1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Operator.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 33 : CodeGenTypeCache(cgm), CGM(cgm), 34 Target(CGM.getContext().getTargetInfo()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false), 45 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 46 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0), 47 CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0), 48 TerminateHandler(0), TrapBB(0) { 49 if (!suppressNewContext) 50 CGM.getCXXABI().getMangleContext().startNewFunction(); 51 52 llvm::FastMathFlags FMF; 53 if (CGM.getLangOpts().FastMath) 54 FMF.setUnsafeAlgebra(); 55 if (CGM.getLangOpts().FiniteMathOnly) { 56 FMF.setNoNaNs(); 57 FMF.setNoInfs(); 58 } 59 Builder.SetFastMathFlags(FMF); 60 } 61 62 CodeGenFunction::~CodeGenFunction() { 63 // If there are any unclaimed block infos, go ahead and destroy them 64 // now. This can happen if IR-gen gets clever and skips evaluating 65 // something. 66 if (FirstBlockInfo) 67 destroyBlockInfos(FirstBlockInfo); 68 } 69 70 71 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 72 return CGM.getTypes().ConvertTypeForMem(T); 73 } 74 75 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 76 return CGM.getTypes().ConvertType(T); 77 } 78 79 bool CodeGenFunction::hasAggregateLLVMType(QualType type) { 80 switch (type.getCanonicalType()->getTypeClass()) { 81 #define TYPE(name, parent) 82 #define ABSTRACT_TYPE(name, parent) 83 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 84 #define DEPENDENT_TYPE(name, parent) case Type::name: 85 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 86 #include "clang/AST/TypeNodes.def" 87 llvm_unreachable("non-canonical or dependent type in IR-generation"); 88 89 case Type::Builtin: 90 case Type::Pointer: 91 case Type::BlockPointer: 92 case Type::LValueReference: 93 case Type::RValueReference: 94 case Type::MemberPointer: 95 case Type::Vector: 96 case Type::ExtVector: 97 case Type::FunctionProto: 98 case Type::FunctionNoProto: 99 case Type::Enum: 100 case Type::ObjCObjectPointer: 101 return false; 102 103 // Complexes, arrays, records, and Objective-C objects. 104 case Type::Complex: 105 case Type::ConstantArray: 106 case Type::IncompleteArray: 107 case Type::VariableArray: 108 case Type::Record: 109 case Type::ObjCObject: 110 case Type::ObjCInterface: 111 return true; 112 113 // In IRGen, atomic types are just the underlying type 114 case Type::Atomic: 115 return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType()); 116 } 117 llvm_unreachable("unknown type kind!"); 118 } 119 120 bool CodeGenFunction::EmitReturnBlock() { 121 // For cleanliness, we try to avoid emitting the return block for 122 // simple cases. 123 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 124 125 if (CurBB) { 126 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 127 128 // We have a valid insert point, reuse it if it is empty or there are no 129 // explicit jumps to the return block. 130 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 131 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 132 delete ReturnBlock.getBlock(); 133 } else 134 EmitBlock(ReturnBlock.getBlock()); 135 return false; 136 } 137 138 // Otherwise, if the return block is the target of a single direct 139 // branch then we can just put the code in that block instead. This 140 // cleans up functions which started with a unified return block. 141 if (ReturnBlock.getBlock()->hasOneUse()) { 142 llvm::BranchInst *BI = 143 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 144 if (BI && BI->isUnconditional() && 145 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 146 // Reset insertion point, including debug location, and delete the branch. 147 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 148 Builder.SetInsertPoint(BI->getParent()); 149 BI->eraseFromParent(); 150 delete ReturnBlock.getBlock(); 151 return true; 152 } 153 } 154 155 // FIXME: We are at an unreachable point, there is no reason to emit the block 156 // unless it has uses. However, we still need a place to put the debug 157 // region.end for now. 158 159 EmitBlock(ReturnBlock.getBlock()); 160 return false; 161 } 162 163 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 164 if (!BB) return; 165 if (!BB->use_empty()) 166 return CGF.CurFn->getBasicBlockList().push_back(BB); 167 delete BB; 168 } 169 170 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 171 assert(BreakContinueStack.empty() && 172 "mismatched push/pop in break/continue stack!"); 173 174 // Pop any cleanups that might have been associated with the 175 // parameters. Do this in whatever block we're currently in; it's 176 // important to do this before we enter the return block or return 177 // edges will be *really* confused. 178 if (EHStack.stable_begin() != PrologueCleanupDepth) 179 PopCleanupBlocks(PrologueCleanupDepth); 180 181 // Emit function epilog (to return). 182 bool MoveEndLoc = EmitReturnBlock(); 183 184 if (ShouldInstrumentFunction()) 185 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 186 187 // Emit debug descriptor for function end. 188 if (CGDebugInfo *DI = getDebugInfo()) { 189 if (!MoveEndLoc) DI->setLocation(EndLoc); 190 DI->EmitFunctionEnd(Builder); 191 } 192 193 EmitFunctionEpilog(*CurFnInfo); 194 EmitEndEHSpec(CurCodeDecl); 195 196 assert(EHStack.empty() && 197 "did not remove all scopes from cleanup stack!"); 198 199 // If someone did an indirect goto, emit the indirect goto block at the end of 200 // the function. 201 if (IndirectBranch) { 202 EmitBlock(IndirectBranch->getParent()); 203 Builder.ClearInsertionPoint(); 204 } 205 206 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 207 llvm::Instruction *Ptr = AllocaInsertPt; 208 AllocaInsertPt = 0; 209 Ptr->eraseFromParent(); 210 211 // If someone took the address of a label but never did an indirect goto, we 212 // made a zero entry PHI node, which is illegal, zap it now. 213 if (IndirectBranch) { 214 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 215 if (PN->getNumIncomingValues() == 0) { 216 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 217 PN->eraseFromParent(); 218 } 219 } 220 221 EmitIfUsed(*this, EHResumeBlock); 222 EmitIfUsed(*this, TerminateLandingPad); 223 EmitIfUsed(*this, TerminateHandler); 224 EmitIfUsed(*this, UnreachableBlock); 225 226 if (CGM.getCodeGenOpts().EmitDeclMetadata) 227 EmitDeclMetadata(); 228 } 229 230 /// ShouldInstrumentFunction - Return true if the current function should be 231 /// instrumented with __cyg_profile_func_* calls 232 bool CodeGenFunction::ShouldInstrumentFunction() { 233 if (!CGM.getCodeGenOpts().InstrumentFunctions) 234 return false; 235 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 236 return false; 237 return true; 238 } 239 240 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 241 /// instrumentation function with the current function and the call site, if 242 /// function instrumentation is enabled. 243 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 244 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 245 llvm::PointerType *PointerTy = Int8PtrTy; 246 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 247 llvm::FunctionType *FunctionTy = 248 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 249 250 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 251 llvm::CallInst *CallSite = Builder.CreateCall( 252 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 253 llvm::ConstantInt::get(Int32Ty, 0), 254 "callsite"); 255 256 Builder.CreateCall2(F, 257 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 258 CallSite); 259 } 260 261 void CodeGenFunction::EmitMCountInstrumentation() { 262 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 263 264 llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy, 265 Target.getMCountName()); 266 Builder.CreateCall(MCountFn); 267 } 268 269 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 270 // information in the program executable. The argument information stored 271 // includes the argument name, its type, the address and access qualifiers used. 272 // FIXME: Add type, address, and access qualifiers. 273 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 274 CodeGenModule &CGM,llvm::LLVMContext &Context, 275 SmallVector <llvm::Value*, 5> &kernelMDArgs) { 276 277 // Create MDNodes that represents the kernel arg metadata. 278 // Each MDNode is a list in the form of "key", N number of values which is 279 // the same number of values as their are kernel arguments. 280 281 // MDNode for the kernel argument names. 282 SmallVector<llvm::Value*, 8> argNames; 283 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 284 285 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 286 const ParmVarDecl *parm = FD->getParamDecl(i); 287 288 // Get argument name. 289 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 290 291 } 292 // Add MDNode to the list of all metadata. 293 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 294 } 295 296 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 297 llvm::Function *Fn) 298 { 299 if (!FD->hasAttr<OpenCLKernelAttr>()) 300 return; 301 302 llvm::LLVMContext &Context = getLLVMContext(); 303 304 SmallVector <llvm::Value*, 5> kernelMDArgs; 305 kernelMDArgs.push_back(Fn); 306 307 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 308 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs); 309 310 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 311 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 312 llvm::Value *attrMDArgs[] = { 313 llvm::MDString::get(Context, "work_group_size_hint"), 314 Builder.getInt32(attr->getXDim()), 315 Builder.getInt32(attr->getYDim()), 316 Builder.getInt32(attr->getZDim()) 317 }; 318 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 319 } 320 321 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 322 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 323 llvm::Value *attrMDArgs[] = { 324 llvm::MDString::get(Context, "reqd_work_group_size"), 325 Builder.getInt32(attr->getXDim()), 326 Builder.getInt32(attr->getYDim()), 327 Builder.getInt32(attr->getZDim()) 328 }; 329 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 330 } 331 332 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 333 llvm::NamedMDNode *OpenCLKernelMetadata = 334 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 335 OpenCLKernelMetadata->addOperand(kernelMDNode); 336 } 337 338 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 339 llvm::Function *Fn, 340 const CGFunctionInfo &FnInfo, 341 const FunctionArgList &Args, 342 SourceLocation StartLoc) { 343 const Decl *D = GD.getDecl(); 344 345 DidCallStackSave = false; 346 CurCodeDecl = CurFuncDecl = D; 347 FnRetTy = RetTy; 348 CurFn = Fn; 349 CurFnInfo = &FnInfo; 350 assert(CurFn->isDeclaration() && "Function already has body?"); 351 352 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 353 SanOpts = &SanitizerOptions::Disabled; 354 SanitizePerformTypeCheck = false; 355 } 356 357 // Pass inline keyword to optimizer if it appears explicitly on any 358 // declaration. 359 if (!CGM.getCodeGenOpts().NoInline) 360 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 361 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 362 RE = FD->redecls_end(); RI != RE; ++RI) 363 if (RI->isInlineSpecified()) { 364 Fn->addFnAttr(llvm::Attribute::InlineHint); 365 break; 366 } 367 368 if (getLangOpts().OpenCL) { 369 // Add metadata for a kernel function. 370 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 371 EmitOpenCLKernelMetadata(FD, Fn); 372 } 373 374 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 375 376 // Create a marker to make it easy to insert allocas into the entryblock 377 // later. Don't create this with the builder, because we don't want it 378 // folded. 379 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 380 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 381 if (Builder.isNamePreserving()) 382 AllocaInsertPt->setName("allocapt"); 383 384 ReturnBlock = getJumpDestInCurrentScope("return"); 385 386 Builder.SetInsertPoint(EntryBB); 387 388 // Emit subprogram debug descriptor. 389 if (CGDebugInfo *DI = getDebugInfo()) { 390 unsigned NumArgs = 0; 391 QualType *ArgsArray = new QualType[Args.size()]; 392 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 393 i != e; ++i) { 394 ArgsArray[NumArgs++] = (*i)->getType(); 395 } 396 397 QualType FnType = 398 getContext().getFunctionType(RetTy, ArgsArray, NumArgs, 399 FunctionProtoType::ExtProtoInfo()); 400 401 delete[] ArgsArray; 402 403 DI->setLocation(StartLoc); 404 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 405 } 406 407 if (ShouldInstrumentFunction()) 408 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 409 410 if (CGM.getCodeGenOpts().InstrumentForProfiling) 411 EmitMCountInstrumentation(); 412 413 if (RetTy->isVoidType()) { 414 // Void type; nothing to return. 415 ReturnValue = 0; 416 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 417 hasAggregateLLVMType(CurFnInfo->getReturnType())) { 418 // Indirect aggregate return; emit returned value directly into sret slot. 419 // This reduces code size, and affects correctness in C++. 420 ReturnValue = CurFn->arg_begin(); 421 } else { 422 ReturnValue = CreateIRTemp(RetTy, "retval"); 423 424 // Tell the epilog emitter to autorelease the result. We do this 425 // now so that various specialized functions can suppress it 426 // during their IR-generation. 427 if (getLangOpts().ObjCAutoRefCount && 428 !CurFnInfo->isReturnsRetained() && 429 RetTy->isObjCRetainableType()) 430 AutoreleaseResult = true; 431 } 432 433 EmitStartEHSpec(CurCodeDecl); 434 435 PrologueCleanupDepth = EHStack.stable_begin(); 436 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 437 438 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 439 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 440 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 441 if (MD->getParent()->isLambda() && 442 MD->getOverloadedOperator() == OO_Call) { 443 // We're in a lambda; figure out the captures. 444 MD->getParent()->getCaptureFields(LambdaCaptureFields, 445 LambdaThisCaptureField); 446 if (LambdaThisCaptureField) { 447 // If this lambda captures this, load it. 448 QualType LambdaTagType = 449 getContext().getTagDeclType(LambdaThisCaptureField->getParent()); 450 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 451 LambdaTagType); 452 LValue ThisLValue = EmitLValueForField(LambdaLV, 453 LambdaThisCaptureField); 454 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 455 } 456 } else { 457 // Not in a lambda; just use 'this' from the method. 458 // FIXME: Should we generate a new load for each use of 'this'? The 459 // fast register allocator would be happier... 460 CXXThisValue = CXXABIThisValue; 461 } 462 } 463 464 // If any of the arguments have a variably modified type, make sure to 465 // emit the type size. 466 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 467 i != e; ++i) { 468 const VarDecl *VD = *i; 469 470 // Dig out the type as written from ParmVarDecls; it's unclear whether 471 // the standard (C99 6.9.1p10) requires this, but we're following the 472 // precedent set by gcc. 473 QualType Ty; 474 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 475 Ty = PVD->getOriginalType(); 476 else 477 Ty = VD->getType(); 478 479 if (Ty->isVariablyModifiedType()) 480 EmitVariablyModifiedType(Ty); 481 } 482 // Emit a location at the end of the prologue. 483 if (CGDebugInfo *DI = getDebugInfo()) 484 DI->EmitLocation(Builder, StartLoc); 485 } 486 487 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 488 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 489 assert(FD->getBody()); 490 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 491 EmitCompoundStmtWithoutScope(*S); 492 else 493 EmitStmt(FD->getBody()); 494 } 495 496 /// Tries to mark the given function nounwind based on the 497 /// non-existence of any throwing calls within it. We believe this is 498 /// lightweight enough to do at -O0. 499 static void TryMarkNoThrow(llvm::Function *F) { 500 // LLVM treats 'nounwind' on a function as part of the type, so we 501 // can't do this on functions that can be overwritten. 502 if (F->mayBeOverridden()) return; 503 504 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 505 for (llvm::BasicBlock::iterator 506 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 507 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 508 if (!Call->doesNotThrow()) 509 return; 510 } else if (isa<llvm::ResumeInst>(&*BI)) { 511 return; 512 } 513 F->setDoesNotThrow(); 514 } 515 516 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 517 const CGFunctionInfo &FnInfo) { 518 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 519 520 // Check if we should generate debug info for this function. 521 if (!FD->hasAttr<NoDebugAttr>()) 522 maybeInitializeDebugInfo(); 523 524 FunctionArgList Args; 525 QualType ResTy = FD->getResultType(); 526 527 CurGD = GD; 528 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 529 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 530 531 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 532 Args.push_back(FD->getParamDecl(i)); 533 534 SourceRange BodyRange; 535 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 536 537 // Emit the standard function prologue. 538 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 539 540 // Generate the body of the function. 541 if (isa<CXXDestructorDecl>(FD)) 542 EmitDestructorBody(Args); 543 else if (isa<CXXConstructorDecl>(FD)) 544 EmitConstructorBody(Args); 545 else if (getLangOpts().CUDA && 546 !CGM.getCodeGenOpts().CUDAIsDevice && 547 FD->hasAttr<CUDAGlobalAttr>()) 548 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 549 else if (isa<CXXConversionDecl>(FD) && 550 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 551 // The lambda conversion to block pointer is special; the semantics can't be 552 // expressed in the AST, so IRGen needs to special-case it. 553 EmitLambdaToBlockPointerBody(Args); 554 } else if (isa<CXXMethodDecl>(FD) && 555 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 556 // The lambda "__invoke" function is special, because it forwards or 557 // clones the body of the function call operator (but is actually static). 558 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 559 } 560 else 561 EmitFunctionBody(Args); 562 563 // C++11 [stmt.return]p2: 564 // Flowing off the end of a function [...] results in undefined behavior in 565 // a value-returning function. 566 // C11 6.9.1p12: 567 // If the '}' that terminates a function is reached, and the value of the 568 // function call is used by the caller, the behavior is undefined. 569 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 570 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 571 if (SanOpts->Return) 572 EmitCheck(Builder.getFalse(), "missing_return", 573 EmitCheckSourceLocation(FD->getLocation()), 574 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 575 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 576 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 577 Builder.CreateUnreachable(); 578 Builder.ClearInsertionPoint(); 579 } 580 581 // Emit the standard function epilogue. 582 FinishFunction(BodyRange.getEnd()); 583 584 // If we haven't marked the function nothrow through other means, do 585 // a quick pass now to see if we can. 586 if (!CurFn->doesNotThrow()) 587 TryMarkNoThrow(CurFn); 588 } 589 590 /// ContainsLabel - Return true if the statement contains a label in it. If 591 /// this statement is not executed normally, it not containing a label means 592 /// that we can just remove the code. 593 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 594 // Null statement, not a label! 595 if (S == 0) return false; 596 597 // If this is a label, we have to emit the code, consider something like: 598 // if (0) { ... foo: bar(); } goto foo; 599 // 600 // TODO: If anyone cared, we could track __label__'s, since we know that you 601 // can't jump to one from outside their declared region. 602 if (isa<LabelStmt>(S)) 603 return true; 604 605 // If this is a case/default statement, and we haven't seen a switch, we have 606 // to emit the code. 607 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 608 return true; 609 610 // If this is a switch statement, we want to ignore cases below it. 611 if (isa<SwitchStmt>(S)) 612 IgnoreCaseStmts = true; 613 614 // Scan subexpressions for verboten labels. 615 for (Stmt::const_child_range I = S->children(); I; ++I) 616 if (ContainsLabel(*I, IgnoreCaseStmts)) 617 return true; 618 619 return false; 620 } 621 622 /// containsBreak - Return true if the statement contains a break out of it. 623 /// If the statement (recursively) contains a switch or loop with a break 624 /// inside of it, this is fine. 625 bool CodeGenFunction::containsBreak(const Stmt *S) { 626 // Null statement, not a label! 627 if (S == 0) return false; 628 629 // If this is a switch or loop that defines its own break scope, then we can 630 // include it and anything inside of it. 631 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 632 isa<ForStmt>(S)) 633 return false; 634 635 if (isa<BreakStmt>(S)) 636 return true; 637 638 // Scan subexpressions for verboten breaks. 639 for (Stmt::const_child_range I = S->children(); I; ++I) 640 if (containsBreak(*I)) 641 return true; 642 643 return false; 644 } 645 646 647 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 648 /// to a constant, or if it does but contains a label, return false. If it 649 /// constant folds return true and set the boolean result in Result. 650 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 651 bool &ResultBool) { 652 llvm::APSInt ResultInt; 653 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 654 return false; 655 656 ResultBool = ResultInt.getBoolValue(); 657 return true; 658 } 659 660 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 661 /// to a constant, or if it does but contains a label, return false. If it 662 /// constant folds return true and set the folded value. 663 bool CodeGenFunction:: 664 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 665 // FIXME: Rename and handle conversion of other evaluatable things 666 // to bool. 667 llvm::APSInt Int; 668 if (!Cond->EvaluateAsInt(Int, getContext())) 669 return false; // Not foldable, not integer or not fully evaluatable. 670 671 if (CodeGenFunction::ContainsLabel(Cond)) 672 return false; // Contains a label. 673 674 ResultInt = Int; 675 return true; 676 } 677 678 679 680 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 681 /// statement) to the specified blocks. Based on the condition, this might try 682 /// to simplify the codegen of the conditional based on the branch. 683 /// 684 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 685 llvm::BasicBlock *TrueBlock, 686 llvm::BasicBlock *FalseBlock) { 687 Cond = Cond->IgnoreParens(); 688 689 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 690 // Handle X && Y in a condition. 691 if (CondBOp->getOpcode() == BO_LAnd) { 692 // If we have "1 && X", simplify the code. "0 && X" would have constant 693 // folded if the case was simple enough. 694 bool ConstantBool = false; 695 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 696 ConstantBool) { 697 // br(1 && X) -> br(X). 698 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 699 } 700 701 // If we have "X && 1", simplify the code to use an uncond branch. 702 // "X && 0" would have been constant folded to 0. 703 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 704 ConstantBool) { 705 // br(X && 1) -> br(X). 706 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 707 } 708 709 // Emit the LHS as a conditional. If the LHS conditional is false, we 710 // want to jump to the FalseBlock. 711 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 712 713 ConditionalEvaluation eval(*this); 714 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 715 EmitBlock(LHSTrue); 716 717 // Any temporaries created here are conditional. 718 eval.begin(*this); 719 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 720 eval.end(*this); 721 722 return; 723 } 724 725 if (CondBOp->getOpcode() == BO_LOr) { 726 // If we have "0 || X", simplify the code. "1 || X" would have constant 727 // folded if the case was simple enough. 728 bool ConstantBool = false; 729 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 730 !ConstantBool) { 731 // br(0 || X) -> br(X). 732 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 733 } 734 735 // If we have "X || 0", simplify the code to use an uncond branch. 736 // "X || 1" would have been constant folded to 1. 737 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 738 !ConstantBool) { 739 // br(X || 0) -> br(X). 740 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 741 } 742 743 // Emit the LHS as a conditional. If the LHS conditional is true, we 744 // want to jump to the TrueBlock. 745 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 746 747 ConditionalEvaluation eval(*this); 748 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 749 EmitBlock(LHSFalse); 750 751 // Any temporaries created here are conditional. 752 eval.begin(*this); 753 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 754 eval.end(*this); 755 756 return; 757 } 758 } 759 760 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 761 // br(!x, t, f) -> br(x, f, t) 762 if (CondUOp->getOpcode() == UO_LNot) 763 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 764 } 765 766 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 767 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 768 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 769 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 770 771 ConditionalEvaluation cond(*this); 772 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 773 774 cond.begin(*this); 775 EmitBlock(LHSBlock); 776 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 777 cond.end(*this); 778 779 cond.begin(*this); 780 EmitBlock(RHSBlock); 781 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 782 cond.end(*this); 783 784 return; 785 } 786 787 // Emit the code with the fully general case. 788 llvm::Value *CondV = EvaluateExprAsBool(Cond); 789 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 790 } 791 792 /// ErrorUnsupported - Print out an error that codegen doesn't support the 793 /// specified stmt yet. 794 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 795 bool OmitOnError) { 796 CGM.ErrorUnsupported(S, Type, OmitOnError); 797 } 798 799 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 800 /// variable-length array whose elements have a non-zero bit-pattern. 801 /// 802 /// \param baseType the inner-most element type of the array 803 /// \param src - a char* pointing to the bit-pattern for a single 804 /// base element of the array 805 /// \param sizeInChars - the total size of the VLA, in chars 806 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 807 llvm::Value *dest, llvm::Value *src, 808 llvm::Value *sizeInChars) { 809 std::pair<CharUnits,CharUnits> baseSizeAndAlign 810 = CGF.getContext().getTypeInfoInChars(baseType); 811 812 CGBuilderTy &Builder = CGF.Builder; 813 814 llvm::Value *baseSizeInChars 815 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 816 817 llvm::Type *i8p = Builder.getInt8PtrTy(); 818 819 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 820 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 821 822 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 823 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 824 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 825 826 // Make a loop over the VLA. C99 guarantees that the VLA element 827 // count must be nonzero. 828 CGF.EmitBlock(loopBB); 829 830 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 831 cur->addIncoming(begin, originBB); 832 833 // memcpy the individual element bit-pattern. 834 Builder.CreateMemCpy(cur, src, baseSizeInChars, 835 baseSizeAndAlign.second.getQuantity(), 836 /*volatile*/ false); 837 838 // Go to the next element. 839 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 840 841 // Leave if that's the end of the VLA. 842 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 843 Builder.CreateCondBr(done, contBB, loopBB); 844 cur->addIncoming(next, loopBB); 845 846 CGF.EmitBlock(contBB); 847 } 848 849 void 850 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 851 // Ignore empty classes in C++. 852 if (getLangOpts().CPlusPlus) { 853 if (const RecordType *RT = Ty->getAs<RecordType>()) { 854 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 855 return; 856 } 857 } 858 859 // Cast the dest ptr to the appropriate i8 pointer type. 860 unsigned DestAS = 861 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 862 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 863 if (DestPtr->getType() != BP) 864 DestPtr = Builder.CreateBitCast(DestPtr, BP); 865 866 // Get size and alignment info for this aggregate. 867 std::pair<CharUnits, CharUnits> TypeInfo = 868 getContext().getTypeInfoInChars(Ty); 869 CharUnits Size = TypeInfo.first; 870 CharUnits Align = TypeInfo.second; 871 872 llvm::Value *SizeVal; 873 const VariableArrayType *vla; 874 875 // Don't bother emitting a zero-byte memset. 876 if (Size.isZero()) { 877 // But note that getTypeInfo returns 0 for a VLA. 878 if (const VariableArrayType *vlaType = 879 dyn_cast_or_null<VariableArrayType>( 880 getContext().getAsArrayType(Ty))) { 881 QualType eltType; 882 llvm::Value *numElts; 883 llvm::tie(numElts, eltType) = getVLASize(vlaType); 884 885 SizeVal = numElts; 886 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 887 if (!eltSize.isOne()) 888 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 889 vla = vlaType; 890 } else { 891 return; 892 } 893 } else { 894 SizeVal = CGM.getSize(Size); 895 vla = 0; 896 } 897 898 // If the type contains a pointer to data member we can't memset it to zero. 899 // Instead, create a null constant and copy it to the destination. 900 // TODO: there are other patterns besides zero that we can usefully memset, 901 // like -1, which happens to be the pattern used by member-pointers. 902 if (!CGM.getTypes().isZeroInitializable(Ty)) { 903 // For a VLA, emit a single element, then splat that over the VLA. 904 if (vla) Ty = getContext().getBaseElementType(vla); 905 906 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 907 908 llvm::GlobalVariable *NullVariable = 909 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 910 /*isConstant=*/true, 911 llvm::GlobalVariable::PrivateLinkage, 912 NullConstant, Twine()); 913 llvm::Value *SrcPtr = 914 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 915 916 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 917 918 // Get and call the appropriate llvm.memcpy overload. 919 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 920 return; 921 } 922 923 // Otherwise, just memset the whole thing to zero. This is legal 924 // because in LLVM, all default initializers (other than the ones we just 925 // handled above) are guaranteed to have a bit pattern of all zeros. 926 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 927 Align.getQuantity(), false); 928 } 929 930 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 931 // Make sure that there is a block for the indirect goto. 932 if (IndirectBranch == 0) 933 GetIndirectGotoBlock(); 934 935 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 936 937 // Make sure the indirect branch includes all of the address-taken blocks. 938 IndirectBranch->addDestination(BB); 939 return llvm::BlockAddress::get(CurFn, BB); 940 } 941 942 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 943 // If we already made the indirect branch for indirect goto, return its block. 944 if (IndirectBranch) return IndirectBranch->getParent(); 945 946 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 947 948 // Create the PHI node that indirect gotos will add entries to. 949 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 950 "indirect.goto.dest"); 951 952 // Create the indirect branch instruction. 953 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 954 return IndirectBranch->getParent(); 955 } 956 957 /// Computes the length of an array in elements, as well as the base 958 /// element type and a properly-typed first element pointer. 959 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 960 QualType &baseType, 961 llvm::Value *&addr) { 962 const ArrayType *arrayType = origArrayType; 963 964 // If it's a VLA, we have to load the stored size. Note that 965 // this is the size of the VLA in bytes, not its size in elements. 966 llvm::Value *numVLAElements = 0; 967 if (isa<VariableArrayType>(arrayType)) { 968 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 969 970 // Walk into all VLAs. This doesn't require changes to addr, 971 // which has type T* where T is the first non-VLA element type. 972 do { 973 QualType elementType = arrayType->getElementType(); 974 arrayType = getContext().getAsArrayType(elementType); 975 976 // If we only have VLA components, 'addr' requires no adjustment. 977 if (!arrayType) { 978 baseType = elementType; 979 return numVLAElements; 980 } 981 } while (isa<VariableArrayType>(arrayType)); 982 983 // We get out here only if we find a constant array type 984 // inside the VLA. 985 } 986 987 // We have some number of constant-length arrays, so addr should 988 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 989 // down to the first element of addr. 990 SmallVector<llvm::Value*, 8> gepIndices; 991 992 // GEP down to the array type. 993 llvm::ConstantInt *zero = Builder.getInt32(0); 994 gepIndices.push_back(zero); 995 996 uint64_t countFromCLAs = 1; 997 QualType eltType; 998 999 llvm::ArrayType *llvmArrayType = 1000 dyn_cast<llvm::ArrayType>( 1001 cast<llvm::PointerType>(addr->getType())->getElementType()); 1002 while (llvmArrayType) { 1003 assert(isa<ConstantArrayType>(arrayType)); 1004 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1005 == llvmArrayType->getNumElements()); 1006 1007 gepIndices.push_back(zero); 1008 countFromCLAs *= llvmArrayType->getNumElements(); 1009 eltType = arrayType->getElementType(); 1010 1011 llvmArrayType = 1012 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1013 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1014 assert((!llvmArrayType || arrayType) && 1015 "LLVM and Clang types are out-of-synch"); 1016 } 1017 1018 if (arrayType) { 1019 // From this point onwards, the Clang array type has been emitted 1020 // as some other type (probably a packed struct). Compute the array 1021 // size, and just emit the 'begin' expression as a bitcast. 1022 while (arrayType) { 1023 countFromCLAs *= 1024 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1025 eltType = arrayType->getElementType(); 1026 arrayType = getContext().getAsArrayType(eltType); 1027 } 1028 1029 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1030 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1031 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1032 } else { 1033 // Create the actual GEP. 1034 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1035 } 1036 1037 baseType = eltType; 1038 1039 llvm::Value *numElements 1040 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1041 1042 // If we had any VLA dimensions, factor them in. 1043 if (numVLAElements) 1044 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1045 1046 return numElements; 1047 } 1048 1049 std::pair<llvm::Value*, QualType> 1050 CodeGenFunction::getVLASize(QualType type) { 1051 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1052 assert(vla && "type was not a variable array type!"); 1053 return getVLASize(vla); 1054 } 1055 1056 std::pair<llvm::Value*, QualType> 1057 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1058 // The number of elements so far; always size_t. 1059 llvm::Value *numElements = 0; 1060 1061 QualType elementType; 1062 do { 1063 elementType = type->getElementType(); 1064 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1065 assert(vlaSize && "no size for VLA!"); 1066 assert(vlaSize->getType() == SizeTy); 1067 1068 if (!numElements) { 1069 numElements = vlaSize; 1070 } else { 1071 // It's undefined behavior if this wraps around, so mark it that way. 1072 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1073 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1074 } 1075 } while ((type = getContext().getAsVariableArrayType(elementType))); 1076 1077 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1078 } 1079 1080 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1081 assert(type->isVariablyModifiedType() && 1082 "Must pass variably modified type to EmitVLASizes!"); 1083 1084 EnsureInsertPoint(); 1085 1086 // We're going to walk down into the type and look for VLA 1087 // expressions. 1088 do { 1089 assert(type->isVariablyModifiedType()); 1090 1091 const Type *ty = type.getTypePtr(); 1092 switch (ty->getTypeClass()) { 1093 1094 #define TYPE(Class, Base) 1095 #define ABSTRACT_TYPE(Class, Base) 1096 #define NON_CANONICAL_TYPE(Class, Base) 1097 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1098 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1099 #include "clang/AST/TypeNodes.def" 1100 llvm_unreachable("unexpected dependent type!"); 1101 1102 // These types are never variably-modified. 1103 case Type::Builtin: 1104 case Type::Complex: 1105 case Type::Vector: 1106 case Type::ExtVector: 1107 case Type::Record: 1108 case Type::Enum: 1109 case Type::Elaborated: 1110 case Type::TemplateSpecialization: 1111 case Type::ObjCObject: 1112 case Type::ObjCInterface: 1113 case Type::ObjCObjectPointer: 1114 llvm_unreachable("type class is never variably-modified!"); 1115 1116 case Type::Pointer: 1117 type = cast<PointerType>(ty)->getPointeeType(); 1118 break; 1119 1120 case Type::BlockPointer: 1121 type = cast<BlockPointerType>(ty)->getPointeeType(); 1122 break; 1123 1124 case Type::LValueReference: 1125 case Type::RValueReference: 1126 type = cast<ReferenceType>(ty)->getPointeeType(); 1127 break; 1128 1129 case Type::MemberPointer: 1130 type = cast<MemberPointerType>(ty)->getPointeeType(); 1131 break; 1132 1133 case Type::ConstantArray: 1134 case Type::IncompleteArray: 1135 // Losing element qualification here is fine. 1136 type = cast<ArrayType>(ty)->getElementType(); 1137 break; 1138 1139 case Type::VariableArray: { 1140 // Losing element qualification here is fine. 1141 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1142 1143 // Unknown size indication requires no size computation. 1144 // Otherwise, evaluate and record it. 1145 if (const Expr *size = vat->getSizeExpr()) { 1146 // It's possible that we might have emitted this already, 1147 // e.g. with a typedef and a pointer to it. 1148 llvm::Value *&entry = VLASizeMap[size]; 1149 if (!entry) { 1150 llvm::Value *Size = EmitScalarExpr(size); 1151 1152 // C11 6.7.6.2p5: 1153 // If the size is an expression that is not an integer constant 1154 // expression [...] each time it is evaluated it shall have a value 1155 // greater than zero. 1156 if (SanOpts->VLABound && 1157 size->getType()->isSignedIntegerType()) { 1158 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1159 llvm::Constant *StaticArgs[] = { 1160 EmitCheckSourceLocation(size->getLocStart()), 1161 EmitCheckTypeDescriptor(size->getType()) 1162 }; 1163 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1164 "vla_bound_not_positive", StaticArgs, Size, 1165 CRK_Recoverable); 1166 } 1167 1168 // Always zexting here would be wrong if it weren't 1169 // undefined behavior to have a negative bound. 1170 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1171 } 1172 } 1173 type = vat->getElementType(); 1174 break; 1175 } 1176 1177 case Type::FunctionProto: 1178 case Type::FunctionNoProto: 1179 type = cast<FunctionType>(ty)->getResultType(); 1180 break; 1181 1182 case Type::Paren: 1183 case Type::TypeOf: 1184 case Type::UnaryTransform: 1185 case Type::Attributed: 1186 case Type::SubstTemplateTypeParm: 1187 // Keep walking after single level desugaring. 1188 type = type.getSingleStepDesugaredType(getContext()); 1189 break; 1190 1191 case Type::Typedef: 1192 case Type::Decltype: 1193 case Type::Auto: 1194 // Stop walking: nothing to do. 1195 return; 1196 1197 case Type::TypeOfExpr: 1198 // Stop walking: emit typeof expression. 1199 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1200 return; 1201 1202 case Type::Atomic: 1203 type = cast<AtomicType>(ty)->getValueType(); 1204 break; 1205 } 1206 } while (type->isVariablyModifiedType()); 1207 } 1208 1209 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1210 if (getContext().getBuiltinVaListType()->isArrayType()) 1211 return EmitScalarExpr(E); 1212 return EmitLValue(E).getAddress(); 1213 } 1214 1215 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1216 llvm::Constant *Init) { 1217 assert (Init && "Invalid DeclRefExpr initializer!"); 1218 if (CGDebugInfo *Dbg = getDebugInfo()) 1219 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1220 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1221 } 1222 1223 CodeGenFunction::PeepholeProtection 1224 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1225 // At the moment, the only aggressive peephole we do in IR gen 1226 // is trunc(zext) folding, but if we add more, we can easily 1227 // extend this protection. 1228 1229 if (!rvalue.isScalar()) return PeepholeProtection(); 1230 llvm::Value *value = rvalue.getScalarVal(); 1231 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1232 1233 // Just make an extra bitcast. 1234 assert(HaveInsertPoint()); 1235 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1236 Builder.GetInsertBlock()); 1237 1238 PeepholeProtection protection; 1239 protection.Inst = inst; 1240 return protection; 1241 } 1242 1243 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1244 if (!protection.Inst) return; 1245 1246 // In theory, we could try to duplicate the peepholes now, but whatever. 1247 protection.Inst->eraseFromParent(); 1248 } 1249 1250 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1251 llvm::Value *AnnotatedVal, 1252 StringRef AnnotationStr, 1253 SourceLocation Location) { 1254 llvm::Value *Args[4] = { 1255 AnnotatedVal, 1256 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1257 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1258 CGM.EmitAnnotationLineNo(Location) 1259 }; 1260 return Builder.CreateCall(AnnotationFn, Args); 1261 } 1262 1263 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1264 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1265 // FIXME We create a new bitcast for every annotation because that's what 1266 // llvm-gcc was doing. 1267 for (specific_attr_iterator<AnnotateAttr> 1268 ai = D->specific_attr_begin<AnnotateAttr>(), 1269 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1270 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1271 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1272 (*ai)->getAnnotation(), D->getLocation()); 1273 } 1274 1275 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1276 llvm::Value *V) { 1277 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1278 llvm::Type *VTy = V->getType(); 1279 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1280 CGM.Int8PtrTy); 1281 1282 for (specific_attr_iterator<AnnotateAttr> 1283 ai = D->specific_attr_begin<AnnotateAttr>(), 1284 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1285 // FIXME Always emit the cast inst so we can differentiate between 1286 // annotation on the first field of a struct and annotation on the struct 1287 // itself. 1288 if (VTy != CGM.Int8PtrTy) 1289 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1290 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1291 V = Builder.CreateBitCast(V, VTy); 1292 } 1293 1294 return V; 1295 } 1296