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1686 } else { 1687 // Create the actual GEP. 1688 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1689 gepIndices, "array.begin"), 1690 addr.getAlignment()); 1691 } 1692 1693 baseType = eltType; 1694 1695 llvm::Value *numElements 1696 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1697 1698 // If we had any VLA dimensions, factor them in. 1699 if (numVLAElements) 1700 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1701 1702 return numElements; 1703 } 1704 1705 std::pair<llvm::Value*, QualType> 1706 CodeGenFunction::getVLASize(QualType type) { 1707 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1708 assert(vla && "type was not a variable array type!"); 1709 return getVLASize(vla); 1710 } 1711 1712 std::pair<llvm::Value*, QualType> 1713 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1714 // The number of elements so far; always size_t. 1715 llvm::Value *numElements = nullptr; 1716 1717 QualType elementType; 1718 do { 1719 elementType = type->getElementType(); 1720 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1721 assert(vlaSize && "no size for VLA!"); 1722 assert(vlaSize->getType() == SizeTy); 1723 1724 if (!numElements) { 1725 numElements = vlaSize; 1726 } else { 1727 // It's undefined behavior if this wraps around, so mark it that way. 1728 // FIXME: Teach -fsanitize=undefined to trap this. 1729 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1730 } 1731 } while ((type = getContext().getAsVariableArrayType(elementType))); 1732 1733 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1734 } 1735 1736 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1737 assert(type->isVariablyModifiedType() && 1738 "Must pass variably modified type to EmitVLASizes!"); 1739 1740 EnsureInsertPoint(); 1741 1742 // We're going to walk down into the type and look for VLA 1743 // expressions. 1744 do { 1745 assert(type->isVariablyModifiedType()); 1746 1747 const Type *ty = type.getTypePtr(); 1748 switch (ty->getTypeClass()) { 1749 1750 #define TYPE(Class, Base) 1751 #define ABSTRACT_TYPE(Class, Base) 1752 #define NON_CANONICAL_TYPE(Class, Base) 1753 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1754 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1755 #include "clang/AST/TypeNodes.def" 1756 llvm_unreachable("unexpected dependent type!"); 1757 1758 // These types are never variably-modified. 1759 case Type::Builtin: 1760 case Type::Complex: 1761 case Type::Vector: 1762 case Type::ExtVector: 1763 case Type::Record: 1764 case Type::Enum: 1765 case Type::Elaborated: 1766 case Type::TemplateSpecialization: 1767 case Type::ObjCTypeParam: 1768 case Type::ObjCObject: 1769 case Type::ObjCInterface: 1770 case Type::ObjCObjectPointer: 1771 llvm_unreachable("type class is never variably-modified!"); 1772 1773 case Type::Adjusted: 1774 type = cast<AdjustedType>(ty)->getAdjustedType(); 1775 break; 1776 1777 case Type::Decayed: 1778 type = cast<DecayedType>(ty)->getPointeeType(); 1779 break; 1780 1781 case Type::Pointer: 1782 type = cast<PointerType>(ty)->getPointeeType(); 1783 break; 1784 1785 case Type::BlockPointer: 1786 type = cast<BlockPointerType>(ty)->getPointeeType(); 1787 break; 1788 1789 case Type::LValueReference: 1790 case Type::RValueReference: 1791 type = cast<ReferenceType>(ty)->getPointeeType(); 1792 break; 1793 1794 case Type::MemberPointer: 1795 type = cast<MemberPointerType>(ty)->getPointeeType(); 1796 break; 1797 1798 case Type::ConstantArray: 1799 case Type::IncompleteArray: 1800 // Losing element qualification here is fine. 1801 type = cast<ArrayType>(ty)->getElementType(); 1802 break; 1803 1804 case Type::VariableArray: { 1805 // Losing element qualification here is fine. 1806 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1807 1808 // Unknown size indication requires no size computation. 1809 // Otherwise, evaluate and record it. 1810 if (const Expr *size = vat->getSizeExpr()) { 1811 // It's possible that we might have emitted this already, 1812 // e.g. with a typedef and a pointer to it. 1813 llvm::Value *&entry = VLASizeMap[size]; 1814 if (!entry) { 1815 llvm::Value *Size = EmitScalarExpr(size); 1816 1817 // C11 6.7.6.2p5: 1818 // If the size is an expression that is not an integer constant 1819 // expression [...] each time it is evaluated it shall have a value 1820 // greater than zero. 1821 if (SanOpts.has(SanitizerKind::VLABound) && 1822 size->getType()->isSignedIntegerType()) { 1823 SanitizerScope SanScope(this); 1824 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1825 llvm::Constant *StaticArgs[] = { 1826 EmitCheckSourceLocation(size->getLocStart()), 1827 EmitCheckTypeDescriptor(size->getType()) 1828 }; 1829 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1830 SanitizerKind::VLABound), 1831 "vla_bound_not_positive", StaticArgs, Size); 1832 } 1833 1834 // Always zexting here would be wrong if it weren't 1835 // undefined behavior to have a negative bound. 1836 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1837 } 1838 } 1839 type = vat->getElementType(); 1840 break; 1841 } 1842 1843 case Type::FunctionProto: 1844 case Type::FunctionNoProto: 1845 type = cast<FunctionType>(ty)->getReturnType(); 1846 break; 1847 1848 case Type::Paren: 1849 case Type::TypeOf: 1850 case Type::UnaryTransform: 1851 case Type::Attributed: 1852 case Type::SubstTemplateTypeParm: 1853 case Type::PackExpansion: 1854 // Keep walking after single level desugaring. 1855 type = type.getSingleStepDesugaredType(getContext()); 1856 break; 1857 1858 case Type::Typedef: 1859 case Type::Decltype: 1860 case Type::Auto: 1861 // Stop walking: nothing to do. 1862 return; 1863 1864 case Type::TypeOfExpr: 1865 // Stop walking: emit typeof expression. 1866 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1867 return; 1868 1869 case Type::Atomic: 1870 type = cast<AtomicType>(ty)->getValueType(); 1871 break; 1872 1873 case Type::Pipe: 1874 type = cast<PipeType>(ty)->getElementType(); 1875 break; 1876 } 1877 } while (type->isVariablyModifiedType()); 1878 } 1879 1880 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1881 if (getContext().getBuiltinVaListType()->isArrayType()) 1882 return EmitPointerWithAlignment(E); 1883 return EmitLValue(E).getAddress(); 1884 } 1885 1886 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1887 return EmitLValue(E).getAddress(); 1888 } 1889 1890 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1891 const APValue &Init) { 1892 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1893 if (CGDebugInfo *Dbg = getDebugInfo()) 1894 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1895 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1896 } 1897 1898 CodeGenFunction::PeepholeProtection 1899 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1900 // At the moment, the only aggressive peephole we do in IR gen 1901 // is trunc(zext) folding, but if we add more, we can easily 1902 // extend this protection. 1903 1904 if (!rvalue.isScalar()) return PeepholeProtection(); 1905 llvm::Value *value = rvalue.getScalarVal(); 1906 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1907 1908 // Just make an extra bitcast. 1909 assert(HaveInsertPoint()); 1910 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1911 Builder.GetInsertBlock()); 1912 1913 PeepholeProtection protection; 1914 protection.Inst = inst; 1915 return protection; 1916 } 1917 1918 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1919 if (!protection.Inst) return; 1920 1921 // In theory, we could try to duplicate the peepholes now, but whatever. 1922 protection.Inst->eraseFromParent(); 1923 } 1924 1925 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1926 llvm::Value *AnnotatedVal, 1927 StringRef AnnotationStr, 1928 SourceLocation Location) { 1929 llvm::Value *Args[4] = { 1930 AnnotatedVal, 1931 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1932 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1933 CGM.EmitAnnotationLineNo(Location) 1934 }; 1935 return Builder.CreateCall(AnnotationFn, Args); 1936 } 1937 1938 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1939 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1940 // FIXME We create a new bitcast for every annotation because that's what 1941 // llvm-gcc was doing. 1942 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1943 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1944 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1945 I->getAnnotation(), D->getLocation()); 1946 } 1947 1948 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1949 Address Addr) { 1950 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1951 llvm::Value *V = Addr.getPointer(); 1952 llvm::Type *VTy = V->getType(); 1953 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1954 CGM.Int8PtrTy); 1955 1956 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1957 // FIXME Always emit the cast inst so we can differentiate between 1958 // annotation on the first field of a struct and annotation on the struct 1959 // itself. 1960 if (VTy != CGM.Int8PtrTy) 1961 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1962 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1963 V = Builder.CreateBitCast(V, VTy); 1964 } 1965 1966 return Address(V, Addr.getAlignment()); 1967 } 1968 1969 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1970 1971 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1972 : CGF(CGF) { 1973 assert(!CGF->IsSanitizerScope); 1974 CGF->IsSanitizerScope = true; 1975 } 1976 1977 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1978 CGF->IsSanitizerScope = false; 1979 } 1980 1981 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1982 const llvm::Twine &Name, 1983 llvm::BasicBlock *BB, 1984 llvm::BasicBlock::iterator InsertPt) const { 1985 LoopStack.InsertHelper(I); 1986 if (IsSanitizerScope) 1987 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1988 } 1989 1990 void CGBuilderInserter::InsertHelper( 1991 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1992 llvm::BasicBlock::iterator InsertPt) const { 1993 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 1994 if (CGF) 1995 CGF->InsertHelper(I, Name, BB, InsertPt); 1996 } 1997 1998 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1999 CodeGenModule &CGM, const FunctionDecl *FD, 2000 std::string &FirstMissing) { 2001 // If there aren't any required features listed then go ahead and return. 2002 if (ReqFeatures.empty()) 2003 return false; 2004 2005 // Now build up the set of caller features and verify that all the required 2006 // features are there. 2007 llvm::StringMap<bool> CallerFeatureMap; 2008 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2009 2010 // If we have at least one of the features in the feature list return 2011 // true, otherwise return false. 2012 return std::all_of( 2013 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2014 SmallVector<StringRef, 1> OrFeatures; 2015 Feature.split(OrFeatures, "|"); 2016 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2017 [&](StringRef Feature) { 2018 if (!CallerFeatureMap.lookup(Feature)) { 2019 FirstMissing = Feature.str(); 2020 return false; 2021 } 2022 return true; 2023 }); 2024 }); 2025 } 2026 2027 // Emits an error if we don't have a valid set of target features for the 2028 // called function. 2029 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2030 const FunctionDecl *TargetDecl) { 2031 // Early exit if this is an indirect call. 2032 if (!TargetDecl) 2033 return; 2034 2035 // Get the current enclosing function if it exists. If it doesn't 2036 // we can't check the target features anyhow. 2037 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2038 if (!FD) 2039 return; 2040 2041 // Grab the required features for the call. For a builtin this is listed in 2042 // the td file with the default cpu, for an always_inline function this is any 2043 // listed cpu and any listed features. 2044 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2045 std::string MissingFeature; 2046 if (BuiltinID) { 2047 SmallVector<StringRef, 1> ReqFeatures; 2048 const char *FeatureList = 2049 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2050 // Return if the builtin doesn't have any required features. 2051 if (!FeatureList || StringRef(FeatureList) == "") 2052 return; 2053 StringRef(FeatureList).split(ReqFeatures, ","); 2054 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2055 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2056 << TargetDecl->getDeclName() 2057 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2058 2059 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2060 // Get the required features for the callee. 2061 SmallVector<StringRef, 1> ReqFeatures; 2062 llvm::StringMap<bool> CalleeFeatureMap; 2063 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2064 for (const auto &F : CalleeFeatureMap) { 2065 // Only positive features are "required". 2066 if (F.getValue()) 2067 ReqFeatures.push_back(F.getKey()); 2068 } 2069 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2070 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2071 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2072 } 2073 } 2074 2075 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2076 if (!CGM.getCodeGenOpts().SanitizeStats) 2077 return; 2078 2079 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2080 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2081 CGM.getSanStats().create(IRB, SSK); 2082 } 2083