1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGException.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
32   : CodeGenTypeCache(cgm), CGM(cgm),
33     Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()),
34     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
35     NormalCleanupDest(0), NextCleanupDestIndex(1), FirstBlockInfo(0),
36     EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
37     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
38     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
39     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
40     OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
41     TrapBB(0) {
42 
43   CatchUndefined = getContext().getLangOptions().CatchUndefined;
44   CGM.getCXXABI().getMangleContext().startNewFunction();
45 }
46 
47 CodeGenFunction::~CodeGenFunction() {
48   // If there are any unclaimed block infos, go ahead and destroy them
49   // now.  This can happen if IR-gen gets clever and skips evaluating
50   // something.
51   if (FirstBlockInfo)
52     destroyBlockInfos(FirstBlockInfo);
53 }
54 
55 
56 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
57   return CGM.getTypes().ConvertTypeForMem(T);
58 }
59 
60 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
61   return CGM.getTypes().ConvertType(T);
62 }
63 
64 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
65   switch (type.getCanonicalType()->getTypeClass()) {
66 #define TYPE(name, parent)
67 #define ABSTRACT_TYPE(name, parent)
68 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
69 #define DEPENDENT_TYPE(name, parent) case Type::name:
70 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
71 #include "clang/AST/TypeNodes.def"
72     llvm_unreachable("non-canonical or dependent type in IR-generation");
73 
74   case Type::Builtin:
75   case Type::Pointer:
76   case Type::BlockPointer:
77   case Type::LValueReference:
78   case Type::RValueReference:
79   case Type::MemberPointer:
80   case Type::Vector:
81   case Type::ExtVector:
82   case Type::FunctionProto:
83   case Type::FunctionNoProto:
84   case Type::Enum:
85   case Type::ObjCObjectPointer:
86     return false;
87 
88   // Complexes, arrays, records, and Objective-C objects.
89   case Type::Complex:
90   case Type::ConstantArray:
91   case Type::IncompleteArray:
92   case Type::VariableArray:
93   case Type::Record:
94   case Type::ObjCObject:
95   case Type::ObjCInterface:
96     return true;
97 
98   // In IRGen, atomic types are just the underlying type
99   case Type::Atomic:
100     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
101   }
102   llvm_unreachable("unknown type kind!");
103 }
104 
105 void CodeGenFunction::EmitReturnBlock() {
106   // For cleanliness, we try to avoid emitting the return block for
107   // simple cases.
108   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
109 
110   if (CurBB) {
111     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
112 
113     // We have a valid insert point, reuse it if it is empty or there are no
114     // explicit jumps to the return block.
115     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
116       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
117       delete ReturnBlock.getBlock();
118     } else
119       EmitBlock(ReturnBlock.getBlock());
120     return;
121   }
122 
123   // Otherwise, if the return block is the target of a single direct
124   // branch then we can just put the code in that block instead. This
125   // cleans up functions which started with a unified return block.
126   if (ReturnBlock.getBlock()->hasOneUse()) {
127     llvm::BranchInst *BI =
128       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
129     if (BI && BI->isUnconditional() &&
130         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
131       // Reset insertion point, including debug location, and delete the branch.
132       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
133       Builder.SetInsertPoint(BI->getParent());
134       BI->eraseFromParent();
135       delete ReturnBlock.getBlock();
136       return;
137     }
138   }
139 
140   // FIXME: We are at an unreachable point, there is no reason to emit the block
141   // unless it has uses. However, we still need a place to put the debug
142   // region.end for now.
143 
144   EmitBlock(ReturnBlock.getBlock());
145 }
146 
147 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
148   if (!BB) return;
149   if (!BB->use_empty())
150     return CGF.CurFn->getBasicBlockList().push_back(BB);
151   delete BB;
152 }
153 
154 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
155   assert(BreakContinueStack.empty() &&
156          "mismatched push/pop in break/continue stack!");
157 
158   // Pop any cleanups that might have been associated with the
159   // parameters.  Do this in whatever block we're currently in; it's
160   // important to do this before we enter the return block or return
161   // edges will be *really* confused.
162   if (EHStack.stable_begin() != PrologueCleanupDepth)
163     PopCleanupBlocks(PrologueCleanupDepth);
164 
165   // Emit function epilog (to return).
166   EmitReturnBlock();
167 
168   if (ShouldInstrumentFunction())
169     EmitFunctionInstrumentation("__cyg_profile_func_exit");
170 
171   // Emit debug descriptor for function end.
172   if (CGDebugInfo *DI = getDebugInfo()) {
173     DI->setLocation(EndLoc);
174     DI->EmitFunctionEnd(Builder);
175   }
176 
177   EmitFunctionEpilog(*CurFnInfo);
178   EmitEndEHSpec(CurCodeDecl);
179 
180   assert(EHStack.empty() &&
181          "did not remove all scopes from cleanup stack!");
182 
183   // If someone did an indirect goto, emit the indirect goto block at the end of
184   // the function.
185   if (IndirectBranch) {
186     EmitBlock(IndirectBranch->getParent());
187     Builder.ClearInsertionPoint();
188   }
189 
190   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
191   llvm::Instruction *Ptr = AllocaInsertPt;
192   AllocaInsertPt = 0;
193   Ptr->eraseFromParent();
194 
195   // If someone took the address of a label but never did an indirect goto, we
196   // made a zero entry PHI node, which is illegal, zap it now.
197   if (IndirectBranch) {
198     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
199     if (PN->getNumIncomingValues() == 0) {
200       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
201       PN->eraseFromParent();
202     }
203   }
204 
205   EmitIfUsed(*this, EHResumeBlock);
206   EmitIfUsed(*this, TerminateLandingPad);
207   EmitIfUsed(*this, TerminateHandler);
208   EmitIfUsed(*this, UnreachableBlock);
209 
210   if (CGM.getCodeGenOpts().EmitDeclMetadata)
211     EmitDeclMetadata();
212 }
213 
214 /// ShouldInstrumentFunction - Return true if the current function should be
215 /// instrumented with __cyg_profile_func_* calls
216 bool CodeGenFunction::ShouldInstrumentFunction() {
217   if (!CGM.getCodeGenOpts().InstrumentFunctions)
218     return false;
219   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
220     return false;
221   return true;
222 }
223 
224 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
225 /// instrumentation function with the current function and the call site, if
226 /// function instrumentation is enabled.
227 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
228   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
229   llvm::PointerType *PointerTy = Int8PtrTy;
230   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
231   llvm::FunctionType *FunctionTy =
232     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
233                             ProfileFuncArgs, false);
234 
235   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
236   llvm::CallInst *CallSite = Builder.CreateCall(
237     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
238     llvm::ConstantInt::get(Int32Ty, 0),
239     "callsite");
240 
241   Builder.CreateCall2(F,
242                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
243                       CallSite);
244 }
245 
246 void CodeGenFunction::EmitMCountInstrumentation() {
247   llvm::FunctionType *FTy =
248     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false);
249 
250   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
251                                                        Target.getMCountName());
252   Builder.CreateCall(MCountFn);
253 }
254 
255 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
256                                     llvm::Function *Fn,
257                                     const CGFunctionInfo &FnInfo,
258                                     const FunctionArgList &Args,
259                                     SourceLocation StartLoc) {
260   const Decl *D = GD.getDecl();
261 
262   DidCallStackSave = false;
263   CurCodeDecl = CurFuncDecl = D;
264   FnRetTy = RetTy;
265   CurFn = Fn;
266   CurFnInfo = &FnInfo;
267   assert(CurFn->isDeclaration() && "Function already has body?");
268 
269   // Pass inline keyword to optimizer if it appears explicitly on any
270   // declaration.
271   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
272     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
273            RE = FD->redecls_end(); RI != RE; ++RI)
274       if (RI->isInlineSpecified()) {
275         Fn->addFnAttr(llvm::Attribute::InlineHint);
276         break;
277       }
278 
279   if (getContext().getLangOptions().OpenCL) {
280     // Add metadata for a kernel function.
281     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
282       if (FD->hasAttr<OpenCLKernelAttr>()) {
283         llvm::LLVMContext &Context = getLLVMContext();
284         llvm::NamedMDNode *OpenCLMetadata =
285           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
286 
287         llvm::Value *Op = Fn;
288         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
289       }
290   }
291 
292   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
293 
294   // Create a marker to make it easy to insert allocas into the entryblock
295   // later.  Don't create this with the builder, because we don't want it
296   // folded.
297   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
298   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
299   if (Builder.isNamePreserving())
300     AllocaInsertPt->setName("allocapt");
301 
302   ReturnBlock = getJumpDestInCurrentScope("return");
303 
304   Builder.SetInsertPoint(EntryBB);
305 
306   // Emit subprogram debug descriptor.
307   if (CGDebugInfo *DI = getDebugInfo()) {
308     unsigned NumArgs = 0;
309     QualType *ArgsArray = new QualType[Args.size()];
310     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
311 	 i != e; ++i) {
312       ArgsArray[NumArgs++] = (*i)->getType();
313     }
314 
315     QualType FnType =
316       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
317                                    FunctionProtoType::ExtProtoInfo());
318 
319     delete[] ArgsArray;
320 
321     DI->setLocation(StartLoc);
322     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
323   }
324 
325   if (ShouldInstrumentFunction())
326     EmitFunctionInstrumentation("__cyg_profile_func_enter");
327 
328   if (CGM.getCodeGenOpts().InstrumentForProfiling)
329     EmitMCountInstrumentation();
330 
331   if (RetTy->isVoidType()) {
332     // Void type; nothing to return.
333     ReturnValue = 0;
334   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
335              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
336     // Indirect aggregate return; emit returned value directly into sret slot.
337     // This reduces code size, and affects correctness in C++.
338     ReturnValue = CurFn->arg_begin();
339   } else {
340     ReturnValue = CreateIRTemp(RetTy, "retval");
341 
342     // Tell the epilog emitter to autorelease the result.  We do this
343     // now so that various specialized functions can suppress it
344     // during their IR-generation.
345     if (getLangOptions().ObjCAutoRefCount &&
346         !CurFnInfo->isReturnsRetained() &&
347         RetTy->isObjCRetainableType())
348       AutoreleaseResult = true;
349   }
350 
351   EmitStartEHSpec(CurCodeDecl);
352 
353   PrologueCleanupDepth = EHStack.stable_begin();
354   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
355 
356   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
357     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
358 
359   // If any of the arguments have a variably modified type, make sure to
360   // emit the type size.
361   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
362        i != e; ++i) {
363     QualType Ty = (*i)->getType();
364 
365     if (Ty->isVariablyModifiedType())
366       EmitVariablyModifiedType(Ty);
367   }
368   // Emit a location at the end of the prologue.
369   if (CGDebugInfo *DI = getDebugInfo())
370     DI->EmitLocation(Builder, StartLoc);
371 }
372 
373 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
374   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
375   assert(FD->getBody());
376   EmitStmt(FD->getBody());
377 }
378 
379 /// Tries to mark the given function nounwind based on the
380 /// non-existence of any throwing calls within it.  We believe this is
381 /// lightweight enough to do at -O0.
382 static void TryMarkNoThrow(llvm::Function *F) {
383   // LLVM treats 'nounwind' on a function as part of the type, so we
384   // can't do this on functions that can be overwritten.
385   if (F->mayBeOverridden()) return;
386 
387   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
388     for (llvm::BasicBlock::iterator
389            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
390       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
391         if (!Call->doesNotThrow())
392           return;
393       } else if (isa<llvm::ResumeInst>(&*BI)) {
394         return;
395       }
396   F->setDoesNotThrow(true);
397 }
398 
399 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
400                                    const CGFunctionInfo &FnInfo) {
401   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
402 
403   // Check if we should generate debug info for this function.
404   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
405     DebugInfo = CGM.getModuleDebugInfo();
406 
407   FunctionArgList Args;
408   QualType ResTy = FD->getResultType();
409 
410   CurGD = GD;
411   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
412     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
413 
414   if (FD->getNumParams())
415     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
416       Args.push_back(FD->getParamDecl(i));
417 
418   SourceRange BodyRange;
419   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
420 
421   // Emit the standard function prologue.
422   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
423 
424   // Generate the body of the function.
425   if (isa<CXXDestructorDecl>(FD))
426     EmitDestructorBody(Args);
427   else if (isa<CXXConstructorDecl>(FD))
428     EmitConstructorBody(Args);
429   else if (getContext().getLangOptions().CUDA &&
430            !CGM.getCodeGenOpts().CUDAIsDevice &&
431            FD->hasAttr<CUDAGlobalAttr>())
432     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
433   else
434     EmitFunctionBody(Args);
435 
436   // Emit the standard function epilogue.
437   FinishFunction(BodyRange.getEnd());
438 
439   // If we haven't marked the function nothrow through other means, do
440   // a quick pass now to see if we can.
441   if (!CurFn->doesNotThrow())
442     TryMarkNoThrow(CurFn);
443 }
444 
445 /// ContainsLabel - Return true if the statement contains a label in it.  If
446 /// this statement is not executed normally, it not containing a label means
447 /// that we can just remove the code.
448 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
449   // Null statement, not a label!
450   if (S == 0) return false;
451 
452   // If this is a label, we have to emit the code, consider something like:
453   // if (0) {  ...  foo:  bar(); }  goto foo;
454   //
455   // TODO: If anyone cared, we could track __label__'s, since we know that you
456   // can't jump to one from outside their declared region.
457   if (isa<LabelStmt>(S))
458     return true;
459 
460   // If this is a case/default statement, and we haven't seen a switch, we have
461   // to emit the code.
462   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
463     return true;
464 
465   // If this is a switch statement, we want to ignore cases below it.
466   if (isa<SwitchStmt>(S))
467     IgnoreCaseStmts = true;
468 
469   // Scan subexpressions for verboten labels.
470   for (Stmt::const_child_range I = S->children(); I; ++I)
471     if (ContainsLabel(*I, IgnoreCaseStmts))
472       return true;
473 
474   return false;
475 }
476 
477 /// containsBreak - Return true if the statement contains a break out of it.
478 /// If the statement (recursively) contains a switch or loop with a break
479 /// inside of it, this is fine.
480 bool CodeGenFunction::containsBreak(const Stmt *S) {
481   // Null statement, not a label!
482   if (S == 0) return false;
483 
484   // If this is a switch or loop that defines its own break scope, then we can
485   // include it and anything inside of it.
486   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
487       isa<ForStmt>(S))
488     return false;
489 
490   if (isa<BreakStmt>(S))
491     return true;
492 
493   // Scan subexpressions for verboten breaks.
494   for (Stmt::const_child_range I = S->children(); I; ++I)
495     if (containsBreak(*I))
496       return true;
497 
498   return false;
499 }
500 
501 
502 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
503 /// to a constant, or if it does but contains a label, return false.  If it
504 /// constant folds return true and set the boolean result in Result.
505 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
506                                                    bool &ResultBool) {
507   llvm::APInt ResultInt;
508   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
509     return false;
510 
511   ResultBool = ResultInt.getBoolValue();
512   return true;
513 }
514 
515 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
516 /// to a constant, or if it does but contains a label, return false.  If it
517 /// constant folds return true and set the folded value.
518 bool CodeGenFunction::
519 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
520   // FIXME: Rename and handle conversion of other evaluatable things
521   // to bool.
522   llvm::APSInt Int;
523   if (!Cond->EvaluateAsInt(Int, getContext()))
524     return false;  // Not foldable, not integer or not fully evaluatable.
525 
526   if (CodeGenFunction::ContainsLabel(Cond))
527     return false;  // Contains a label.
528 
529   ResultInt = Int;
530   return true;
531 }
532 
533 
534 
535 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
536 /// statement) to the specified blocks.  Based on the condition, this might try
537 /// to simplify the codegen of the conditional based on the branch.
538 ///
539 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
540                                            llvm::BasicBlock *TrueBlock,
541                                            llvm::BasicBlock *FalseBlock) {
542   Cond = Cond->IgnoreParens();
543 
544   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
545     // Handle X && Y in a condition.
546     if (CondBOp->getOpcode() == BO_LAnd) {
547       // If we have "1 && X", simplify the code.  "0 && X" would have constant
548       // folded if the case was simple enough.
549       bool ConstantBool = false;
550       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
551           ConstantBool) {
552         // br(1 && X) -> br(X).
553         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
554       }
555 
556       // If we have "X && 1", simplify the code to use an uncond branch.
557       // "X && 0" would have been constant folded to 0.
558       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
559           ConstantBool) {
560         // br(X && 1) -> br(X).
561         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
562       }
563 
564       // Emit the LHS as a conditional.  If the LHS conditional is false, we
565       // want to jump to the FalseBlock.
566       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
567 
568       ConditionalEvaluation eval(*this);
569       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
570       EmitBlock(LHSTrue);
571 
572       // Any temporaries created here are conditional.
573       eval.begin(*this);
574       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
575       eval.end(*this);
576 
577       return;
578     }
579 
580     if (CondBOp->getOpcode() == BO_LOr) {
581       // If we have "0 || X", simplify the code.  "1 || X" would have constant
582       // folded if the case was simple enough.
583       bool ConstantBool = false;
584       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
585           !ConstantBool) {
586         // br(0 || X) -> br(X).
587         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
588       }
589 
590       // If we have "X || 0", simplify the code to use an uncond branch.
591       // "X || 1" would have been constant folded to 1.
592       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
593           !ConstantBool) {
594         // br(X || 0) -> br(X).
595         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
596       }
597 
598       // Emit the LHS as a conditional.  If the LHS conditional is true, we
599       // want to jump to the TrueBlock.
600       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
601 
602       ConditionalEvaluation eval(*this);
603       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
604       EmitBlock(LHSFalse);
605 
606       // Any temporaries created here are conditional.
607       eval.begin(*this);
608       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
609       eval.end(*this);
610 
611       return;
612     }
613   }
614 
615   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
616     // br(!x, t, f) -> br(x, f, t)
617     if (CondUOp->getOpcode() == UO_LNot)
618       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
619   }
620 
621   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
622     // Handle ?: operator.
623 
624     // Just ignore GNU ?: extension.
625     if (CondOp->getLHS()) {
626       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
627       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
628       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
629 
630       ConditionalEvaluation cond(*this);
631       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
632 
633       cond.begin(*this);
634       EmitBlock(LHSBlock);
635       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
636       cond.end(*this);
637 
638       cond.begin(*this);
639       EmitBlock(RHSBlock);
640       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
641       cond.end(*this);
642 
643       return;
644     }
645   }
646 
647   // Emit the code with the fully general case.
648   llvm::Value *CondV = EvaluateExprAsBool(Cond);
649   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
650 }
651 
652 /// ErrorUnsupported - Print out an error that codegen doesn't support the
653 /// specified stmt yet.
654 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
655                                        bool OmitOnError) {
656   CGM.ErrorUnsupported(S, Type, OmitOnError);
657 }
658 
659 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
660 /// variable-length array whose elements have a non-zero bit-pattern.
661 ///
662 /// \param src - a char* pointing to the bit-pattern for a single
663 /// base element of the array
664 /// \param sizeInChars - the total size of the VLA, in chars
665 /// \param align - the total alignment of the VLA
666 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
667                                llvm::Value *dest, llvm::Value *src,
668                                llvm::Value *sizeInChars) {
669   std::pair<CharUnits,CharUnits> baseSizeAndAlign
670     = CGF.getContext().getTypeInfoInChars(baseType);
671 
672   CGBuilderTy &Builder = CGF.Builder;
673 
674   llvm::Value *baseSizeInChars
675     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
676 
677   llvm::Type *i8p = Builder.getInt8PtrTy();
678 
679   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
680   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
681 
682   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
683   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
684   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
685 
686   // Make a loop over the VLA.  C99 guarantees that the VLA element
687   // count must be nonzero.
688   CGF.EmitBlock(loopBB);
689 
690   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
691   cur->addIncoming(begin, originBB);
692 
693   // memcpy the individual element bit-pattern.
694   Builder.CreateMemCpy(cur, src, baseSizeInChars,
695                        baseSizeAndAlign.second.getQuantity(),
696                        /*volatile*/ false);
697 
698   // Go to the next element.
699   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
700 
701   // Leave if that's the end of the VLA.
702   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
703   Builder.CreateCondBr(done, contBB, loopBB);
704   cur->addIncoming(next, loopBB);
705 
706   CGF.EmitBlock(contBB);
707 }
708 
709 void
710 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
711   // Ignore empty classes in C++.
712   if (getContext().getLangOptions().CPlusPlus) {
713     if (const RecordType *RT = Ty->getAs<RecordType>()) {
714       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
715         return;
716     }
717   }
718 
719   // Cast the dest ptr to the appropriate i8 pointer type.
720   unsigned DestAS =
721     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
722   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
723   if (DestPtr->getType() != BP)
724     DestPtr = Builder.CreateBitCast(DestPtr, BP);
725 
726   // Get size and alignment info for this aggregate.
727   std::pair<CharUnits, CharUnits> TypeInfo =
728     getContext().getTypeInfoInChars(Ty);
729   CharUnits Size = TypeInfo.first;
730   CharUnits Align = TypeInfo.second;
731 
732   llvm::Value *SizeVal;
733   const VariableArrayType *vla;
734 
735   // Don't bother emitting a zero-byte memset.
736   if (Size.isZero()) {
737     // But note that getTypeInfo returns 0 for a VLA.
738     if (const VariableArrayType *vlaType =
739           dyn_cast_or_null<VariableArrayType>(
740                                           getContext().getAsArrayType(Ty))) {
741       QualType eltType;
742       llvm::Value *numElts;
743       llvm::tie(numElts, eltType) = getVLASize(vlaType);
744 
745       SizeVal = numElts;
746       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
747       if (!eltSize.isOne())
748         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
749       vla = vlaType;
750     } else {
751       return;
752     }
753   } else {
754     SizeVal = CGM.getSize(Size);
755     vla = 0;
756   }
757 
758   // If the type contains a pointer to data member we can't memset it to zero.
759   // Instead, create a null constant and copy it to the destination.
760   // TODO: there are other patterns besides zero that we can usefully memset,
761   // like -1, which happens to be the pattern used by member-pointers.
762   if (!CGM.getTypes().isZeroInitializable(Ty)) {
763     // For a VLA, emit a single element, then splat that over the VLA.
764     if (vla) Ty = getContext().getBaseElementType(vla);
765 
766     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
767 
768     llvm::GlobalVariable *NullVariable =
769       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
770                                /*isConstant=*/true,
771                                llvm::GlobalVariable::PrivateLinkage,
772                                NullConstant, Twine());
773     llvm::Value *SrcPtr =
774       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
775 
776     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
777 
778     // Get and call the appropriate llvm.memcpy overload.
779     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
780     return;
781   }
782 
783   // Otherwise, just memset the whole thing to zero.  This is legal
784   // because in LLVM, all default initializers (other than the ones we just
785   // handled above) are guaranteed to have a bit pattern of all zeros.
786   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
787                        Align.getQuantity(), false);
788 }
789 
790 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
791   // Make sure that there is a block for the indirect goto.
792   if (IndirectBranch == 0)
793     GetIndirectGotoBlock();
794 
795   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
796 
797   // Make sure the indirect branch includes all of the address-taken blocks.
798   IndirectBranch->addDestination(BB);
799   return llvm::BlockAddress::get(CurFn, BB);
800 }
801 
802 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
803   // If we already made the indirect branch for indirect goto, return its block.
804   if (IndirectBranch) return IndirectBranch->getParent();
805 
806   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
807 
808   // Create the PHI node that indirect gotos will add entries to.
809   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
810                                               "indirect.goto.dest");
811 
812   // Create the indirect branch instruction.
813   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
814   return IndirectBranch->getParent();
815 }
816 
817 /// Computes the length of an array in elements, as well as the base
818 /// element type and a properly-typed first element pointer.
819 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
820                                               QualType &baseType,
821                                               llvm::Value *&addr) {
822   const ArrayType *arrayType = origArrayType;
823 
824   // If it's a VLA, we have to load the stored size.  Note that
825   // this is the size of the VLA in bytes, not its size in elements.
826   llvm::Value *numVLAElements = 0;
827   if (isa<VariableArrayType>(arrayType)) {
828     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
829 
830     // Walk into all VLAs.  This doesn't require changes to addr,
831     // which has type T* where T is the first non-VLA element type.
832     do {
833       QualType elementType = arrayType->getElementType();
834       arrayType = getContext().getAsArrayType(elementType);
835 
836       // If we only have VLA components, 'addr' requires no adjustment.
837       if (!arrayType) {
838         baseType = elementType;
839         return numVLAElements;
840       }
841     } while (isa<VariableArrayType>(arrayType));
842 
843     // We get out here only if we find a constant array type
844     // inside the VLA.
845   }
846 
847   // We have some number of constant-length arrays, so addr should
848   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
849   // down to the first element of addr.
850   SmallVector<llvm::Value*, 8> gepIndices;
851 
852   // GEP down to the array type.
853   llvm::ConstantInt *zero = Builder.getInt32(0);
854   gepIndices.push_back(zero);
855 
856   // It's more efficient to calculate the count from the LLVM
857   // constant-length arrays than to re-evaluate the array bounds.
858   uint64_t countFromCLAs = 1;
859 
860   llvm::ArrayType *llvmArrayType =
861     cast<llvm::ArrayType>(
862       cast<llvm::PointerType>(addr->getType())->getElementType());
863   while (true) {
864     assert(isa<ConstantArrayType>(arrayType));
865     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
866              == llvmArrayType->getNumElements());
867 
868     gepIndices.push_back(zero);
869     countFromCLAs *= llvmArrayType->getNumElements();
870 
871     llvmArrayType =
872       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
873     if (!llvmArrayType) break;
874 
875     arrayType = getContext().getAsArrayType(arrayType->getElementType());
876     assert(arrayType && "LLVM and Clang types are out-of-synch");
877   }
878 
879   baseType = arrayType->getElementType();
880 
881   // Create the actual GEP.
882   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
883 
884   llvm::Value *numElements
885     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
886 
887   // If we had any VLA dimensions, factor them in.
888   if (numVLAElements)
889     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
890 
891   return numElements;
892 }
893 
894 std::pair<llvm::Value*, QualType>
895 CodeGenFunction::getVLASize(QualType type) {
896   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
897   assert(vla && "type was not a variable array type!");
898   return getVLASize(vla);
899 }
900 
901 std::pair<llvm::Value*, QualType>
902 CodeGenFunction::getVLASize(const VariableArrayType *type) {
903   // The number of elements so far; always size_t.
904   llvm::Value *numElements = 0;
905 
906   QualType elementType;
907   do {
908     elementType = type->getElementType();
909     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
910     assert(vlaSize && "no size for VLA!");
911     assert(vlaSize->getType() == SizeTy);
912 
913     if (!numElements) {
914       numElements = vlaSize;
915     } else {
916       // It's undefined behavior if this wraps around, so mark it that way.
917       numElements = Builder.CreateNUWMul(numElements, vlaSize);
918     }
919   } while ((type = getContext().getAsVariableArrayType(elementType)));
920 
921   return std::pair<llvm::Value*,QualType>(numElements, elementType);
922 }
923 
924 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
925   assert(type->isVariablyModifiedType() &&
926          "Must pass variably modified type to EmitVLASizes!");
927 
928   EnsureInsertPoint();
929 
930   // We're going to walk down into the type and look for VLA
931   // expressions.
932   type = type.getCanonicalType();
933   do {
934     assert(type->isVariablyModifiedType());
935 
936     const Type *ty = type.getTypePtr();
937     switch (ty->getTypeClass()) {
938 #define TYPE(Class, Base)
939 #define ABSTRACT_TYPE(Class, Base)
940 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
941 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
942 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
943 #include "clang/AST/TypeNodes.def"
944       llvm_unreachable("unexpected dependent or non-canonical type!");
945 
946     // These types are never variably-modified.
947     case Type::Builtin:
948     case Type::Complex:
949     case Type::Vector:
950     case Type::ExtVector:
951     case Type::Record:
952     case Type::Enum:
953     case Type::ObjCObject:
954     case Type::ObjCInterface:
955     case Type::ObjCObjectPointer:
956       llvm_unreachable("type class is never variably-modified!");
957 
958     case Type::Pointer:
959       type = cast<PointerType>(ty)->getPointeeType();
960       break;
961 
962     case Type::BlockPointer:
963       type = cast<BlockPointerType>(ty)->getPointeeType();
964       break;
965 
966     case Type::LValueReference:
967     case Type::RValueReference:
968       type = cast<ReferenceType>(ty)->getPointeeType();
969       break;
970 
971     case Type::MemberPointer:
972       type = cast<MemberPointerType>(ty)->getPointeeType();
973       break;
974 
975     case Type::ConstantArray:
976     case Type::IncompleteArray:
977       // Losing element qualification here is fine.
978       type = cast<ArrayType>(ty)->getElementType();
979       break;
980 
981     case Type::VariableArray: {
982       // Losing element qualification here is fine.
983       const VariableArrayType *vat = cast<VariableArrayType>(ty);
984 
985       // Unknown size indication requires no size computation.
986       // Otherwise, evaluate and record it.
987       if (const Expr *size = vat->getSizeExpr()) {
988         // It's possible that we might have emitted this already,
989         // e.g. with a typedef and a pointer to it.
990         llvm::Value *&entry = VLASizeMap[size];
991         if (!entry) {
992           // Always zexting here would be wrong if it weren't
993           // undefined behavior to have a negative bound.
994           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
995                                         /*signed*/ false);
996         }
997       }
998       type = vat->getElementType();
999       break;
1000     }
1001 
1002     case Type::FunctionProto:
1003     case Type::FunctionNoProto:
1004       type = cast<FunctionType>(ty)->getResultType();
1005       break;
1006 
1007     case Type::Atomic:
1008       type = cast<AtomicType>(ty)->getValueType();
1009       break;
1010     }
1011   } while (type->isVariablyModifiedType());
1012 }
1013 
1014 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1015   if (getContext().getBuiltinVaListType()->isArrayType())
1016     return EmitScalarExpr(E);
1017   return EmitLValue(E).getAddress();
1018 }
1019 
1020 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1021                                               llvm::Constant *Init) {
1022   assert (Init && "Invalid DeclRefExpr initializer!");
1023   if (CGDebugInfo *Dbg = getDebugInfo())
1024     Dbg->EmitGlobalVariable(E->getDecl(), Init);
1025 }
1026 
1027 CodeGenFunction::PeepholeProtection
1028 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1029   // At the moment, the only aggressive peephole we do in IR gen
1030   // is trunc(zext) folding, but if we add more, we can easily
1031   // extend this protection.
1032 
1033   if (!rvalue.isScalar()) return PeepholeProtection();
1034   llvm::Value *value = rvalue.getScalarVal();
1035   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1036 
1037   // Just make an extra bitcast.
1038   assert(HaveInsertPoint());
1039   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1040                                                   Builder.GetInsertBlock());
1041 
1042   PeepholeProtection protection;
1043   protection.Inst = inst;
1044   return protection;
1045 }
1046 
1047 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1048   if (!protection.Inst) return;
1049 
1050   // In theory, we could try to duplicate the peepholes now, but whatever.
1051   protection.Inst->eraseFromParent();
1052 }
1053 
1054 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1055                                                  llvm::Value *AnnotatedVal,
1056                                                  llvm::StringRef AnnotationStr,
1057                                                  SourceLocation Location) {
1058   llvm::Value *Args[4] = {
1059     AnnotatedVal,
1060     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1061     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1062     CGM.EmitAnnotationLineNo(Location)
1063   };
1064   return Builder.CreateCall(AnnotationFn, Args);
1065 }
1066 
1067 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1068   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1069   // FIXME We create a new bitcast for every annotation because that's what
1070   // llvm-gcc was doing.
1071   for (specific_attr_iterator<AnnotateAttr>
1072        ai = D->specific_attr_begin<AnnotateAttr>(),
1073        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1074     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1075                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1076                        (*ai)->getAnnotation(), D->getLocation());
1077 }
1078 
1079 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1080                                                    llvm::Value *V) {
1081   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1082   llvm::Type *VTy = V->getType();
1083   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1084                                     CGM.Int8PtrTy);
1085 
1086   for (specific_attr_iterator<AnnotateAttr>
1087        ai = D->specific_attr_begin<AnnotateAttr>(),
1088        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1089     // FIXME Always emit the cast inst so we can differentiate between
1090     // annotation on the first field of a struct and annotation on the struct
1091     // itself.
1092     if (VTy != CGM.Int8PtrTy)
1093       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1094     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1095     V = Builder.CreateBitCast(V, VTy);
1096   }
1097 
1098   return V;
1099 }
1100