1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Operator.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 41 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 42 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 43 CGBuilderInserterTy(this)), 44 CurFn(nullptr), ReturnValue(Address::invalid()), 45 CapturedStmtInfo(nullptr), 46 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 47 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 48 IsOutlinedSEHHelper(false), 49 BlockInfo(nullptr), BlockPointer(nullptr), 50 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 51 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 52 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 53 DebugInfo(CGM.getModuleDebugInfo()), 54 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 55 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 56 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 57 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 58 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 59 CXXStructorImplicitParamDecl(nullptr), 60 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 61 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 62 TerminateHandler(nullptr), TrapBB(nullptr) { 63 if (!suppressNewContext) 64 CGM.getCXXABI().getMangleContext().startNewFunction(); 65 66 llvm::FastMathFlags FMF; 67 if (CGM.getLangOpts().FastMath) 68 FMF.setUnsafeAlgebra(); 69 if (CGM.getLangOpts().FiniteMathOnly) { 70 FMF.setNoNaNs(); 71 FMF.setNoInfs(); 72 } 73 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 74 FMF.setNoNaNs(); 75 } 76 if (CGM.getCodeGenOpts().NoSignedZeros) { 77 FMF.setNoSignedZeros(); 78 } 79 if (CGM.getCodeGenOpts().ReciprocalMath) { 80 FMF.setAllowReciprocal(); 81 } 82 Builder.setFastMathFlags(FMF); 83 } 84 85 CodeGenFunction::~CodeGenFunction() { 86 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 87 88 // If there are any unclaimed block infos, go ahead and destroy them 89 // now. This can happen if IR-gen gets clever and skips evaluating 90 // something. 91 if (FirstBlockInfo) 92 destroyBlockInfos(FirstBlockInfo); 93 94 if (getLangOpts().OpenMP) { 95 CGM.getOpenMPRuntime().functionFinished(*this); 96 } 97 } 98 99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 100 AlignmentSource *Source) { 101 return getNaturalTypeAlignment(T->getPointeeType(), Source, 102 /*forPointee*/ true); 103 } 104 105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 106 AlignmentSource *Source, 107 bool forPointeeType) { 108 // Honor alignment typedef attributes even on incomplete types. 109 // We also honor them straight for C++ class types, even as pointees; 110 // there's an expressivity gap here. 111 if (auto TT = T->getAs<TypedefType>()) { 112 if (auto Align = TT->getDecl()->getMaxAlignment()) { 113 if (Source) *Source = AlignmentSource::AttributedType; 114 return getContext().toCharUnitsFromBits(Align); 115 } 116 } 117 118 if (Source) *Source = AlignmentSource::Type; 119 120 CharUnits Alignment; 121 if (T->isIncompleteType()) { 122 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 123 } else { 124 // For C++ class pointees, we don't know whether we're pointing at a 125 // base or a complete object, so we generally need to use the 126 // non-virtual alignment. 127 const CXXRecordDecl *RD; 128 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 129 Alignment = CGM.getClassPointerAlignment(RD); 130 } else { 131 Alignment = getContext().getTypeAlignInChars(T); 132 } 133 134 // Cap to the global maximum type alignment unless the alignment 135 // was somehow explicit on the type. 136 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 137 if (Alignment.getQuantity() > MaxAlign && 138 !getContext().isAlignmentRequired(T)) 139 Alignment = CharUnits::fromQuantity(MaxAlign); 140 } 141 } 142 return Alignment; 143 } 144 145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 146 AlignmentSource AlignSource; 147 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 148 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 149 CGM.getTBAAInfo(T)); 150 } 151 152 /// Given a value of type T* that may not be to a complete object, 153 /// construct an l-value with the natural pointee alignment of T. 154 LValue 155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 156 AlignmentSource AlignSource; 157 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 158 return MakeAddrLValue(Address(V, Align), T, AlignSource); 159 } 160 161 162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 163 return CGM.getTypes().ConvertTypeForMem(T); 164 } 165 166 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 167 return CGM.getTypes().ConvertType(T); 168 } 169 170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 171 type = type.getCanonicalType(); 172 while (true) { 173 switch (type->getTypeClass()) { 174 #define TYPE(name, parent) 175 #define ABSTRACT_TYPE(name, parent) 176 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 177 #define DEPENDENT_TYPE(name, parent) case Type::name: 178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 179 #include "clang/AST/TypeNodes.def" 180 llvm_unreachable("non-canonical or dependent type in IR-generation"); 181 182 case Type::Auto: 183 llvm_unreachable("undeduced auto type in IR-generation"); 184 185 // Various scalar types. 186 case Type::Builtin: 187 case Type::Pointer: 188 case Type::BlockPointer: 189 case Type::LValueReference: 190 case Type::RValueReference: 191 case Type::MemberPointer: 192 case Type::Vector: 193 case Type::ExtVector: 194 case Type::FunctionProto: 195 case Type::FunctionNoProto: 196 case Type::Enum: 197 case Type::ObjCObjectPointer: 198 case Type::Pipe: 199 return TEK_Scalar; 200 201 // Complexes. 202 case Type::Complex: 203 return TEK_Complex; 204 205 // Arrays, records, and Objective-C objects. 206 case Type::ConstantArray: 207 case Type::IncompleteArray: 208 case Type::VariableArray: 209 case Type::Record: 210 case Type::ObjCObject: 211 case Type::ObjCInterface: 212 return TEK_Aggregate; 213 214 // We operate on atomic values according to their underlying type. 215 case Type::Atomic: 216 type = cast<AtomicType>(type)->getValueType(); 217 continue; 218 } 219 llvm_unreachable("unknown type kind!"); 220 } 221 } 222 223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 224 // For cleanliness, we try to avoid emitting the return block for 225 // simple cases. 226 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 227 228 if (CurBB) { 229 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 230 231 // We have a valid insert point, reuse it if it is empty or there are no 232 // explicit jumps to the return block. 233 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 234 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 235 delete ReturnBlock.getBlock(); 236 } else 237 EmitBlock(ReturnBlock.getBlock()); 238 return llvm::DebugLoc(); 239 } 240 241 // Otherwise, if the return block is the target of a single direct 242 // branch then we can just put the code in that block instead. This 243 // cleans up functions which started with a unified return block. 244 if (ReturnBlock.getBlock()->hasOneUse()) { 245 llvm::BranchInst *BI = 246 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 247 if (BI && BI->isUnconditional() && 248 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 249 // Record/return the DebugLoc of the simple 'return' expression to be used 250 // later by the actual 'ret' instruction. 251 llvm::DebugLoc Loc = BI->getDebugLoc(); 252 Builder.SetInsertPoint(BI->getParent()); 253 BI->eraseFromParent(); 254 delete ReturnBlock.getBlock(); 255 return Loc; 256 } 257 } 258 259 // FIXME: We are at an unreachable point, there is no reason to emit the block 260 // unless it has uses. However, we still need a place to put the debug 261 // region.end for now. 262 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 268 if (!BB) return; 269 if (!BB->use_empty()) 270 return CGF.CurFn->getBasicBlockList().push_back(BB); 271 delete BB; 272 } 273 274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 275 assert(BreakContinueStack.empty() && 276 "mismatched push/pop in break/continue stack!"); 277 278 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 279 && NumSimpleReturnExprs == NumReturnExprs 280 && ReturnBlock.getBlock()->use_empty(); 281 // Usually the return expression is evaluated before the cleanup 282 // code. If the function contains only a simple return statement, 283 // such as a constant, the location before the cleanup code becomes 284 // the last useful breakpoint in the function, because the simple 285 // return expression will be evaluated after the cleanup code. To be 286 // safe, set the debug location for cleanup code to the location of 287 // the return statement. Otherwise the cleanup code should be at the 288 // end of the function's lexical scope. 289 // 290 // If there are multiple branches to the return block, the branch 291 // instructions will get the location of the return statements and 292 // all will be fine. 293 if (CGDebugInfo *DI = getDebugInfo()) { 294 if (OnlySimpleReturnStmts) 295 DI->EmitLocation(Builder, LastStopPoint); 296 else 297 DI->EmitLocation(Builder, EndLoc); 298 } 299 300 // Pop any cleanups that might have been associated with the 301 // parameters. Do this in whatever block we're currently in; it's 302 // important to do this before we enter the return block or return 303 // edges will be *really* confused. 304 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 305 bool HasOnlyLifetimeMarkers = 306 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 307 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 308 if (HasCleanups) { 309 // Make sure the line table doesn't jump back into the body for 310 // the ret after it's been at EndLoc. 311 if (CGDebugInfo *DI = getDebugInfo()) 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, EndLoc); 314 315 PopCleanupBlocks(PrologueCleanupDepth); 316 } 317 318 // Emit function epilog (to return). 319 llvm::DebugLoc Loc = EmitReturnBlock(); 320 321 if (ShouldInstrumentFunction()) 322 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 323 324 // Emit debug descriptor for function end. 325 if (CGDebugInfo *DI = getDebugInfo()) 326 DI->EmitFunctionEnd(Builder); 327 328 // Reset the debug location to that of the simple 'return' expression, if any 329 // rather than that of the end of the function's scope '}'. 330 ApplyDebugLocation AL(*this, Loc); 331 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 332 EmitEndEHSpec(CurCodeDecl); 333 334 assert(EHStack.empty() && 335 "did not remove all scopes from cleanup stack!"); 336 337 // If someone did an indirect goto, emit the indirect goto block at the end of 338 // the function. 339 if (IndirectBranch) { 340 EmitBlock(IndirectBranch->getParent()); 341 Builder.ClearInsertionPoint(); 342 } 343 344 // If some of our locals escaped, insert a call to llvm.localescape in the 345 // entry block. 346 if (!EscapedLocals.empty()) { 347 // Invert the map from local to index into a simple vector. There should be 348 // no holes. 349 SmallVector<llvm::Value *, 4> EscapeArgs; 350 EscapeArgs.resize(EscapedLocals.size()); 351 for (auto &Pair : EscapedLocals) 352 EscapeArgs[Pair.second] = Pair.first; 353 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 354 &CGM.getModule(), llvm::Intrinsic::localescape); 355 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 356 } 357 358 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 359 llvm::Instruction *Ptr = AllocaInsertPt; 360 AllocaInsertPt = nullptr; 361 Ptr->eraseFromParent(); 362 363 // If someone took the address of a label but never did an indirect goto, we 364 // made a zero entry PHI node, which is illegal, zap it now. 365 if (IndirectBranch) { 366 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 367 if (PN->getNumIncomingValues() == 0) { 368 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 369 PN->eraseFromParent(); 370 } 371 } 372 373 EmitIfUsed(*this, EHResumeBlock); 374 EmitIfUsed(*this, TerminateLandingPad); 375 EmitIfUsed(*this, TerminateHandler); 376 EmitIfUsed(*this, UnreachableBlock); 377 378 if (CGM.getCodeGenOpts().EmitDeclMetadata) 379 EmitDeclMetadata(); 380 381 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 382 I = DeferredReplacements.begin(), 383 E = DeferredReplacements.end(); 384 I != E; ++I) { 385 I->first->replaceAllUsesWith(I->second); 386 I->first->eraseFromParent(); 387 } 388 } 389 390 /// ShouldInstrumentFunction - Return true if the current function should be 391 /// instrumented with __cyg_profile_func_* calls 392 bool CodeGenFunction::ShouldInstrumentFunction() { 393 if (!CGM.getCodeGenOpts().InstrumentFunctions) 394 return false; 395 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 396 return false; 397 return true; 398 } 399 400 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 401 /// instrumentation function with the current function and the call site, if 402 /// function instrumentation is enabled. 403 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 404 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 405 llvm::PointerType *PointerTy = Int8PtrTy; 406 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 407 llvm::FunctionType *FunctionTy = 408 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 409 410 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 411 llvm::CallInst *CallSite = Builder.CreateCall( 412 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 413 llvm::ConstantInt::get(Int32Ty, 0), 414 "callsite"); 415 416 llvm::Value *args[] = { 417 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 418 CallSite 419 }; 420 421 EmitNounwindRuntimeCall(F, args); 422 } 423 424 void CodeGenFunction::EmitMCountInstrumentation() { 425 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 426 427 llvm::Constant *MCountFn = 428 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 429 EmitNounwindRuntimeCall(MCountFn); 430 } 431 432 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 433 // information in the program executable. The argument information stored 434 // includes the argument name, its type, the address and access qualifiers used. 435 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 436 CodeGenModule &CGM, llvm::LLVMContext &Context, 437 SmallVector<llvm::Metadata *, 5> &kernelMDArgs, 438 CGBuilderTy &Builder, ASTContext &ASTCtx) { 439 // Create MDNodes that represent the kernel arg metadata. 440 // Each MDNode is a list in the form of "key", N number of values which is 441 // the same number of values as their are kernel arguments. 442 443 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 444 445 // MDNode for the kernel argument address space qualifiers. 446 SmallVector<llvm::Metadata *, 8> addressQuals; 447 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 448 449 // MDNode for the kernel argument access qualifiers (images only). 450 SmallVector<llvm::Metadata *, 8> accessQuals; 451 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 452 453 // MDNode for the kernel argument type names. 454 SmallVector<llvm::Metadata *, 8> argTypeNames; 455 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 456 457 // MDNode for the kernel argument base type names. 458 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 459 argBaseTypeNames.push_back( 460 llvm::MDString::get(Context, "kernel_arg_base_type")); 461 462 // MDNode for the kernel argument type qualifiers. 463 SmallVector<llvm::Metadata *, 8> argTypeQuals; 464 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 465 466 // MDNode for the kernel argument names. 467 SmallVector<llvm::Metadata *, 8> argNames; 468 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 469 470 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 471 const ParmVarDecl *parm = FD->getParamDecl(i); 472 QualType ty = parm->getType(); 473 std::string typeQuals; 474 475 if (ty->isPointerType()) { 476 QualType pointeeTy = ty->getPointeeType(); 477 478 // Get address qualifier. 479 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 480 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 481 482 // Get argument type name. 483 std::string typeName = 484 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 485 486 // Turn "unsigned type" to "utype" 487 std::string::size_type pos = typeName.find("unsigned"); 488 if (pointeeTy.isCanonical() && pos != std::string::npos) 489 typeName.erase(pos+1, 8); 490 491 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 492 493 std::string baseTypeName = 494 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 495 Policy) + 496 "*"; 497 498 // Turn "unsigned type" to "utype" 499 pos = baseTypeName.find("unsigned"); 500 if (pos != std::string::npos) 501 baseTypeName.erase(pos+1, 8); 502 503 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 504 505 // Get argument type qualifiers: 506 if (ty.isRestrictQualified()) 507 typeQuals = "restrict"; 508 if (pointeeTy.isConstQualified() || 509 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 510 typeQuals += typeQuals.empty() ? "const" : " const"; 511 if (pointeeTy.isVolatileQualified()) 512 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 513 } else { 514 uint32_t AddrSpc = 0; 515 bool isPipe = ty->isPipeType(); 516 if (ty->isImageType() || isPipe) 517 AddrSpc = 518 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 519 520 addressQuals.push_back( 521 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 522 523 // Get argument type name. 524 std::string typeName; 525 if (isPipe) 526 typeName = cast<PipeType>(ty)->getElementType().getAsString(Policy); 527 else 528 typeName = ty.getUnqualifiedType().getAsString(Policy); 529 530 // Turn "unsigned type" to "utype" 531 std::string::size_type pos = typeName.find("unsigned"); 532 if (ty.isCanonical() && pos != std::string::npos) 533 typeName.erase(pos+1, 8); 534 535 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 536 537 std::string baseTypeName; 538 if (isPipe) 539 baseTypeName = 540 cast<PipeType>(ty)->getElementType().getCanonicalType().getAsString(Policy); 541 else 542 baseTypeName = 543 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 544 545 // Turn "unsigned type" to "utype" 546 pos = baseTypeName.find("unsigned"); 547 if (pos != std::string::npos) 548 baseTypeName.erase(pos+1, 8); 549 550 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 551 552 // Get argument type qualifiers: 553 if (ty.isConstQualified()) 554 typeQuals = "const"; 555 if (ty.isVolatileQualified()) 556 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 557 if (isPipe) 558 typeQuals = "pipe"; 559 } 560 561 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 562 563 // Get image and pipe access qualifier: 564 // FIXME: now image and pipe share the same access qualifier maybe we can 565 // refine it to OpenCL access qualifier and also handle write_read 566 if (ty->isImageType()|| ty->isPipeType()) { 567 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 568 if (A && A->isWriteOnly()) 569 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 570 else 571 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 572 // FIXME: what about read_write? 573 } else 574 accessQuals.push_back(llvm::MDString::get(Context, "none")); 575 576 // Get argument name. 577 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 578 } 579 580 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 581 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 582 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 583 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames)); 584 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 585 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 586 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 587 } 588 589 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 590 llvm::Function *Fn) 591 { 592 if (!FD->hasAttr<OpenCLKernelAttr>()) 593 return; 594 595 llvm::LLVMContext &Context = getLLVMContext(); 596 597 SmallVector<llvm::Metadata *, 5> kernelMDArgs; 598 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn)); 599 600 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder, 601 getContext()); 602 603 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 604 QualType hintQTy = A->getTypeHint(); 605 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 606 bool isSignedInteger = 607 hintQTy->isSignedIntegerType() || 608 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 609 llvm::Metadata *attrMDArgs[] = { 610 llvm::MDString::get(Context, "vec_type_hint"), 611 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 612 CGM.getTypes().ConvertType(A->getTypeHint()))), 613 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 614 llvm::IntegerType::get(Context, 32), 615 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 616 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 617 } 618 619 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 620 llvm::Metadata *attrMDArgs[] = { 621 llvm::MDString::get(Context, "work_group_size_hint"), 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 624 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 625 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 626 } 627 628 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 629 llvm::Metadata *attrMDArgs[] = { 630 llvm::MDString::get(Context, "reqd_work_group_size"), 631 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 632 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 633 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 634 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 635 } 636 637 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 638 llvm::NamedMDNode *OpenCLKernelMetadata = 639 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 640 OpenCLKernelMetadata->addOperand(kernelMDNode); 641 } 642 643 /// Determine whether the function F ends with a return stmt. 644 static bool endsWithReturn(const Decl* F) { 645 const Stmt *Body = nullptr; 646 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 647 Body = FD->getBody(); 648 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 649 Body = OMD->getBody(); 650 651 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 652 auto LastStmt = CS->body_rbegin(); 653 if (LastStmt != CS->body_rend()) 654 return isa<ReturnStmt>(*LastStmt); 655 } 656 return false; 657 } 658 659 void CodeGenFunction::StartFunction(GlobalDecl GD, 660 QualType RetTy, 661 llvm::Function *Fn, 662 const CGFunctionInfo &FnInfo, 663 const FunctionArgList &Args, 664 SourceLocation Loc, 665 SourceLocation StartLoc) { 666 assert(!CurFn && 667 "Do not use a CodeGenFunction object for more than one function"); 668 669 const Decl *D = GD.getDecl(); 670 671 DidCallStackSave = false; 672 CurCodeDecl = D; 673 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 674 FnRetTy = RetTy; 675 CurFn = Fn; 676 CurFnInfo = &FnInfo; 677 assert(CurFn->isDeclaration() && "Function already has body?"); 678 679 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 680 SanOpts.clear(); 681 682 if (D) { 683 // Apply the no_sanitize* attributes to SanOpts. 684 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 685 SanOpts.Mask &= ~Attr->getMask(); 686 } 687 688 // Apply sanitizer attributes to the function. 689 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 690 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 691 if (SanOpts.has(SanitizerKind::Thread)) 692 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 693 if (SanOpts.has(SanitizerKind::Memory)) 694 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 695 if (SanOpts.has(SanitizerKind::SafeStack)) 696 Fn->addFnAttr(llvm::Attribute::SafeStack); 697 698 // Pass inline keyword to optimizer if it appears explicitly on any 699 // declaration. Also, in the case of -fno-inline attach NoInline 700 // attribute to all function that are not marked AlwaysInline. 701 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 702 if (!CGM.getCodeGenOpts().NoInline) { 703 for (auto RI : FD->redecls()) 704 if (RI->isInlineSpecified()) { 705 Fn->addFnAttr(llvm::Attribute::InlineHint); 706 break; 707 } 708 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 709 Fn->addFnAttr(llvm::Attribute::NoInline); 710 } 711 712 if (getLangOpts().OpenCL) { 713 // Add metadata for a kernel function. 714 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 715 EmitOpenCLKernelMetadata(FD, Fn); 716 } 717 718 // If we are checking function types, emit a function type signature as 719 // prologue data. 720 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 721 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 722 if (llvm::Constant *PrologueSig = 723 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 724 llvm::Constant *FTRTTIConst = 725 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 726 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 727 llvm::Constant *PrologueStructConst = 728 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 729 Fn->setPrologueData(PrologueStructConst); 730 } 731 } 732 } 733 734 // If we're in C++ mode and the function name is "main", it is guaranteed 735 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 736 // used within a program"). 737 if (getLangOpts().CPlusPlus) 738 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 739 if (FD->isMain()) 740 Fn->addFnAttr(llvm::Attribute::NoRecurse); 741 742 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 743 744 // Create a marker to make it easy to insert allocas into the entryblock 745 // later. Don't create this with the builder, because we don't want it 746 // folded. 747 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 748 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 749 if (Builder.isNamePreserving()) 750 AllocaInsertPt->setName("allocapt"); 751 752 ReturnBlock = getJumpDestInCurrentScope("return"); 753 754 Builder.SetInsertPoint(EntryBB); 755 756 // Emit subprogram debug descriptor. 757 if (CGDebugInfo *DI = getDebugInfo()) { 758 SmallVector<QualType, 16> ArgTypes; 759 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 760 i != e; ++i) { 761 ArgTypes.push_back((*i)->getType()); 762 } 763 764 QualType FnType = 765 getContext().getFunctionType(RetTy, ArgTypes, 766 FunctionProtoType::ExtProtoInfo()); 767 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 768 } 769 770 if (ShouldInstrumentFunction()) 771 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 772 773 if (CGM.getCodeGenOpts().InstrumentForProfiling) 774 EmitMCountInstrumentation(); 775 776 if (RetTy->isVoidType()) { 777 // Void type; nothing to return. 778 ReturnValue = Address::invalid(); 779 780 // Count the implicit return. 781 if (!endsWithReturn(D)) 782 ++NumReturnExprs; 783 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 784 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 785 // Indirect aggregate return; emit returned value directly into sret slot. 786 // This reduces code size, and affects correctness in C++. 787 auto AI = CurFn->arg_begin(); 788 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 789 ++AI; 790 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 791 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 792 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 793 // Load the sret pointer from the argument struct and return into that. 794 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 795 llvm::Function::arg_iterator EI = CurFn->arg_end(); 796 --EI; 797 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 798 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 799 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 800 } else { 801 ReturnValue = CreateIRTemp(RetTy, "retval"); 802 803 // Tell the epilog emitter to autorelease the result. We do this 804 // now so that various specialized functions can suppress it 805 // during their IR-generation. 806 if (getLangOpts().ObjCAutoRefCount && 807 !CurFnInfo->isReturnsRetained() && 808 RetTy->isObjCRetainableType()) 809 AutoreleaseResult = true; 810 } 811 812 EmitStartEHSpec(CurCodeDecl); 813 814 PrologueCleanupDepth = EHStack.stable_begin(); 815 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 816 817 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 818 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 819 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 820 if (MD->getParent()->isLambda() && 821 MD->getOverloadedOperator() == OO_Call) { 822 // We're in a lambda; figure out the captures. 823 MD->getParent()->getCaptureFields(LambdaCaptureFields, 824 LambdaThisCaptureField); 825 if (LambdaThisCaptureField) { 826 // If this lambda captures this, load it. 827 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 828 CXXThisValue = EmitLoadOfLValue(ThisLValue, 829 SourceLocation()).getScalarVal(); 830 } 831 for (auto *FD : MD->getParent()->fields()) { 832 if (FD->hasCapturedVLAType()) { 833 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 834 SourceLocation()).getScalarVal(); 835 auto VAT = FD->getCapturedVLAType(); 836 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 837 } 838 } 839 } else { 840 // Not in a lambda; just use 'this' from the method. 841 // FIXME: Should we generate a new load for each use of 'this'? The 842 // fast register allocator would be happier... 843 CXXThisValue = CXXABIThisValue; 844 } 845 } 846 847 // If any of the arguments have a variably modified type, make sure to 848 // emit the type size. 849 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 850 i != e; ++i) { 851 const VarDecl *VD = *i; 852 853 // Dig out the type as written from ParmVarDecls; it's unclear whether 854 // the standard (C99 6.9.1p10) requires this, but we're following the 855 // precedent set by gcc. 856 QualType Ty; 857 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 858 Ty = PVD->getOriginalType(); 859 else 860 Ty = VD->getType(); 861 862 if (Ty->isVariablyModifiedType()) 863 EmitVariablyModifiedType(Ty); 864 } 865 // Emit a location at the end of the prologue. 866 if (CGDebugInfo *DI = getDebugInfo()) 867 DI->EmitLocation(Builder, StartLoc); 868 } 869 870 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 871 const Stmt *Body) { 872 incrementProfileCounter(Body); 873 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 874 EmitCompoundStmtWithoutScope(*S); 875 else 876 EmitStmt(Body); 877 } 878 879 /// When instrumenting to collect profile data, the counts for some blocks 880 /// such as switch cases need to not include the fall-through counts, so 881 /// emit a branch around the instrumentation code. When not instrumenting, 882 /// this just calls EmitBlock(). 883 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 884 const Stmt *S) { 885 llvm::BasicBlock *SkipCountBB = nullptr; 886 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 887 // When instrumenting for profiling, the fallthrough to certain 888 // statements needs to skip over the instrumentation code so that we 889 // get an accurate count. 890 SkipCountBB = createBasicBlock("skipcount"); 891 EmitBranch(SkipCountBB); 892 } 893 EmitBlock(BB); 894 uint64_t CurrentCount = getCurrentProfileCount(); 895 incrementProfileCounter(S); 896 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 897 if (SkipCountBB) 898 EmitBlock(SkipCountBB); 899 } 900 901 /// Tries to mark the given function nounwind based on the 902 /// non-existence of any throwing calls within it. We believe this is 903 /// lightweight enough to do at -O0. 904 static void TryMarkNoThrow(llvm::Function *F) { 905 // LLVM treats 'nounwind' on a function as part of the type, so we 906 // can't do this on functions that can be overwritten. 907 if (F->mayBeOverridden()) return; 908 909 for (llvm::BasicBlock &BB : *F) 910 for (llvm::Instruction &I : BB) 911 if (I.mayThrow()) 912 return; 913 914 F->setDoesNotThrow(); 915 } 916 917 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 918 const CGFunctionInfo &FnInfo) { 919 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 920 921 // Check if we should generate debug info for this function. 922 if (FD->hasAttr<NoDebugAttr>()) 923 DebugInfo = nullptr; // disable debug info indefinitely for this function 924 925 FunctionArgList Args; 926 QualType ResTy = FD->getReturnType(); 927 928 CurGD = GD; 929 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 930 if (MD && MD->isInstance()) { 931 if (CGM.getCXXABI().HasThisReturn(GD)) 932 ResTy = MD->getThisType(getContext()); 933 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 934 ResTy = CGM.getContext().VoidPtrTy; 935 CGM.getCXXABI().buildThisParam(*this, Args); 936 } 937 938 for (auto *Param : FD->params()) { 939 Args.push_back(Param); 940 if (!Param->hasAttr<PassObjectSizeAttr>()) 941 continue; 942 943 IdentifierInfo *NoID = nullptr; 944 auto *Implicit = ImplicitParamDecl::Create( 945 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 946 getContext().getSizeType()); 947 SizeArguments[Param] = Implicit; 948 Args.push_back(Implicit); 949 } 950 951 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 952 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 953 954 SourceRange BodyRange; 955 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 956 CurEHLocation = BodyRange.getEnd(); 957 958 // Use the location of the start of the function to determine where 959 // the function definition is located. By default use the location 960 // of the declaration as the location for the subprogram. A function 961 // may lack a declaration in the source code if it is created by code 962 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 963 SourceLocation Loc = FD->getLocation(); 964 965 // If this is a function specialization then use the pattern body 966 // as the location for the function. 967 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 968 if (SpecDecl->hasBody(SpecDecl)) 969 Loc = SpecDecl->getLocation(); 970 971 // Emit the standard function prologue. 972 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 973 974 // Generate the body of the function. 975 PGO.assignRegionCounters(GD, CurFn); 976 if (isa<CXXDestructorDecl>(FD)) 977 EmitDestructorBody(Args); 978 else if (isa<CXXConstructorDecl>(FD)) 979 EmitConstructorBody(Args); 980 else if (getLangOpts().CUDA && 981 !getLangOpts().CUDAIsDevice && 982 FD->hasAttr<CUDAGlobalAttr>()) 983 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 984 else if (isa<CXXConversionDecl>(FD) && 985 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 986 // The lambda conversion to block pointer is special; the semantics can't be 987 // expressed in the AST, so IRGen needs to special-case it. 988 EmitLambdaToBlockPointerBody(Args); 989 } else if (isa<CXXMethodDecl>(FD) && 990 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 991 // The lambda static invoker function is special, because it forwards or 992 // clones the body of the function call operator (but is actually static). 993 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 994 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 995 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 996 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 997 // Implicit copy-assignment gets the same special treatment as implicit 998 // copy-constructors. 999 emitImplicitAssignmentOperatorBody(Args); 1000 } else if (Stmt *Body = FD->getBody()) { 1001 EmitFunctionBody(Args, Body); 1002 } else 1003 llvm_unreachable("no definition for emitted function"); 1004 1005 // C++11 [stmt.return]p2: 1006 // Flowing off the end of a function [...] results in undefined behavior in 1007 // a value-returning function. 1008 // C11 6.9.1p12: 1009 // If the '}' that terminates a function is reached, and the value of the 1010 // function call is used by the caller, the behavior is undefined. 1011 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1012 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1013 if (SanOpts.has(SanitizerKind::Return)) { 1014 SanitizerScope SanScope(this); 1015 llvm::Value *IsFalse = Builder.getFalse(); 1016 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1017 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1018 None); 1019 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1020 EmitTrapCall(llvm::Intrinsic::trap); 1021 } 1022 Builder.CreateUnreachable(); 1023 Builder.ClearInsertionPoint(); 1024 } 1025 1026 // Emit the standard function epilogue. 1027 FinishFunction(BodyRange.getEnd()); 1028 1029 // If we haven't marked the function nothrow through other means, do 1030 // a quick pass now to see if we can. 1031 if (!CurFn->doesNotThrow()) 1032 TryMarkNoThrow(CurFn); 1033 } 1034 1035 /// ContainsLabel - Return true if the statement contains a label in it. If 1036 /// this statement is not executed normally, it not containing a label means 1037 /// that we can just remove the code. 1038 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1039 // Null statement, not a label! 1040 if (!S) return false; 1041 1042 // If this is a label, we have to emit the code, consider something like: 1043 // if (0) { ... foo: bar(); } goto foo; 1044 // 1045 // TODO: If anyone cared, we could track __label__'s, since we know that you 1046 // can't jump to one from outside their declared region. 1047 if (isa<LabelStmt>(S)) 1048 return true; 1049 1050 // If this is a case/default statement, and we haven't seen a switch, we have 1051 // to emit the code. 1052 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1053 return true; 1054 1055 // If this is a switch statement, we want to ignore cases below it. 1056 if (isa<SwitchStmt>(S)) 1057 IgnoreCaseStmts = true; 1058 1059 // Scan subexpressions for verboten labels. 1060 for (const Stmt *SubStmt : S->children()) 1061 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1062 return true; 1063 1064 return false; 1065 } 1066 1067 /// containsBreak - Return true if the statement contains a break out of it. 1068 /// If the statement (recursively) contains a switch or loop with a break 1069 /// inside of it, this is fine. 1070 bool CodeGenFunction::containsBreak(const Stmt *S) { 1071 // Null statement, not a label! 1072 if (!S) return false; 1073 1074 // If this is a switch or loop that defines its own break scope, then we can 1075 // include it and anything inside of it. 1076 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1077 isa<ForStmt>(S)) 1078 return false; 1079 1080 if (isa<BreakStmt>(S)) 1081 return true; 1082 1083 // Scan subexpressions for verboten breaks. 1084 for (const Stmt *SubStmt : S->children()) 1085 if (containsBreak(SubStmt)) 1086 return true; 1087 1088 return false; 1089 } 1090 1091 1092 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1093 /// to a constant, or if it does but contains a label, return false. If it 1094 /// constant folds return true and set the boolean result in Result. 1095 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1096 bool &ResultBool) { 1097 llvm::APSInt ResultInt; 1098 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 1099 return false; 1100 1101 ResultBool = ResultInt.getBoolValue(); 1102 return true; 1103 } 1104 1105 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1106 /// to a constant, or if it does but contains a label, return false. If it 1107 /// constant folds return true and set the folded value. 1108 bool CodeGenFunction:: 1109 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 1110 // FIXME: Rename and handle conversion of other evaluatable things 1111 // to bool. 1112 llvm::APSInt Int; 1113 if (!Cond->EvaluateAsInt(Int, getContext())) 1114 return false; // Not foldable, not integer or not fully evaluatable. 1115 1116 if (CodeGenFunction::ContainsLabel(Cond)) 1117 return false; // Contains a label. 1118 1119 ResultInt = Int; 1120 return true; 1121 } 1122 1123 1124 1125 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1126 /// statement) to the specified blocks. Based on the condition, this might try 1127 /// to simplify the codegen of the conditional based on the branch. 1128 /// 1129 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1130 llvm::BasicBlock *TrueBlock, 1131 llvm::BasicBlock *FalseBlock, 1132 uint64_t TrueCount) { 1133 Cond = Cond->IgnoreParens(); 1134 1135 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1136 1137 // Handle X && Y in a condition. 1138 if (CondBOp->getOpcode() == BO_LAnd) { 1139 // If we have "1 && X", simplify the code. "0 && X" would have constant 1140 // folded if the case was simple enough. 1141 bool ConstantBool = false; 1142 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1143 ConstantBool) { 1144 // br(1 && X) -> br(X). 1145 incrementProfileCounter(CondBOp); 1146 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1147 TrueCount); 1148 } 1149 1150 // If we have "X && 1", simplify the code to use an uncond branch. 1151 // "X && 0" would have been constant folded to 0. 1152 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1153 ConstantBool) { 1154 // br(X && 1) -> br(X). 1155 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1156 TrueCount); 1157 } 1158 1159 // Emit the LHS as a conditional. If the LHS conditional is false, we 1160 // want to jump to the FalseBlock. 1161 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1162 // The counter tells us how often we evaluate RHS, and all of TrueCount 1163 // can be propagated to that branch. 1164 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1165 1166 ConditionalEvaluation eval(*this); 1167 { 1168 ApplyDebugLocation DL(*this, Cond); 1169 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1170 EmitBlock(LHSTrue); 1171 } 1172 1173 incrementProfileCounter(CondBOp); 1174 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1175 1176 // Any temporaries created here are conditional. 1177 eval.begin(*this); 1178 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1179 eval.end(*this); 1180 1181 return; 1182 } 1183 1184 if (CondBOp->getOpcode() == BO_LOr) { 1185 // If we have "0 || X", simplify the code. "1 || X" would have constant 1186 // folded if the case was simple enough. 1187 bool ConstantBool = false; 1188 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1189 !ConstantBool) { 1190 // br(0 || X) -> br(X). 1191 incrementProfileCounter(CondBOp); 1192 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1193 TrueCount); 1194 } 1195 1196 // If we have "X || 0", simplify the code to use an uncond branch. 1197 // "X || 1" would have been constant folded to 1. 1198 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1199 !ConstantBool) { 1200 // br(X || 0) -> br(X). 1201 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1202 TrueCount); 1203 } 1204 1205 // Emit the LHS as a conditional. If the LHS conditional is true, we 1206 // want to jump to the TrueBlock. 1207 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1208 // We have the count for entry to the RHS and for the whole expression 1209 // being true, so we can divy up True count between the short circuit and 1210 // the RHS. 1211 uint64_t LHSCount = 1212 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1213 uint64_t RHSCount = TrueCount - LHSCount; 1214 1215 ConditionalEvaluation eval(*this); 1216 { 1217 ApplyDebugLocation DL(*this, Cond); 1218 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1219 EmitBlock(LHSFalse); 1220 } 1221 1222 incrementProfileCounter(CondBOp); 1223 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1224 1225 // Any temporaries created here are conditional. 1226 eval.begin(*this); 1227 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1228 1229 eval.end(*this); 1230 1231 return; 1232 } 1233 } 1234 1235 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1236 // br(!x, t, f) -> br(x, f, t) 1237 if (CondUOp->getOpcode() == UO_LNot) { 1238 // Negate the count. 1239 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1240 // Negate the condition and swap the destination blocks. 1241 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1242 FalseCount); 1243 } 1244 } 1245 1246 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1247 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1248 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1249 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1250 1251 ConditionalEvaluation cond(*this); 1252 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1253 getProfileCount(CondOp)); 1254 1255 // When computing PGO branch weights, we only know the overall count for 1256 // the true block. This code is essentially doing tail duplication of the 1257 // naive code-gen, introducing new edges for which counts are not 1258 // available. Divide the counts proportionally between the LHS and RHS of 1259 // the conditional operator. 1260 uint64_t LHSScaledTrueCount = 0; 1261 if (TrueCount) { 1262 double LHSRatio = 1263 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1264 LHSScaledTrueCount = TrueCount * LHSRatio; 1265 } 1266 1267 cond.begin(*this); 1268 EmitBlock(LHSBlock); 1269 incrementProfileCounter(CondOp); 1270 { 1271 ApplyDebugLocation DL(*this, Cond); 1272 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1273 LHSScaledTrueCount); 1274 } 1275 cond.end(*this); 1276 1277 cond.begin(*this); 1278 EmitBlock(RHSBlock); 1279 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1280 TrueCount - LHSScaledTrueCount); 1281 cond.end(*this); 1282 1283 return; 1284 } 1285 1286 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1287 // Conditional operator handling can give us a throw expression as a 1288 // condition for a case like: 1289 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1290 // Fold this to: 1291 // br(c, throw x, br(y, t, f)) 1292 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1293 return; 1294 } 1295 1296 // If the branch has a condition wrapped by __builtin_unpredictable, 1297 // create metadata that specifies that the branch is unpredictable. 1298 // Don't bother if not optimizing because that metadata would not be used. 1299 llvm::MDNode *Unpredictable = nullptr; 1300 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 1301 if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) { 1302 const Decl *TargetDecl = Call->getCalleeDecl(); 1303 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 1304 if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1305 llvm::MDBuilder MDHelper(getLLVMContext()); 1306 Unpredictable = MDHelper.createUnpredictable(); 1307 } 1308 } 1309 } 1310 } 1311 1312 // Create branch weights based on the number of times we get here and the 1313 // number of times the condition should be true. 1314 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1315 llvm::MDNode *Weights = 1316 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1317 1318 // Emit the code with the fully general case. 1319 llvm::Value *CondV; 1320 { 1321 ApplyDebugLocation DL(*this, Cond); 1322 CondV = EvaluateExprAsBool(Cond); 1323 } 1324 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1325 } 1326 1327 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1328 /// specified stmt yet. 1329 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1330 CGM.ErrorUnsupported(S, Type); 1331 } 1332 1333 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1334 /// variable-length array whose elements have a non-zero bit-pattern. 1335 /// 1336 /// \param baseType the inner-most element type of the array 1337 /// \param src - a char* pointing to the bit-pattern for a single 1338 /// base element of the array 1339 /// \param sizeInChars - the total size of the VLA, in chars 1340 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1341 Address dest, Address src, 1342 llvm::Value *sizeInChars) { 1343 CGBuilderTy &Builder = CGF.Builder; 1344 1345 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1346 llvm::Value *baseSizeInChars 1347 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1348 1349 Address begin = 1350 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1351 llvm::Value *end = 1352 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1353 1354 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1355 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1356 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1357 1358 // Make a loop over the VLA. C99 guarantees that the VLA element 1359 // count must be nonzero. 1360 CGF.EmitBlock(loopBB); 1361 1362 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1363 cur->addIncoming(begin.getPointer(), originBB); 1364 1365 CharUnits curAlign = 1366 dest.getAlignment().alignmentOfArrayElement(baseSize); 1367 1368 // memcpy the individual element bit-pattern. 1369 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1370 /*volatile*/ false); 1371 1372 // Go to the next element. 1373 llvm::Value *next = 1374 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1375 1376 // Leave if that's the end of the VLA. 1377 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1378 Builder.CreateCondBr(done, contBB, loopBB); 1379 cur->addIncoming(next, loopBB); 1380 1381 CGF.EmitBlock(contBB); 1382 } 1383 1384 void 1385 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1386 // Ignore empty classes in C++. 1387 if (getLangOpts().CPlusPlus) { 1388 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1389 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1390 return; 1391 } 1392 } 1393 1394 // Cast the dest ptr to the appropriate i8 pointer type. 1395 if (DestPtr.getElementType() != Int8Ty) 1396 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1397 1398 // Get size and alignment info for this aggregate. 1399 CharUnits size = getContext().getTypeSizeInChars(Ty); 1400 1401 llvm::Value *SizeVal; 1402 const VariableArrayType *vla; 1403 1404 // Don't bother emitting a zero-byte memset. 1405 if (size.isZero()) { 1406 // But note that getTypeInfo returns 0 for a VLA. 1407 if (const VariableArrayType *vlaType = 1408 dyn_cast_or_null<VariableArrayType>( 1409 getContext().getAsArrayType(Ty))) { 1410 QualType eltType; 1411 llvm::Value *numElts; 1412 std::tie(numElts, eltType) = getVLASize(vlaType); 1413 1414 SizeVal = numElts; 1415 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1416 if (!eltSize.isOne()) 1417 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1418 vla = vlaType; 1419 } else { 1420 return; 1421 } 1422 } else { 1423 SizeVal = CGM.getSize(size); 1424 vla = nullptr; 1425 } 1426 1427 // If the type contains a pointer to data member we can't memset it to zero. 1428 // Instead, create a null constant and copy it to the destination. 1429 // TODO: there are other patterns besides zero that we can usefully memset, 1430 // like -1, which happens to be the pattern used by member-pointers. 1431 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1432 // For a VLA, emit a single element, then splat that over the VLA. 1433 if (vla) Ty = getContext().getBaseElementType(vla); 1434 1435 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1436 1437 llvm::GlobalVariable *NullVariable = 1438 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1439 /*isConstant=*/true, 1440 llvm::GlobalVariable::PrivateLinkage, 1441 NullConstant, Twine()); 1442 CharUnits NullAlign = DestPtr.getAlignment(); 1443 NullVariable->setAlignment(NullAlign.getQuantity()); 1444 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1445 NullAlign); 1446 1447 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1448 1449 // Get and call the appropriate llvm.memcpy overload. 1450 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1451 return; 1452 } 1453 1454 // Otherwise, just memset the whole thing to zero. This is legal 1455 // because in LLVM, all default initializers (other than the ones we just 1456 // handled above) are guaranteed to have a bit pattern of all zeros. 1457 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1458 } 1459 1460 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1461 // Make sure that there is a block for the indirect goto. 1462 if (!IndirectBranch) 1463 GetIndirectGotoBlock(); 1464 1465 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1466 1467 // Make sure the indirect branch includes all of the address-taken blocks. 1468 IndirectBranch->addDestination(BB); 1469 return llvm::BlockAddress::get(CurFn, BB); 1470 } 1471 1472 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1473 // If we already made the indirect branch for indirect goto, return its block. 1474 if (IndirectBranch) return IndirectBranch->getParent(); 1475 1476 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1477 1478 // Create the PHI node that indirect gotos will add entries to. 1479 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1480 "indirect.goto.dest"); 1481 1482 // Create the indirect branch instruction. 1483 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1484 return IndirectBranch->getParent(); 1485 } 1486 1487 /// Computes the length of an array in elements, as well as the base 1488 /// element type and a properly-typed first element pointer. 1489 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1490 QualType &baseType, 1491 Address &addr) { 1492 const ArrayType *arrayType = origArrayType; 1493 1494 // If it's a VLA, we have to load the stored size. Note that 1495 // this is the size of the VLA in bytes, not its size in elements. 1496 llvm::Value *numVLAElements = nullptr; 1497 if (isa<VariableArrayType>(arrayType)) { 1498 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1499 1500 // Walk into all VLAs. This doesn't require changes to addr, 1501 // which has type T* where T is the first non-VLA element type. 1502 do { 1503 QualType elementType = arrayType->getElementType(); 1504 arrayType = getContext().getAsArrayType(elementType); 1505 1506 // If we only have VLA components, 'addr' requires no adjustment. 1507 if (!arrayType) { 1508 baseType = elementType; 1509 return numVLAElements; 1510 } 1511 } while (isa<VariableArrayType>(arrayType)); 1512 1513 // We get out here only if we find a constant array type 1514 // inside the VLA. 1515 } 1516 1517 // We have some number of constant-length arrays, so addr should 1518 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1519 // down to the first element of addr. 1520 SmallVector<llvm::Value*, 8> gepIndices; 1521 1522 // GEP down to the array type. 1523 llvm::ConstantInt *zero = Builder.getInt32(0); 1524 gepIndices.push_back(zero); 1525 1526 uint64_t countFromCLAs = 1; 1527 QualType eltType; 1528 1529 llvm::ArrayType *llvmArrayType = 1530 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1531 while (llvmArrayType) { 1532 assert(isa<ConstantArrayType>(arrayType)); 1533 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1534 == llvmArrayType->getNumElements()); 1535 1536 gepIndices.push_back(zero); 1537 countFromCLAs *= llvmArrayType->getNumElements(); 1538 eltType = arrayType->getElementType(); 1539 1540 llvmArrayType = 1541 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1542 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1543 assert((!llvmArrayType || arrayType) && 1544 "LLVM and Clang types are out-of-synch"); 1545 } 1546 1547 if (arrayType) { 1548 // From this point onwards, the Clang array type has been emitted 1549 // as some other type (probably a packed struct). Compute the array 1550 // size, and just emit the 'begin' expression as a bitcast. 1551 while (arrayType) { 1552 countFromCLAs *= 1553 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1554 eltType = arrayType->getElementType(); 1555 arrayType = getContext().getAsArrayType(eltType); 1556 } 1557 1558 llvm::Type *baseType = ConvertType(eltType); 1559 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1560 } else { 1561 // Create the actual GEP. 1562 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1563 gepIndices, "array.begin"), 1564 addr.getAlignment()); 1565 } 1566 1567 baseType = eltType; 1568 1569 llvm::Value *numElements 1570 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1571 1572 // If we had any VLA dimensions, factor them in. 1573 if (numVLAElements) 1574 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1575 1576 return numElements; 1577 } 1578 1579 std::pair<llvm::Value*, QualType> 1580 CodeGenFunction::getVLASize(QualType type) { 1581 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1582 assert(vla && "type was not a variable array type!"); 1583 return getVLASize(vla); 1584 } 1585 1586 std::pair<llvm::Value*, QualType> 1587 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1588 // The number of elements so far; always size_t. 1589 llvm::Value *numElements = nullptr; 1590 1591 QualType elementType; 1592 do { 1593 elementType = type->getElementType(); 1594 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1595 assert(vlaSize && "no size for VLA!"); 1596 assert(vlaSize->getType() == SizeTy); 1597 1598 if (!numElements) { 1599 numElements = vlaSize; 1600 } else { 1601 // It's undefined behavior if this wraps around, so mark it that way. 1602 // FIXME: Teach -fsanitize=undefined to trap this. 1603 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1604 } 1605 } while ((type = getContext().getAsVariableArrayType(elementType))); 1606 1607 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1608 } 1609 1610 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1611 assert(type->isVariablyModifiedType() && 1612 "Must pass variably modified type to EmitVLASizes!"); 1613 1614 EnsureInsertPoint(); 1615 1616 // We're going to walk down into the type and look for VLA 1617 // expressions. 1618 do { 1619 assert(type->isVariablyModifiedType()); 1620 1621 const Type *ty = type.getTypePtr(); 1622 switch (ty->getTypeClass()) { 1623 1624 #define TYPE(Class, Base) 1625 #define ABSTRACT_TYPE(Class, Base) 1626 #define NON_CANONICAL_TYPE(Class, Base) 1627 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1628 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1629 #include "clang/AST/TypeNodes.def" 1630 llvm_unreachable("unexpected dependent type!"); 1631 1632 // These types are never variably-modified. 1633 case Type::Builtin: 1634 case Type::Complex: 1635 case Type::Vector: 1636 case Type::ExtVector: 1637 case Type::Record: 1638 case Type::Enum: 1639 case Type::Elaborated: 1640 case Type::TemplateSpecialization: 1641 case Type::ObjCObject: 1642 case Type::ObjCInterface: 1643 case Type::ObjCObjectPointer: 1644 llvm_unreachable("type class is never variably-modified!"); 1645 1646 case Type::Adjusted: 1647 type = cast<AdjustedType>(ty)->getAdjustedType(); 1648 break; 1649 1650 case Type::Decayed: 1651 type = cast<DecayedType>(ty)->getPointeeType(); 1652 break; 1653 1654 case Type::Pointer: 1655 type = cast<PointerType>(ty)->getPointeeType(); 1656 break; 1657 1658 case Type::BlockPointer: 1659 type = cast<BlockPointerType>(ty)->getPointeeType(); 1660 break; 1661 1662 case Type::LValueReference: 1663 case Type::RValueReference: 1664 type = cast<ReferenceType>(ty)->getPointeeType(); 1665 break; 1666 1667 case Type::MemberPointer: 1668 type = cast<MemberPointerType>(ty)->getPointeeType(); 1669 break; 1670 1671 case Type::ConstantArray: 1672 case Type::IncompleteArray: 1673 // Losing element qualification here is fine. 1674 type = cast<ArrayType>(ty)->getElementType(); 1675 break; 1676 1677 case Type::VariableArray: { 1678 // Losing element qualification here is fine. 1679 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1680 1681 // Unknown size indication requires no size computation. 1682 // Otherwise, evaluate and record it. 1683 if (const Expr *size = vat->getSizeExpr()) { 1684 // It's possible that we might have emitted this already, 1685 // e.g. with a typedef and a pointer to it. 1686 llvm::Value *&entry = VLASizeMap[size]; 1687 if (!entry) { 1688 llvm::Value *Size = EmitScalarExpr(size); 1689 1690 // C11 6.7.6.2p5: 1691 // If the size is an expression that is not an integer constant 1692 // expression [...] each time it is evaluated it shall have a value 1693 // greater than zero. 1694 if (SanOpts.has(SanitizerKind::VLABound) && 1695 size->getType()->isSignedIntegerType()) { 1696 SanitizerScope SanScope(this); 1697 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1698 llvm::Constant *StaticArgs[] = { 1699 EmitCheckSourceLocation(size->getLocStart()), 1700 EmitCheckTypeDescriptor(size->getType()) 1701 }; 1702 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1703 SanitizerKind::VLABound), 1704 "vla_bound_not_positive", StaticArgs, Size); 1705 } 1706 1707 // Always zexting here would be wrong if it weren't 1708 // undefined behavior to have a negative bound. 1709 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1710 } 1711 } 1712 type = vat->getElementType(); 1713 break; 1714 } 1715 1716 case Type::FunctionProto: 1717 case Type::FunctionNoProto: 1718 type = cast<FunctionType>(ty)->getReturnType(); 1719 break; 1720 1721 case Type::Paren: 1722 case Type::TypeOf: 1723 case Type::UnaryTransform: 1724 case Type::Attributed: 1725 case Type::SubstTemplateTypeParm: 1726 case Type::PackExpansion: 1727 // Keep walking after single level desugaring. 1728 type = type.getSingleStepDesugaredType(getContext()); 1729 break; 1730 1731 case Type::Typedef: 1732 case Type::Decltype: 1733 case Type::Auto: 1734 // Stop walking: nothing to do. 1735 return; 1736 1737 case Type::TypeOfExpr: 1738 // Stop walking: emit typeof expression. 1739 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1740 return; 1741 1742 case Type::Atomic: 1743 type = cast<AtomicType>(ty)->getValueType(); 1744 break; 1745 1746 case Type::Pipe: 1747 type = cast<PipeType>(ty)->getElementType(); 1748 break; 1749 } 1750 } while (type->isVariablyModifiedType()); 1751 } 1752 1753 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1754 if (getContext().getBuiltinVaListType()->isArrayType()) 1755 return EmitPointerWithAlignment(E); 1756 return EmitLValue(E).getAddress(); 1757 } 1758 1759 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1760 return EmitLValue(E).getAddress(); 1761 } 1762 1763 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1764 llvm::Constant *Init) { 1765 assert (Init && "Invalid DeclRefExpr initializer!"); 1766 if (CGDebugInfo *Dbg = getDebugInfo()) 1767 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1768 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1769 } 1770 1771 CodeGenFunction::PeepholeProtection 1772 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1773 // At the moment, the only aggressive peephole we do in IR gen 1774 // is trunc(zext) folding, but if we add more, we can easily 1775 // extend this protection. 1776 1777 if (!rvalue.isScalar()) return PeepholeProtection(); 1778 llvm::Value *value = rvalue.getScalarVal(); 1779 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1780 1781 // Just make an extra bitcast. 1782 assert(HaveInsertPoint()); 1783 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1784 Builder.GetInsertBlock()); 1785 1786 PeepholeProtection protection; 1787 protection.Inst = inst; 1788 return protection; 1789 } 1790 1791 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1792 if (!protection.Inst) return; 1793 1794 // In theory, we could try to duplicate the peepholes now, but whatever. 1795 protection.Inst->eraseFromParent(); 1796 } 1797 1798 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1799 llvm::Value *AnnotatedVal, 1800 StringRef AnnotationStr, 1801 SourceLocation Location) { 1802 llvm::Value *Args[4] = { 1803 AnnotatedVal, 1804 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1805 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1806 CGM.EmitAnnotationLineNo(Location) 1807 }; 1808 return Builder.CreateCall(AnnotationFn, Args); 1809 } 1810 1811 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1812 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1813 // FIXME We create a new bitcast for every annotation because that's what 1814 // llvm-gcc was doing. 1815 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1816 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1817 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1818 I->getAnnotation(), D->getLocation()); 1819 } 1820 1821 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1822 Address Addr) { 1823 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1824 llvm::Value *V = Addr.getPointer(); 1825 llvm::Type *VTy = V->getType(); 1826 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1827 CGM.Int8PtrTy); 1828 1829 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1830 // FIXME Always emit the cast inst so we can differentiate between 1831 // annotation on the first field of a struct and annotation on the struct 1832 // itself. 1833 if (VTy != CGM.Int8PtrTy) 1834 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1835 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1836 V = Builder.CreateBitCast(V, VTy); 1837 } 1838 1839 return Address(V, Addr.getAlignment()); 1840 } 1841 1842 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1843 1844 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1845 : CGF(CGF) { 1846 assert(!CGF->IsSanitizerScope); 1847 CGF->IsSanitizerScope = true; 1848 } 1849 1850 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1851 CGF->IsSanitizerScope = false; 1852 } 1853 1854 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1855 const llvm::Twine &Name, 1856 llvm::BasicBlock *BB, 1857 llvm::BasicBlock::iterator InsertPt) const { 1858 LoopStack.InsertHelper(I); 1859 if (IsSanitizerScope) 1860 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1861 } 1862 1863 template <bool PreserveNames> 1864 void CGBuilderInserter<PreserveNames>::InsertHelper( 1865 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1866 llvm::BasicBlock::iterator InsertPt) const { 1867 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1868 InsertPt); 1869 if (CGF) 1870 CGF->InsertHelper(I, Name, BB, InsertPt); 1871 } 1872 1873 #ifdef NDEBUG 1874 #define PreserveNames false 1875 #else 1876 #define PreserveNames true 1877 #endif 1878 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1879 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1880 llvm::BasicBlock::iterator InsertPt) const; 1881 #undef PreserveNames 1882 1883 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1884 CodeGenModule &CGM, const FunctionDecl *FD, 1885 std::string &FirstMissing) { 1886 // If there aren't any required features listed then go ahead and return. 1887 if (ReqFeatures.empty()) 1888 return false; 1889 1890 // Now build up the set of caller features and verify that all the required 1891 // features are there. 1892 llvm::StringMap<bool> CallerFeatureMap; 1893 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1894 1895 // If we have at least one of the features in the feature list return 1896 // true, otherwise return false. 1897 return std::all_of( 1898 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1899 SmallVector<StringRef, 1> OrFeatures; 1900 Feature.split(OrFeatures, "|"); 1901 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1902 [&](StringRef Feature) { 1903 if (!CallerFeatureMap.lookup(Feature)) { 1904 FirstMissing = Feature.str(); 1905 return false; 1906 } 1907 return true; 1908 }); 1909 }); 1910 } 1911 1912 // Emits an error if we don't have a valid set of target features for the 1913 // called function. 1914 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1915 const FunctionDecl *TargetDecl) { 1916 // Early exit if this is an indirect call. 1917 if (!TargetDecl) 1918 return; 1919 1920 // Get the current enclosing function if it exists. If it doesn't 1921 // we can't check the target features anyhow. 1922 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 1923 if (!FD) 1924 return; 1925 1926 // Grab the required features for the call. For a builtin this is listed in 1927 // the td file with the default cpu, for an always_inline function this is any 1928 // listed cpu and any listed features. 1929 unsigned BuiltinID = TargetDecl->getBuiltinID(); 1930 std::string MissingFeature; 1931 if (BuiltinID) { 1932 SmallVector<StringRef, 1> ReqFeatures; 1933 const char *FeatureList = 1934 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1935 // Return if the builtin doesn't have any required features. 1936 if (!FeatureList || StringRef(FeatureList) == "") 1937 return; 1938 StringRef(FeatureList).split(ReqFeatures, ","); 1939 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1940 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 1941 << TargetDecl->getDeclName() 1942 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1943 1944 } else if (TargetDecl->hasAttr<TargetAttr>()) { 1945 // Get the required features for the callee. 1946 SmallVector<StringRef, 1> ReqFeatures; 1947 llvm::StringMap<bool> CalleeFeatureMap; 1948 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 1949 for (const auto &F : CalleeFeatureMap) { 1950 // Only positive features are "required". 1951 if (F.getValue()) 1952 ReqFeatures.push_back(F.getKey()); 1953 } 1954 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1955 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 1956 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 1957 } 1958 } 1959 1960 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 1961 if (!CGM.getCodeGenOpts().SanitizeStats) 1962 return; 1963 1964 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 1965 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 1966 CGM.getSanStats().create(IRB, SSK); 1967 } 1968