1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGException.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) 32 : CodeGenTypeCache(cgm), CGM(cgm), 33 Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()), 34 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 35 NormalCleanupDest(0), NextCleanupDestIndex(1), FirstBlockInfo(0), 36 EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 37 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 38 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 39 CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), 40 OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0), 41 TrapBB(0) { 42 43 CatchUndefined = getContext().getLangOptions().CatchUndefined; 44 CGM.getCXXABI().getMangleContext().startNewFunction(); 45 } 46 47 CodeGenFunction::~CodeGenFunction() { 48 // If there are any unclaimed block infos, go ahead and destroy them 49 // now. This can happen if IR-gen gets clever and skips evaluating 50 // something. 51 if (FirstBlockInfo) 52 destroyBlockInfos(FirstBlockInfo); 53 } 54 55 56 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 57 return CGM.getTypes().ConvertTypeForMem(T); 58 } 59 60 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 61 return CGM.getTypes().ConvertType(T); 62 } 63 64 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 65 switch (type.getCanonicalType()->getTypeClass()) { 66 #define TYPE(name, parent) 67 #define ABSTRACT_TYPE(name, parent) 68 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 69 #define DEPENDENT_TYPE(name, parent) case Type::name: 70 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 71 #include "clang/AST/TypeNodes.def" 72 llvm_unreachable("non-canonical or dependent type in IR-generation"); 73 74 case Type::Builtin: 75 case Type::Pointer: 76 case Type::BlockPointer: 77 case Type::LValueReference: 78 case Type::RValueReference: 79 case Type::MemberPointer: 80 case Type::Vector: 81 case Type::ExtVector: 82 case Type::FunctionProto: 83 case Type::FunctionNoProto: 84 case Type::Enum: 85 case Type::ObjCObjectPointer: 86 return false; 87 88 // Complexes, arrays, records, and Objective-C objects. 89 case Type::Complex: 90 case Type::ConstantArray: 91 case Type::IncompleteArray: 92 case Type::VariableArray: 93 case Type::Record: 94 case Type::ObjCObject: 95 case Type::ObjCInterface: 96 return true; 97 98 // In IRGen, atomic types are just the underlying type 99 case Type::Atomic: 100 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 101 } 102 llvm_unreachable("unknown type kind!"); 103 } 104 105 void CodeGenFunction::EmitReturnBlock() { 106 // For cleanliness, we try to avoid emitting the return block for 107 // simple cases. 108 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 109 110 if (CurBB) { 111 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 112 113 // We have a valid insert point, reuse it if it is empty or there are no 114 // explicit jumps to the return block. 115 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 116 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 117 delete ReturnBlock.getBlock(); 118 } else 119 EmitBlock(ReturnBlock.getBlock()); 120 return; 121 } 122 123 // Otherwise, if the return block is the target of a single direct 124 // branch then we can just put the code in that block instead. This 125 // cleans up functions which started with a unified return block. 126 if (ReturnBlock.getBlock()->hasOneUse()) { 127 llvm::BranchInst *BI = 128 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 129 if (BI && BI->isUnconditional() && 130 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 131 // Reset insertion point, including debug location, and delete the branch. 132 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 133 Builder.SetInsertPoint(BI->getParent()); 134 BI->eraseFromParent(); 135 delete ReturnBlock.getBlock(); 136 return; 137 } 138 } 139 140 // FIXME: We are at an unreachable point, there is no reason to emit the block 141 // unless it has uses. However, we still need a place to put the debug 142 // region.end for now. 143 144 EmitBlock(ReturnBlock.getBlock()); 145 } 146 147 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 148 if (!BB) return; 149 if (!BB->use_empty()) 150 return CGF.CurFn->getBasicBlockList().push_back(BB); 151 delete BB; 152 } 153 154 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 155 assert(BreakContinueStack.empty() && 156 "mismatched push/pop in break/continue stack!"); 157 158 // Pop any cleanups that might have been associated with the 159 // parameters. Do this in whatever block we're currently in; it's 160 // important to do this before we enter the return block or return 161 // edges will be *really* confused. 162 if (EHStack.stable_begin() != PrologueCleanupDepth) 163 PopCleanupBlocks(PrologueCleanupDepth); 164 165 // Emit function epilog (to return). 166 EmitReturnBlock(); 167 168 if (ShouldInstrumentFunction()) 169 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 170 171 // Emit debug descriptor for function end. 172 if (CGDebugInfo *DI = getDebugInfo()) { 173 DI->setLocation(EndLoc); 174 DI->EmitFunctionEnd(Builder); 175 } 176 177 EmitFunctionEpilog(*CurFnInfo); 178 EmitEndEHSpec(CurCodeDecl); 179 180 assert(EHStack.empty() && 181 "did not remove all scopes from cleanup stack!"); 182 183 // If someone did an indirect goto, emit the indirect goto block at the end of 184 // the function. 185 if (IndirectBranch) { 186 EmitBlock(IndirectBranch->getParent()); 187 Builder.ClearInsertionPoint(); 188 } 189 190 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 191 llvm::Instruction *Ptr = AllocaInsertPt; 192 AllocaInsertPt = 0; 193 Ptr->eraseFromParent(); 194 195 // If someone took the address of a label but never did an indirect goto, we 196 // made a zero entry PHI node, which is illegal, zap it now. 197 if (IndirectBranch) { 198 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 199 if (PN->getNumIncomingValues() == 0) { 200 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 201 PN->eraseFromParent(); 202 } 203 } 204 205 EmitIfUsed(*this, EHResumeBlock); 206 EmitIfUsed(*this, TerminateLandingPad); 207 EmitIfUsed(*this, TerminateHandler); 208 EmitIfUsed(*this, UnreachableBlock); 209 210 if (CGM.getCodeGenOpts().EmitDeclMetadata) 211 EmitDeclMetadata(); 212 } 213 214 /// ShouldInstrumentFunction - Return true if the current function should be 215 /// instrumented with __cyg_profile_func_* calls 216 bool CodeGenFunction::ShouldInstrumentFunction() { 217 if (!CGM.getCodeGenOpts().InstrumentFunctions) 218 return false; 219 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 220 return false; 221 return true; 222 } 223 224 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 225 /// instrumentation function with the current function and the call site, if 226 /// function instrumentation is enabled. 227 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 228 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 229 llvm::PointerType *PointerTy = Int8PtrTy; 230 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 231 llvm::FunctionType *FunctionTy = 232 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 233 ProfileFuncArgs, false); 234 235 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 236 llvm::CallInst *CallSite = Builder.CreateCall( 237 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 238 llvm::ConstantInt::get(Int32Ty, 0), 239 "callsite"); 240 241 Builder.CreateCall2(F, 242 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 243 CallSite); 244 } 245 246 void CodeGenFunction::EmitMCountInstrumentation() { 247 llvm::FunctionType *FTy = 248 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false); 249 250 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 251 Target.getMCountName()); 252 Builder.CreateCall(MCountFn); 253 } 254 255 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 256 llvm::Function *Fn, 257 const CGFunctionInfo &FnInfo, 258 const FunctionArgList &Args, 259 SourceLocation StartLoc) { 260 const Decl *D = GD.getDecl(); 261 262 DidCallStackSave = false; 263 CurCodeDecl = CurFuncDecl = D; 264 FnRetTy = RetTy; 265 CurFn = Fn; 266 CurFnInfo = &FnInfo; 267 assert(CurFn->isDeclaration() && "Function already has body?"); 268 269 // Pass inline keyword to optimizer if it appears explicitly on any 270 // declaration. 271 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 272 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 273 RE = FD->redecls_end(); RI != RE; ++RI) 274 if (RI->isInlineSpecified()) { 275 Fn->addFnAttr(llvm::Attribute::InlineHint); 276 break; 277 } 278 279 if (getContext().getLangOptions().OpenCL) { 280 // Add metadata for a kernel function. 281 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 282 if (FD->hasAttr<OpenCLKernelAttr>()) { 283 llvm::LLVMContext &Context = getLLVMContext(); 284 llvm::NamedMDNode *OpenCLMetadata = 285 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 286 287 llvm::Value *Op = Fn; 288 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op)); 289 } 290 } 291 292 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 293 294 // Create a marker to make it easy to insert allocas into the entryblock 295 // later. Don't create this with the builder, because we don't want it 296 // folded. 297 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 298 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 299 if (Builder.isNamePreserving()) 300 AllocaInsertPt->setName("allocapt"); 301 302 ReturnBlock = getJumpDestInCurrentScope("return"); 303 304 Builder.SetInsertPoint(EntryBB); 305 306 // Emit subprogram debug descriptor. 307 if (CGDebugInfo *DI = getDebugInfo()) { 308 unsigned NumArgs = 0; 309 QualType *ArgsArray = new QualType[Args.size()]; 310 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 311 i != e; ++i) { 312 ArgsArray[NumArgs++] = (*i)->getType(); 313 } 314 315 QualType FnType = 316 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 317 FunctionProtoType::ExtProtoInfo()); 318 319 delete[] ArgsArray; 320 321 DI->setLocation(StartLoc); 322 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 323 } 324 325 if (ShouldInstrumentFunction()) 326 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 327 328 if (CGM.getCodeGenOpts().InstrumentForProfiling) 329 EmitMCountInstrumentation(); 330 331 if (RetTy->isVoidType()) { 332 // Void type; nothing to return. 333 ReturnValue = 0; 334 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 335 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 336 // Indirect aggregate return; emit returned value directly into sret slot. 337 // This reduces code size, and affects correctness in C++. 338 ReturnValue = CurFn->arg_begin(); 339 } else { 340 ReturnValue = CreateIRTemp(RetTy, "retval"); 341 342 // Tell the epilog emitter to autorelease the result. We do this 343 // now so that various specialized functions can suppress it 344 // during their IR-generation. 345 if (getLangOptions().ObjCAutoRefCount && 346 !CurFnInfo->isReturnsRetained() && 347 RetTy->isObjCRetainableType()) 348 AutoreleaseResult = true; 349 } 350 351 EmitStartEHSpec(CurCodeDecl); 352 353 PrologueCleanupDepth = EHStack.stable_begin(); 354 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 355 356 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) 357 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 358 359 // If any of the arguments have a variably modified type, make sure to 360 // emit the type size. 361 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 362 i != e; ++i) { 363 QualType Ty = (*i)->getType(); 364 365 if (Ty->isVariablyModifiedType()) 366 EmitVariablyModifiedType(Ty); 367 } 368 // Emit a location at the end of the prologue. 369 if (CGDebugInfo *DI = getDebugInfo()) 370 DI->EmitLocation(Builder, StartLoc); 371 } 372 373 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 374 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 375 assert(FD->getBody()); 376 EmitStmt(FD->getBody()); 377 } 378 379 /// Tries to mark the given function nounwind based on the 380 /// non-existence of any throwing calls within it. We believe this is 381 /// lightweight enough to do at -O0. 382 static void TryMarkNoThrow(llvm::Function *F) { 383 // LLVM treats 'nounwind' on a function as part of the type, so we 384 // can't do this on functions that can be overwritten. 385 if (F->mayBeOverridden()) return; 386 387 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 388 for (llvm::BasicBlock::iterator 389 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 390 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 391 if (!Call->doesNotThrow()) 392 return; 393 } else if (isa<llvm::ResumeInst>(&*BI)) { 394 return; 395 } 396 F->setDoesNotThrow(true); 397 } 398 399 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 400 const CGFunctionInfo &FnInfo) { 401 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 402 403 // Check if we should generate debug info for this function. 404 if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>()) 405 DebugInfo = CGM.getModuleDebugInfo(); 406 407 FunctionArgList Args; 408 QualType ResTy = FD->getResultType(); 409 410 CurGD = GD; 411 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 412 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 413 414 if (FD->getNumParams()) 415 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 416 Args.push_back(FD->getParamDecl(i)); 417 418 SourceRange BodyRange; 419 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 420 421 // Emit the standard function prologue. 422 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 423 424 // Generate the body of the function. 425 if (isa<CXXDestructorDecl>(FD)) 426 EmitDestructorBody(Args); 427 else if (isa<CXXConstructorDecl>(FD)) 428 EmitConstructorBody(Args); 429 else if (getContext().getLangOptions().CUDA && 430 !CGM.getCodeGenOpts().CUDAIsDevice && 431 FD->hasAttr<CUDAGlobalAttr>()) 432 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 433 else 434 EmitFunctionBody(Args); 435 436 // Emit the standard function epilogue. 437 FinishFunction(BodyRange.getEnd()); 438 439 // If we haven't marked the function nothrow through other means, do 440 // a quick pass now to see if we can. 441 if (!CurFn->doesNotThrow()) 442 TryMarkNoThrow(CurFn); 443 } 444 445 /// ContainsLabel - Return true if the statement contains a label in it. If 446 /// this statement is not executed normally, it not containing a label means 447 /// that we can just remove the code. 448 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 449 // Null statement, not a label! 450 if (S == 0) return false; 451 452 // If this is a label, we have to emit the code, consider something like: 453 // if (0) { ... foo: bar(); } goto foo; 454 // 455 // TODO: If anyone cared, we could track __label__'s, since we know that you 456 // can't jump to one from outside their declared region. 457 if (isa<LabelStmt>(S)) 458 return true; 459 460 // If this is a case/default statement, and we haven't seen a switch, we have 461 // to emit the code. 462 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 463 return true; 464 465 // If this is a switch statement, we want to ignore cases below it. 466 if (isa<SwitchStmt>(S)) 467 IgnoreCaseStmts = true; 468 469 // Scan subexpressions for verboten labels. 470 for (Stmt::const_child_range I = S->children(); I; ++I) 471 if (ContainsLabel(*I, IgnoreCaseStmts)) 472 return true; 473 474 return false; 475 } 476 477 /// containsBreak - Return true if the statement contains a break out of it. 478 /// If the statement (recursively) contains a switch or loop with a break 479 /// inside of it, this is fine. 480 bool CodeGenFunction::containsBreak(const Stmt *S) { 481 // Null statement, not a label! 482 if (S == 0) return false; 483 484 // If this is a switch or loop that defines its own break scope, then we can 485 // include it and anything inside of it. 486 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 487 isa<ForStmt>(S)) 488 return false; 489 490 if (isa<BreakStmt>(S)) 491 return true; 492 493 // Scan subexpressions for verboten breaks. 494 for (Stmt::const_child_range I = S->children(); I; ++I) 495 if (containsBreak(*I)) 496 return true; 497 498 return false; 499 } 500 501 502 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 503 /// to a constant, or if it does but contains a label, return false. If it 504 /// constant folds return true and set the boolean result in Result. 505 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 506 bool &ResultBool) { 507 llvm::APInt ResultInt; 508 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 509 return false; 510 511 ResultBool = ResultInt.getBoolValue(); 512 return true; 513 } 514 515 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 516 /// to a constant, or if it does but contains a label, return false. If it 517 /// constant folds return true and set the folded value. 518 bool CodeGenFunction:: 519 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) { 520 // FIXME: Rename and handle conversion of other evaluatable things 521 // to bool. 522 llvm::APSInt Int; 523 if (!Cond->EvaluateAsInt(Int, getContext())) 524 return false; // Not foldable, not integer or not fully evaluatable. 525 526 if (CodeGenFunction::ContainsLabel(Cond)) 527 return false; // Contains a label. 528 529 ResultInt = Int; 530 return true; 531 } 532 533 534 535 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 536 /// statement) to the specified blocks. Based on the condition, this might try 537 /// to simplify the codegen of the conditional based on the branch. 538 /// 539 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 540 llvm::BasicBlock *TrueBlock, 541 llvm::BasicBlock *FalseBlock) { 542 Cond = Cond->IgnoreParens(); 543 544 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 545 // Handle X && Y in a condition. 546 if (CondBOp->getOpcode() == BO_LAnd) { 547 // If we have "1 && X", simplify the code. "0 && X" would have constant 548 // folded if the case was simple enough. 549 bool ConstantBool = false; 550 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 551 ConstantBool) { 552 // br(1 && X) -> br(X). 553 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 554 } 555 556 // If we have "X && 1", simplify the code to use an uncond branch. 557 // "X && 0" would have been constant folded to 0. 558 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 559 ConstantBool) { 560 // br(X && 1) -> br(X). 561 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 562 } 563 564 // Emit the LHS as a conditional. If the LHS conditional is false, we 565 // want to jump to the FalseBlock. 566 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 567 568 ConditionalEvaluation eval(*this); 569 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 570 EmitBlock(LHSTrue); 571 572 // Any temporaries created here are conditional. 573 eval.begin(*this); 574 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 575 eval.end(*this); 576 577 return; 578 } 579 580 if (CondBOp->getOpcode() == BO_LOr) { 581 // If we have "0 || X", simplify the code. "1 || X" would have constant 582 // folded if the case was simple enough. 583 bool ConstantBool = false; 584 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 585 !ConstantBool) { 586 // br(0 || X) -> br(X). 587 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 588 } 589 590 // If we have "X || 0", simplify the code to use an uncond branch. 591 // "X || 1" would have been constant folded to 1. 592 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 593 !ConstantBool) { 594 // br(X || 0) -> br(X). 595 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 596 } 597 598 // Emit the LHS as a conditional. If the LHS conditional is true, we 599 // want to jump to the TrueBlock. 600 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 601 602 ConditionalEvaluation eval(*this); 603 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 604 EmitBlock(LHSFalse); 605 606 // Any temporaries created here are conditional. 607 eval.begin(*this); 608 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 609 eval.end(*this); 610 611 return; 612 } 613 } 614 615 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 616 // br(!x, t, f) -> br(x, f, t) 617 if (CondUOp->getOpcode() == UO_LNot) 618 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 619 } 620 621 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 622 // Handle ?: operator. 623 624 // Just ignore GNU ?: extension. 625 if (CondOp->getLHS()) { 626 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 627 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 628 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 629 630 ConditionalEvaluation cond(*this); 631 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 632 633 cond.begin(*this); 634 EmitBlock(LHSBlock); 635 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 636 cond.end(*this); 637 638 cond.begin(*this); 639 EmitBlock(RHSBlock); 640 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 641 cond.end(*this); 642 643 return; 644 } 645 } 646 647 // Emit the code with the fully general case. 648 llvm::Value *CondV = EvaluateExprAsBool(Cond); 649 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 650 } 651 652 /// ErrorUnsupported - Print out an error that codegen doesn't support the 653 /// specified stmt yet. 654 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 655 bool OmitOnError) { 656 CGM.ErrorUnsupported(S, Type, OmitOnError); 657 } 658 659 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 660 /// variable-length array whose elements have a non-zero bit-pattern. 661 /// 662 /// \param src - a char* pointing to the bit-pattern for a single 663 /// base element of the array 664 /// \param sizeInChars - the total size of the VLA, in chars 665 /// \param align - the total alignment of the VLA 666 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 667 llvm::Value *dest, llvm::Value *src, 668 llvm::Value *sizeInChars) { 669 std::pair<CharUnits,CharUnits> baseSizeAndAlign 670 = CGF.getContext().getTypeInfoInChars(baseType); 671 672 CGBuilderTy &Builder = CGF.Builder; 673 674 llvm::Value *baseSizeInChars 675 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 676 677 llvm::Type *i8p = Builder.getInt8PtrTy(); 678 679 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 680 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 681 682 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 683 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 684 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 685 686 // Make a loop over the VLA. C99 guarantees that the VLA element 687 // count must be nonzero. 688 CGF.EmitBlock(loopBB); 689 690 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 691 cur->addIncoming(begin, originBB); 692 693 // memcpy the individual element bit-pattern. 694 Builder.CreateMemCpy(cur, src, baseSizeInChars, 695 baseSizeAndAlign.second.getQuantity(), 696 /*volatile*/ false); 697 698 // Go to the next element. 699 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 700 701 // Leave if that's the end of the VLA. 702 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 703 Builder.CreateCondBr(done, contBB, loopBB); 704 cur->addIncoming(next, loopBB); 705 706 CGF.EmitBlock(contBB); 707 } 708 709 void 710 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 711 // Ignore empty classes in C++. 712 if (getContext().getLangOptions().CPlusPlus) { 713 if (const RecordType *RT = Ty->getAs<RecordType>()) { 714 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 715 return; 716 } 717 } 718 719 // Cast the dest ptr to the appropriate i8 pointer type. 720 unsigned DestAS = 721 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 722 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 723 if (DestPtr->getType() != BP) 724 DestPtr = Builder.CreateBitCast(DestPtr, BP); 725 726 // Get size and alignment info for this aggregate. 727 std::pair<CharUnits, CharUnits> TypeInfo = 728 getContext().getTypeInfoInChars(Ty); 729 CharUnits Size = TypeInfo.first; 730 CharUnits Align = TypeInfo.second; 731 732 llvm::Value *SizeVal; 733 const VariableArrayType *vla; 734 735 // Don't bother emitting a zero-byte memset. 736 if (Size.isZero()) { 737 // But note that getTypeInfo returns 0 for a VLA. 738 if (const VariableArrayType *vlaType = 739 dyn_cast_or_null<VariableArrayType>( 740 getContext().getAsArrayType(Ty))) { 741 QualType eltType; 742 llvm::Value *numElts; 743 llvm::tie(numElts, eltType) = getVLASize(vlaType); 744 745 SizeVal = numElts; 746 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 747 if (!eltSize.isOne()) 748 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 749 vla = vlaType; 750 } else { 751 return; 752 } 753 } else { 754 SizeVal = CGM.getSize(Size); 755 vla = 0; 756 } 757 758 // If the type contains a pointer to data member we can't memset it to zero. 759 // Instead, create a null constant and copy it to the destination. 760 // TODO: there are other patterns besides zero that we can usefully memset, 761 // like -1, which happens to be the pattern used by member-pointers. 762 if (!CGM.getTypes().isZeroInitializable(Ty)) { 763 // For a VLA, emit a single element, then splat that over the VLA. 764 if (vla) Ty = getContext().getBaseElementType(vla); 765 766 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 767 768 llvm::GlobalVariable *NullVariable = 769 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 770 /*isConstant=*/true, 771 llvm::GlobalVariable::PrivateLinkage, 772 NullConstant, Twine()); 773 llvm::Value *SrcPtr = 774 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 775 776 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 777 778 // Get and call the appropriate llvm.memcpy overload. 779 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 780 return; 781 } 782 783 // Otherwise, just memset the whole thing to zero. This is legal 784 // because in LLVM, all default initializers (other than the ones we just 785 // handled above) are guaranteed to have a bit pattern of all zeros. 786 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 787 Align.getQuantity(), false); 788 } 789 790 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 791 // Make sure that there is a block for the indirect goto. 792 if (IndirectBranch == 0) 793 GetIndirectGotoBlock(); 794 795 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 796 797 // Make sure the indirect branch includes all of the address-taken blocks. 798 IndirectBranch->addDestination(BB); 799 return llvm::BlockAddress::get(CurFn, BB); 800 } 801 802 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 803 // If we already made the indirect branch for indirect goto, return its block. 804 if (IndirectBranch) return IndirectBranch->getParent(); 805 806 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 807 808 // Create the PHI node that indirect gotos will add entries to. 809 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 810 "indirect.goto.dest"); 811 812 // Create the indirect branch instruction. 813 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 814 return IndirectBranch->getParent(); 815 } 816 817 /// Computes the length of an array in elements, as well as the base 818 /// element type and a properly-typed first element pointer. 819 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 820 QualType &baseType, 821 llvm::Value *&addr) { 822 const ArrayType *arrayType = origArrayType; 823 824 // If it's a VLA, we have to load the stored size. Note that 825 // this is the size of the VLA in bytes, not its size in elements. 826 llvm::Value *numVLAElements = 0; 827 if (isa<VariableArrayType>(arrayType)) { 828 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 829 830 // Walk into all VLAs. This doesn't require changes to addr, 831 // which has type T* where T is the first non-VLA element type. 832 do { 833 QualType elementType = arrayType->getElementType(); 834 arrayType = getContext().getAsArrayType(elementType); 835 836 // If we only have VLA components, 'addr' requires no adjustment. 837 if (!arrayType) { 838 baseType = elementType; 839 return numVLAElements; 840 } 841 } while (isa<VariableArrayType>(arrayType)); 842 843 // We get out here only if we find a constant array type 844 // inside the VLA. 845 } 846 847 // We have some number of constant-length arrays, so addr should 848 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 849 // down to the first element of addr. 850 SmallVector<llvm::Value*, 8> gepIndices; 851 852 // GEP down to the array type. 853 llvm::ConstantInt *zero = Builder.getInt32(0); 854 gepIndices.push_back(zero); 855 856 // It's more efficient to calculate the count from the LLVM 857 // constant-length arrays than to re-evaluate the array bounds. 858 uint64_t countFromCLAs = 1; 859 860 llvm::ArrayType *llvmArrayType = 861 cast<llvm::ArrayType>( 862 cast<llvm::PointerType>(addr->getType())->getElementType()); 863 while (true) { 864 assert(isa<ConstantArrayType>(arrayType)); 865 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 866 == llvmArrayType->getNumElements()); 867 868 gepIndices.push_back(zero); 869 countFromCLAs *= llvmArrayType->getNumElements(); 870 871 llvmArrayType = 872 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 873 if (!llvmArrayType) break; 874 875 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 876 assert(arrayType && "LLVM and Clang types are out-of-synch"); 877 } 878 879 baseType = arrayType->getElementType(); 880 881 // Create the actual GEP. 882 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 883 884 llvm::Value *numElements 885 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 886 887 // If we had any VLA dimensions, factor them in. 888 if (numVLAElements) 889 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 890 891 return numElements; 892 } 893 894 std::pair<llvm::Value*, QualType> 895 CodeGenFunction::getVLASize(QualType type) { 896 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 897 assert(vla && "type was not a variable array type!"); 898 return getVLASize(vla); 899 } 900 901 std::pair<llvm::Value*, QualType> 902 CodeGenFunction::getVLASize(const VariableArrayType *type) { 903 // The number of elements so far; always size_t. 904 llvm::Value *numElements = 0; 905 906 QualType elementType; 907 do { 908 elementType = type->getElementType(); 909 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 910 assert(vlaSize && "no size for VLA!"); 911 assert(vlaSize->getType() == SizeTy); 912 913 if (!numElements) { 914 numElements = vlaSize; 915 } else { 916 // It's undefined behavior if this wraps around, so mark it that way. 917 numElements = Builder.CreateNUWMul(numElements, vlaSize); 918 } 919 } while ((type = getContext().getAsVariableArrayType(elementType))); 920 921 return std::pair<llvm::Value*,QualType>(numElements, elementType); 922 } 923 924 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 925 assert(type->isVariablyModifiedType() && 926 "Must pass variably modified type to EmitVLASizes!"); 927 928 EnsureInsertPoint(); 929 930 // We're going to walk down into the type and look for VLA 931 // expressions. 932 type = type.getCanonicalType(); 933 do { 934 assert(type->isVariablyModifiedType()); 935 936 const Type *ty = type.getTypePtr(); 937 switch (ty->getTypeClass()) { 938 #define TYPE(Class, Base) 939 #define ABSTRACT_TYPE(Class, Base) 940 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 941 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 942 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 943 #include "clang/AST/TypeNodes.def" 944 llvm_unreachable("unexpected dependent or non-canonical type!"); 945 946 // These types are never variably-modified. 947 case Type::Builtin: 948 case Type::Complex: 949 case Type::Vector: 950 case Type::ExtVector: 951 case Type::Record: 952 case Type::Enum: 953 case Type::ObjCObject: 954 case Type::ObjCInterface: 955 case Type::ObjCObjectPointer: 956 llvm_unreachable("type class is never variably-modified!"); 957 958 case Type::Pointer: 959 type = cast<PointerType>(ty)->getPointeeType(); 960 break; 961 962 case Type::BlockPointer: 963 type = cast<BlockPointerType>(ty)->getPointeeType(); 964 break; 965 966 case Type::LValueReference: 967 case Type::RValueReference: 968 type = cast<ReferenceType>(ty)->getPointeeType(); 969 break; 970 971 case Type::MemberPointer: 972 type = cast<MemberPointerType>(ty)->getPointeeType(); 973 break; 974 975 case Type::ConstantArray: 976 case Type::IncompleteArray: 977 // Losing element qualification here is fine. 978 type = cast<ArrayType>(ty)->getElementType(); 979 break; 980 981 case Type::VariableArray: { 982 // Losing element qualification here is fine. 983 const VariableArrayType *vat = cast<VariableArrayType>(ty); 984 985 // Unknown size indication requires no size computation. 986 // Otherwise, evaluate and record it. 987 if (const Expr *size = vat->getSizeExpr()) { 988 // It's possible that we might have emitted this already, 989 // e.g. with a typedef and a pointer to it. 990 llvm::Value *&entry = VLASizeMap[size]; 991 if (!entry) { 992 // Always zexting here would be wrong if it weren't 993 // undefined behavior to have a negative bound. 994 entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy, 995 /*signed*/ false); 996 } 997 } 998 type = vat->getElementType(); 999 break; 1000 } 1001 1002 case Type::FunctionProto: 1003 case Type::FunctionNoProto: 1004 type = cast<FunctionType>(ty)->getResultType(); 1005 break; 1006 1007 case Type::Atomic: 1008 type = cast<AtomicType>(ty)->getValueType(); 1009 break; 1010 } 1011 } while (type->isVariablyModifiedType()); 1012 } 1013 1014 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1015 if (getContext().getBuiltinVaListType()->isArrayType()) 1016 return EmitScalarExpr(E); 1017 return EmitLValue(E).getAddress(); 1018 } 1019 1020 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1021 llvm::Constant *Init) { 1022 assert (Init && "Invalid DeclRefExpr initializer!"); 1023 if (CGDebugInfo *Dbg = getDebugInfo()) 1024 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1025 } 1026 1027 CodeGenFunction::PeepholeProtection 1028 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1029 // At the moment, the only aggressive peephole we do in IR gen 1030 // is trunc(zext) folding, but if we add more, we can easily 1031 // extend this protection. 1032 1033 if (!rvalue.isScalar()) return PeepholeProtection(); 1034 llvm::Value *value = rvalue.getScalarVal(); 1035 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1036 1037 // Just make an extra bitcast. 1038 assert(HaveInsertPoint()); 1039 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1040 Builder.GetInsertBlock()); 1041 1042 PeepholeProtection protection; 1043 protection.Inst = inst; 1044 return protection; 1045 } 1046 1047 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1048 if (!protection.Inst) return; 1049 1050 // In theory, we could try to duplicate the peepholes now, but whatever. 1051 protection.Inst->eraseFromParent(); 1052 } 1053 1054 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1055 llvm::Value *AnnotatedVal, 1056 llvm::StringRef AnnotationStr, 1057 SourceLocation Location) { 1058 llvm::Value *Args[4] = { 1059 AnnotatedVal, 1060 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1061 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1062 CGM.EmitAnnotationLineNo(Location) 1063 }; 1064 return Builder.CreateCall(AnnotationFn, Args); 1065 } 1066 1067 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1068 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1069 // FIXME We create a new bitcast for every annotation because that's what 1070 // llvm-gcc was doing. 1071 for (specific_attr_iterator<AnnotateAttr> 1072 ai = D->specific_attr_begin<AnnotateAttr>(), 1073 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1074 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1075 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1076 (*ai)->getAnnotation(), D->getLocation()); 1077 } 1078 1079 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1080 llvm::Value *V) { 1081 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1082 llvm::Type *VTy = V->getType(); 1083 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1084 CGM.Int8PtrTy); 1085 1086 for (specific_attr_iterator<AnnotateAttr> 1087 ai = D->specific_attr_begin<AnnotateAttr>(), 1088 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1089 // FIXME Always emit the cast inst so we can differentiate between 1090 // annotation on the first field of a struct and annotation on the struct 1091 // itself. 1092 if (VTy != CGM.Int8PtrTy) 1093 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1094 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1095 V = Builder.CreateBitCast(V, VTy); 1096 } 1097 1098 return V; 1099 } 1100