1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCleanup.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
44 /// markers.
45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
46                                       const LangOptions &LangOpts) {
47   if (CGOpts.DisableLifetimeMarkers)
48     return false;
49 
50   // Disable lifetime markers in msan builds.
51   // FIXME: Remove this when msan works with lifetime markers.
52   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
53     return false;
54 
55   // Asan uses markers for use-after-scope checks.
56   if (CGOpts.SanitizeAddressUseAfterScope)
57     return true;
58 
59   // For now, only in optimized builds.
60   return CGOpts.OptimizationLevel != 0;
61 }
62 
63 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
64     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
65       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
66               CGBuilderInserterTy(this)),
67       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
68       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
69                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
70   if (!suppressNewContext)
71     CGM.getCXXABI().getMangleContext().startNewFunction();
72 
73   llvm::FastMathFlags FMF;
74   if (CGM.getLangOpts().FastMath)
75     FMF.setFast();
76   if (CGM.getLangOpts().FiniteMathOnly) {
77     FMF.setNoNaNs();
78     FMF.setNoInfs();
79   }
80   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
81     FMF.setNoNaNs();
82   }
83   if (CGM.getCodeGenOpts().NoSignedZeros) {
84     FMF.setNoSignedZeros();
85   }
86   if (CGM.getCodeGenOpts().ReciprocalMath) {
87     FMF.setAllowReciprocal();
88   }
89   if (CGM.getCodeGenOpts().Reassociate) {
90     FMF.setAllowReassoc();
91   }
92   Builder.setFastMathFlags(FMF);
93 }
94 
95 CodeGenFunction::~CodeGenFunction() {
96   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
97 
98   // If there are any unclaimed block infos, go ahead and destroy them
99   // now.  This can happen if IR-gen gets clever and skips evaluating
100   // something.
101   if (FirstBlockInfo)
102     destroyBlockInfos(FirstBlockInfo);
103 
104   if (getLangOpts().OpenMP && CurFn)
105     CGM.getOpenMPRuntime().functionFinished(*this);
106 }
107 
108 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
109                                                     LValueBaseInfo *BaseInfo,
110                                                     TBAAAccessInfo *TBAAInfo) {
111   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
112                                  /* forPointeeType= */ true);
113 }
114 
115 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
116                                                    LValueBaseInfo *BaseInfo,
117                                                    TBAAAccessInfo *TBAAInfo,
118                                                    bool forPointeeType) {
119   if (TBAAInfo)
120     *TBAAInfo = CGM.getTBAAAccessInfo(T);
121 
122   // Honor alignment typedef attributes even on incomplete types.
123   // We also honor them straight for C++ class types, even as pointees;
124   // there's an expressivity gap here.
125   if (auto TT = T->getAs<TypedefType>()) {
126     if (auto Align = TT->getDecl()->getMaxAlignment()) {
127       if (BaseInfo)
128         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
129       return getContext().toCharUnitsFromBits(Align);
130     }
131   }
132 
133   if (BaseInfo)
134     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
135 
136   CharUnits Alignment;
137   if (T->isIncompleteType()) {
138     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
139   } else {
140     // For C++ class pointees, we don't know whether we're pointing at a
141     // base or a complete object, so we generally need to use the
142     // non-virtual alignment.
143     const CXXRecordDecl *RD;
144     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
145       Alignment = CGM.getClassPointerAlignment(RD);
146     } else {
147       Alignment = getContext().getTypeAlignInChars(T);
148       if (T.getQualifiers().hasUnaligned())
149         Alignment = CharUnits::One();
150     }
151 
152     // Cap to the global maximum type alignment unless the alignment
153     // was somehow explicit on the type.
154     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
155       if (Alignment.getQuantity() > MaxAlign &&
156           !getContext().isAlignmentRequired(T))
157         Alignment = CharUnits::fromQuantity(MaxAlign);
158     }
159   }
160   return Alignment;
161 }
162 
163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
164   LValueBaseInfo BaseInfo;
165   TBAAAccessInfo TBAAInfo;
166   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
167   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
168                           TBAAInfo);
169 }
170 
171 /// Given a value of type T* that may not be to a complete object,
172 /// construct an l-value with the natural pointee alignment of T.
173 LValue
174 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
175   LValueBaseInfo BaseInfo;
176   TBAAAccessInfo TBAAInfo;
177   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
178                                             /* forPointeeType= */ true);
179   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
180 }
181 
182 
183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
184   return CGM.getTypes().ConvertTypeForMem(T);
185 }
186 
187 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
188   return CGM.getTypes().ConvertType(T);
189 }
190 
191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
192   type = type.getCanonicalType();
193   while (true) {
194     switch (type->getTypeClass()) {
195 #define TYPE(name, parent)
196 #define ABSTRACT_TYPE(name, parent)
197 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
198 #define DEPENDENT_TYPE(name, parent) case Type::name:
199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
200 #include "clang/AST/TypeNodes.def"
201       llvm_unreachable("non-canonical or dependent type in IR-generation");
202 
203     case Type::Auto:
204     case Type::DeducedTemplateSpecialization:
205       llvm_unreachable("undeduced type in IR-generation");
206 
207     // Various scalar types.
208     case Type::Builtin:
209     case Type::Pointer:
210     case Type::BlockPointer:
211     case Type::LValueReference:
212     case Type::RValueReference:
213     case Type::MemberPointer:
214     case Type::Vector:
215     case Type::ExtVector:
216     case Type::FunctionProto:
217     case Type::FunctionNoProto:
218     case Type::Enum:
219     case Type::ObjCObjectPointer:
220     case Type::Pipe:
221       return TEK_Scalar;
222 
223     // Complexes.
224     case Type::Complex:
225       return TEK_Complex;
226 
227     // Arrays, records, and Objective-C objects.
228     case Type::ConstantArray:
229     case Type::IncompleteArray:
230     case Type::VariableArray:
231     case Type::Record:
232     case Type::ObjCObject:
233     case Type::ObjCInterface:
234       return TEK_Aggregate;
235 
236     // We operate on atomic values according to their underlying type.
237     case Type::Atomic:
238       type = cast<AtomicType>(type)->getValueType();
239       continue;
240     }
241     llvm_unreachable("unknown type kind!");
242   }
243 }
244 
245 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
246   // For cleanliness, we try to avoid emitting the return block for
247   // simple cases.
248   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
249 
250   if (CurBB) {
251     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
252 
253     // We have a valid insert point, reuse it if it is empty or there are no
254     // explicit jumps to the return block.
255     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
256       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
257       delete ReturnBlock.getBlock();
258       ReturnBlock = JumpDest();
259     } else
260       EmitBlock(ReturnBlock.getBlock());
261     return llvm::DebugLoc();
262   }
263 
264   // Otherwise, if the return block is the target of a single direct
265   // branch then we can just put the code in that block instead. This
266   // cleans up functions which started with a unified return block.
267   if (ReturnBlock.getBlock()->hasOneUse()) {
268     llvm::BranchInst *BI =
269       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
270     if (BI && BI->isUnconditional() &&
271         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
272       // Record/return the DebugLoc of the simple 'return' expression to be used
273       // later by the actual 'ret' instruction.
274       llvm::DebugLoc Loc = BI->getDebugLoc();
275       Builder.SetInsertPoint(BI->getParent());
276       BI->eraseFromParent();
277       delete ReturnBlock.getBlock();
278       ReturnBlock = JumpDest();
279       return Loc;
280     }
281   }
282 
283   // FIXME: We are at an unreachable point, there is no reason to emit the block
284   // unless it has uses. However, we still need a place to put the debug
285   // region.end for now.
286 
287   EmitBlock(ReturnBlock.getBlock());
288   return llvm::DebugLoc();
289 }
290 
291 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
292   if (!BB) return;
293   if (!BB->use_empty())
294     return CGF.CurFn->getBasicBlockList().push_back(BB);
295   delete BB;
296 }
297 
298 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
299   assert(BreakContinueStack.empty() &&
300          "mismatched push/pop in break/continue stack!");
301 
302   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
303     && NumSimpleReturnExprs == NumReturnExprs
304     && ReturnBlock.getBlock()->use_empty();
305   // Usually the return expression is evaluated before the cleanup
306   // code.  If the function contains only a simple return statement,
307   // such as a constant, the location before the cleanup code becomes
308   // the last useful breakpoint in the function, because the simple
309   // return expression will be evaluated after the cleanup code. To be
310   // safe, set the debug location for cleanup code to the location of
311   // the return statement.  Otherwise the cleanup code should be at the
312   // end of the function's lexical scope.
313   //
314   // If there are multiple branches to the return block, the branch
315   // instructions will get the location of the return statements and
316   // all will be fine.
317   if (CGDebugInfo *DI = getDebugInfo()) {
318     if (OnlySimpleReturnStmts)
319       DI->EmitLocation(Builder, LastStopPoint);
320     else
321       DI->EmitLocation(Builder, EndLoc);
322   }
323 
324   // Pop any cleanups that might have been associated with the
325   // parameters.  Do this in whatever block we're currently in; it's
326   // important to do this before we enter the return block or return
327   // edges will be *really* confused.
328   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
329   bool HasOnlyLifetimeMarkers =
330       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
331   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
332   if (HasCleanups) {
333     // Make sure the line table doesn't jump back into the body for
334     // the ret after it's been at EndLoc.
335     if (CGDebugInfo *DI = getDebugInfo())
336       if (OnlySimpleReturnStmts)
337         DI->EmitLocation(Builder, EndLoc);
338 
339     PopCleanupBlocks(PrologueCleanupDepth);
340   }
341 
342   // Emit function epilog (to return).
343   llvm::DebugLoc Loc = EmitReturnBlock();
344 
345   if (ShouldInstrumentFunction()) {
346     if (CGM.getCodeGenOpts().InstrumentFunctions)
347       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
348     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
349       CurFn->addFnAttr("instrument-function-exit-inlined",
350                        "__cyg_profile_func_exit");
351   }
352 
353   // Emit debug descriptor for function end.
354   if (CGDebugInfo *DI = getDebugInfo())
355     DI->EmitFunctionEnd(Builder, CurFn);
356 
357   // Reset the debug location to that of the simple 'return' expression, if any
358   // rather than that of the end of the function's scope '}'.
359   ApplyDebugLocation AL(*this, Loc);
360   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
361   EmitEndEHSpec(CurCodeDecl);
362 
363   assert(EHStack.empty() &&
364          "did not remove all scopes from cleanup stack!");
365 
366   // If someone did an indirect goto, emit the indirect goto block at the end of
367   // the function.
368   if (IndirectBranch) {
369     EmitBlock(IndirectBranch->getParent());
370     Builder.ClearInsertionPoint();
371   }
372 
373   // If some of our locals escaped, insert a call to llvm.localescape in the
374   // entry block.
375   if (!EscapedLocals.empty()) {
376     // Invert the map from local to index into a simple vector. There should be
377     // no holes.
378     SmallVector<llvm::Value *, 4> EscapeArgs;
379     EscapeArgs.resize(EscapedLocals.size());
380     for (auto &Pair : EscapedLocals)
381       EscapeArgs[Pair.second] = Pair.first;
382     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
383         &CGM.getModule(), llvm::Intrinsic::localescape);
384     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
385   }
386 
387   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
388   llvm::Instruction *Ptr = AllocaInsertPt;
389   AllocaInsertPt = nullptr;
390   Ptr->eraseFromParent();
391 
392   // If someone took the address of a label but never did an indirect goto, we
393   // made a zero entry PHI node, which is illegal, zap it now.
394   if (IndirectBranch) {
395     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
396     if (PN->getNumIncomingValues() == 0) {
397       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
398       PN->eraseFromParent();
399     }
400   }
401 
402   EmitIfUsed(*this, EHResumeBlock);
403   EmitIfUsed(*this, TerminateLandingPad);
404   EmitIfUsed(*this, TerminateHandler);
405   EmitIfUsed(*this, UnreachableBlock);
406 
407   for (const auto &FuncletAndParent : TerminateFunclets)
408     EmitIfUsed(*this, FuncletAndParent.second);
409 
410   if (CGM.getCodeGenOpts().EmitDeclMetadata)
411     EmitDeclMetadata();
412 
413   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
414            I = DeferredReplacements.begin(),
415            E = DeferredReplacements.end();
416        I != E; ++I) {
417     I->first->replaceAllUsesWith(I->second);
418     I->first->eraseFromParent();
419   }
420 
421   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
422   // PHIs if the current function is a coroutine. We don't do it for all
423   // functions as it may result in slight increase in numbers of instructions
424   // if compiled with no optimizations. We do it for coroutine as the lifetime
425   // of CleanupDestSlot alloca make correct coroutine frame building very
426   // difficult.
427   if (NormalCleanupDest.isValid() && isCoroutine()) {
428     llvm::DominatorTree DT(*CurFn);
429     llvm::PromoteMemToReg(
430         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
431     NormalCleanupDest = Address::invalid();
432   }
433 
434   // Scan function arguments for vector width.
435   for (llvm::Argument &A : CurFn->args())
436     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
437       LargestVectorWidth = std::max(LargestVectorWidth,
438                                     VT->getPrimitiveSizeInBits());
439 
440   // Update vector width based on return type.
441   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
442     LargestVectorWidth = std::max(LargestVectorWidth,
443                                   VT->getPrimitiveSizeInBits());
444 
445   // Add the required-vector-width attribute. This contains the max width from:
446   // 1. min-vector-width attribute used in the source program.
447   // 2. Any builtins used that have a vector width specified.
448   // 3. Values passed in and out of inline assembly.
449   // 4. Width of vector arguments and return types for this function.
450   // 5. Width of vector aguments and return types for functions called by this
451   //    function.
452   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
453 
454   // If we generated an unreachable return block, delete it now.
455   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
456     Builder.ClearInsertionPoint();
457     ReturnBlock.getBlock()->eraseFromParent();
458   }
459   if (ReturnValue.isValid()) {
460     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
461     if (RetAlloca && RetAlloca->use_empty()) {
462       RetAlloca->eraseFromParent();
463       ReturnValue = Address::invalid();
464     }
465   }
466 }
467 
468 /// ShouldInstrumentFunction - Return true if the current function should be
469 /// instrumented with __cyg_profile_func_* calls
470 bool CodeGenFunction::ShouldInstrumentFunction() {
471   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
472       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
473       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
474     return false;
475   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
476     return false;
477   return true;
478 }
479 
480 /// ShouldXRayInstrument - Return true if the current function should be
481 /// instrumented with XRay nop sleds.
482 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
483   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
484 }
485 
486 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
487 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
488 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
489   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
490          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
491           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
492               XRayInstrKind::Custom);
493 }
494 
495 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
496   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
497          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
498           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
499               XRayInstrKind::Typed);
500 }
501 
502 llvm::Constant *
503 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
504                                             llvm::Constant *Addr) {
505   // Addresses stored in prologue data can't require run-time fixups and must
506   // be PC-relative. Run-time fixups are undesirable because they necessitate
507   // writable text segments, which are unsafe. And absolute addresses are
508   // undesirable because they break PIE mode.
509 
510   // Add a layer of indirection through a private global. Taking its address
511   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
512   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
513                                       /*isConstant=*/true,
514                                       llvm::GlobalValue::PrivateLinkage, Addr);
515 
516   // Create a PC-relative address.
517   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
518   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
519   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
520   return (IntPtrTy == Int32Ty)
521              ? PCRelAsInt
522              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
523 }
524 
525 llvm::Value *
526 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
527                                           llvm::Value *EncodedAddr) {
528   // Reconstruct the address of the global.
529   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
530   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
531   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
532   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
533 
534   // Load the original pointer through the global.
535   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
536                             "decoded_addr");
537 }
538 
539 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
540                                                llvm::Function *Fn)
541 {
542   if (!FD->hasAttr<OpenCLKernelAttr>())
543     return;
544 
545   llvm::LLVMContext &Context = getLLVMContext();
546 
547   CGM.GenOpenCLArgMetadata(Fn, FD, this);
548 
549   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
550     QualType HintQTy = A->getTypeHint();
551     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
552     bool IsSignedInteger =
553         HintQTy->isSignedIntegerType() ||
554         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
555     llvm::Metadata *AttrMDArgs[] = {
556         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
557             CGM.getTypes().ConvertType(A->getTypeHint()))),
558         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
559             llvm::IntegerType::get(Context, 32),
560             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
561     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
562   }
563 
564   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
565     llvm::Metadata *AttrMDArgs[] = {
566         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
567         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
568         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
569     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
570   }
571 
572   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
573     llvm::Metadata *AttrMDArgs[] = {
574         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
575         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
576         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
577     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
578   }
579 
580   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
581           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
582     llvm::Metadata *AttrMDArgs[] = {
583         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
584     Fn->setMetadata("intel_reqd_sub_group_size",
585                     llvm::MDNode::get(Context, AttrMDArgs));
586   }
587 }
588 
589 /// Determine whether the function F ends with a return stmt.
590 static bool endsWithReturn(const Decl* F) {
591   const Stmt *Body = nullptr;
592   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
593     Body = FD->getBody();
594   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
595     Body = OMD->getBody();
596 
597   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
598     auto LastStmt = CS->body_rbegin();
599     if (LastStmt != CS->body_rend())
600       return isa<ReturnStmt>(*LastStmt);
601   }
602   return false;
603 }
604 
605 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
606   if (SanOpts.has(SanitizerKind::Thread)) {
607     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
608     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
609   }
610 }
611 
612 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
613   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
614   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
615       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
616       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
617     return false;
618 
619   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
620     return false;
621 
622   if (MD->getNumParams() == 2) {
623     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
624     if (!PT || !PT->isVoidPointerType() ||
625         !PT->getPointeeType().isConstQualified())
626       return false;
627   }
628 
629   return true;
630 }
631 
632 /// Return the UBSan prologue signature for \p FD if one is available.
633 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
634                                             const FunctionDecl *FD) {
635   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
636     if (!MD->isStatic())
637       return nullptr;
638   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
639 }
640 
641 void CodeGenFunction::StartFunction(GlobalDecl GD,
642                                     QualType RetTy,
643                                     llvm::Function *Fn,
644                                     const CGFunctionInfo &FnInfo,
645                                     const FunctionArgList &Args,
646                                     SourceLocation Loc,
647                                     SourceLocation StartLoc) {
648   assert(!CurFn &&
649          "Do not use a CodeGenFunction object for more than one function");
650 
651   const Decl *D = GD.getDecl();
652 
653   DidCallStackSave = false;
654   CurCodeDecl = D;
655   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
656     if (FD->usesSEHTry())
657       CurSEHParent = FD;
658   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
659   FnRetTy = RetTy;
660   CurFn = Fn;
661   CurFnInfo = &FnInfo;
662   assert(CurFn->isDeclaration() && "Function already has body?");
663 
664   // If this function has been blacklisted for any of the enabled sanitizers,
665   // disable the sanitizer for the function.
666   do {
667 #define SANITIZER(NAME, ID)                                                    \
668   if (SanOpts.empty())                                                         \
669     break;                                                                     \
670   if (SanOpts.has(SanitizerKind::ID))                                          \
671     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
672       SanOpts.set(SanitizerKind::ID, false);
673 
674 #include "clang/Basic/Sanitizers.def"
675 #undef SANITIZER
676   } while (0);
677 
678   if (D) {
679     // Apply the no_sanitize* attributes to SanOpts.
680     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
681       SanitizerMask mask = Attr->getMask();
682       SanOpts.Mask &= ~mask;
683       if (mask & SanitizerKind::Address)
684         SanOpts.set(SanitizerKind::KernelAddress, false);
685       if (mask & SanitizerKind::KernelAddress)
686         SanOpts.set(SanitizerKind::Address, false);
687       if (mask & SanitizerKind::HWAddress)
688         SanOpts.set(SanitizerKind::KernelHWAddress, false);
689       if (mask & SanitizerKind::KernelHWAddress)
690         SanOpts.set(SanitizerKind::HWAddress, false);
691     }
692   }
693 
694   // Apply sanitizer attributes to the function.
695   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
696     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
697   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
698     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
699   if (SanOpts.has(SanitizerKind::MemTag))
700     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
701   if (SanOpts.has(SanitizerKind::Thread))
702     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
703   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
704     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
705   if (SanOpts.has(SanitizerKind::SafeStack))
706     Fn->addFnAttr(llvm::Attribute::SafeStack);
707   if (SanOpts.has(SanitizerKind::ShadowCallStack))
708     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
709 
710   // Apply fuzzing attribute to the function.
711   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
712     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
713 
714   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
715   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
716   if (SanOpts.has(SanitizerKind::Thread)) {
717     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
718       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
719       if (OMD->getMethodFamily() == OMF_dealloc ||
720           OMD->getMethodFamily() == OMF_initialize ||
721           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
722         markAsIgnoreThreadCheckingAtRuntime(Fn);
723       }
724     }
725   }
726 
727   // Ignore unrelated casts in STL allocate() since the allocator must cast
728   // from void* to T* before object initialization completes. Don't match on the
729   // namespace because not all allocators are in std::
730   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
731     if (matchesStlAllocatorFn(D, getContext()))
732       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
733   }
734 
735   // Apply xray attributes to the function (as a string, for now)
736   if (D) {
737     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
738       if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
739               XRayInstrKind::Function)) {
740         if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
741           Fn->addFnAttr("function-instrument", "xray-always");
742         if (XRayAttr->neverXRayInstrument())
743           Fn->addFnAttr("function-instrument", "xray-never");
744         if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
745           if (ShouldXRayInstrumentFunction())
746             Fn->addFnAttr("xray-log-args",
747                           llvm::utostr(LogArgs->getArgumentCount()));
748       }
749     } else {
750       if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
751         Fn->addFnAttr(
752             "xray-instruction-threshold",
753             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
754     }
755   }
756 
757   // Add no-jump-tables value.
758   Fn->addFnAttr("no-jump-tables",
759                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
760 
761   // Add profile-sample-accurate value.
762   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
763     Fn->addFnAttr("profile-sample-accurate");
764 
765   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
766     Fn->addFnAttr("cfi-canonical-jump-table");
767 
768   if (getLangOpts().OpenCL) {
769     // Add metadata for a kernel function.
770     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
771       EmitOpenCLKernelMetadata(FD, Fn);
772   }
773 
774   // If we are checking function types, emit a function type signature as
775   // prologue data.
776   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
777     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
778       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
779         // Remove any (C++17) exception specifications, to allow calling e.g. a
780         // noexcept function through a non-noexcept pointer.
781         auto ProtoTy =
782           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
783                                                         EST_None);
784         llvm::Constant *FTRTTIConst =
785             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
786         llvm::Constant *FTRTTIConstEncoded =
787             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
788         llvm::Constant *PrologueStructElems[] = {PrologueSig,
789                                                  FTRTTIConstEncoded};
790         llvm::Constant *PrologueStructConst =
791             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
792         Fn->setPrologueData(PrologueStructConst);
793       }
794     }
795   }
796 
797   // If we're checking nullability, we need to know whether we can check the
798   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
799   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
800     auto Nullability = FnRetTy->getNullability(getContext());
801     if (Nullability && *Nullability == NullabilityKind::NonNull) {
802       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
803             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
804         RetValNullabilityPrecondition =
805             llvm::ConstantInt::getTrue(getLLVMContext());
806     }
807   }
808 
809   // If we're in C++ mode and the function name is "main", it is guaranteed
810   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
811   // used within a program").
812   if (getLangOpts().CPlusPlus)
813     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
814       if (FD->isMain())
815         Fn->addFnAttr(llvm::Attribute::NoRecurse);
816 
817   // If a custom alignment is used, force realigning to this alignment on
818   // any main function which certainly will need it.
819   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
820     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
821         CGM.getCodeGenOpts().StackAlignment)
822       Fn->addFnAttr("stackrealign");
823 
824   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
825 
826   // Create a marker to make it easy to insert allocas into the entryblock
827   // later.  Don't create this with the builder, because we don't want it
828   // folded.
829   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
830   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
831 
832   ReturnBlock = getJumpDestInCurrentScope("return");
833 
834   Builder.SetInsertPoint(EntryBB);
835 
836   // If we're checking the return value, allocate space for a pointer to a
837   // precise source location of the checked return statement.
838   if (requiresReturnValueCheck()) {
839     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
840     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
841   }
842 
843   // Emit subprogram debug descriptor.
844   if (CGDebugInfo *DI = getDebugInfo()) {
845     // Reconstruct the type from the argument list so that implicit parameters,
846     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
847     // convention.
848     CallingConv CC = CallingConv::CC_C;
849     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
850       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
851         CC = SrcFnTy->getCallConv();
852     SmallVector<QualType, 16> ArgTypes;
853     for (const VarDecl *VD : Args)
854       ArgTypes.push_back(VD->getType());
855     QualType FnType = getContext().getFunctionType(
856         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
857     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
858                           Builder);
859   }
860 
861   if (ShouldInstrumentFunction()) {
862     if (CGM.getCodeGenOpts().InstrumentFunctions)
863       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
864     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
865       CurFn->addFnAttr("instrument-function-entry-inlined",
866                        "__cyg_profile_func_enter");
867     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
868       CurFn->addFnAttr("instrument-function-entry-inlined",
869                        "__cyg_profile_func_enter_bare");
870   }
871 
872   // Since emitting the mcount call here impacts optimizations such as function
873   // inlining, we just add an attribute to insert a mcount call in backend.
874   // The attribute "counting-function" is set to mcount function name which is
875   // architecture dependent.
876   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
877     // Calls to fentry/mcount should not be generated if function has
878     // the no_instrument_function attribute.
879     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
880       if (CGM.getCodeGenOpts().CallFEntry)
881         Fn->addFnAttr("fentry-call", "true");
882       else {
883         Fn->addFnAttr("instrument-function-entry-inlined",
884                       getTarget().getMCountName());
885       }
886     }
887   }
888 
889   if (RetTy->isVoidType()) {
890     // Void type; nothing to return.
891     ReturnValue = Address::invalid();
892 
893     // Count the implicit return.
894     if (!endsWithReturn(D))
895       ++NumReturnExprs;
896   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
897     // Indirect return; emit returned value directly into sret slot.
898     // This reduces code size, and affects correctness in C++.
899     auto AI = CurFn->arg_begin();
900     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
901       ++AI;
902     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
903     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
904       ReturnValuePointer =
905           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
906       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
907                               ReturnValue.getPointer(), Int8PtrTy),
908                           ReturnValuePointer);
909     }
910   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
911              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
912     // Load the sret pointer from the argument struct and return into that.
913     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
914     llvm::Function::arg_iterator EI = CurFn->arg_end();
915     --EI;
916     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
917     ReturnValuePointer = Address(Addr, getPointerAlign());
918     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
919     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
920   } else {
921     ReturnValue = CreateIRTemp(RetTy, "retval");
922 
923     // Tell the epilog emitter to autorelease the result.  We do this
924     // now so that various specialized functions can suppress it
925     // during their IR-generation.
926     if (getLangOpts().ObjCAutoRefCount &&
927         !CurFnInfo->isReturnsRetained() &&
928         RetTy->isObjCRetainableType())
929       AutoreleaseResult = true;
930   }
931 
932   EmitStartEHSpec(CurCodeDecl);
933 
934   PrologueCleanupDepth = EHStack.stable_begin();
935 
936   // Emit OpenMP specific initialization of the device functions.
937   if (getLangOpts().OpenMP && CurCodeDecl)
938     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
939 
940   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
941 
942   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
943     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
944     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
945     if (MD->getParent()->isLambda() &&
946         MD->getOverloadedOperator() == OO_Call) {
947       // We're in a lambda; figure out the captures.
948       MD->getParent()->getCaptureFields(LambdaCaptureFields,
949                                         LambdaThisCaptureField);
950       if (LambdaThisCaptureField) {
951         // If the lambda captures the object referred to by '*this' - either by
952         // value or by reference, make sure CXXThisValue points to the correct
953         // object.
954 
955         // Get the lvalue for the field (which is a copy of the enclosing object
956         // or contains the address of the enclosing object).
957         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
958         if (!LambdaThisCaptureField->getType()->isPointerType()) {
959           // If the enclosing object was captured by value, just use its address.
960           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
961         } else {
962           // Load the lvalue pointed to by the field, since '*this' was captured
963           // by reference.
964           CXXThisValue =
965               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
966         }
967       }
968       for (auto *FD : MD->getParent()->fields()) {
969         if (FD->hasCapturedVLAType()) {
970           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
971                                            SourceLocation()).getScalarVal();
972           auto VAT = FD->getCapturedVLAType();
973           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
974         }
975       }
976     } else {
977       // Not in a lambda; just use 'this' from the method.
978       // FIXME: Should we generate a new load for each use of 'this'?  The
979       // fast register allocator would be happier...
980       CXXThisValue = CXXABIThisValue;
981     }
982 
983     // Check the 'this' pointer once per function, if it's available.
984     if (CXXABIThisValue) {
985       SanitizerSet SkippedChecks;
986       SkippedChecks.set(SanitizerKind::ObjectSize, true);
987       QualType ThisTy = MD->getThisType();
988 
989       // If this is the call operator of a lambda with no capture-default, it
990       // may have a static invoker function, which may call this operator with
991       // a null 'this' pointer.
992       if (isLambdaCallOperator(MD) &&
993           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
994         SkippedChecks.set(SanitizerKind::Null, true);
995 
996       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
997                                                 : TCK_MemberCall,
998                     Loc, CXXABIThisValue, ThisTy,
999                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1000                     SkippedChecks);
1001     }
1002   }
1003 
1004   // If any of the arguments have a variably modified type, make sure to
1005   // emit the type size.
1006   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1007        i != e; ++i) {
1008     const VarDecl *VD = *i;
1009 
1010     // Dig out the type as written from ParmVarDecls; it's unclear whether
1011     // the standard (C99 6.9.1p10) requires this, but we're following the
1012     // precedent set by gcc.
1013     QualType Ty;
1014     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1015       Ty = PVD->getOriginalType();
1016     else
1017       Ty = VD->getType();
1018 
1019     if (Ty->isVariablyModifiedType())
1020       EmitVariablyModifiedType(Ty);
1021   }
1022   // Emit a location at the end of the prologue.
1023   if (CGDebugInfo *DI = getDebugInfo())
1024     DI->EmitLocation(Builder, StartLoc);
1025 
1026   // TODO: Do we need to handle this in two places like we do with
1027   // target-features/target-cpu?
1028   if (CurFuncDecl)
1029     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1030       LargestVectorWidth = VecWidth->getVectorWidth();
1031 }
1032 
1033 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1034   incrementProfileCounter(Body);
1035   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1036     EmitCompoundStmtWithoutScope(*S);
1037   else
1038     EmitStmt(Body);
1039 }
1040 
1041 /// When instrumenting to collect profile data, the counts for some blocks
1042 /// such as switch cases need to not include the fall-through counts, so
1043 /// emit a branch around the instrumentation code. When not instrumenting,
1044 /// this just calls EmitBlock().
1045 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1046                                                const Stmt *S) {
1047   llvm::BasicBlock *SkipCountBB = nullptr;
1048   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1049     // When instrumenting for profiling, the fallthrough to certain
1050     // statements needs to skip over the instrumentation code so that we
1051     // get an accurate count.
1052     SkipCountBB = createBasicBlock("skipcount");
1053     EmitBranch(SkipCountBB);
1054   }
1055   EmitBlock(BB);
1056   uint64_t CurrentCount = getCurrentProfileCount();
1057   incrementProfileCounter(S);
1058   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1059   if (SkipCountBB)
1060     EmitBlock(SkipCountBB);
1061 }
1062 
1063 /// Tries to mark the given function nounwind based on the
1064 /// non-existence of any throwing calls within it.  We believe this is
1065 /// lightweight enough to do at -O0.
1066 static void TryMarkNoThrow(llvm::Function *F) {
1067   // LLVM treats 'nounwind' on a function as part of the type, so we
1068   // can't do this on functions that can be overwritten.
1069   if (F->isInterposable()) return;
1070 
1071   for (llvm::BasicBlock &BB : *F)
1072     for (llvm::Instruction &I : BB)
1073       if (I.mayThrow())
1074         return;
1075 
1076   F->setDoesNotThrow();
1077 }
1078 
1079 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1080                                                FunctionArgList &Args) {
1081   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1082   QualType ResTy = FD->getReturnType();
1083 
1084   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1085   if (MD && MD->isInstance()) {
1086     if (CGM.getCXXABI().HasThisReturn(GD))
1087       ResTy = MD->getThisType();
1088     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1089       ResTy = CGM.getContext().VoidPtrTy;
1090     CGM.getCXXABI().buildThisParam(*this, Args);
1091   }
1092 
1093   // The base version of an inheriting constructor whose constructed base is a
1094   // virtual base is not passed any arguments (because it doesn't actually call
1095   // the inherited constructor).
1096   bool PassedParams = true;
1097   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1098     if (auto Inherited = CD->getInheritedConstructor())
1099       PassedParams =
1100           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1101 
1102   if (PassedParams) {
1103     for (auto *Param : FD->parameters()) {
1104       Args.push_back(Param);
1105       if (!Param->hasAttr<PassObjectSizeAttr>())
1106         continue;
1107 
1108       auto *Implicit = ImplicitParamDecl::Create(
1109           getContext(), Param->getDeclContext(), Param->getLocation(),
1110           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1111       SizeArguments[Param] = Implicit;
1112       Args.push_back(Implicit);
1113     }
1114   }
1115 
1116   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1117     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1118 
1119   return ResTy;
1120 }
1121 
1122 static bool
1123 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1124                                              const ASTContext &Context) {
1125   QualType T = FD->getReturnType();
1126   // Avoid the optimization for functions that return a record type with a
1127   // trivial destructor or another trivially copyable type.
1128   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1129     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1130       return !ClassDecl->hasTrivialDestructor();
1131   }
1132   return !T.isTriviallyCopyableType(Context);
1133 }
1134 
1135 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1136                                    const CGFunctionInfo &FnInfo) {
1137   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1138   CurGD = GD;
1139 
1140   FunctionArgList Args;
1141   QualType ResTy = BuildFunctionArgList(GD, Args);
1142 
1143   // Check if we should generate debug info for this function.
1144   if (FD->hasAttr<NoDebugAttr>())
1145     DebugInfo = nullptr; // disable debug info indefinitely for this function
1146 
1147   // The function might not have a body if we're generating thunks for a
1148   // function declaration.
1149   SourceRange BodyRange;
1150   if (Stmt *Body = FD->getBody())
1151     BodyRange = Body->getSourceRange();
1152   else
1153     BodyRange = FD->getLocation();
1154   CurEHLocation = BodyRange.getEnd();
1155 
1156   // Use the location of the start of the function to determine where
1157   // the function definition is located. By default use the location
1158   // of the declaration as the location for the subprogram. A function
1159   // may lack a declaration in the source code if it is created by code
1160   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1161   SourceLocation Loc = FD->getLocation();
1162 
1163   // If this is a function specialization then use the pattern body
1164   // as the location for the function.
1165   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1166     if (SpecDecl->hasBody(SpecDecl))
1167       Loc = SpecDecl->getLocation();
1168 
1169   Stmt *Body = FD->getBody();
1170 
1171   // Initialize helper which will detect jumps which can cause invalid lifetime
1172   // markers.
1173   if (Body && ShouldEmitLifetimeMarkers)
1174     Bypasses.Init(Body);
1175 
1176   // Emit the standard function prologue.
1177   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1178 
1179   // Generate the body of the function.
1180   PGO.assignRegionCounters(GD, CurFn);
1181   if (isa<CXXDestructorDecl>(FD))
1182     EmitDestructorBody(Args);
1183   else if (isa<CXXConstructorDecl>(FD))
1184     EmitConstructorBody(Args);
1185   else if (getLangOpts().CUDA &&
1186            !getLangOpts().CUDAIsDevice &&
1187            FD->hasAttr<CUDAGlobalAttr>())
1188     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1189   else if (isa<CXXMethodDecl>(FD) &&
1190            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1191     // The lambda static invoker function is special, because it forwards or
1192     // clones the body of the function call operator (but is actually static).
1193     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1194   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1195              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1196               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1197     // Implicit copy-assignment gets the same special treatment as implicit
1198     // copy-constructors.
1199     emitImplicitAssignmentOperatorBody(Args);
1200   } else if (Body) {
1201     EmitFunctionBody(Body);
1202   } else
1203     llvm_unreachable("no definition for emitted function");
1204 
1205   // C++11 [stmt.return]p2:
1206   //   Flowing off the end of a function [...] results in undefined behavior in
1207   //   a value-returning function.
1208   // C11 6.9.1p12:
1209   //   If the '}' that terminates a function is reached, and the value of the
1210   //   function call is used by the caller, the behavior is undefined.
1211   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1212       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1213     bool ShouldEmitUnreachable =
1214         CGM.getCodeGenOpts().StrictReturn ||
1215         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1216     if (SanOpts.has(SanitizerKind::Return)) {
1217       SanitizerScope SanScope(this);
1218       llvm::Value *IsFalse = Builder.getFalse();
1219       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1220                 SanitizerHandler::MissingReturn,
1221                 EmitCheckSourceLocation(FD->getLocation()), None);
1222     } else if (ShouldEmitUnreachable) {
1223       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1224         EmitTrapCall(llvm::Intrinsic::trap);
1225     }
1226     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1227       Builder.CreateUnreachable();
1228       Builder.ClearInsertionPoint();
1229     }
1230   }
1231 
1232   // Emit the standard function epilogue.
1233   FinishFunction(BodyRange.getEnd());
1234 
1235   // If we haven't marked the function nothrow through other means, do
1236   // a quick pass now to see if we can.
1237   if (!CurFn->doesNotThrow())
1238     TryMarkNoThrow(CurFn);
1239 }
1240 
1241 /// ContainsLabel - Return true if the statement contains a label in it.  If
1242 /// this statement is not executed normally, it not containing a label means
1243 /// that we can just remove the code.
1244 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1245   // Null statement, not a label!
1246   if (!S) return false;
1247 
1248   // If this is a label, we have to emit the code, consider something like:
1249   // if (0) {  ...  foo:  bar(); }  goto foo;
1250   //
1251   // TODO: If anyone cared, we could track __label__'s, since we know that you
1252   // can't jump to one from outside their declared region.
1253   if (isa<LabelStmt>(S))
1254     return true;
1255 
1256   // If this is a case/default statement, and we haven't seen a switch, we have
1257   // to emit the code.
1258   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1259     return true;
1260 
1261   // If this is a switch statement, we want to ignore cases below it.
1262   if (isa<SwitchStmt>(S))
1263     IgnoreCaseStmts = true;
1264 
1265   // Scan subexpressions for verboten labels.
1266   for (const Stmt *SubStmt : S->children())
1267     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1268       return true;
1269 
1270   return false;
1271 }
1272 
1273 /// containsBreak - Return true if the statement contains a break out of it.
1274 /// If the statement (recursively) contains a switch or loop with a break
1275 /// inside of it, this is fine.
1276 bool CodeGenFunction::containsBreak(const Stmt *S) {
1277   // Null statement, not a label!
1278   if (!S) return false;
1279 
1280   // If this is a switch or loop that defines its own break scope, then we can
1281   // include it and anything inside of it.
1282   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1283       isa<ForStmt>(S))
1284     return false;
1285 
1286   if (isa<BreakStmt>(S))
1287     return true;
1288 
1289   // Scan subexpressions for verboten breaks.
1290   for (const Stmt *SubStmt : S->children())
1291     if (containsBreak(SubStmt))
1292       return true;
1293 
1294   return false;
1295 }
1296 
1297 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1298   if (!S) return false;
1299 
1300   // Some statement kinds add a scope and thus never add a decl to the current
1301   // scope. Note, this list is longer than the list of statements that might
1302   // have an unscoped decl nested within them, but this way is conservatively
1303   // correct even if more statement kinds are added.
1304   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1305       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1306       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1307       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1308     return false;
1309 
1310   if (isa<DeclStmt>(S))
1311     return true;
1312 
1313   for (const Stmt *SubStmt : S->children())
1314     if (mightAddDeclToScope(SubStmt))
1315       return true;
1316 
1317   return false;
1318 }
1319 
1320 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1321 /// to a constant, or if it does but contains a label, return false.  If it
1322 /// constant folds return true and set the boolean result in Result.
1323 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1324                                                    bool &ResultBool,
1325                                                    bool AllowLabels) {
1326   llvm::APSInt ResultInt;
1327   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1328     return false;
1329 
1330   ResultBool = ResultInt.getBoolValue();
1331   return true;
1332 }
1333 
1334 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1335 /// to a constant, or if it does but contains a label, return false.  If it
1336 /// constant folds return true and set the folded value.
1337 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1338                                                    llvm::APSInt &ResultInt,
1339                                                    bool AllowLabels) {
1340   // FIXME: Rename and handle conversion of other evaluatable things
1341   // to bool.
1342   Expr::EvalResult Result;
1343   if (!Cond->EvaluateAsInt(Result, getContext()))
1344     return false;  // Not foldable, not integer or not fully evaluatable.
1345 
1346   llvm::APSInt Int = Result.Val.getInt();
1347   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1348     return false;  // Contains a label.
1349 
1350   ResultInt = Int;
1351   return true;
1352 }
1353 
1354 
1355 
1356 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1357 /// statement) to the specified blocks.  Based on the condition, this might try
1358 /// to simplify the codegen of the conditional based on the branch.
1359 ///
1360 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1361                                            llvm::BasicBlock *TrueBlock,
1362                                            llvm::BasicBlock *FalseBlock,
1363                                            uint64_t TrueCount) {
1364   Cond = Cond->IgnoreParens();
1365 
1366   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1367 
1368     // Handle X && Y in a condition.
1369     if (CondBOp->getOpcode() == BO_LAnd) {
1370       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1371       // folded if the case was simple enough.
1372       bool ConstantBool = false;
1373       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1374           ConstantBool) {
1375         // br(1 && X) -> br(X).
1376         incrementProfileCounter(CondBOp);
1377         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1378                                     TrueCount);
1379       }
1380 
1381       // If we have "X && 1", simplify the code to use an uncond branch.
1382       // "X && 0" would have been constant folded to 0.
1383       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1384           ConstantBool) {
1385         // br(X && 1) -> br(X).
1386         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1387                                     TrueCount);
1388       }
1389 
1390       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1391       // want to jump to the FalseBlock.
1392       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1393       // The counter tells us how often we evaluate RHS, and all of TrueCount
1394       // can be propagated to that branch.
1395       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1396 
1397       ConditionalEvaluation eval(*this);
1398       {
1399         ApplyDebugLocation DL(*this, Cond);
1400         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1401         EmitBlock(LHSTrue);
1402       }
1403 
1404       incrementProfileCounter(CondBOp);
1405       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1406 
1407       // Any temporaries created here are conditional.
1408       eval.begin(*this);
1409       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1410       eval.end(*this);
1411 
1412       return;
1413     }
1414 
1415     if (CondBOp->getOpcode() == BO_LOr) {
1416       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1417       // folded if the case was simple enough.
1418       bool ConstantBool = false;
1419       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1420           !ConstantBool) {
1421         // br(0 || X) -> br(X).
1422         incrementProfileCounter(CondBOp);
1423         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1424                                     TrueCount);
1425       }
1426 
1427       // If we have "X || 0", simplify the code to use an uncond branch.
1428       // "X || 1" would have been constant folded to 1.
1429       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1430           !ConstantBool) {
1431         // br(X || 0) -> br(X).
1432         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1433                                     TrueCount);
1434       }
1435 
1436       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1437       // want to jump to the TrueBlock.
1438       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1439       // We have the count for entry to the RHS and for the whole expression
1440       // being true, so we can divy up True count between the short circuit and
1441       // the RHS.
1442       uint64_t LHSCount =
1443           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1444       uint64_t RHSCount = TrueCount - LHSCount;
1445 
1446       ConditionalEvaluation eval(*this);
1447       {
1448         ApplyDebugLocation DL(*this, Cond);
1449         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1450         EmitBlock(LHSFalse);
1451       }
1452 
1453       incrementProfileCounter(CondBOp);
1454       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1455 
1456       // Any temporaries created here are conditional.
1457       eval.begin(*this);
1458       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1459 
1460       eval.end(*this);
1461 
1462       return;
1463     }
1464   }
1465 
1466   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1467     // br(!x, t, f) -> br(x, f, t)
1468     if (CondUOp->getOpcode() == UO_LNot) {
1469       // Negate the count.
1470       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1471       // Negate the condition and swap the destination blocks.
1472       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1473                                   FalseCount);
1474     }
1475   }
1476 
1477   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1478     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1479     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1480     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1481 
1482     ConditionalEvaluation cond(*this);
1483     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1484                          getProfileCount(CondOp));
1485 
1486     // When computing PGO branch weights, we only know the overall count for
1487     // the true block. This code is essentially doing tail duplication of the
1488     // naive code-gen, introducing new edges for which counts are not
1489     // available. Divide the counts proportionally between the LHS and RHS of
1490     // the conditional operator.
1491     uint64_t LHSScaledTrueCount = 0;
1492     if (TrueCount) {
1493       double LHSRatio =
1494           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1495       LHSScaledTrueCount = TrueCount * LHSRatio;
1496     }
1497 
1498     cond.begin(*this);
1499     EmitBlock(LHSBlock);
1500     incrementProfileCounter(CondOp);
1501     {
1502       ApplyDebugLocation DL(*this, Cond);
1503       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1504                            LHSScaledTrueCount);
1505     }
1506     cond.end(*this);
1507 
1508     cond.begin(*this);
1509     EmitBlock(RHSBlock);
1510     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1511                          TrueCount - LHSScaledTrueCount);
1512     cond.end(*this);
1513 
1514     return;
1515   }
1516 
1517   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1518     // Conditional operator handling can give us a throw expression as a
1519     // condition for a case like:
1520     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1521     // Fold this to:
1522     //   br(c, throw x, br(y, t, f))
1523     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1524     return;
1525   }
1526 
1527   // If the branch has a condition wrapped by __builtin_unpredictable,
1528   // create metadata that specifies that the branch is unpredictable.
1529   // Don't bother if not optimizing because that metadata would not be used.
1530   llvm::MDNode *Unpredictable = nullptr;
1531   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1532   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1533     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1534     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1535       llvm::MDBuilder MDHelper(getLLVMContext());
1536       Unpredictable = MDHelper.createUnpredictable();
1537     }
1538   }
1539 
1540   // Create branch weights based on the number of times we get here and the
1541   // number of times the condition should be true.
1542   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1543   llvm::MDNode *Weights =
1544       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1545 
1546   // Emit the code with the fully general case.
1547   llvm::Value *CondV;
1548   {
1549     ApplyDebugLocation DL(*this, Cond);
1550     CondV = EvaluateExprAsBool(Cond);
1551   }
1552   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1553 }
1554 
1555 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1556 /// specified stmt yet.
1557 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1558   CGM.ErrorUnsupported(S, Type);
1559 }
1560 
1561 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1562 /// variable-length array whose elements have a non-zero bit-pattern.
1563 ///
1564 /// \param baseType the inner-most element type of the array
1565 /// \param src - a char* pointing to the bit-pattern for a single
1566 /// base element of the array
1567 /// \param sizeInChars - the total size of the VLA, in chars
1568 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1569                                Address dest, Address src,
1570                                llvm::Value *sizeInChars) {
1571   CGBuilderTy &Builder = CGF.Builder;
1572 
1573   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1574   llvm::Value *baseSizeInChars
1575     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1576 
1577   Address begin =
1578     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1579   llvm::Value *end =
1580     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1581 
1582   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1583   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1584   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1585 
1586   // Make a loop over the VLA.  C99 guarantees that the VLA element
1587   // count must be nonzero.
1588   CGF.EmitBlock(loopBB);
1589 
1590   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1591   cur->addIncoming(begin.getPointer(), originBB);
1592 
1593   CharUnits curAlign =
1594     dest.getAlignment().alignmentOfArrayElement(baseSize);
1595 
1596   // memcpy the individual element bit-pattern.
1597   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1598                        /*volatile*/ false);
1599 
1600   // Go to the next element.
1601   llvm::Value *next =
1602     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1603 
1604   // Leave if that's the end of the VLA.
1605   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1606   Builder.CreateCondBr(done, contBB, loopBB);
1607   cur->addIncoming(next, loopBB);
1608 
1609   CGF.EmitBlock(contBB);
1610 }
1611 
1612 void
1613 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1614   // Ignore empty classes in C++.
1615   if (getLangOpts().CPlusPlus) {
1616     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1617       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1618         return;
1619     }
1620   }
1621 
1622   // Cast the dest ptr to the appropriate i8 pointer type.
1623   if (DestPtr.getElementType() != Int8Ty)
1624     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1625 
1626   // Get size and alignment info for this aggregate.
1627   CharUnits size = getContext().getTypeSizeInChars(Ty);
1628 
1629   llvm::Value *SizeVal;
1630   const VariableArrayType *vla;
1631 
1632   // Don't bother emitting a zero-byte memset.
1633   if (size.isZero()) {
1634     // But note that getTypeInfo returns 0 for a VLA.
1635     if (const VariableArrayType *vlaType =
1636           dyn_cast_or_null<VariableArrayType>(
1637                                           getContext().getAsArrayType(Ty))) {
1638       auto VlaSize = getVLASize(vlaType);
1639       SizeVal = VlaSize.NumElts;
1640       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1641       if (!eltSize.isOne())
1642         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1643       vla = vlaType;
1644     } else {
1645       return;
1646     }
1647   } else {
1648     SizeVal = CGM.getSize(size);
1649     vla = nullptr;
1650   }
1651 
1652   // If the type contains a pointer to data member we can't memset it to zero.
1653   // Instead, create a null constant and copy it to the destination.
1654   // TODO: there are other patterns besides zero that we can usefully memset,
1655   // like -1, which happens to be the pattern used by member-pointers.
1656   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1657     // For a VLA, emit a single element, then splat that over the VLA.
1658     if (vla) Ty = getContext().getBaseElementType(vla);
1659 
1660     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1661 
1662     llvm::GlobalVariable *NullVariable =
1663       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1664                                /*isConstant=*/true,
1665                                llvm::GlobalVariable::PrivateLinkage,
1666                                NullConstant, Twine());
1667     CharUnits NullAlign = DestPtr.getAlignment();
1668     NullVariable->setAlignment(NullAlign.getQuantity());
1669     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1670                    NullAlign);
1671 
1672     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1673 
1674     // Get and call the appropriate llvm.memcpy overload.
1675     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1676     return;
1677   }
1678 
1679   // Otherwise, just memset the whole thing to zero.  This is legal
1680   // because in LLVM, all default initializers (other than the ones we just
1681   // handled above) are guaranteed to have a bit pattern of all zeros.
1682   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1683 }
1684 
1685 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1686   // Make sure that there is a block for the indirect goto.
1687   if (!IndirectBranch)
1688     GetIndirectGotoBlock();
1689 
1690   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1691 
1692   // Make sure the indirect branch includes all of the address-taken blocks.
1693   IndirectBranch->addDestination(BB);
1694   return llvm::BlockAddress::get(CurFn, BB);
1695 }
1696 
1697 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1698   // If we already made the indirect branch for indirect goto, return its block.
1699   if (IndirectBranch) return IndirectBranch->getParent();
1700 
1701   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1702 
1703   // Create the PHI node that indirect gotos will add entries to.
1704   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1705                                               "indirect.goto.dest");
1706 
1707   // Create the indirect branch instruction.
1708   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1709   return IndirectBranch->getParent();
1710 }
1711 
1712 /// Computes the length of an array in elements, as well as the base
1713 /// element type and a properly-typed first element pointer.
1714 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1715                                               QualType &baseType,
1716                                               Address &addr) {
1717   const ArrayType *arrayType = origArrayType;
1718 
1719   // If it's a VLA, we have to load the stored size.  Note that
1720   // this is the size of the VLA in bytes, not its size in elements.
1721   llvm::Value *numVLAElements = nullptr;
1722   if (isa<VariableArrayType>(arrayType)) {
1723     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1724 
1725     // Walk into all VLAs.  This doesn't require changes to addr,
1726     // which has type T* where T is the first non-VLA element type.
1727     do {
1728       QualType elementType = arrayType->getElementType();
1729       arrayType = getContext().getAsArrayType(elementType);
1730 
1731       // If we only have VLA components, 'addr' requires no adjustment.
1732       if (!arrayType) {
1733         baseType = elementType;
1734         return numVLAElements;
1735       }
1736     } while (isa<VariableArrayType>(arrayType));
1737 
1738     // We get out here only if we find a constant array type
1739     // inside the VLA.
1740   }
1741 
1742   // We have some number of constant-length arrays, so addr should
1743   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1744   // down to the first element of addr.
1745   SmallVector<llvm::Value*, 8> gepIndices;
1746 
1747   // GEP down to the array type.
1748   llvm::ConstantInt *zero = Builder.getInt32(0);
1749   gepIndices.push_back(zero);
1750 
1751   uint64_t countFromCLAs = 1;
1752   QualType eltType;
1753 
1754   llvm::ArrayType *llvmArrayType =
1755     dyn_cast<llvm::ArrayType>(addr.getElementType());
1756   while (llvmArrayType) {
1757     assert(isa<ConstantArrayType>(arrayType));
1758     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1759              == llvmArrayType->getNumElements());
1760 
1761     gepIndices.push_back(zero);
1762     countFromCLAs *= llvmArrayType->getNumElements();
1763     eltType = arrayType->getElementType();
1764 
1765     llvmArrayType =
1766       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1767     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1768     assert((!llvmArrayType || arrayType) &&
1769            "LLVM and Clang types are out-of-synch");
1770   }
1771 
1772   if (arrayType) {
1773     // From this point onwards, the Clang array type has been emitted
1774     // as some other type (probably a packed struct). Compute the array
1775     // size, and just emit the 'begin' expression as a bitcast.
1776     while (arrayType) {
1777       countFromCLAs *=
1778           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1779       eltType = arrayType->getElementType();
1780       arrayType = getContext().getAsArrayType(eltType);
1781     }
1782 
1783     llvm::Type *baseType = ConvertType(eltType);
1784     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1785   } else {
1786     // Create the actual GEP.
1787     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1788                                              gepIndices, "array.begin"),
1789                    addr.getAlignment());
1790   }
1791 
1792   baseType = eltType;
1793 
1794   llvm::Value *numElements
1795     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1796 
1797   // If we had any VLA dimensions, factor them in.
1798   if (numVLAElements)
1799     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1800 
1801   return numElements;
1802 }
1803 
1804 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1805   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1806   assert(vla && "type was not a variable array type!");
1807   return getVLASize(vla);
1808 }
1809 
1810 CodeGenFunction::VlaSizePair
1811 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1812   // The number of elements so far; always size_t.
1813   llvm::Value *numElements = nullptr;
1814 
1815   QualType elementType;
1816   do {
1817     elementType = type->getElementType();
1818     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1819     assert(vlaSize && "no size for VLA!");
1820     assert(vlaSize->getType() == SizeTy);
1821 
1822     if (!numElements) {
1823       numElements = vlaSize;
1824     } else {
1825       // It's undefined behavior if this wraps around, so mark it that way.
1826       // FIXME: Teach -fsanitize=undefined to trap this.
1827       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1828     }
1829   } while ((type = getContext().getAsVariableArrayType(elementType)));
1830 
1831   return { numElements, elementType };
1832 }
1833 
1834 CodeGenFunction::VlaSizePair
1835 CodeGenFunction::getVLAElements1D(QualType type) {
1836   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1837   assert(vla && "type was not a variable array type!");
1838   return getVLAElements1D(vla);
1839 }
1840 
1841 CodeGenFunction::VlaSizePair
1842 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1843   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1844   assert(VlaSize && "no size for VLA!");
1845   assert(VlaSize->getType() == SizeTy);
1846   return { VlaSize, Vla->getElementType() };
1847 }
1848 
1849 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1850   assert(type->isVariablyModifiedType() &&
1851          "Must pass variably modified type to EmitVLASizes!");
1852 
1853   EnsureInsertPoint();
1854 
1855   // We're going to walk down into the type and look for VLA
1856   // expressions.
1857   do {
1858     assert(type->isVariablyModifiedType());
1859 
1860     const Type *ty = type.getTypePtr();
1861     switch (ty->getTypeClass()) {
1862 
1863 #define TYPE(Class, Base)
1864 #define ABSTRACT_TYPE(Class, Base)
1865 #define NON_CANONICAL_TYPE(Class, Base)
1866 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1867 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1868 #include "clang/AST/TypeNodes.def"
1869       llvm_unreachable("unexpected dependent type!");
1870 
1871     // These types are never variably-modified.
1872     case Type::Builtin:
1873     case Type::Complex:
1874     case Type::Vector:
1875     case Type::ExtVector:
1876     case Type::Record:
1877     case Type::Enum:
1878     case Type::Elaborated:
1879     case Type::TemplateSpecialization:
1880     case Type::ObjCTypeParam:
1881     case Type::ObjCObject:
1882     case Type::ObjCInterface:
1883     case Type::ObjCObjectPointer:
1884       llvm_unreachable("type class is never variably-modified!");
1885 
1886     case Type::Adjusted:
1887       type = cast<AdjustedType>(ty)->getAdjustedType();
1888       break;
1889 
1890     case Type::Decayed:
1891       type = cast<DecayedType>(ty)->getPointeeType();
1892       break;
1893 
1894     case Type::Pointer:
1895       type = cast<PointerType>(ty)->getPointeeType();
1896       break;
1897 
1898     case Type::BlockPointer:
1899       type = cast<BlockPointerType>(ty)->getPointeeType();
1900       break;
1901 
1902     case Type::LValueReference:
1903     case Type::RValueReference:
1904       type = cast<ReferenceType>(ty)->getPointeeType();
1905       break;
1906 
1907     case Type::MemberPointer:
1908       type = cast<MemberPointerType>(ty)->getPointeeType();
1909       break;
1910 
1911     case Type::ConstantArray:
1912     case Type::IncompleteArray:
1913       // Losing element qualification here is fine.
1914       type = cast<ArrayType>(ty)->getElementType();
1915       break;
1916 
1917     case Type::VariableArray: {
1918       // Losing element qualification here is fine.
1919       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1920 
1921       // Unknown size indication requires no size computation.
1922       // Otherwise, evaluate and record it.
1923       if (const Expr *size = vat->getSizeExpr()) {
1924         // It's possible that we might have emitted this already,
1925         // e.g. with a typedef and a pointer to it.
1926         llvm::Value *&entry = VLASizeMap[size];
1927         if (!entry) {
1928           llvm::Value *Size = EmitScalarExpr(size);
1929 
1930           // C11 6.7.6.2p5:
1931           //   If the size is an expression that is not an integer constant
1932           //   expression [...] each time it is evaluated it shall have a value
1933           //   greater than zero.
1934           if (SanOpts.has(SanitizerKind::VLABound) &&
1935               size->getType()->isSignedIntegerType()) {
1936             SanitizerScope SanScope(this);
1937             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1938             llvm::Constant *StaticArgs[] = {
1939                 EmitCheckSourceLocation(size->getBeginLoc()),
1940                 EmitCheckTypeDescriptor(size->getType())};
1941             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1942                                      SanitizerKind::VLABound),
1943                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1944           }
1945 
1946           // Always zexting here would be wrong if it weren't
1947           // undefined behavior to have a negative bound.
1948           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1949         }
1950       }
1951       type = vat->getElementType();
1952       break;
1953     }
1954 
1955     case Type::FunctionProto:
1956     case Type::FunctionNoProto:
1957       type = cast<FunctionType>(ty)->getReturnType();
1958       break;
1959 
1960     case Type::Paren:
1961     case Type::TypeOf:
1962     case Type::UnaryTransform:
1963     case Type::Attributed:
1964     case Type::SubstTemplateTypeParm:
1965     case Type::PackExpansion:
1966     case Type::MacroQualified:
1967       // Keep walking after single level desugaring.
1968       type = type.getSingleStepDesugaredType(getContext());
1969       break;
1970 
1971     case Type::Typedef:
1972     case Type::Decltype:
1973     case Type::Auto:
1974     case Type::DeducedTemplateSpecialization:
1975       // Stop walking: nothing to do.
1976       return;
1977 
1978     case Type::TypeOfExpr:
1979       // Stop walking: emit typeof expression.
1980       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1981       return;
1982 
1983     case Type::Atomic:
1984       type = cast<AtomicType>(ty)->getValueType();
1985       break;
1986 
1987     case Type::Pipe:
1988       type = cast<PipeType>(ty)->getElementType();
1989       break;
1990     }
1991   } while (type->isVariablyModifiedType());
1992 }
1993 
1994 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1995   if (getContext().getBuiltinVaListType()->isArrayType())
1996     return EmitPointerWithAlignment(E);
1997   return EmitLValue(E).getAddress();
1998 }
1999 
2000 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2001   return EmitLValue(E).getAddress();
2002 }
2003 
2004 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2005                                               const APValue &Init) {
2006   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2007   if (CGDebugInfo *Dbg = getDebugInfo())
2008     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2009       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2010 }
2011 
2012 CodeGenFunction::PeepholeProtection
2013 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2014   // At the moment, the only aggressive peephole we do in IR gen
2015   // is trunc(zext) folding, but if we add more, we can easily
2016   // extend this protection.
2017 
2018   if (!rvalue.isScalar()) return PeepholeProtection();
2019   llvm::Value *value = rvalue.getScalarVal();
2020   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2021 
2022   // Just make an extra bitcast.
2023   assert(HaveInsertPoint());
2024   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2025                                                   Builder.GetInsertBlock());
2026 
2027   PeepholeProtection protection;
2028   protection.Inst = inst;
2029   return protection;
2030 }
2031 
2032 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2033   if (!protection.Inst) return;
2034 
2035   // In theory, we could try to duplicate the peepholes now, but whatever.
2036   protection.Inst->eraseFromParent();
2037 }
2038 
2039 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2040                                               QualType Ty, SourceLocation Loc,
2041                                               SourceLocation AssumptionLoc,
2042                                               llvm::Value *Alignment,
2043                                               llvm::Value *OffsetValue) {
2044   llvm::Value *TheCheck;
2045   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2046       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2047   if (SanOpts.has(SanitizerKind::Alignment)) {
2048     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2049                                  OffsetValue, TheCheck, Assumption);
2050   }
2051 }
2052 
2053 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2054                                               QualType Ty, SourceLocation Loc,
2055                                               SourceLocation AssumptionLoc,
2056                                               unsigned Alignment,
2057                                               llvm::Value *OffsetValue) {
2058   llvm::Value *TheCheck;
2059   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2060       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2061   if (SanOpts.has(SanitizerKind::Alignment)) {
2062     llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment);
2063     EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal,
2064                                  OffsetValue, TheCheck, Assumption);
2065   }
2066 }
2067 
2068 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue,
2069                                               const Expr *E,
2070                                               SourceLocation AssumptionLoc,
2071                                               unsigned Alignment,
2072                                               llvm::Value *OffsetValue) {
2073   if (auto *CE = dyn_cast<CastExpr>(E))
2074     E = CE->getSubExprAsWritten();
2075   QualType Ty = E->getType();
2076   SourceLocation Loc = E->getExprLoc();
2077 
2078   EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2079                           OffsetValue);
2080 }
2081 
2082 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2083                                                  llvm::Value *AnnotatedVal,
2084                                                  StringRef AnnotationStr,
2085                                                  SourceLocation Location) {
2086   llvm::Value *Args[4] = {
2087     AnnotatedVal,
2088     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2089     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2090     CGM.EmitAnnotationLineNo(Location)
2091   };
2092   return Builder.CreateCall(AnnotationFn, Args);
2093 }
2094 
2095 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2096   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2097   // FIXME We create a new bitcast for every annotation because that's what
2098   // llvm-gcc was doing.
2099   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2100     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2101                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2102                        I->getAnnotation(), D->getLocation());
2103 }
2104 
2105 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2106                                               Address Addr) {
2107   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2108   llvm::Value *V = Addr.getPointer();
2109   llvm::Type *VTy = V->getType();
2110   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2111                                     CGM.Int8PtrTy);
2112 
2113   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2114     // FIXME Always emit the cast inst so we can differentiate between
2115     // annotation on the first field of a struct and annotation on the struct
2116     // itself.
2117     if (VTy != CGM.Int8PtrTy)
2118       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2119     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2120     V = Builder.CreateBitCast(V, VTy);
2121   }
2122 
2123   return Address(V, Addr.getAlignment());
2124 }
2125 
2126 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2127 
2128 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2129     : CGF(CGF) {
2130   assert(!CGF->IsSanitizerScope);
2131   CGF->IsSanitizerScope = true;
2132 }
2133 
2134 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2135   CGF->IsSanitizerScope = false;
2136 }
2137 
2138 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2139                                    const llvm::Twine &Name,
2140                                    llvm::BasicBlock *BB,
2141                                    llvm::BasicBlock::iterator InsertPt) const {
2142   LoopStack.InsertHelper(I);
2143   if (IsSanitizerScope)
2144     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2145 }
2146 
2147 void CGBuilderInserter::InsertHelper(
2148     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2149     llvm::BasicBlock::iterator InsertPt) const {
2150   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2151   if (CGF)
2152     CGF->InsertHelper(I, Name, BB, InsertPt);
2153 }
2154 
2155 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2156                                 CodeGenModule &CGM, const FunctionDecl *FD,
2157                                 std::string &FirstMissing) {
2158   // If there aren't any required features listed then go ahead and return.
2159   if (ReqFeatures.empty())
2160     return false;
2161 
2162   // Now build up the set of caller features and verify that all the required
2163   // features are there.
2164   llvm::StringMap<bool> CallerFeatureMap;
2165   CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD));
2166 
2167   // If we have at least one of the features in the feature list return
2168   // true, otherwise return false.
2169   return std::all_of(
2170       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2171         SmallVector<StringRef, 1> OrFeatures;
2172         Feature.split(OrFeatures, '|');
2173         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2174           if (!CallerFeatureMap.lookup(Feature)) {
2175             FirstMissing = Feature.str();
2176             return false;
2177           }
2178           return true;
2179         });
2180       });
2181 }
2182 
2183 // Emits an error if we don't have a valid set of target features for the
2184 // called function.
2185 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2186                                           const FunctionDecl *TargetDecl) {
2187   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2188 }
2189 
2190 // Emits an error if we don't have a valid set of target features for the
2191 // called function.
2192 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2193                                           const FunctionDecl *TargetDecl) {
2194   // Early exit if this is an indirect call.
2195   if (!TargetDecl)
2196     return;
2197 
2198   // Get the current enclosing function if it exists. If it doesn't
2199   // we can't check the target features anyhow.
2200   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2201   if (!FD)
2202     return;
2203 
2204   // Grab the required features for the call. For a builtin this is listed in
2205   // the td file with the default cpu, for an always_inline function this is any
2206   // listed cpu and any listed features.
2207   unsigned BuiltinID = TargetDecl->getBuiltinID();
2208   std::string MissingFeature;
2209   if (BuiltinID) {
2210     SmallVector<StringRef, 1> ReqFeatures;
2211     const char *FeatureList =
2212         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2213     // Return if the builtin doesn't have any required features.
2214     if (!FeatureList || StringRef(FeatureList) == "")
2215       return;
2216     StringRef(FeatureList).split(ReqFeatures, ',');
2217     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2218       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2219           << TargetDecl->getDeclName()
2220           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2221 
2222   } else if (TargetDecl->hasAttr<TargetAttr>() ||
2223              TargetDecl->hasAttr<CPUSpecificAttr>()) {
2224     // Get the required features for the callee.
2225 
2226     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2227     TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD);
2228 
2229     SmallVector<StringRef, 1> ReqFeatures;
2230     llvm::StringMap<bool> CalleeFeatureMap;
2231     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2232 
2233     for (const auto &F : ParsedAttr.Features) {
2234       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2235         ReqFeatures.push_back(StringRef(F).substr(1));
2236     }
2237 
2238     for (const auto &F : CalleeFeatureMap) {
2239       // Only positive features are "required".
2240       if (F.getValue())
2241         ReqFeatures.push_back(F.getKey());
2242     }
2243     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2244       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2245           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2246   }
2247 }
2248 
2249 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2250   if (!CGM.getCodeGenOpts().SanitizeStats)
2251     return;
2252 
2253   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2254   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2255   CGM.getSanStats().create(IRB, SSK);
2256 }
2257 
2258 llvm::Value *
2259 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2260   llvm::Value *Condition = nullptr;
2261 
2262   if (!RO.Conditions.Architecture.empty())
2263     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2264 
2265   if (!RO.Conditions.Features.empty()) {
2266     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2267     Condition =
2268         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2269   }
2270   return Condition;
2271 }
2272 
2273 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2274                                              llvm::Function *Resolver,
2275                                              CGBuilderTy &Builder,
2276                                              llvm::Function *FuncToReturn,
2277                                              bool SupportsIFunc) {
2278   if (SupportsIFunc) {
2279     Builder.CreateRet(FuncToReturn);
2280     return;
2281   }
2282 
2283   llvm::SmallVector<llvm::Value *, 10> Args;
2284   llvm::for_each(Resolver->args(),
2285                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2286 
2287   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2288   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2289 
2290   if (Resolver->getReturnType()->isVoidTy())
2291     Builder.CreateRetVoid();
2292   else
2293     Builder.CreateRet(Result);
2294 }
2295 
2296 void CodeGenFunction::EmitMultiVersionResolver(
2297     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2298   assert((getContext().getTargetInfo().getTriple().getArch() ==
2299               llvm::Triple::x86 ||
2300           getContext().getTargetInfo().getTriple().getArch() ==
2301               llvm::Triple::x86_64) &&
2302          "Only implemented for x86 targets");
2303 
2304   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2305 
2306   // Main function's basic block.
2307   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2308   Builder.SetInsertPoint(CurBlock);
2309   EmitX86CpuInit();
2310 
2311   for (const MultiVersionResolverOption &RO : Options) {
2312     Builder.SetInsertPoint(CurBlock);
2313     llvm::Value *Condition = FormResolverCondition(RO);
2314 
2315     // The 'default' or 'generic' case.
2316     if (!Condition) {
2317       assert(&RO == Options.end() - 1 &&
2318              "Default or Generic case must be last");
2319       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2320                                        SupportsIFunc);
2321       return;
2322     }
2323 
2324     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2325     CGBuilderTy RetBuilder(*this, RetBlock);
2326     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2327                                      SupportsIFunc);
2328     CurBlock = createBasicBlock("resolver_else", Resolver);
2329     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2330   }
2331 
2332   // If no generic/default, emit an unreachable.
2333   Builder.SetInsertPoint(CurBlock);
2334   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2335   TrapCall->setDoesNotReturn();
2336   TrapCall->setDoesNotThrow();
2337   Builder.CreateUnreachable();
2338   Builder.ClearInsertionPoint();
2339 }
2340 
2341 // Loc - where the diagnostic will point, where in the source code this
2342 //  alignment has failed.
2343 // SecondaryLoc - if present (will be present if sufficiently different from
2344 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2345 //  It should be the location where the __attribute__((assume_aligned))
2346 //  was written e.g.
2347 void CodeGenFunction::EmitAlignmentAssumptionCheck(
2348     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2349     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2350     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2351     llvm::Instruction *Assumption) {
2352   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2353          cast<llvm::CallInst>(Assumption)->getCalledValue() ==
2354              llvm::Intrinsic::getDeclaration(
2355                  Builder.GetInsertBlock()->getParent()->getParent(),
2356                  llvm::Intrinsic::assume) &&
2357          "Assumption should be a call to llvm.assume().");
2358   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2359          "Assumption should be the last instruction of the basic block, "
2360          "since the basic block is still being generated.");
2361 
2362   if (!SanOpts.has(SanitizerKind::Alignment))
2363     return;
2364 
2365   // Don't check pointers to volatile data. The behavior here is implementation-
2366   // defined.
2367   if (Ty->getPointeeType().isVolatileQualified())
2368     return;
2369 
2370   // We need to temorairly remove the assumption so we can insert the
2371   // sanitizer check before it, else the check will be dropped by optimizations.
2372   Assumption->removeFromParent();
2373 
2374   {
2375     SanitizerScope SanScope(this);
2376 
2377     if (!OffsetValue)
2378       OffsetValue = Builder.getInt1(0); // no offset.
2379 
2380     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2381                                     EmitCheckSourceLocation(SecondaryLoc),
2382                                     EmitCheckTypeDescriptor(Ty)};
2383     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2384                                   EmitCheckValue(Alignment),
2385                                   EmitCheckValue(OffsetValue)};
2386     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2387               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2388   }
2389 
2390   // We are now in the (new, empty) "cont" basic block.
2391   // Reintroduce the assumption.
2392   Builder.Insert(Assumption);
2393   // FIXME: Assumption still has it's original basic block as it's Parent.
2394 }
2395 
2396 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2397   if (CGDebugInfo *DI = getDebugInfo())
2398     return DI->SourceLocToDebugLoc(Location);
2399 
2400   return llvm::DebugLoc();
2401 }
2402