1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenPGO.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38       Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
39               CGBuilderInserterTy(this)),
40       CurFn(nullptr), CapturedStmtInfo(nullptr),
41       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
42       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
43       BlockInfo(nullptr), BlockPointer(nullptr),
44       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
45       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
46       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
47       DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false),
48       DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm),
49       SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr),
50       UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0),
51       CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr),
52       CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
53       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
54       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
55       TerminateHandler(nullptr), TrapBB(nullptr) {
56   if (!suppressNewContext)
57     CGM.getCXXABI().getMangleContext().startNewFunction();
58 
59   llvm::FastMathFlags FMF;
60   if (CGM.getLangOpts().FastMath)
61     FMF.setUnsafeAlgebra();
62   if (CGM.getLangOpts().FiniteMathOnly) {
63     FMF.setNoNaNs();
64     FMF.setNoInfs();
65   }
66   Builder.SetFastMathFlags(FMF);
67 }
68 
69 CodeGenFunction::~CodeGenFunction() {
70   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
71 
72   // If there are any unclaimed block infos, go ahead and destroy them
73   // now.  This can happen if IR-gen gets clever and skips evaluating
74   // something.
75   if (FirstBlockInfo)
76     destroyBlockInfos(FirstBlockInfo);
77 
78   if (getLangOpts().OpenMP) {
79     CGM.getOpenMPRuntime().FunctionFinished(*this);
80   }
81 }
82 
83 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
84   CharUnits Alignment;
85   if (CGM.getCXXABI().isTypeInfoCalculable(T)) {
86     Alignment = getContext().getTypeAlignInChars(T);
87     unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign;
88     if (MaxAlign && Alignment.getQuantity() > MaxAlign &&
89         !getContext().isAlignmentRequired(T))
90       Alignment = CharUnits::fromQuantity(MaxAlign);
91   }
92   return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T));
93 }
94 
95 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
96   return CGM.getTypes().ConvertTypeForMem(T);
97 }
98 
99 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
100   return CGM.getTypes().ConvertType(T);
101 }
102 
103 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
104   type = type.getCanonicalType();
105   while (true) {
106     switch (type->getTypeClass()) {
107 #define TYPE(name, parent)
108 #define ABSTRACT_TYPE(name, parent)
109 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
110 #define DEPENDENT_TYPE(name, parent) case Type::name:
111 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
112 #include "clang/AST/TypeNodes.def"
113       llvm_unreachable("non-canonical or dependent type in IR-generation");
114 
115     case Type::Auto:
116       llvm_unreachable("undeduced auto type in IR-generation");
117 
118     // Various scalar types.
119     case Type::Builtin:
120     case Type::Pointer:
121     case Type::BlockPointer:
122     case Type::LValueReference:
123     case Type::RValueReference:
124     case Type::MemberPointer:
125     case Type::Vector:
126     case Type::ExtVector:
127     case Type::FunctionProto:
128     case Type::FunctionNoProto:
129     case Type::Enum:
130     case Type::ObjCObjectPointer:
131       return TEK_Scalar;
132 
133     // Complexes.
134     case Type::Complex:
135       return TEK_Complex;
136 
137     // Arrays, records, and Objective-C objects.
138     case Type::ConstantArray:
139     case Type::IncompleteArray:
140     case Type::VariableArray:
141     case Type::Record:
142     case Type::ObjCObject:
143     case Type::ObjCInterface:
144       return TEK_Aggregate;
145 
146     // We operate on atomic values according to their underlying type.
147     case Type::Atomic:
148       type = cast<AtomicType>(type)->getValueType();
149       continue;
150     }
151     llvm_unreachable("unknown type kind!");
152   }
153 }
154 
155 void CodeGenFunction::EmitReturnBlock() {
156   // For cleanliness, we try to avoid emitting the return block for
157   // simple cases.
158   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
159 
160   if (CurBB) {
161     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
162 
163     // We have a valid insert point, reuse it if it is empty or there are no
164     // explicit jumps to the return block.
165     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
166       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
167       delete ReturnBlock.getBlock();
168     } else
169       EmitBlock(ReturnBlock.getBlock());
170     return;
171   }
172 
173   // Otherwise, if the return block is the target of a single direct
174   // branch then we can just put the code in that block instead. This
175   // cleans up functions which started with a unified return block.
176   if (ReturnBlock.getBlock()->hasOneUse()) {
177     llvm::BranchInst *BI =
178       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
179     if (BI && BI->isUnconditional() &&
180         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
181       // Reset insertion point, including debug location, and delete the
182       // branch.  This is really subtle and only works because the next change
183       // in location will hit the caching in CGDebugInfo::EmitLocation and not
184       // override this.
185       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
186       Builder.SetInsertPoint(BI->getParent());
187       BI->eraseFromParent();
188       delete ReturnBlock.getBlock();
189       return;
190     }
191   }
192 
193   // FIXME: We are at an unreachable point, there is no reason to emit the block
194   // unless it has uses. However, we still need a place to put the debug
195   // region.end for now.
196 
197   EmitBlock(ReturnBlock.getBlock());
198 }
199 
200 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
201   if (!BB) return;
202   if (!BB->use_empty())
203     return CGF.CurFn->getBasicBlockList().push_back(BB);
204   delete BB;
205 }
206 
207 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
208   assert(BreakContinueStack.empty() &&
209          "mismatched push/pop in break/continue stack!");
210 
211   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
212     && NumSimpleReturnExprs == NumReturnExprs
213     && ReturnBlock.getBlock()->use_empty();
214   // Usually the return expression is evaluated before the cleanup
215   // code.  If the function contains only a simple return statement,
216   // such as a constant, the location before the cleanup code becomes
217   // the last useful breakpoint in the function, because the simple
218   // return expression will be evaluated after the cleanup code. To be
219   // safe, set the debug location for cleanup code to the location of
220   // the return statement.  Otherwise the cleanup code should be at the
221   // end of the function's lexical scope.
222   //
223   // If there are multiple branches to the return block, the branch
224   // instructions will get the location of the return statements and
225   // all will be fine.
226   if (CGDebugInfo *DI = getDebugInfo()) {
227     if (OnlySimpleReturnStmts)
228       DI->EmitLocation(Builder, LastStopPoint);
229     else
230       DI->EmitLocation(Builder, EndLoc);
231   }
232 
233   // Pop any cleanups that might have been associated with the
234   // parameters.  Do this in whatever block we're currently in; it's
235   // important to do this before we enter the return block or return
236   // edges will be *really* confused.
237   bool EmitRetDbgLoc = true;
238   if (EHStack.stable_begin() != PrologueCleanupDepth) {
239     PopCleanupBlocks(PrologueCleanupDepth);
240 
241     // Make sure the line table doesn't jump back into the body for
242     // the ret after it's been at EndLoc.
243     EmitRetDbgLoc = false;
244 
245     if (CGDebugInfo *DI = getDebugInfo())
246       if (OnlySimpleReturnStmts)
247         DI->EmitLocation(Builder, EndLoc);
248   }
249 
250   // Emit function epilog (to return).
251   EmitReturnBlock();
252 
253   if (ShouldInstrumentFunction())
254     EmitFunctionInstrumentation("__cyg_profile_func_exit");
255 
256   // Emit debug descriptor for function end.
257   if (CGDebugInfo *DI = getDebugInfo()) {
258     DI->EmitFunctionEnd(Builder);
259   }
260 
261   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
262   EmitEndEHSpec(CurCodeDecl);
263 
264   assert(EHStack.empty() &&
265          "did not remove all scopes from cleanup stack!");
266 
267   // If someone did an indirect goto, emit the indirect goto block at the end of
268   // the function.
269   if (IndirectBranch) {
270     EmitBlock(IndirectBranch->getParent());
271     Builder.ClearInsertionPoint();
272   }
273 
274   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
275   llvm::Instruction *Ptr = AllocaInsertPt;
276   AllocaInsertPt = nullptr;
277   Ptr->eraseFromParent();
278 
279   // If someone took the address of a label but never did an indirect goto, we
280   // made a zero entry PHI node, which is illegal, zap it now.
281   if (IndirectBranch) {
282     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
283     if (PN->getNumIncomingValues() == 0) {
284       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
285       PN->eraseFromParent();
286     }
287   }
288 
289   EmitIfUsed(*this, EHResumeBlock);
290   EmitIfUsed(*this, TerminateLandingPad);
291   EmitIfUsed(*this, TerminateHandler);
292   EmitIfUsed(*this, UnreachableBlock);
293 
294   if (CGM.getCodeGenOpts().EmitDeclMetadata)
295     EmitDeclMetadata();
296 
297   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
298            I = DeferredReplacements.begin(),
299            E = DeferredReplacements.end();
300        I != E; ++I) {
301     I->first->replaceAllUsesWith(I->second);
302     I->first->eraseFromParent();
303   }
304 }
305 
306 /// ShouldInstrumentFunction - Return true if the current function should be
307 /// instrumented with __cyg_profile_func_* calls
308 bool CodeGenFunction::ShouldInstrumentFunction() {
309   if (!CGM.getCodeGenOpts().InstrumentFunctions)
310     return false;
311   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
312     return false;
313   return true;
314 }
315 
316 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
317 /// instrumentation function with the current function and the call site, if
318 /// function instrumentation is enabled.
319 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
320   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
321   llvm::PointerType *PointerTy = Int8PtrTy;
322   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
323   llvm::FunctionType *FunctionTy =
324     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
325 
326   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
327   llvm::CallInst *CallSite = Builder.CreateCall(
328     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
329     llvm::ConstantInt::get(Int32Ty, 0),
330     "callsite");
331 
332   llvm::Value *args[] = {
333     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
334     CallSite
335   };
336 
337   EmitNounwindRuntimeCall(F, args);
338 }
339 
340 void CodeGenFunction::EmitMCountInstrumentation() {
341   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
342 
343   llvm::Constant *MCountFn =
344     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
345   EmitNounwindRuntimeCall(MCountFn);
346 }
347 
348 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
349 // information in the program executable. The argument information stored
350 // includes the argument name, its type, the address and access qualifiers used.
351 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
352                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
353                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
354                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
355   // Create MDNodes that represent the kernel arg metadata.
356   // Each MDNode is a list in the form of "key", N number of values which is
357   // the same number of values as their are kernel arguments.
358 
359   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
360 
361   // MDNode for the kernel argument address space qualifiers.
362   SmallVector<llvm::Value*, 8> addressQuals;
363   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
364 
365   // MDNode for the kernel argument access qualifiers (images only).
366   SmallVector<llvm::Value*, 8> accessQuals;
367   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
368 
369   // MDNode for the kernel argument type names.
370   SmallVector<llvm::Value*, 8> argTypeNames;
371   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
372 
373   // MDNode for the kernel argument base type names.
374   SmallVector<llvm::Value*, 8> argBaseTypeNames;
375   argBaseTypeNames.push_back(
376       llvm::MDString::get(Context, "kernel_arg_base_type"));
377 
378   // MDNode for the kernel argument type qualifiers.
379   SmallVector<llvm::Value*, 8> argTypeQuals;
380   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
381 
382   // MDNode for the kernel argument names.
383   SmallVector<llvm::Value*, 8> argNames;
384   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
385 
386   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
387     const ParmVarDecl *parm = FD->getParamDecl(i);
388     QualType ty = parm->getType();
389     std::string typeQuals;
390 
391     if (ty->isPointerType()) {
392       QualType pointeeTy = ty->getPointeeType();
393 
394       // Get address qualifier.
395       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
396         pointeeTy.getAddressSpace())));
397 
398       // Get argument type name.
399       std::string typeName =
400           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
401 
402       // Turn "unsigned type" to "utype"
403       std::string::size_type pos = typeName.find("unsigned");
404       if (pointeeTy.isCanonical() && pos != std::string::npos)
405         typeName.erase(pos+1, 8);
406 
407       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
408 
409       std::string baseTypeName =
410           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
411               Policy) +
412           "*";
413 
414       // Turn "unsigned type" to "utype"
415       pos = baseTypeName.find("unsigned");
416       if (pos != std::string::npos)
417         baseTypeName.erase(pos+1, 8);
418 
419       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
420 
421       // Get argument type qualifiers:
422       if (ty.isRestrictQualified())
423         typeQuals = "restrict";
424       if (pointeeTy.isConstQualified() ||
425           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
426         typeQuals += typeQuals.empty() ? "const" : " const";
427       if (pointeeTy.isVolatileQualified())
428         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
429     } else {
430       uint32_t AddrSpc = 0;
431       if (ty->isImageType())
432         AddrSpc =
433           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
434 
435       addressQuals.push_back(Builder.getInt32(AddrSpc));
436 
437       // Get argument type name.
438       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
439 
440       // Turn "unsigned type" to "utype"
441       std::string::size_type pos = typeName.find("unsigned");
442       if (ty.isCanonical() && pos != std::string::npos)
443         typeName.erase(pos+1, 8);
444 
445       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
446 
447       std::string baseTypeName =
448           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
449 
450       // Turn "unsigned type" to "utype"
451       pos = baseTypeName.find("unsigned");
452       if (pos != std::string::npos)
453         baseTypeName.erase(pos+1, 8);
454 
455       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
456 
457       // Get argument type qualifiers:
458       if (ty.isConstQualified())
459         typeQuals = "const";
460       if (ty.isVolatileQualified())
461         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
462     }
463 
464     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
465 
466     // Get image access qualifier:
467     if (ty->isImageType()) {
468       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
469       if (A && A->isWriteOnly())
470         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
471       else
472         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
473       // FIXME: what about read_write?
474     } else
475       accessQuals.push_back(llvm::MDString::get(Context, "none"));
476 
477     // Get argument name.
478     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
479   }
480 
481   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
482   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
483   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
484   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
485   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
486   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
487 }
488 
489 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
490                                                llvm::Function *Fn)
491 {
492   if (!FD->hasAttr<OpenCLKernelAttr>())
493     return;
494 
495   llvm::LLVMContext &Context = getLLVMContext();
496 
497   SmallVector <llvm::Value*, 5> kernelMDArgs;
498   kernelMDArgs.push_back(Fn);
499 
500   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
501     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
502                          Builder, getContext());
503 
504   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
505     QualType hintQTy = A->getTypeHint();
506     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
507     bool isSignedInteger =
508         hintQTy->isSignedIntegerType() ||
509         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
510     llvm::Value *attrMDArgs[] = {
511       llvm::MDString::get(Context, "vec_type_hint"),
512       llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
513       llvm::ConstantInt::get(
514           llvm::IntegerType::get(Context, 32),
515           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
516     };
517     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
518   }
519 
520   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
521     llvm::Value *attrMDArgs[] = {
522       llvm::MDString::get(Context, "work_group_size_hint"),
523       Builder.getInt32(A->getXDim()),
524       Builder.getInt32(A->getYDim()),
525       Builder.getInt32(A->getZDim())
526     };
527     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
528   }
529 
530   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
531     llvm::Value *attrMDArgs[] = {
532       llvm::MDString::get(Context, "reqd_work_group_size"),
533       Builder.getInt32(A->getXDim()),
534       Builder.getInt32(A->getYDim()),
535       Builder.getInt32(A->getZDim())
536     };
537     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
538   }
539 
540   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
541   llvm::NamedMDNode *OpenCLKernelMetadata =
542     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
543   OpenCLKernelMetadata->addOperand(kernelMDNode);
544 }
545 
546 /// Determine whether the function F ends with a return stmt.
547 static bool endsWithReturn(const Decl* F) {
548   const Stmt *Body = nullptr;
549   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
550     Body = FD->getBody();
551   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
552     Body = OMD->getBody();
553 
554   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
555     auto LastStmt = CS->body_rbegin();
556     if (LastStmt != CS->body_rend())
557       return isa<ReturnStmt>(*LastStmt);
558   }
559   return false;
560 }
561 
562 void CodeGenFunction::StartFunction(GlobalDecl GD,
563                                     QualType RetTy,
564                                     llvm::Function *Fn,
565                                     const CGFunctionInfo &FnInfo,
566                                     const FunctionArgList &Args,
567                                     SourceLocation Loc,
568                                     SourceLocation StartLoc) {
569   assert(!CurFn &&
570          "Do not use a CodeGenFunction object for more than one function");
571 
572   const Decl *D = GD.getDecl();
573 
574   DidCallStackSave = false;
575   CurCodeDecl = D;
576   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
577   FnRetTy = RetTy;
578   CurFn = Fn;
579   CurFnInfo = &FnInfo;
580   assert(CurFn->isDeclaration() && "Function already has body?");
581 
582   if (CGM.isInSanitizerBlacklist(Fn, Loc))
583     SanOpts.clear();
584 
585   // Pass inline keyword to optimizer if it appears explicitly on any
586   // declaration. Also, in the case of -fno-inline attach NoInline
587   // attribute to all function that are not marked AlwaysInline.
588   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
589     if (!CGM.getCodeGenOpts().NoInline) {
590       for (auto RI : FD->redecls())
591         if (RI->isInlineSpecified()) {
592           Fn->addFnAttr(llvm::Attribute::InlineHint);
593           break;
594         }
595     } else if (!FD->hasAttr<AlwaysInlineAttr>())
596       Fn->addFnAttr(llvm::Attribute::NoInline);
597   }
598 
599   if (getLangOpts().OpenCL) {
600     // Add metadata for a kernel function.
601     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
602       EmitOpenCLKernelMetadata(FD, Fn);
603   }
604 
605   // If we are checking function types, emit a function type signature as
606   // prefix data.
607   if (getLangOpts().CPlusPlus && SanOpts.Function) {
608     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
609       if (llvm::Constant *PrefixSig =
610               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
611         llvm::Constant *FTRTTIConst =
612             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
613         llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
614         llvm::Constant *PrefixStructConst =
615             llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
616         Fn->setPrefixData(PrefixStructConst);
617       }
618     }
619   }
620 
621   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
622 
623   // Create a marker to make it easy to insert allocas into the entryblock
624   // later.  Don't create this with the builder, because we don't want it
625   // folded.
626   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
627   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
628   if (Builder.isNamePreserving())
629     AllocaInsertPt->setName("allocapt");
630 
631   ReturnBlock = getJumpDestInCurrentScope("return");
632 
633   Builder.SetInsertPoint(EntryBB);
634 
635   // Emit subprogram debug descriptor.
636   if (CGDebugInfo *DI = getDebugInfo()) {
637     SmallVector<QualType, 16> ArgTypes;
638     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
639 	 i != e; ++i) {
640       ArgTypes.push_back((*i)->getType());
641     }
642 
643     QualType FnType =
644       getContext().getFunctionType(RetTy, ArgTypes,
645                                    FunctionProtoType::ExtProtoInfo());
646     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
647   }
648 
649   if (ShouldInstrumentFunction())
650     EmitFunctionInstrumentation("__cyg_profile_func_enter");
651 
652   if (CGM.getCodeGenOpts().InstrumentForProfiling)
653     EmitMCountInstrumentation();
654 
655   if (RetTy->isVoidType()) {
656     // Void type; nothing to return.
657     ReturnValue = nullptr;
658 
659     // Count the implicit return.
660     if (!endsWithReturn(D))
661       ++NumReturnExprs;
662   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
663              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
664     // Indirect aggregate return; emit returned value directly into sret slot.
665     // This reduces code size, and affects correctness in C++.
666     auto AI = CurFn->arg_begin();
667     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
668       ++AI;
669     ReturnValue = AI;
670   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
671              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
672     // Load the sret pointer from the argument struct and return into that.
673     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
674     llvm::Function::arg_iterator EI = CurFn->arg_end();
675     --EI;
676     llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
677     ReturnValue = Builder.CreateLoad(Addr, "agg.result");
678   } else {
679     ReturnValue = CreateIRTemp(RetTy, "retval");
680 
681     // Tell the epilog emitter to autorelease the result.  We do this
682     // now so that various specialized functions can suppress it
683     // during their IR-generation.
684     if (getLangOpts().ObjCAutoRefCount &&
685         !CurFnInfo->isReturnsRetained() &&
686         RetTy->isObjCRetainableType())
687       AutoreleaseResult = true;
688   }
689 
690   EmitStartEHSpec(CurCodeDecl);
691 
692   PrologueCleanupDepth = EHStack.stable_begin();
693   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
694 
695   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
696     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
697     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
698     if (MD->getParent()->isLambda() &&
699         MD->getOverloadedOperator() == OO_Call) {
700       // We're in a lambda; figure out the captures.
701       MD->getParent()->getCaptureFields(LambdaCaptureFields,
702                                         LambdaThisCaptureField);
703       if (LambdaThisCaptureField) {
704         // If this lambda captures this, load it.
705         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
706         CXXThisValue = EmitLoadOfLValue(ThisLValue,
707                                         SourceLocation()).getScalarVal();
708       }
709       for (auto *FD : MD->getParent()->fields()) {
710         if (FD->hasCapturedVLAType()) {
711           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
712                                            SourceLocation()).getScalarVal();
713           auto VAT = FD->getCapturedVLAType();
714           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
715         }
716       }
717     } else {
718       // Not in a lambda; just use 'this' from the method.
719       // FIXME: Should we generate a new load for each use of 'this'?  The
720       // fast register allocator would be happier...
721       CXXThisValue = CXXABIThisValue;
722     }
723   }
724 
725   // If any of the arguments have a variably modified type, make sure to
726   // emit the type size.
727   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
728        i != e; ++i) {
729     const VarDecl *VD = *i;
730 
731     // Dig out the type as written from ParmVarDecls; it's unclear whether
732     // the standard (C99 6.9.1p10) requires this, but we're following the
733     // precedent set by gcc.
734     QualType Ty;
735     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
736       Ty = PVD->getOriginalType();
737     else
738       Ty = VD->getType();
739 
740     if (Ty->isVariablyModifiedType())
741       EmitVariablyModifiedType(Ty);
742   }
743   // Emit a location at the end of the prologue.
744   if (CGDebugInfo *DI = getDebugInfo())
745     DI->EmitLocation(Builder, StartLoc);
746 }
747 
748 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
749                                        const Stmt *Body) {
750   RegionCounter Cnt = getPGORegionCounter(Body);
751   Cnt.beginRegion(Builder);
752   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
753     EmitCompoundStmtWithoutScope(*S);
754   else
755     EmitStmt(Body);
756 }
757 
758 /// When instrumenting to collect profile data, the counts for some blocks
759 /// such as switch cases need to not include the fall-through counts, so
760 /// emit a branch around the instrumentation code. When not instrumenting,
761 /// this just calls EmitBlock().
762 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
763                                                RegionCounter &Cnt) {
764   llvm::BasicBlock *SkipCountBB = nullptr;
765   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
766     // When instrumenting for profiling, the fallthrough to certain
767     // statements needs to skip over the instrumentation code so that we
768     // get an accurate count.
769     SkipCountBB = createBasicBlock("skipcount");
770     EmitBranch(SkipCountBB);
771   }
772   EmitBlock(BB);
773   Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
774   if (SkipCountBB)
775     EmitBlock(SkipCountBB);
776 }
777 
778 /// Tries to mark the given function nounwind based on the
779 /// non-existence of any throwing calls within it.  We believe this is
780 /// lightweight enough to do at -O0.
781 static void TryMarkNoThrow(llvm::Function *F) {
782   // LLVM treats 'nounwind' on a function as part of the type, so we
783   // can't do this on functions that can be overwritten.
784   if (F->mayBeOverridden()) return;
785 
786   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
787     for (llvm::BasicBlock::iterator
788            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
789       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
790         if (!Call->doesNotThrow())
791           return;
792       } else if (isa<llvm::ResumeInst>(&*BI)) {
793         return;
794       }
795   F->setDoesNotThrow();
796 }
797 
798 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
799                                           const FunctionDecl *UnsizedDealloc) {
800   // This is a weak discardable definition of the sized deallocation function.
801   CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
802 
803   // Call the unsized deallocation function and forward the first argument
804   // unchanged.
805   llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
806   CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
807 }
808 
809 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
810                                    const CGFunctionInfo &FnInfo) {
811   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
812 
813   // Check if we should generate debug info for this function.
814   if (FD->hasAttr<NoDebugAttr>())
815     DebugInfo = nullptr; // disable debug info indefinitely for this function
816 
817   FunctionArgList Args;
818   QualType ResTy = FD->getReturnType();
819 
820   CurGD = GD;
821   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
822   if (MD && MD->isInstance()) {
823     if (CGM.getCXXABI().HasThisReturn(GD))
824       ResTy = MD->getThisType(getContext());
825     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
826       ResTy = CGM.getContext().VoidPtrTy;
827     CGM.getCXXABI().buildThisParam(*this, Args);
828   }
829 
830   Args.append(FD->param_begin(), FD->param_end());
831 
832   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
833     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
834 
835   SourceRange BodyRange;
836   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
837   CurEHLocation = BodyRange.getEnd();
838 
839   // Use the location of the start of the function to determine where
840   // the function definition is located. By default use the location
841   // of the declaration as the location for the subprogram. A function
842   // may lack a declaration in the source code if it is created by code
843   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
844   SourceLocation Loc = FD->getLocation();
845 
846   // If this is a function specialization then use the pattern body
847   // as the location for the function.
848   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
849     if (SpecDecl->hasBody(SpecDecl))
850       Loc = SpecDecl->getLocation();
851 
852   // Emit the standard function prologue.
853   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
854 
855   // Generate the body of the function.
856   PGO.checkGlobalDecl(GD);
857   PGO.assignRegionCounters(GD.getDecl(), CurFn);
858   if (isa<CXXDestructorDecl>(FD))
859     EmitDestructorBody(Args);
860   else if (isa<CXXConstructorDecl>(FD))
861     EmitConstructorBody(Args);
862   else if (getLangOpts().CUDA &&
863            !CGM.getCodeGenOpts().CUDAIsDevice &&
864            FD->hasAttr<CUDAGlobalAttr>())
865     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
866   else if (isa<CXXConversionDecl>(FD) &&
867            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
868     // The lambda conversion to block pointer is special; the semantics can't be
869     // expressed in the AST, so IRGen needs to special-case it.
870     EmitLambdaToBlockPointerBody(Args);
871   } else if (isa<CXXMethodDecl>(FD) &&
872              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
873     // The lambda static invoker function is special, because it forwards or
874     // clones the body of the function call operator (but is actually static).
875     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
876   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
877              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
878               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
879     // Implicit copy-assignment gets the same special treatment as implicit
880     // copy-constructors.
881     emitImplicitAssignmentOperatorBody(Args);
882   } else if (Stmt *Body = FD->getBody()) {
883     EmitFunctionBody(Args, Body);
884   } else if (FunctionDecl *UnsizedDealloc =
885                  FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
886     // Global sized deallocation functions get an implicit weak definition if
887     // they don't have an explicit definition.
888     EmitSizedDeallocationFunction(*this, UnsizedDealloc);
889   } else
890     llvm_unreachable("no definition for emitted function");
891 
892   // C++11 [stmt.return]p2:
893   //   Flowing off the end of a function [...] results in undefined behavior in
894   //   a value-returning function.
895   // C11 6.9.1p12:
896   //   If the '}' that terminates a function is reached, and the value of the
897   //   function call is used by the caller, the behavior is undefined.
898   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
899       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
900     if (SanOpts.Return) {
901       SanitizerScope SanScope(this);
902       EmitCheck(Builder.getFalse(), "missing_return",
903                 EmitCheckSourceLocation(FD->getLocation()),
904                 None, CRK_Unrecoverable);
905     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
906       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
907     Builder.CreateUnreachable();
908     Builder.ClearInsertionPoint();
909   }
910 
911   // Emit the standard function epilogue.
912   FinishFunction(BodyRange.getEnd());
913 
914   // If we haven't marked the function nothrow through other means, do
915   // a quick pass now to see if we can.
916   if (!CurFn->doesNotThrow())
917     TryMarkNoThrow(CurFn);
918 
919   PGO.emitInstrumentationData();
920   PGO.destroyRegionCounters();
921 }
922 
923 /// ContainsLabel - Return true if the statement contains a label in it.  If
924 /// this statement is not executed normally, it not containing a label means
925 /// that we can just remove the code.
926 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
927   // Null statement, not a label!
928   if (!S) return false;
929 
930   // If this is a label, we have to emit the code, consider something like:
931   // if (0) {  ...  foo:  bar(); }  goto foo;
932   //
933   // TODO: If anyone cared, we could track __label__'s, since we know that you
934   // can't jump to one from outside their declared region.
935   if (isa<LabelStmt>(S))
936     return true;
937 
938   // If this is a case/default statement, and we haven't seen a switch, we have
939   // to emit the code.
940   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
941     return true;
942 
943   // If this is a switch statement, we want to ignore cases below it.
944   if (isa<SwitchStmt>(S))
945     IgnoreCaseStmts = true;
946 
947   // Scan subexpressions for verboten labels.
948   for (Stmt::const_child_range I = S->children(); I; ++I)
949     if (ContainsLabel(*I, IgnoreCaseStmts))
950       return true;
951 
952   return false;
953 }
954 
955 /// containsBreak - Return true if the statement contains a break out of it.
956 /// If the statement (recursively) contains a switch or loop with a break
957 /// inside of it, this is fine.
958 bool CodeGenFunction::containsBreak(const Stmt *S) {
959   // Null statement, not a label!
960   if (!S) return false;
961 
962   // If this is a switch or loop that defines its own break scope, then we can
963   // include it and anything inside of it.
964   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
965       isa<ForStmt>(S))
966     return false;
967 
968   if (isa<BreakStmt>(S))
969     return true;
970 
971   // Scan subexpressions for verboten breaks.
972   for (Stmt::const_child_range I = S->children(); I; ++I)
973     if (containsBreak(*I))
974       return true;
975 
976   return false;
977 }
978 
979 
980 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
981 /// to a constant, or if it does but contains a label, return false.  If it
982 /// constant folds return true and set the boolean result in Result.
983 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
984                                                    bool &ResultBool) {
985   llvm::APSInt ResultInt;
986   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
987     return false;
988 
989   ResultBool = ResultInt.getBoolValue();
990   return true;
991 }
992 
993 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
994 /// to a constant, or if it does but contains a label, return false.  If it
995 /// constant folds return true and set the folded value.
996 bool CodeGenFunction::
997 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
998   // FIXME: Rename and handle conversion of other evaluatable things
999   // to bool.
1000   llvm::APSInt Int;
1001   if (!Cond->EvaluateAsInt(Int, getContext()))
1002     return false;  // Not foldable, not integer or not fully evaluatable.
1003 
1004   if (CodeGenFunction::ContainsLabel(Cond))
1005     return false;  // Contains a label.
1006 
1007   ResultInt = Int;
1008   return true;
1009 }
1010 
1011 
1012 
1013 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1014 /// statement) to the specified blocks.  Based on the condition, this might try
1015 /// to simplify the codegen of the conditional based on the branch.
1016 ///
1017 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1018                                            llvm::BasicBlock *TrueBlock,
1019                                            llvm::BasicBlock *FalseBlock,
1020                                            uint64_t TrueCount) {
1021   Cond = Cond->IgnoreParens();
1022 
1023   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1024 
1025     // Handle X && Y in a condition.
1026     if (CondBOp->getOpcode() == BO_LAnd) {
1027       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1028 
1029       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1030       // folded if the case was simple enough.
1031       bool ConstantBool = false;
1032       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1033           ConstantBool) {
1034         // br(1 && X) -> br(X).
1035         Cnt.beginRegion(Builder);
1036         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1037                                     TrueCount);
1038       }
1039 
1040       // If we have "X && 1", simplify the code to use an uncond branch.
1041       // "X && 0" would have been constant folded to 0.
1042       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1043           ConstantBool) {
1044         // br(X && 1) -> br(X).
1045         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1046                                     TrueCount);
1047       }
1048 
1049       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1050       // want to jump to the FalseBlock.
1051       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1052       // The counter tells us how often we evaluate RHS, and all of TrueCount
1053       // can be propagated to that branch.
1054       uint64_t RHSCount = Cnt.getCount();
1055 
1056       ConditionalEvaluation eval(*this);
1057       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1058       EmitBlock(LHSTrue);
1059 
1060       // Any temporaries created here are conditional.
1061       Cnt.beginRegion(Builder);
1062       eval.begin(*this);
1063       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1064       eval.end(*this);
1065 
1066       return;
1067     }
1068 
1069     if (CondBOp->getOpcode() == BO_LOr) {
1070       RegionCounter Cnt = getPGORegionCounter(CondBOp);
1071 
1072       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1073       // folded if the case was simple enough.
1074       bool ConstantBool = false;
1075       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1076           !ConstantBool) {
1077         // br(0 || X) -> br(X).
1078         Cnt.beginRegion(Builder);
1079         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1080                                     TrueCount);
1081       }
1082 
1083       // If we have "X || 0", simplify the code to use an uncond branch.
1084       // "X || 1" would have been constant folded to 1.
1085       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1086           !ConstantBool) {
1087         // br(X || 0) -> br(X).
1088         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1089                                     TrueCount);
1090       }
1091 
1092       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1093       // want to jump to the TrueBlock.
1094       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1095       // We have the count for entry to the RHS and for the whole expression
1096       // being true, so we can divy up True count between the short circuit and
1097       // the RHS.
1098       uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1099       uint64_t RHSCount = TrueCount - LHSCount;
1100 
1101       ConditionalEvaluation eval(*this);
1102       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1103       EmitBlock(LHSFalse);
1104 
1105       // Any temporaries created here are conditional.
1106       Cnt.beginRegion(Builder);
1107       eval.begin(*this);
1108       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1109 
1110       eval.end(*this);
1111 
1112       return;
1113     }
1114   }
1115 
1116   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1117     // br(!x, t, f) -> br(x, f, t)
1118     if (CondUOp->getOpcode() == UO_LNot) {
1119       // Negate the count.
1120       uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1121       // Negate the condition and swap the destination blocks.
1122       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1123                                   FalseCount);
1124     }
1125   }
1126 
1127   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1128     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1129     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1130     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1131 
1132     RegionCounter Cnt = getPGORegionCounter(CondOp);
1133     ConditionalEvaluation cond(*this);
1134     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1135 
1136     // When computing PGO branch weights, we only know the overall count for
1137     // the true block. This code is essentially doing tail duplication of the
1138     // naive code-gen, introducing new edges for which counts are not
1139     // available. Divide the counts proportionally between the LHS and RHS of
1140     // the conditional operator.
1141     uint64_t LHSScaledTrueCount = 0;
1142     if (TrueCount) {
1143       double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1144       LHSScaledTrueCount = TrueCount * LHSRatio;
1145     }
1146 
1147     cond.begin(*this);
1148     EmitBlock(LHSBlock);
1149     Cnt.beginRegion(Builder);
1150     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1151                          LHSScaledTrueCount);
1152     cond.end(*this);
1153 
1154     cond.begin(*this);
1155     EmitBlock(RHSBlock);
1156     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1157                          TrueCount - LHSScaledTrueCount);
1158     cond.end(*this);
1159 
1160     return;
1161   }
1162 
1163   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1164     // Conditional operator handling can give us a throw expression as a
1165     // condition for a case like:
1166     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1167     // Fold this to:
1168     //   br(c, throw x, br(y, t, f))
1169     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1170     return;
1171   }
1172 
1173   // Create branch weights based on the number of times we get here and the
1174   // number of times the condition should be true.
1175   uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1176   llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1177                                                   CurrentCount - TrueCount);
1178 
1179   // Emit the code with the fully general case.
1180   llvm::Value *CondV = EvaluateExprAsBool(Cond);
1181   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1182 }
1183 
1184 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1185 /// specified stmt yet.
1186 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1187   CGM.ErrorUnsupported(S, Type);
1188 }
1189 
1190 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1191 /// variable-length array whose elements have a non-zero bit-pattern.
1192 ///
1193 /// \param baseType the inner-most element type of the array
1194 /// \param src - a char* pointing to the bit-pattern for a single
1195 /// base element of the array
1196 /// \param sizeInChars - the total size of the VLA, in chars
1197 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1198                                llvm::Value *dest, llvm::Value *src,
1199                                llvm::Value *sizeInChars) {
1200   std::pair<CharUnits,CharUnits> baseSizeAndAlign
1201     = CGF.getContext().getTypeInfoInChars(baseType);
1202 
1203   CGBuilderTy &Builder = CGF.Builder;
1204 
1205   llvm::Value *baseSizeInChars
1206     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1207 
1208   llvm::Type *i8p = Builder.getInt8PtrTy();
1209 
1210   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1211   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1212 
1213   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1214   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1215   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1216 
1217   // Make a loop over the VLA.  C99 guarantees that the VLA element
1218   // count must be nonzero.
1219   CGF.EmitBlock(loopBB);
1220 
1221   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1222   cur->addIncoming(begin, originBB);
1223 
1224   // memcpy the individual element bit-pattern.
1225   Builder.CreateMemCpy(cur, src, baseSizeInChars,
1226                        baseSizeAndAlign.second.getQuantity(),
1227                        /*volatile*/ false);
1228 
1229   // Go to the next element.
1230   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1231 
1232   // Leave if that's the end of the VLA.
1233   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1234   Builder.CreateCondBr(done, contBB, loopBB);
1235   cur->addIncoming(next, loopBB);
1236 
1237   CGF.EmitBlock(contBB);
1238 }
1239 
1240 void
1241 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1242   // Ignore empty classes in C++.
1243   if (getLangOpts().CPlusPlus) {
1244     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1245       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1246         return;
1247     }
1248   }
1249 
1250   // Cast the dest ptr to the appropriate i8 pointer type.
1251   unsigned DestAS =
1252     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1253   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1254   if (DestPtr->getType() != BP)
1255     DestPtr = Builder.CreateBitCast(DestPtr, BP);
1256 
1257   // Get size and alignment info for this aggregate.
1258   std::pair<CharUnits, CharUnits> TypeInfo =
1259     getContext().getTypeInfoInChars(Ty);
1260   CharUnits Size = TypeInfo.first;
1261   CharUnits Align = TypeInfo.second;
1262 
1263   llvm::Value *SizeVal;
1264   const VariableArrayType *vla;
1265 
1266   // Don't bother emitting a zero-byte memset.
1267   if (Size.isZero()) {
1268     // But note that getTypeInfo returns 0 for a VLA.
1269     if (const VariableArrayType *vlaType =
1270           dyn_cast_or_null<VariableArrayType>(
1271                                           getContext().getAsArrayType(Ty))) {
1272       QualType eltType;
1273       llvm::Value *numElts;
1274       std::tie(numElts, eltType) = getVLASize(vlaType);
1275 
1276       SizeVal = numElts;
1277       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1278       if (!eltSize.isOne())
1279         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1280       vla = vlaType;
1281     } else {
1282       return;
1283     }
1284   } else {
1285     SizeVal = CGM.getSize(Size);
1286     vla = nullptr;
1287   }
1288 
1289   // If the type contains a pointer to data member we can't memset it to zero.
1290   // Instead, create a null constant and copy it to the destination.
1291   // TODO: there are other patterns besides zero that we can usefully memset,
1292   // like -1, which happens to be the pattern used by member-pointers.
1293   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1294     // For a VLA, emit a single element, then splat that over the VLA.
1295     if (vla) Ty = getContext().getBaseElementType(vla);
1296 
1297     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1298 
1299     llvm::GlobalVariable *NullVariable =
1300       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1301                                /*isConstant=*/true,
1302                                llvm::GlobalVariable::PrivateLinkage,
1303                                NullConstant, Twine());
1304     llvm::Value *SrcPtr =
1305       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1306 
1307     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1308 
1309     // Get and call the appropriate llvm.memcpy overload.
1310     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1311     return;
1312   }
1313 
1314   // Otherwise, just memset the whole thing to zero.  This is legal
1315   // because in LLVM, all default initializers (other than the ones we just
1316   // handled above) are guaranteed to have a bit pattern of all zeros.
1317   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1318                        Align.getQuantity(), false);
1319 }
1320 
1321 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1322   // Make sure that there is a block for the indirect goto.
1323   if (!IndirectBranch)
1324     GetIndirectGotoBlock();
1325 
1326   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1327 
1328   // Make sure the indirect branch includes all of the address-taken blocks.
1329   IndirectBranch->addDestination(BB);
1330   return llvm::BlockAddress::get(CurFn, BB);
1331 }
1332 
1333 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1334   // If we already made the indirect branch for indirect goto, return its block.
1335   if (IndirectBranch) return IndirectBranch->getParent();
1336 
1337   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1338 
1339   // Create the PHI node that indirect gotos will add entries to.
1340   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1341                                               "indirect.goto.dest");
1342 
1343   // Create the indirect branch instruction.
1344   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1345   return IndirectBranch->getParent();
1346 }
1347 
1348 /// Computes the length of an array in elements, as well as the base
1349 /// element type and a properly-typed first element pointer.
1350 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1351                                               QualType &baseType,
1352                                               llvm::Value *&addr) {
1353   const ArrayType *arrayType = origArrayType;
1354 
1355   // If it's a VLA, we have to load the stored size.  Note that
1356   // this is the size of the VLA in bytes, not its size in elements.
1357   llvm::Value *numVLAElements = nullptr;
1358   if (isa<VariableArrayType>(arrayType)) {
1359     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1360 
1361     // Walk into all VLAs.  This doesn't require changes to addr,
1362     // which has type T* where T is the first non-VLA element type.
1363     do {
1364       QualType elementType = arrayType->getElementType();
1365       arrayType = getContext().getAsArrayType(elementType);
1366 
1367       // If we only have VLA components, 'addr' requires no adjustment.
1368       if (!arrayType) {
1369         baseType = elementType;
1370         return numVLAElements;
1371       }
1372     } while (isa<VariableArrayType>(arrayType));
1373 
1374     // We get out here only if we find a constant array type
1375     // inside the VLA.
1376   }
1377 
1378   // We have some number of constant-length arrays, so addr should
1379   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1380   // down to the first element of addr.
1381   SmallVector<llvm::Value*, 8> gepIndices;
1382 
1383   // GEP down to the array type.
1384   llvm::ConstantInt *zero = Builder.getInt32(0);
1385   gepIndices.push_back(zero);
1386 
1387   uint64_t countFromCLAs = 1;
1388   QualType eltType;
1389 
1390   llvm::ArrayType *llvmArrayType =
1391     dyn_cast<llvm::ArrayType>(
1392       cast<llvm::PointerType>(addr->getType())->getElementType());
1393   while (llvmArrayType) {
1394     assert(isa<ConstantArrayType>(arrayType));
1395     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1396              == llvmArrayType->getNumElements());
1397 
1398     gepIndices.push_back(zero);
1399     countFromCLAs *= llvmArrayType->getNumElements();
1400     eltType = arrayType->getElementType();
1401 
1402     llvmArrayType =
1403       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1404     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1405     assert((!llvmArrayType || arrayType) &&
1406            "LLVM and Clang types are out-of-synch");
1407   }
1408 
1409   if (arrayType) {
1410     // From this point onwards, the Clang array type has been emitted
1411     // as some other type (probably a packed struct). Compute the array
1412     // size, and just emit the 'begin' expression as a bitcast.
1413     while (arrayType) {
1414       countFromCLAs *=
1415           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1416       eltType = arrayType->getElementType();
1417       arrayType = getContext().getAsArrayType(eltType);
1418     }
1419 
1420     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1421     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1422     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1423   } else {
1424     // Create the actual GEP.
1425     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1426   }
1427 
1428   baseType = eltType;
1429 
1430   llvm::Value *numElements
1431     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1432 
1433   // If we had any VLA dimensions, factor them in.
1434   if (numVLAElements)
1435     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1436 
1437   return numElements;
1438 }
1439 
1440 std::pair<llvm::Value*, QualType>
1441 CodeGenFunction::getVLASize(QualType type) {
1442   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1443   assert(vla && "type was not a variable array type!");
1444   return getVLASize(vla);
1445 }
1446 
1447 std::pair<llvm::Value*, QualType>
1448 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1449   // The number of elements so far; always size_t.
1450   llvm::Value *numElements = nullptr;
1451 
1452   QualType elementType;
1453   do {
1454     elementType = type->getElementType();
1455     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1456     assert(vlaSize && "no size for VLA!");
1457     assert(vlaSize->getType() == SizeTy);
1458 
1459     if (!numElements) {
1460       numElements = vlaSize;
1461     } else {
1462       // It's undefined behavior if this wraps around, so mark it that way.
1463       // FIXME: Teach -fsanitize=undefined to trap this.
1464       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1465     }
1466   } while ((type = getContext().getAsVariableArrayType(elementType)));
1467 
1468   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1469 }
1470 
1471 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1472   assert(type->isVariablyModifiedType() &&
1473          "Must pass variably modified type to EmitVLASizes!");
1474 
1475   EnsureInsertPoint();
1476 
1477   // We're going to walk down into the type and look for VLA
1478   // expressions.
1479   do {
1480     assert(type->isVariablyModifiedType());
1481 
1482     const Type *ty = type.getTypePtr();
1483     switch (ty->getTypeClass()) {
1484 
1485 #define TYPE(Class, Base)
1486 #define ABSTRACT_TYPE(Class, Base)
1487 #define NON_CANONICAL_TYPE(Class, Base)
1488 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1489 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1490 #include "clang/AST/TypeNodes.def"
1491       llvm_unreachable("unexpected dependent type!");
1492 
1493     // These types are never variably-modified.
1494     case Type::Builtin:
1495     case Type::Complex:
1496     case Type::Vector:
1497     case Type::ExtVector:
1498     case Type::Record:
1499     case Type::Enum:
1500     case Type::Elaborated:
1501     case Type::TemplateSpecialization:
1502     case Type::ObjCObject:
1503     case Type::ObjCInterface:
1504     case Type::ObjCObjectPointer:
1505       llvm_unreachable("type class is never variably-modified!");
1506 
1507     case Type::Adjusted:
1508       type = cast<AdjustedType>(ty)->getAdjustedType();
1509       break;
1510 
1511     case Type::Decayed:
1512       type = cast<DecayedType>(ty)->getPointeeType();
1513       break;
1514 
1515     case Type::Pointer:
1516       type = cast<PointerType>(ty)->getPointeeType();
1517       break;
1518 
1519     case Type::BlockPointer:
1520       type = cast<BlockPointerType>(ty)->getPointeeType();
1521       break;
1522 
1523     case Type::LValueReference:
1524     case Type::RValueReference:
1525       type = cast<ReferenceType>(ty)->getPointeeType();
1526       break;
1527 
1528     case Type::MemberPointer:
1529       type = cast<MemberPointerType>(ty)->getPointeeType();
1530       break;
1531 
1532     case Type::ConstantArray:
1533     case Type::IncompleteArray:
1534       // Losing element qualification here is fine.
1535       type = cast<ArrayType>(ty)->getElementType();
1536       break;
1537 
1538     case Type::VariableArray: {
1539       // Losing element qualification here is fine.
1540       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1541 
1542       // Unknown size indication requires no size computation.
1543       // Otherwise, evaluate and record it.
1544       if (const Expr *size = vat->getSizeExpr()) {
1545         // It's possible that we might have emitted this already,
1546         // e.g. with a typedef and a pointer to it.
1547         llvm::Value *&entry = VLASizeMap[size];
1548         if (!entry) {
1549           llvm::Value *Size = EmitScalarExpr(size);
1550 
1551           // C11 6.7.6.2p5:
1552           //   If the size is an expression that is not an integer constant
1553           //   expression [...] each time it is evaluated it shall have a value
1554           //   greater than zero.
1555           if (SanOpts.VLABound &&
1556               size->getType()->isSignedIntegerType()) {
1557             SanitizerScope SanScope(this);
1558             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1559             llvm::Constant *StaticArgs[] = {
1560               EmitCheckSourceLocation(size->getLocStart()),
1561               EmitCheckTypeDescriptor(size->getType())
1562             };
1563             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1564                       "vla_bound_not_positive", StaticArgs, Size,
1565                       CRK_Recoverable);
1566           }
1567 
1568           // Always zexting here would be wrong if it weren't
1569           // undefined behavior to have a negative bound.
1570           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1571         }
1572       }
1573       type = vat->getElementType();
1574       break;
1575     }
1576 
1577     case Type::FunctionProto:
1578     case Type::FunctionNoProto:
1579       type = cast<FunctionType>(ty)->getReturnType();
1580       break;
1581 
1582     case Type::Paren:
1583     case Type::TypeOf:
1584     case Type::UnaryTransform:
1585     case Type::Attributed:
1586     case Type::SubstTemplateTypeParm:
1587     case Type::PackExpansion:
1588       // Keep walking after single level desugaring.
1589       type = type.getSingleStepDesugaredType(getContext());
1590       break;
1591 
1592     case Type::Typedef:
1593     case Type::Decltype:
1594     case Type::Auto:
1595       // Stop walking: nothing to do.
1596       return;
1597 
1598     case Type::TypeOfExpr:
1599       // Stop walking: emit typeof expression.
1600       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1601       return;
1602 
1603     case Type::Atomic:
1604       type = cast<AtomicType>(ty)->getValueType();
1605       break;
1606     }
1607   } while (type->isVariablyModifiedType());
1608 }
1609 
1610 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1611   if (getContext().getBuiltinVaListType()->isArrayType())
1612     return EmitScalarExpr(E);
1613   return EmitLValue(E).getAddress();
1614 }
1615 
1616 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1617                                               llvm::Constant *Init) {
1618   assert (Init && "Invalid DeclRefExpr initializer!");
1619   if (CGDebugInfo *Dbg = getDebugInfo())
1620     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1621       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1622 }
1623 
1624 CodeGenFunction::PeepholeProtection
1625 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1626   // At the moment, the only aggressive peephole we do in IR gen
1627   // is trunc(zext) folding, but if we add more, we can easily
1628   // extend this protection.
1629 
1630   if (!rvalue.isScalar()) return PeepholeProtection();
1631   llvm::Value *value = rvalue.getScalarVal();
1632   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1633 
1634   // Just make an extra bitcast.
1635   assert(HaveInsertPoint());
1636   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1637                                                   Builder.GetInsertBlock());
1638 
1639   PeepholeProtection protection;
1640   protection.Inst = inst;
1641   return protection;
1642 }
1643 
1644 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1645   if (!protection.Inst) return;
1646 
1647   // In theory, we could try to duplicate the peepholes now, but whatever.
1648   protection.Inst->eraseFromParent();
1649 }
1650 
1651 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1652                                                  llvm::Value *AnnotatedVal,
1653                                                  StringRef AnnotationStr,
1654                                                  SourceLocation Location) {
1655   llvm::Value *Args[4] = {
1656     AnnotatedVal,
1657     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1658     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1659     CGM.EmitAnnotationLineNo(Location)
1660   };
1661   return Builder.CreateCall(AnnotationFn, Args);
1662 }
1663 
1664 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1665   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1666   // FIXME We create a new bitcast for every annotation because that's what
1667   // llvm-gcc was doing.
1668   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1669     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1670                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1671                        I->getAnnotation(), D->getLocation());
1672 }
1673 
1674 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1675                                                    llvm::Value *V) {
1676   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1677   llvm::Type *VTy = V->getType();
1678   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1679                                     CGM.Int8PtrTy);
1680 
1681   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1682     // FIXME Always emit the cast inst so we can differentiate between
1683     // annotation on the first field of a struct and annotation on the struct
1684     // itself.
1685     if (VTy != CGM.Int8PtrTy)
1686       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1687     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1688     V = Builder.CreateBitCast(V, VTy);
1689   }
1690 
1691   return V;
1692 }
1693 
1694 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1695 
1696 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1697     : CGF(CGF) {
1698   assert(!CGF->IsSanitizerScope);
1699   CGF->IsSanitizerScope = true;
1700 }
1701 
1702 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1703   CGF->IsSanitizerScope = false;
1704 }
1705 
1706 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1707                                    const llvm::Twine &Name,
1708                                    llvm::BasicBlock *BB,
1709                                    llvm::BasicBlock::iterator InsertPt) const {
1710   LoopStack.InsertHelper(I);
1711   if (IsSanitizerScope)
1712     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1713 }
1714 
1715 template <bool PreserveNames>
1716 void CGBuilderInserter<PreserveNames>::InsertHelper(
1717     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1718     llvm::BasicBlock::iterator InsertPt) const {
1719   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1720                                                               InsertPt);
1721   if (CGF)
1722     CGF->InsertHelper(I, Name, BB, InsertPt);
1723 }
1724 
1725 #ifdef NDEBUG
1726 #define PreserveNames false
1727 #else
1728 #define PreserveNames true
1729 #endif
1730 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1731     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1732     llvm::BasicBlock::iterator InsertPt) const;
1733 #undef PreserveNames
1734