1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenPGO.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 39 CGBuilderInserterTy(this)), 40 CurFn(nullptr), CapturedStmtInfo(nullptr), 41 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 42 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 43 BlockInfo(nullptr), BlockPointer(nullptr), 44 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 45 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 46 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 47 AbnormalTerminationSlot(nullptr), SEHPointersDecl(nullptr), 48 DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false), 49 DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm), 50 SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr), 51 UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0), 52 CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr), 53 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 54 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 55 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 56 TerminateHandler(nullptr), TrapBB(nullptr) { 57 if (!suppressNewContext) 58 CGM.getCXXABI().getMangleContext().startNewFunction(); 59 60 llvm::FastMathFlags FMF; 61 if (CGM.getLangOpts().FastMath) 62 FMF.setUnsafeAlgebra(); 63 if (CGM.getLangOpts().FiniteMathOnly) { 64 FMF.setNoNaNs(); 65 FMF.setNoInfs(); 66 } 67 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 68 FMF.setNoNaNs(); 69 } 70 if (CGM.getCodeGenOpts().NoSignedZeros) { 71 FMF.setNoSignedZeros(); 72 } 73 Builder.SetFastMathFlags(FMF); 74 } 75 76 CodeGenFunction::~CodeGenFunction() { 77 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 78 79 // If there are any unclaimed block infos, go ahead and destroy them 80 // now. This can happen if IR-gen gets clever and skips evaluating 81 // something. 82 if (FirstBlockInfo) 83 destroyBlockInfos(FirstBlockInfo); 84 85 if (getLangOpts().OpenMP) { 86 CGM.getOpenMPRuntime().functionFinished(*this); 87 } 88 } 89 90 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 91 CharUnits Alignment; 92 if (CGM.getCXXABI().isTypeInfoCalculable(T)) { 93 Alignment = getContext().getTypeAlignInChars(T); 94 unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign; 95 if (MaxAlign && Alignment.getQuantity() > MaxAlign && 96 !getContext().isAlignmentRequired(T)) 97 Alignment = CharUnits::fromQuantity(MaxAlign); 98 } 99 return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T)); 100 } 101 102 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 103 return CGM.getTypes().ConvertTypeForMem(T); 104 } 105 106 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 107 return CGM.getTypes().ConvertType(T); 108 } 109 110 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 111 type = type.getCanonicalType(); 112 while (true) { 113 switch (type->getTypeClass()) { 114 #define TYPE(name, parent) 115 #define ABSTRACT_TYPE(name, parent) 116 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 117 #define DEPENDENT_TYPE(name, parent) case Type::name: 118 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 119 #include "clang/AST/TypeNodes.def" 120 llvm_unreachable("non-canonical or dependent type in IR-generation"); 121 122 case Type::Auto: 123 llvm_unreachable("undeduced auto type in IR-generation"); 124 125 // Various scalar types. 126 case Type::Builtin: 127 case Type::Pointer: 128 case Type::BlockPointer: 129 case Type::LValueReference: 130 case Type::RValueReference: 131 case Type::MemberPointer: 132 case Type::Vector: 133 case Type::ExtVector: 134 case Type::FunctionProto: 135 case Type::FunctionNoProto: 136 case Type::Enum: 137 case Type::ObjCObjectPointer: 138 return TEK_Scalar; 139 140 // Complexes. 141 case Type::Complex: 142 return TEK_Complex; 143 144 // Arrays, records, and Objective-C objects. 145 case Type::ConstantArray: 146 case Type::IncompleteArray: 147 case Type::VariableArray: 148 case Type::Record: 149 case Type::ObjCObject: 150 case Type::ObjCInterface: 151 return TEK_Aggregate; 152 153 // We operate on atomic values according to their underlying type. 154 case Type::Atomic: 155 type = cast<AtomicType>(type)->getValueType(); 156 continue; 157 } 158 llvm_unreachable("unknown type kind!"); 159 } 160 } 161 162 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 163 // For cleanliness, we try to avoid emitting the return block for 164 // simple cases. 165 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 166 167 if (CurBB) { 168 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 169 170 // We have a valid insert point, reuse it if it is empty or there are no 171 // explicit jumps to the return block. 172 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 173 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 174 delete ReturnBlock.getBlock(); 175 } else 176 EmitBlock(ReturnBlock.getBlock()); 177 return llvm::DebugLoc(); 178 } 179 180 // Otherwise, if the return block is the target of a single direct 181 // branch then we can just put the code in that block instead. This 182 // cleans up functions which started with a unified return block. 183 if (ReturnBlock.getBlock()->hasOneUse()) { 184 llvm::BranchInst *BI = 185 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 186 if (BI && BI->isUnconditional() && 187 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 188 // Record/return the DebugLoc of the simple 'return' expression to be used 189 // later by the actual 'ret' instruction. 190 llvm::DebugLoc Loc = BI->getDebugLoc(); 191 Builder.SetInsertPoint(BI->getParent()); 192 BI->eraseFromParent(); 193 delete ReturnBlock.getBlock(); 194 return Loc; 195 } 196 } 197 198 // FIXME: We are at an unreachable point, there is no reason to emit the block 199 // unless it has uses. However, we still need a place to put the debug 200 // region.end for now. 201 202 EmitBlock(ReturnBlock.getBlock()); 203 return llvm::DebugLoc(); 204 } 205 206 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 207 if (!BB) return; 208 if (!BB->use_empty()) 209 return CGF.CurFn->getBasicBlockList().push_back(BB); 210 delete BB; 211 } 212 213 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 214 assert(BreakContinueStack.empty() && 215 "mismatched push/pop in break/continue stack!"); 216 217 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 218 && NumSimpleReturnExprs == NumReturnExprs 219 && ReturnBlock.getBlock()->use_empty(); 220 // Usually the return expression is evaluated before the cleanup 221 // code. If the function contains only a simple return statement, 222 // such as a constant, the location before the cleanup code becomes 223 // the last useful breakpoint in the function, because the simple 224 // return expression will be evaluated after the cleanup code. To be 225 // safe, set the debug location for cleanup code to the location of 226 // the return statement. Otherwise the cleanup code should be at the 227 // end of the function's lexical scope. 228 // 229 // If there are multiple branches to the return block, the branch 230 // instructions will get the location of the return statements and 231 // all will be fine. 232 if (CGDebugInfo *DI = getDebugInfo()) { 233 if (OnlySimpleReturnStmts) 234 DI->EmitLocation(Builder, LastStopPoint); 235 else 236 DI->EmitLocation(Builder, EndLoc); 237 } 238 239 // Pop any cleanups that might have been associated with the 240 // parameters. Do this in whatever block we're currently in; it's 241 // important to do this before we enter the return block or return 242 // edges will be *really* confused. 243 bool EmitRetDbgLoc = true; 244 if (EHStack.stable_begin() != PrologueCleanupDepth) { 245 // Make sure the line table doesn't jump back into the body for 246 // the ret after it's been at EndLoc. 247 EmitRetDbgLoc = false; 248 249 if (CGDebugInfo *DI = getDebugInfo()) 250 if (OnlySimpleReturnStmts) 251 DI->EmitLocation(Builder, EndLoc); 252 253 PopCleanupBlocks(PrologueCleanupDepth); 254 } 255 256 // Emit function epilog (to return). 257 llvm::DebugLoc Loc = EmitReturnBlock(); 258 259 if (ShouldInstrumentFunction()) 260 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 261 262 // Emit debug descriptor for function end. 263 if (CGDebugInfo *DI = getDebugInfo()) 264 DI->EmitFunctionEnd(Builder); 265 266 // Reset the debug location to that of the simple 'return' expression, if any 267 // rather than that of the end of the function's scope '}'. 268 ApplyDebugLocation AL(*this, Loc); 269 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 270 EmitEndEHSpec(CurCodeDecl); 271 272 assert(EHStack.empty() && 273 "did not remove all scopes from cleanup stack!"); 274 275 // If someone did an indirect goto, emit the indirect goto block at the end of 276 // the function. 277 if (IndirectBranch) { 278 EmitBlock(IndirectBranch->getParent()); 279 Builder.ClearInsertionPoint(); 280 } 281 282 // If some of our locals escaped, insert a call to llvm.frameescape in the 283 // entry block. 284 if (!EscapedLocals.empty()) { 285 // Invert the map from local to index into a simple vector. There should be 286 // no holes. 287 SmallVector<llvm::Value *, 4> EscapeArgs; 288 EscapeArgs.resize(EscapedLocals.size()); 289 for (auto &Pair : EscapedLocals) 290 EscapeArgs[Pair.second] = Pair.first; 291 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 292 &CGM.getModule(), llvm::Intrinsic::frameescape); 293 CGBuilderTy(AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 294 } 295 296 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 297 llvm::Instruction *Ptr = AllocaInsertPt; 298 AllocaInsertPt = nullptr; 299 Ptr->eraseFromParent(); 300 301 // If someone took the address of a label but never did an indirect goto, we 302 // made a zero entry PHI node, which is illegal, zap it now. 303 if (IndirectBranch) { 304 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 305 if (PN->getNumIncomingValues() == 0) { 306 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 307 PN->eraseFromParent(); 308 } 309 } 310 311 EmitIfUsed(*this, EHResumeBlock); 312 EmitIfUsed(*this, TerminateLandingPad); 313 EmitIfUsed(*this, TerminateHandler); 314 EmitIfUsed(*this, UnreachableBlock); 315 316 if (CGM.getCodeGenOpts().EmitDeclMetadata) 317 EmitDeclMetadata(); 318 319 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 320 I = DeferredReplacements.begin(), 321 E = DeferredReplacements.end(); 322 I != E; ++I) { 323 I->first->replaceAllUsesWith(I->second); 324 I->first->eraseFromParent(); 325 } 326 } 327 328 /// ShouldInstrumentFunction - Return true if the current function should be 329 /// instrumented with __cyg_profile_func_* calls 330 bool CodeGenFunction::ShouldInstrumentFunction() { 331 if (!CGM.getCodeGenOpts().InstrumentFunctions) 332 return false; 333 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 334 return false; 335 return true; 336 } 337 338 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 339 /// instrumentation function with the current function and the call site, if 340 /// function instrumentation is enabled. 341 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 342 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 343 llvm::PointerType *PointerTy = Int8PtrTy; 344 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 345 llvm::FunctionType *FunctionTy = 346 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 347 348 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 349 llvm::CallInst *CallSite = Builder.CreateCall( 350 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 351 llvm::ConstantInt::get(Int32Ty, 0), 352 "callsite"); 353 354 llvm::Value *args[] = { 355 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 356 CallSite 357 }; 358 359 EmitNounwindRuntimeCall(F, args); 360 } 361 362 void CodeGenFunction::EmitMCountInstrumentation() { 363 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 364 365 llvm::Constant *MCountFn = 366 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 367 EmitNounwindRuntimeCall(MCountFn); 368 } 369 370 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 371 // information in the program executable. The argument information stored 372 // includes the argument name, its type, the address and access qualifiers used. 373 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 374 CodeGenModule &CGM, llvm::LLVMContext &Context, 375 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 376 CGBuilderTy &Builder, ASTContext &ASTCtx) { 377 // Create MDNodes that represent the kernel arg metadata. 378 // Each MDNode is a list in the form of "key", N number of values which is 379 // the same number of values as their are kernel arguments. 380 381 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 382 383 // MDNode for the kernel argument address space qualifiers. 384 SmallVector<llvm::Metadata *, 8> addressQuals; 385 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 386 387 // MDNode for the kernel argument access qualifiers (images only). 388 SmallVector<llvm::Metadata *, 8> accessQuals; 389 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 390 391 // MDNode for the kernel argument type names. 392 SmallVector<llvm::Metadata *, 8> argTypeNames; 393 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 394 395 // MDNode for the kernel argument base type names. 396 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 397 argBaseTypeNames.push_back( 398 llvm::MDString::get(Context, "kernel_arg_base_type")); 399 400 // MDNode for the kernel argument type qualifiers. 401 SmallVector<llvm::Metadata *, 8> argTypeQuals; 402 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 403 404 // MDNode for the kernel argument names. 405 SmallVector<llvm::Metadata *, 8> argNames; 406 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 407 408 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 409 const ParmVarDecl *parm = FD->getParamDecl(i); 410 QualType ty = parm->getType(); 411 std::string typeQuals; 412 413 if (ty->isPointerType()) { 414 QualType pointeeTy = ty->getPointeeType(); 415 416 // Get address qualifier. 417 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 418 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 419 420 // Get argument type name. 421 std::string typeName = 422 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 423 424 // Turn "unsigned type" to "utype" 425 std::string::size_type pos = typeName.find("unsigned"); 426 if (pointeeTy.isCanonical() && pos != std::string::npos) 427 typeName.erase(pos+1, 8); 428 429 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 430 431 std::string baseTypeName = 432 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 433 Policy) + 434 "*"; 435 436 // Turn "unsigned type" to "utype" 437 pos = baseTypeName.find("unsigned"); 438 if (pos != std::string::npos) 439 baseTypeName.erase(pos+1, 8); 440 441 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 442 443 // Get argument type qualifiers: 444 if (ty.isRestrictQualified()) 445 typeQuals = "restrict"; 446 if (pointeeTy.isConstQualified() || 447 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 448 typeQuals += typeQuals.empty() ? "const" : " const"; 449 if (pointeeTy.isVolatileQualified()) 450 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 451 } else { 452 uint32_t AddrSpc = 0; 453 if (ty->isImageType()) 454 AddrSpc = 455 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 456 457 addressQuals.push_back( 458 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 459 460 // Get argument type name. 461 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 462 463 // Turn "unsigned type" to "utype" 464 std::string::size_type pos = typeName.find("unsigned"); 465 if (ty.isCanonical() && pos != std::string::npos) 466 typeName.erase(pos+1, 8); 467 468 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 469 470 std::string baseTypeName = 471 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 472 473 // Turn "unsigned type" to "utype" 474 pos = baseTypeName.find("unsigned"); 475 if (pos != std::string::npos) 476 baseTypeName.erase(pos+1, 8); 477 478 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 479 480 // Get argument type qualifiers: 481 if (ty.isConstQualified()) 482 typeQuals = "const"; 483 if (ty.isVolatileQualified()) 484 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 485 } 486 487 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 488 489 // Get image access qualifier: 490 if (ty->isImageType()) { 491 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 492 if (A && A->isWriteOnly()) 493 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 494 else 495 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 496 // FIXME: what about read_write? 497 } else 498 accessQuals.push_back(llvm::MDString::get(Context, "none")); 499 500 // Get argument name. 501 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 502 } 503 504 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 505 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 506 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 507 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 508 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 509 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 510 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 511 } 512 513 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 514 llvm::Function *Fn) 515 { 516 if (!FD->hasAttr<OpenCLKernelAttr>()) 517 return; 518 519 llvm::LLVMContext &Context = getLLVMContext(); 520 521 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 522 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 523 524 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 525 getContext()); 526 527 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 528 QualType hintQTy = A->getTypeHint(); 529 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 530 bool isSignedInteger = 531 hintQTy->isSignedIntegerType() || 532 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 533 llvm::Metadata *attrMDArgs[] = { 534 llvm::MDString::get(Context, "vec_type_hint"), 535 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 536 CGM.getTypes().ConvertType(A->getTypeHint()))), 537 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 538 llvm::IntegerType::get(Context, 32), 539 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 540 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 541 } 542 543 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 544 llvm::Metadata *attrMDArgs[] = { 545 llvm::MDString::get(Context, "work_group_size_hint"), 546 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 547 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 548 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 549 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 550 } 551 552 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 553 llvm::Metadata *attrMDArgs[] = { 554 llvm::MDString::get(Context, "reqd_work_group_size"), 555 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 556 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 557 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 558 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 559 } 560 561 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 562 llvm::NamedMDNode *OpenCLKernelMetadata = 563 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 564 OpenCLKernelMetadata->addOperand(kernelMDNode); 565 } 566 567 /// Determine whether the function F ends with a return stmt. 568 static bool endsWithReturn(const Decl* F) { 569 const Stmt *Body = nullptr; 570 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 571 Body = FD->getBody(); 572 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 573 Body = OMD->getBody(); 574 575 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 576 auto LastStmt = CS->body_rbegin(); 577 if (LastStmt != CS->body_rend()) 578 return isa<ReturnStmt>(*LastStmt); 579 } 580 return false; 581 } 582 583 void CodeGenFunction::StartFunction(GlobalDecl GD, 584 QualType RetTy, 585 llvm::Function *Fn, 586 const CGFunctionInfo &FnInfo, 587 const FunctionArgList &Args, 588 SourceLocation Loc, 589 SourceLocation StartLoc) { 590 assert(!CurFn && 591 "Do not use a CodeGenFunction object for more than one function"); 592 593 const Decl *D = GD.getDecl(); 594 595 DidCallStackSave = false; 596 CurCodeDecl = D; 597 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 598 FnRetTy = RetTy; 599 CurFn = Fn; 600 CurFnInfo = &FnInfo; 601 assert(CurFn->isDeclaration() && "Function already has body?"); 602 603 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 604 SanOpts.clear(); 605 606 // Pass inline keyword to optimizer if it appears explicitly on any 607 // declaration. Also, in the case of -fno-inline attach NoInline 608 // attribute to all function that are not marked AlwaysInline. 609 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 610 if (!CGM.getCodeGenOpts().NoInline) { 611 for (auto RI : FD->redecls()) 612 if (RI->isInlineSpecified()) { 613 Fn->addFnAttr(llvm::Attribute::InlineHint); 614 break; 615 } 616 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 617 Fn->addFnAttr(llvm::Attribute::NoInline); 618 } 619 620 if (getLangOpts().OpenCL) { 621 // Add metadata for a kernel function. 622 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 623 EmitOpenCLKernelMetadata(FD, Fn); 624 } 625 626 // If we are checking function types, emit a function type signature as 627 // prologue data. 628 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 629 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 630 if (llvm::Constant *PrologueSig = 631 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 632 llvm::Constant *FTRTTIConst = 633 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 634 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 635 llvm::Constant *PrologueStructConst = 636 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 637 Fn->setPrologueData(PrologueStructConst); 638 } 639 } 640 } 641 642 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 643 644 // Create a marker to make it easy to insert allocas into the entryblock 645 // later. Don't create this with the builder, because we don't want it 646 // folded. 647 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 648 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 649 if (Builder.isNamePreserving()) 650 AllocaInsertPt->setName("allocapt"); 651 652 ReturnBlock = getJumpDestInCurrentScope("return"); 653 654 Builder.SetInsertPoint(EntryBB); 655 656 // Emit subprogram debug descriptor. 657 if (CGDebugInfo *DI = getDebugInfo()) { 658 SmallVector<QualType, 16> ArgTypes; 659 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 660 i != e; ++i) { 661 ArgTypes.push_back((*i)->getType()); 662 } 663 664 QualType FnType = 665 getContext().getFunctionType(RetTy, ArgTypes, 666 FunctionProtoType::ExtProtoInfo()); 667 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 668 } 669 670 if (ShouldInstrumentFunction()) 671 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 672 673 if (CGM.getCodeGenOpts().InstrumentForProfiling) 674 EmitMCountInstrumentation(); 675 676 if (RetTy->isVoidType()) { 677 // Void type; nothing to return. 678 ReturnValue = nullptr; 679 680 // Count the implicit return. 681 if (!endsWithReturn(D)) 682 ++NumReturnExprs; 683 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 684 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 685 // Indirect aggregate return; emit returned value directly into sret slot. 686 // This reduces code size, and affects correctness in C++. 687 auto AI = CurFn->arg_begin(); 688 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 689 ++AI; 690 ReturnValue = AI; 691 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 692 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 693 // Load the sret pointer from the argument struct and return into that. 694 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 695 llvm::Function::arg_iterator EI = CurFn->arg_end(); 696 --EI; 697 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx); 698 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 699 } else { 700 ReturnValue = CreateIRTemp(RetTy, "retval"); 701 702 // Tell the epilog emitter to autorelease the result. We do this 703 // now so that various specialized functions can suppress it 704 // during their IR-generation. 705 if (getLangOpts().ObjCAutoRefCount && 706 !CurFnInfo->isReturnsRetained() && 707 RetTy->isObjCRetainableType()) 708 AutoreleaseResult = true; 709 } 710 711 EmitStartEHSpec(CurCodeDecl); 712 713 PrologueCleanupDepth = EHStack.stable_begin(); 714 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 715 716 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 717 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 718 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 719 if (MD->getParent()->isLambda() && 720 MD->getOverloadedOperator() == OO_Call) { 721 // We're in a lambda; figure out the captures. 722 MD->getParent()->getCaptureFields(LambdaCaptureFields, 723 LambdaThisCaptureField); 724 if (LambdaThisCaptureField) { 725 // If this lambda captures this, load it. 726 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 727 CXXThisValue = EmitLoadOfLValue(ThisLValue, 728 SourceLocation()).getScalarVal(); 729 } 730 for (auto *FD : MD->getParent()->fields()) { 731 if (FD->hasCapturedVLAType()) { 732 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 733 SourceLocation()).getScalarVal(); 734 auto VAT = FD->getCapturedVLAType(); 735 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 736 } 737 } 738 } else { 739 // Not in a lambda; just use 'this' from the method. 740 // FIXME: Should we generate a new load for each use of 'this'? The 741 // fast register allocator would be happier... 742 CXXThisValue = CXXABIThisValue; 743 } 744 } 745 746 // If any of the arguments have a variably modified type, make sure to 747 // emit the type size. 748 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 749 i != e; ++i) { 750 const VarDecl *VD = *i; 751 752 // Dig out the type as written from ParmVarDecls; it's unclear whether 753 // the standard (C99 6.9.1p10) requires this, but we're following the 754 // precedent set by gcc. 755 QualType Ty; 756 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 757 Ty = PVD->getOriginalType(); 758 else 759 Ty = VD->getType(); 760 761 if (Ty->isVariablyModifiedType()) 762 EmitVariablyModifiedType(Ty); 763 } 764 // Emit a location at the end of the prologue. 765 if (CGDebugInfo *DI = getDebugInfo()) 766 DI->EmitLocation(Builder, StartLoc); 767 } 768 769 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 770 const Stmt *Body) { 771 RegionCounter Cnt = getPGORegionCounter(Body); 772 Cnt.beginRegion(Builder); 773 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 774 EmitCompoundStmtWithoutScope(*S); 775 else 776 EmitStmt(Body); 777 } 778 779 /// When instrumenting to collect profile data, the counts for some blocks 780 /// such as switch cases need to not include the fall-through counts, so 781 /// emit a branch around the instrumentation code. When not instrumenting, 782 /// this just calls EmitBlock(). 783 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 784 RegionCounter &Cnt) { 785 llvm::BasicBlock *SkipCountBB = nullptr; 786 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 787 // When instrumenting for profiling, the fallthrough to certain 788 // statements needs to skip over the instrumentation code so that we 789 // get an accurate count. 790 SkipCountBB = createBasicBlock("skipcount"); 791 EmitBranch(SkipCountBB); 792 } 793 EmitBlock(BB); 794 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 795 if (SkipCountBB) 796 EmitBlock(SkipCountBB); 797 } 798 799 /// Tries to mark the given function nounwind based on the 800 /// non-existence of any throwing calls within it. We believe this is 801 /// lightweight enough to do at -O0. 802 static void TryMarkNoThrow(llvm::Function *F) { 803 // LLVM treats 'nounwind' on a function as part of the type, so we 804 // can't do this on functions that can be overwritten. 805 if (F->mayBeOverridden()) return; 806 807 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 808 for (llvm::BasicBlock::iterator 809 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 810 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 811 if (!Call->doesNotThrow()) 812 return; 813 } else if (isa<llvm::ResumeInst>(&*BI)) { 814 return; 815 } 816 F->setDoesNotThrow(); 817 } 818 819 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 820 const CGFunctionInfo &FnInfo) { 821 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 822 823 // Check if we should generate debug info for this function. 824 if (FD->hasAttr<NoDebugAttr>()) 825 DebugInfo = nullptr; // disable debug info indefinitely for this function 826 827 FunctionArgList Args; 828 QualType ResTy = FD->getReturnType(); 829 830 CurGD = GD; 831 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 832 if (MD && MD->isInstance()) { 833 if (CGM.getCXXABI().HasThisReturn(GD)) 834 ResTy = MD->getThisType(getContext()); 835 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 836 ResTy = CGM.getContext().VoidPtrTy; 837 CGM.getCXXABI().buildThisParam(*this, Args); 838 } 839 840 Args.append(FD->param_begin(), FD->param_end()); 841 842 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 843 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 844 845 SourceRange BodyRange; 846 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 847 CurEHLocation = BodyRange.getEnd(); 848 849 // Use the location of the start of the function to determine where 850 // the function definition is located. By default use the location 851 // of the declaration as the location for the subprogram. A function 852 // may lack a declaration in the source code if it is created by code 853 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 854 SourceLocation Loc = FD->getLocation(); 855 856 // If this is a function specialization then use the pattern body 857 // as the location for the function. 858 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 859 if (SpecDecl->hasBody(SpecDecl)) 860 Loc = SpecDecl->getLocation(); 861 862 // Emit the standard function prologue. 863 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 864 865 // Generate the body of the function. 866 PGO.checkGlobalDecl(GD); 867 PGO.assignRegionCounters(GD.getDecl(), CurFn); 868 if (isa<CXXDestructorDecl>(FD)) 869 EmitDestructorBody(Args); 870 else if (isa<CXXConstructorDecl>(FD)) 871 EmitConstructorBody(Args); 872 else if (getLangOpts().CUDA && 873 !getLangOpts().CUDAIsDevice && 874 FD->hasAttr<CUDAGlobalAttr>()) 875 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 876 else if (isa<CXXConversionDecl>(FD) && 877 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 878 // The lambda conversion to block pointer is special; the semantics can't be 879 // expressed in the AST, so IRGen needs to special-case it. 880 EmitLambdaToBlockPointerBody(Args); 881 } else if (isa<CXXMethodDecl>(FD) && 882 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 883 // The lambda static invoker function is special, because it forwards or 884 // clones the body of the function call operator (but is actually static). 885 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 886 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 887 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 888 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 889 // Implicit copy-assignment gets the same special treatment as implicit 890 // copy-constructors. 891 emitImplicitAssignmentOperatorBody(Args); 892 } else if (Stmt *Body = FD->getBody()) { 893 EmitFunctionBody(Args, Body); 894 } else 895 llvm_unreachable("no definition for emitted function"); 896 897 // C++11 [stmt.return]p2: 898 // Flowing off the end of a function [...] results in undefined behavior in 899 // a value-returning function. 900 // C11 6.9.1p12: 901 // If the '}' that terminates a function is reached, and the value of the 902 // function call is used by the caller, the behavior is undefined. 903 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 904 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 905 if (SanOpts.has(SanitizerKind::Return)) { 906 SanitizerScope SanScope(this); 907 llvm::Value *IsFalse = Builder.getFalse(); 908 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 909 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 910 None); 911 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 912 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 913 Builder.CreateUnreachable(); 914 Builder.ClearInsertionPoint(); 915 } 916 917 // Emit the standard function epilogue. 918 FinishFunction(BodyRange.getEnd()); 919 920 // If we haven't marked the function nothrow through other means, do 921 // a quick pass now to see if we can. 922 if (!CurFn->doesNotThrow()) 923 TryMarkNoThrow(CurFn); 924 } 925 926 /// ContainsLabel - Return true if the statement contains a label in it. If 927 /// this statement is not executed normally, it not containing a label means 928 /// that we can just remove the code. 929 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 930 // Null statement, not a label! 931 if (!S) return false; 932 933 // If this is a label, we have to emit the code, consider something like: 934 // if (0) { ... foo: bar(); } goto foo; 935 // 936 // TODO: If anyone cared, we could track __label__'s, since we know that you 937 // can't jump to one from outside their declared region. 938 if (isa<LabelStmt>(S)) 939 return true; 940 941 // If this is a case/default statement, and we haven't seen a switch, we have 942 // to emit the code. 943 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 944 return true; 945 946 // If this is a switch statement, we want to ignore cases below it. 947 if (isa<SwitchStmt>(S)) 948 IgnoreCaseStmts = true; 949 950 // Scan subexpressions for verboten labels. 951 for (Stmt::const_child_range I = S->children(); I; ++I) 952 if (ContainsLabel(*I, IgnoreCaseStmts)) 953 return true; 954 955 return false; 956 } 957 958 /// containsBreak - Return true if the statement contains a break out of it. 959 /// If the statement (recursively) contains a switch or loop with a break 960 /// inside of it, this is fine. 961 bool CodeGenFunction::containsBreak(const Stmt *S) { 962 // Null statement, not a label! 963 if (!S) return false; 964 965 // If this is a switch or loop that defines its own break scope, then we can 966 // include it and anything inside of it. 967 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 968 isa<ForStmt>(S)) 969 return false; 970 971 if (isa<BreakStmt>(S)) 972 return true; 973 974 // Scan subexpressions for verboten breaks. 975 for (Stmt::const_child_range I = S->children(); I; ++I) 976 if (containsBreak(*I)) 977 return true; 978 979 return false; 980 } 981 982 983 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 984 /// to a constant, or if it does but contains a label, return false. If it 985 /// constant folds return true and set the boolean result in Result. 986 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 987 bool &ResultBool) { 988 llvm::APSInt ResultInt; 989 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 990 return false; 991 992 ResultBool = ResultInt.getBoolValue(); 993 return true; 994 } 995 996 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 997 /// to a constant, or if it does but contains a label, return false. If it 998 /// constant folds return true and set the folded value. 999 bool CodeGenFunction:: 1000 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1001 // FIXME: Rename and handle conversion of other evaluatable things 1002 // to bool. 1003 llvm::APSInt Int; 1004 if (!Cond->EvaluateAsInt(Int, getContext())) 1005 return false; // Not foldable, not integer or not fully evaluatable. 1006 1007 if (CodeGenFunction::ContainsLabel(Cond)) 1008 return false; // Contains a label. 1009 1010 ResultInt = Int; 1011 return true; 1012 } 1013 1014 1015 1016 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1017 /// statement) to the specified blocks. Based on the condition, this might try 1018 /// to simplify the codegen of the conditional based on the branch. 1019 /// 1020 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1021 llvm::BasicBlock *TrueBlock, 1022 llvm::BasicBlock *FalseBlock, 1023 uint64_t TrueCount) { 1024 Cond = Cond->IgnoreParens(); 1025 1026 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1027 1028 // Handle X && Y in a condition. 1029 if (CondBOp->getOpcode() == BO_LAnd) { 1030 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1031 1032 // If we have "1 && X", simplify the code. "0 && X" would have constant 1033 // folded if the case was simple enough. 1034 bool ConstantBool = false; 1035 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1036 ConstantBool) { 1037 // br(1 && X) -> br(X). 1038 Cnt.beginRegion(Builder); 1039 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1040 TrueCount); 1041 } 1042 1043 // If we have "X && 1", simplify the code to use an uncond branch. 1044 // "X && 0" would have been constant folded to 0. 1045 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1046 ConstantBool) { 1047 // br(X && 1) -> br(X). 1048 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1049 TrueCount); 1050 } 1051 1052 // Emit the LHS as a conditional. If the LHS conditional is false, we 1053 // want to jump to the FalseBlock. 1054 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1055 // The counter tells us how often we evaluate RHS, and all of TrueCount 1056 // can be propagated to that branch. 1057 uint64_t RHSCount = Cnt.getCount(); 1058 1059 ConditionalEvaluation eval(*this); 1060 { 1061 ApplyDebugLocation DL(*this, Cond); 1062 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1063 EmitBlock(LHSTrue); 1064 } 1065 1066 // Any temporaries created here are conditional. 1067 Cnt.beginRegion(Builder); 1068 eval.begin(*this); 1069 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1070 eval.end(*this); 1071 1072 return; 1073 } 1074 1075 if (CondBOp->getOpcode() == BO_LOr) { 1076 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1077 1078 // If we have "0 || X", simplify the code. "1 || X" would have constant 1079 // folded if the case was simple enough. 1080 bool ConstantBool = false; 1081 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1082 !ConstantBool) { 1083 // br(0 || X) -> br(X). 1084 Cnt.beginRegion(Builder); 1085 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1086 TrueCount); 1087 } 1088 1089 // If we have "X || 0", simplify the code to use an uncond branch. 1090 // "X || 1" would have been constant folded to 1. 1091 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1092 !ConstantBool) { 1093 // br(X || 0) -> br(X). 1094 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1095 TrueCount); 1096 } 1097 1098 // Emit the LHS as a conditional. If the LHS conditional is true, we 1099 // want to jump to the TrueBlock. 1100 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1101 // We have the count for entry to the RHS and for the whole expression 1102 // being true, so we can divy up True count between the short circuit and 1103 // the RHS. 1104 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1105 uint64_t RHSCount = TrueCount - LHSCount; 1106 1107 ConditionalEvaluation eval(*this); 1108 { 1109 ApplyDebugLocation DL(*this, Cond); 1110 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1111 EmitBlock(LHSFalse); 1112 } 1113 1114 // Any temporaries created here are conditional. 1115 Cnt.beginRegion(Builder); 1116 eval.begin(*this); 1117 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1118 1119 eval.end(*this); 1120 1121 return; 1122 } 1123 } 1124 1125 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1126 // br(!x, t, f) -> br(x, f, t) 1127 if (CondUOp->getOpcode() == UO_LNot) { 1128 // Negate the count. 1129 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1130 // Negate the condition and swap the destination blocks. 1131 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1132 FalseCount); 1133 } 1134 } 1135 1136 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1137 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1138 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1139 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1140 1141 RegionCounter Cnt = getPGORegionCounter(CondOp); 1142 ConditionalEvaluation cond(*this); 1143 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1144 1145 // When computing PGO branch weights, we only know the overall count for 1146 // the true block. This code is essentially doing tail duplication of the 1147 // naive code-gen, introducing new edges for which counts are not 1148 // available. Divide the counts proportionally between the LHS and RHS of 1149 // the conditional operator. 1150 uint64_t LHSScaledTrueCount = 0; 1151 if (TrueCount) { 1152 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1153 LHSScaledTrueCount = TrueCount * LHSRatio; 1154 } 1155 1156 cond.begin(*this); 1157 EmitBlock(LHSBlock); 1158 Cnt.beginRegion(Builder); 1159 { 1160 ApplyDebugLocation DL(*this, Cond); 1161 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1162 LHSScaledTrueCount); 1163 } 1164 cond.end(*this); 1165 1166 cond.begin(*this); 1167 EmitBlock(RHSBlock); 1168 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1169 TrueCount - LHSScaledTrueCount); 1170 cond.end(*this); 1171 1172 return; 1173 } 1174 1175 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1176 // Conditional operator handling can give us a throw expression as a 1177 // condition for a case like: 1178 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1179 // Fold this to: 1180 // br(c, throw x, br(y, t, f)) 1181 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1182 return; 1183 } 1184 1185 // Create branch weights based on the number of times we get here and the 1186 // number of times the condition should be true. 1187 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1188 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1189 CurrentCount - TrueCount); 1190 1191 // Emit the code with the fully general case. 1192 llvm::Value *CondV; 1193 { 1194 ApplyDebugLocation DL(*this, Cond); 1195 CondV = EvaluateExprAsBool(Cond); 1196 } 1197 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1198 } 1199 1200 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1201 /// specified stmt yet. 1202 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1203 CGM.ErrorUnsupported(S, Type); 1204 } 1205 1206 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1207 /// variable-length array whose elements have a non-zero bit-pattern. 1208 /// 1209 /// \param baseType the inner-most element type of the array 1210 /// \param src - a char* pointing to the bit-pattern for a single 1211 /// base element of the array 1212 /// \param sizeInChars - the total size of the VLA, in chars 1213 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1214 llvm::Value *dest, llvm::Value *src, 1215 llvm::Value *sizeInChars) { 1216 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1217 = CGF.getContext().getTypeInfoInChars(baseType); 1218 1219 CGBuilderTy &Builder = CGF.Builder; 1220 1221 llvm::Value *baseSizeInChars 1222 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1223 1224 llvm::Type *i8p = Builder.getInt8PtrTy(); 1225 1226 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1227 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1228 1229 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1230 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1231 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1232 1233 // Make a loop over the VLA. C99 guarantees that the VLA element 1234 // count must be nonzero. 1235 CGF.EmitBlock(loopBB); 1236 1237 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1238 cur->addIncoming(begin, originBB); 1239 1240 // memcpy the individual element bit-pattern. 1241 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1242 baseSizeAndAlign.second.getQuantity(), 1243 /*volatile*/ false); 1244 1245 // Go to the next element. 1246 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), 1247 cur, 1, "vla.next"); 1248 1249 // Leave if that's the end of the VLA. 1250 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1251 Builder.CreateCondBr(done, contBB, loopBB); 1252 cur->addIncoming(next, loopBB); 1253 1254 CGF.EmitBlock(contBB); 1255 } 1256 1257 void 1258 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1259 // Ignore empty classes in C++. 1260 if (getLangOpts().CPlusPlus) { 1261 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1262 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1263 return; 1264 } 1265 } 1266 1267 // Cast the dest ptr to the appropriate i8 pointer type. 1268 unsigned DestAS = 1269 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1270 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1271 if (DestPtr->getType() != BP) 1272 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1273 1274 // Get size and alignment info for this aggregate. 1275 std::pair<CharUnits, CharUnits> TypeInfo = 1276 getContext().getTypeInfoInChars(Ty); 1277 CharUnits Size = TypeInfo.first; 1278 CharUnits Align = TypeInfo.second; 1279 1280 llvm::Value *SizeVal; 1281 const VariableArrayType *vla; 1282 1283 // Don't bother emitting a zero-byte memset. 1284 if (Size.isZero()) { 1285 // But note that getTypeInfo returns 0 for a VLA. 1286 if (const VariableArrayType *vlaType = 1287 dyn_cast_or_null<VariableArrayType>( 1288 getContext().getAsArrayType(Ty))) { 1289 QualType eltType; 1290 llvm::Value *numElts; 1291 std::tie(numElts, eltType) = getVLASize(vlaType); 1292 1293 SizeVal = numElts; 1294 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1295 if (!eltSize.isOne()) 1296 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1297 vla = vlaType; 1298 } else { 1299 return; 1300 } 1301 } else { 1302 SizeVal = CGM.getSize(Size); 1303 vla = nullptr; 1304 } 1305 1306 // If the type contains a pointer to data member we can't memset it to zero. 1307 // Instead, create a null constant and copy it to the destination. 1308 // TODO: there are other patterns besides zero that we can usefully memset, 1309 // like -1, which happens to be the pattern used by member-pointers. 1310 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1311 // For a VLA, emit a single element, then splat that over the VLA. 1312 if (vla) Ty = getContext().getBaseElementType(vla); 1313 1314 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1315 1316 llvm::GlobalVariable *NullVariable = 1317 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1318 /*isConstant=*/true, 1319 llvm::GlobalVariable::PrivateLinkage, 1320 NullConstant, Twine()); 1321 llvm::Value *SrcPtr = 1322 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1323 1324 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1325 1326 // Get and call the appropriate llvm.memcpy overload. 1327 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1328 return; 1329 } 1330 1331 // Otherwise, just memset the whole thing to zero. This is legal 1332 // because in LLVM, all default initializers (other than the ones we just 1333 // handled above) are guaranteed to have a bit pattern of all zeros. 1334 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1335 Align.getQuantity(), false); 1336 } 1337 1338 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1339 // Make sure that there is a block for the indirect goto. 1340 if (!IndirectBranch) 1341 GetIndirectGotoBlock(); 1342 1343 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1344 1345 // Make sure the indirect branch includes all of the address-taken blocks. 1346 IndirectBranch->addDestination(BB); 1347 return llvm::BlockAddress::get(CurFn, BB); 1348 } 1349 1350 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1351 // If we already made the indirect branch for indirect goto, return its block. 1352 if (IndirectBranch) return IndirectBranch->getParent(); 1353 1354 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1355 1356 // Create the PHI node that indirect gotos will add entries to. 1357 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1358 "indirect.goto.dest"); 1359 1360 // Create the indirect branch instruction. 1361 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1362 return IndirectBranch->getParent(); 1363 } 1364 1365 /// Computes the length of an array in elements, as well as the base 1366 /// element type and a properly-typed first element pointer. 1367 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1368 QualType &baseType, 1369 llvm::Value *&addr) { 1370 const ArrayType *arrayType = origArrayType; 1371 1372 // If it's a VLA, we have to load the stored size. Note that 1373 // this is the size of the VLA in bytes, not its size in elements. 1374 llvm::Value *numVLAElements = nullptr; 1375 if (isa<VariableArrayType>(arrayType)) { 1376 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1377 1378 // Walk into all VLAs. This doesn't require changes to addr, 1379 // which has type T* where T is the first non-VLA element type. 1380 do { 1381 QualType elementType = arrayType->getElementType(); 1382 arrayType = getContext().getAsArrayType(elementType); 1383 1384 // If we only have VLA components, 'addr' requires no adjustment. 1385 if (!arrayType) { 1386 baseType = elementType; 1387 return numVLAElements; 1388 } 1389 } while (isa<VariableArrayType>(arrayType)); 1390 1391 // We get out here only if we find a constant array type 1392 // inside the VLA. 1393 } 1394 1395 // We have some number of constant-length arrays, so addr should 1396 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1397 // down to the first element of addr. 1398 SmallVector<llvm::Value*, 8> gepIndices; 1399 1400 // GEP down to the array type. 1401 llvm::ConstantInt *zero = Builder.getInt32(0); 1402 gepIndices.push_back(zero); 1403 1404 uint64_t countFromCLAs = 1; 1405 QualType eltType; 1406 1407 llvm::ArrayType *llvmArrayType = 1408 dyn_cast<llvm::ArrayType>( 1409 cast<llvm::PointerType>(addr->getType())->getElementType()); 1410 while (llvmArrayType) { 1411 assert(isa<ConstantArrayType>(arrayType)); 1412 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1413 == llvmArrayType->getNumElements()); 1414 1415 gepIndices.push_back(zero); 1416 countFromCLAs *= llvmArrayType->getNumElements(); 1417 eltType = arrayType->getElementType(); 1418 1419 llvmArrayType = 1420 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1421 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1422 assert((!llvmArrayType || arrayType) && 1423 "LLVM and Clang types are out-of-synch"); 1424 } 1425 1426 if (arrayType) { 1427 // From this point onwards, the Clang array type has been emitted 1428 // as some other type (probably a packed struct). Compute the array 1429 // size, and just emit the 'begin' expression as a bitcast. 1430 while (arrayType) { 1431 countFromCLAs *= 1432 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1433 eltType = arrayType->getElementType(); 1434 arrayType = getContext().getAsArrayType(eltType); 1435 } 1436 1437 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1438 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1439 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1440 } else { 1441 // Create the actual GEP. 1442 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1443 } 1444 1445 baseType = eltType; 1446 1447 llvm::Value *numElements 1448 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1449 1450 // If we had any VLA dimensions, factor them in. 1451 if (numVLAElements) 1452 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1453 1454 return numElements; 1455 } 1456 1457 std::pair<llvm::Value*, QualType> 1458 CodeGenFunction::getVLASize(QualType type) { 1459 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1460 assert(vla && "type was not a variable array type!"); 1461 return getVLASize(vla); 1462 } 1463 1464 std::pair<llvm::Value*, QualType> 1465 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1466 // The number of elements so far; always size_t. 1467 llvm::Value *numElements = nullptr; 1468 1469 QualType elementType; 1470 do { 1471 elementType = type->getElementType(); 1472 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1473 assert(vlaSize && "no size for VLA!"); 1474 assert(vlaSize->getType() == SizeTy); 1475 1476 if (!numElements) { 1477 numElements = vlaSize; 1478 } else { 1479 // It's undefined behavior if this wraps around, so mark it that way. 1480 // FIXME: Teach -fsanitize=undefined to trap this. 1481 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1482 } 1483 } while ((type = getContext().getAsVariableArrayType(elementType))); 1484 1485 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1486 } 1487 1488 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1489 assert(type->isVariablyModifiedType() && 1490 "Must pass variably modified type to EmitVLASizes!"); 1491 1492 EnsureInsertPoint(); 1493 1494 // We're going to walk down into the type and look for VLA 1495 // expressions. 1496 do { 1497 assert(type->isVariablyModifiedType()); 1498 1499 const Type *ty = type.getTypePtr(); 1500 switch (ty->getTypeClass()) { 1501 1502 #define TYPE(Class, Base) 1503 #define ABSTRACT_TYPE(Class, Base) 1504 #define NON_CANONICAL_TYPE(Class, Base) 1505 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1506 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1507 #include "clang/AST/TypeNodes.def" 1508 llvm_unreachable("unexpected dependent type!"); 1509 1510 // These types are never variably-modified. 1511 case Type::Builtin: 1512 case Type::Complex: 1513 case Type::Vector: 1514 case Type::ExtVector: 1515 case Type::Record: 1516 case Type::Enum: 1517 case Type::Elaborated: 1518 case Type::TemplateSpecialization: 1519 case Type::ObjCObject: 1520 case Type::ObjCInterface: 1521 case Type::ObjCObjectPointer: 1522 llvm_unreachable("type class is never variably-modified!"); 1523 1524 case Type::Adjusted: 1525 type = cast<AdjustedType>(ty)->getAdjustedType(); 1526 break; 1527 1528 case Type::Decayed: 1529 type = cast<DecayedType>(ty)->getPointeeType(); 1530 break; 1531 1532 case Type::Pointer: 1533 type = cast<PointerType>(ty)->getPointeeType(); 1534 break; 1535 1536 case Type::BlockPointer: 1537 type = cast<BlockPointerType>(ty)->getPointeeType(); 1538 break; 1539 1540 case Type::LValueReference: 1541 case Type::RValueReference: 1542 type = cast<ReferenceType>(ty)->getPointeeType(); 1543 break; 1544 1545 case Type::MemberPointer: 1546 type = cast<MemberPointerType>(ty)->getPointeeType(); 1547 break; 1548 1549 case Type::ConstantArray: 1550 case Type::IncompleteArray: 1551 // Losing element qualification here is fine. 1552 type = cast<ArrayType>(ty)->getElementType(); 1553 break; 1554 1555 case Type::VariableArray: { 1556 // Losing element qualification here is fine. 1557 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1558 1559 // Unknown size indication requires no size computation. 1560 // Otherwise, evaluate and record it. 1561 if (const Expr *size = vat->getSizeExpr()) { 1562 // It's possible that we might have emitted this already, 1563 // e.g. with a typedef and a pointer to it. 1564 llvm::Value *&entry = VLASizeMap[size]; 1565 if (!entry) { 1566 llvm::Value *Size = EmitScalarExpr(size); 1567 1568 // C11 6.7.6.2p5: 1569 // If the size is an expression that is not an integer constant 1570 // expression [...] each time it is evaluated it shall have a value 1571 // greater than zero. 1572 if (SanOpts.has(SanitizerKind::VLABound) && 1573 size->getType()->isSignedIntegerType()) { 1574 SanitizerScope SanScope(this); 1575 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1576 llvm::Constant *StaticArgs[] = { 1577 EmitCheckSourceLocation(size->getLocStart()), 1578 EmitCheckTypeDescriptor(size->getType()) 1579 }; 1580 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1581 SanitizerKind::VLABound), 1582 "vla_bound_not_positive", StaticArgs, Size); 1583 } 1584 1585 // Always zexting here would be wrong if it weren't 1586 // undefined behavior to have a negative bound. 1587 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1588 } 1589 } 1590 type = vat->getElementType(); 1591 break; 1592 } 1593 1594 case Type::FunctionProto: 1595 case Type::FunctionNoProto: 1596 type = cast<FunctionType>(ty)->getReturnType(); 1597 break; 1598 1599 case Type::Paren: 1600 case Type::TypeOf: 1601 case Type::UnaryTransform: 1602 case Type::Attributed: 1603 case Type::SubstTemplateTypeParm: 1604 case Type::PackExpansion: 1605 // Keep walking after single level desugaring. 1606 type = type.getSingleStepDesugaredType(getContext()); 1607 break; 1608 1609 case Type::Typedef: 1610 case Type::Decltype: 1611 case Type::Auto: 1612 // Stop walking: nothing to do. 1613 return; 1614 1615 case Type::TypeOfExpr: 1616 // Stop walking: emit typeof expression. 1617 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1618 return; 1619 1620 case Type::Atomic: 1621 type = cast<AtomicType>(ty)->getValueType(); 1622 break; 1623 } 1624 } while (type->isVariablyModifiedType()); 1625 } 1626 1627 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1628 if (getContext().getBuiltinVaListType()->isArrayType()) 1629 return EmitScalarExpr(E); 1630 return EmitLValue(E).getAddress(); 1631 } 1632 1633 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1634 llvm::Constant *Init) { 1635 assert (Init && "Invalid DeclRefExpr initializer!"); 1636 if (CGDebugInfo *Dbg = getDebugInfo()) 1637 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1638 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1639 } 1640 1641 CodeGenFunction::PeepholeProtection 1642 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1643 // At the moment, the only aggressive peephole we do in IR gen 1644 // is trunc(zext) folding, but if we add more, we can easily 1645 // extend this protection. 1646 1647 if (!rvalue.isScalar()) return PeepholeProtection(); 1648 llvm::Value *value = rvalue.getScalarVal(); 1649 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1650 1651 // Just make an extra bitcast. 1652 assert(HaveInsertPoint()); 1653 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1654 Builder.GetInsertBlock()); 1655 1656 PeepholeProtection protection; 1657 protection.Inst = inst; 1658 return protection; 1659 } 1660 1661 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1662 if (!protection.Inst) return; 1663 1664 // In theory, we could try to duplicate the peepholes now, but whatever. 1665 protection.Inst->eraseFromParent(); 1666 } 1667 1668 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1669 llvm::Value *AnnotatedVal, 1670 StringRef AnnotationStr, 1671 SourceLocation Location) { 1672 llvm::Value *Args[4] = { 1673 AnnotatedVal, 1674 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1675 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1676 CGM.EmitAnnotationLineNo(Location) 1677 }; 1678 return Builder.CreateCall(AnnotationFn, Args); 1679 } 1680 1681 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1682 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1683 // FIXME We create a new bitcast for every annotation because that's what 1684 // llvm-gcc was doing. 1685 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1686 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1687 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1688 I->getAnnotation(), D->getLocation()); 1689 } 1690 1691 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1692 llvm::Value *V) { 1693 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1694 llvm::Type *VTy = V->getType(); 1695 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1696 CGM.Int8PtrTy); 1697 1698 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1699 // FIXME Always emit the cast inst so we can differentiate between 1700 // annotation on the first field of a struct and annotation on the struct 1701 // itself. 1702 if (VTy != CGM.Int8PtrTy) 1703 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1704 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1705 V = Builder.CreateBitCast(V, VTy); 1706 } 1707 1708 return V; 1709 } 1710 1711 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1712 1713 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1714 : CGF(CGF) { 1715 assert(!CGF->IsSanitizerScope); 1716 CGF->IsSanitizerScope = true; 1717 } 1718 1719 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1720 CGF->IsSanitizerScope = false; 1721 } 1722 1723 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1724 const llvm::Twine &Name, 1725 llvm::BasicBlock *BB, 1726 llvm::BasicBlock::iterator InsertPt) const { 1727 LoopStack.InsertHelper(I); 1728 if (IsSanitizerScope) 1729 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1730 } 1731 1732 template <bool PreserveNames> 1733 void CGBuilderInserter<PreserveNames>::InsertHelper( 1734 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1735 llvm::BasicBlock::iterator InsertPt) const { 1736 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1737 InsertPt); 1738 if (CGF) 1739 CGF->InsertHelper(I, Name, BB, InsertPt); 1740 } 1741 1742 #ifdef NDEBUG 1743 #define PreserveNames false 1744 #else 1745 #define PreserveNames true 1746 #endif 1747 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1748 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1749 llvm::BasicBlock::iterator InsertPt) const; 1750 #undef PreserveNames 1751