1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "clang/Sema/SemaDiagnostic.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Operator.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
43 /// markers.
44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
45                                       const LangOptions &LangOpts) {
46   if (CGOpts.DisableLifetimeMarkers)
47     return false;
48 
49   // Disable lifetime markers in msan builds.
50   // FIXME: Remove this when msan works with lifetime markers.
51   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
52     return false;
53 
54   // Asan uses markers for use-after-scope checks.
55   if (CGOpts.SanitizeAddressUseAfterScope)
56     return true;
57 
58   // For now, only in optimized builds.
59   return CGOpts.OptimizationLevel != 0;
60 }
61 
62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
63     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
64       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
65               CGBuilderInserterTy(this)),
66       CurFn(nullptr), ReturnValue(Address::invalid()),
67       CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize),
68       IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false),
69       SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr),
70       BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
71       NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
72       FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
73       EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
74       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
75       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
76       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
77       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
78       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
79       CXXStructorImplicitParamDecl(nullptr),
80       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
81       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
82       TerminateHandler(nullptr), TrapBB(nullptr),
83       ShouldEmitLifetimeMarkers(
84           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
85   if (!suppressNewContext)
86     CGM.getCXXABI().getMangleContext().startNewFunction();
87 
88   llvm::FastMathFlags FMF;
89   if (CGM.getLangOpts().FastMath)
90     FMF.setUnsafeAlgebra();
91   if (CGM.getLangOpts().FiniteMathOnly) {
92     FMF.setNoNaNs();
93     FMF.setNoInfs();
94   }
95   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
96     FMF.setNoNaNs();
97   }
98   if (CGM.getCodeGenOpts().NoSignedZeros) {
99     FMF.setNoSignedZeros();
100   }
101   if (CGM.getCodeGenOpts().ReciprocalMath) {
102     FMF.setAllowReciprocal();
103   }
104   Builder.setFastMathFlags(FMF);
105 }
106 
107 CodeGenFunction::~CodeGenFunction() {
108   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
109 
110   // If there are any unclaimed block infos, go ahead and destroy them
111   // now.  This can happen if IR-gen gets clever and skips evaluating
112   // something.
113   if (FirstBlockInfo)
114     destroyBlockInfos(FirstBlockInfo);
115 
116   if (getLangOpts().OpenMP && CurFn)
117     CGM.getOpenMPRuntime().functionFinished(*this);
118 }
119 
120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
121                                                     LValueBaseInfo *BaseInfo) {
122   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo,
123                                  /*forPointee*/ true);
124 }
125 
126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
127                                                    LValueBaseInfo *BaseInfo,
128                                                    bool forPointeeType) {
129   // Honor alignment typedef attributes even on incomplete types.
130   // We also honor them straight for C++ class types, even as pointees;
131   // there's an expressivity gap here.
132   if (auto TT = T->getAs<TypedefType>()) {
133     if (auto Align = TT->getDecl()->getMaxAlignment()) {
134       if (BaseInfo)
135         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false);
136       return getContext().toCharUnitsFromBits(Align);
137     }
138   }
139 
140   if (BaseInfo)
141     *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false);
142 
143   CharUnits Alignment;
144   if (T->isIncompleteType()) {
145     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
146   } else {
147     // For C++ class pointees, we don't know whether we're pointing at a
148     // base or a complete object, so we generally need to use the
149     // non-virtual alignment.
150     const CXXRecordDecl *RD;
151     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
152       Alignment = CGM.getClassPointerAlignment(RD);
153     } else {
154       Alignment = getContext().getTypeAlignInChars(T);
155       if (T.getQualifiers().hasUnaligned())
156         Alignment = CharUnits::One();
157     }
158 
159     // Cap to the global maximum type alignment unless the alignment
160     // was somehow explicit on the type.
161     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
162       if (Alignment.getQuantity() > MaxAlign &&
163           !getContext().isAlignmentRequired(T))
164         Alignment = CharUnits::fromQuantity(MaxAlign);
165     }
166   }
167   return Alignment;
168 }
169 
170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
171   LValueBaseInfo BaseInfo;
172   CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo);
173   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
174                           CGM.getTBAAInfo(T));
175 }
176 
177 /// Given a value of type T* that may not be to a complete object,
178 /// construct an l-value with the natural pointee alignment of T.
179 LValue
180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
181   LValueBaseInfo BaseInfo;
182   CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true);
183   return MakeAddrLValue(Address(V, Align), T, BaseInfo);
184 }
185 
186 
187 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
188   return CGM.getTypes().ConvertTypeForMem(T);
189 }
190 
191 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
192   return CGM.getTypes().ConvertType(T);
193 }
194 
195 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
196   type = type.getCanonicalType();
197   while (true) {
198     switch (type->getTypeClass()) {
199 #define TYPE(name, parent)
200 #define ABSTRACT_TYPE(name, parent)
201 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
202 #define DEPENDENT_TYPE(name, parent) case Type::name:
203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
204 #include "clang/AST/TypeNodes.def"
205       llvm_unreachable("non-canonical or dependent type in IR-generation");
206 
207     case Type::Auto:
208     case Type::DeducedTemplateSpecialization:
209       llvm_unreachable("undeduced type in IR-generation");
210 
211     // Various scalar types.
212     case Type::Builtin:
213     case Type::Pointer:
214     case Type::BlockPointer:
215     case Type::LValueReference:
216     case Type::RValueReference:
217     case Type::MemberPointer:
218     case Type::Vector:
219     case Type::ExtVector:
220     case Type::FunctionProto:
221     case Type::FunctionNoProto:
222     case Type::Enum:
223     case Type::ObjCObjectPointer:
224     case Type::Pipe:
225       return TEK_Scalar;
226 
227     // Complexes.
228     case Type::Complex:
229       return TEK_Complex;
230 
231     // Arrays, records, and Objective-C objects.
232     case Type::ConstantArray:
233     case Type::IncompleteArray:
234     case Type::VariableArray:
235     case Type::Record:
236     case Type::ObjCObject:
237     case Type::ObjCInterface:
238       return TEK_Aggregate;
239 
240     // We operate on atomic values according to their underlying type.
241     case Type::Atomic:
242       type = cast<AtomicType>(type)->getValueType();
243       continue;
244     }
245     llvm_unreachable("unknown type kind!");
246   }
247 }
248 
249 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
250   // For cleanliness, we try to avoid emitting the return block for
251   // simple cases.
252   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
253 
254   if (CurBB) {
255     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
256 
257     // We have a valid insert point, reuse it if it is empty or there are no
258     // explicit jumps to the return block.
259     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
260       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
261       delete ReturnBlock.getBlock();
262     } else
263       EmitBlock(ReturnBlock.getBlock());
264     return llvm::DebugLoc();
265   }
266 
267   // Otherwise, if the return block is the target of a single direct
268   // branch then we can just put the code in that block instead. This
269   // cleans up functions which started with a unified return block.
270   if (ReturnBlock.getBlock()->hasOneUse()) {
271     llvm::BranchInst *BI =
272       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
273     if (BI && BI->isUnconditional() &&
274         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
275       // Record/return the DebugLoc of the simple 'return' expression to be used
276       // later by the actual 'ret' instruction.
277       llvm::DebugLoc Loc = BI->getDebugLoc();
278       Builder.SetInsertPoint(BI->getParent());
279       BI->eraseFromParent();
280       delete ReturnBlock.getBlock();
281       return Loc;
282     }
283   }
284 
285   // FIXME: We are at an unreachable point, there is no reason to emit the block
286   // unless it has uses. However, we still need a place to put the debug
287   // region.end for now.
288 
289   EmitBlock(ReturnBlock.getBlock());
290   return llvm::DebugLoc();
291 }
292 
293 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
294   if (!BB) return;
295   if (!BB->use_empty())
296     return CGF.CurFn->getBasicBlockList().push_back(BB);
297   delete BB;
298 }
299 
300 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
301   assert(BreakContinueStack.empty() &&
302          "mismatched push/pop in break/continue stack!");
303 
304   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
305     && NumSimpleReturnExprs == NumReturnExprs
306     && ReturnBlock.getBlock()->use_empty();
307   // Usually the return expression is evaluated before the cleanup
308   // code.  If the function contains only a simple return statement,
309   // such as a constant, the location before the cleanup code becomes
310   // the last useful breakpoint in the function, because the simple
311   // return expression will be evaluated after the cleanup code. To be
312   // safe, set the debug location for cleanup code to the location of
313   // the return statement.  Otherwise the cleanup code should be at the
314   // end of the function's lexical scope.
315   //
316   // If there are multiple branches to the return block, the branch
317   // instructions will get the location of the return statements and
318   // all will be fine.
319   if (CGDebugInfo *DI = getDebugInfo()) {
320     if (OnlySimpleReturnStmts)
321       DI->EmitLocation(Builder, LastStopPoint);
322     else
323       DI->EmitLocation(Builder, EndLoc);
324   }
325 
326   // Pop any cleanups that might have been associated with the
327   // parameters.  Do this in whatever block we're currently in; it's
328   // important to do this before we enter the return block or return
329   // edges will be *really* confused.
330   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
331   bool HasOnlyLifetimeMarkers =
332       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
333   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
334   if (HasCleanups) {
335     // Make sure the line table doesn't jump back into the body for
336     // the ret after it's been at EndLoc.
337     if (CGDebugInfo *DI = getDebugInfo())
338       if (OnlySimpleReturnStmts)
339         DI->EmitLocation(Builder, EndLoc);
340 
341     PopCleanupBlocks(PrologueCleanupDepth);
342   }
343 
344   // Emit function epilog (to return).
345   llvm::DebugLoc Loc = EmitReturnBlock();
346 
347   if (ShouldInstrumentFunction())
348     EmitFunctionInstrumentation("__cyg_profile_func_exit");
349 
350   // Emit debug descriptor for function end.
351   if (CGDebugInfo *DI = getDebugInfo())
352     DI->EmitFunctionEnd(Builder, CurFn);
353 
354   // Reset the debug location to that of the simple 'return' expression, if any
355   // rather than that of the end of the function's scope '}'.
356   ApplyDebugLocation AL(*this, Loc);
357   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
358   EmitEndEHSpec(CurCodeDecl);
359 
360   assert(EHStack.empty() &&
361          "did not remove all scopes from cleanup stack!");
362 
363   // If someone did an indirect goto, emit the indirect goto block at the end of
364   // the function.
365   if (IndirectBranch) {
366     EmitBlock(IndirectBranch->getParent());
367     Builder.ClearInsertionPoint();
368   }
369 
370   // If some of our locals escaped, insert a call to llvm.localescape in the
371   // entry block.
372   if (!EscapedLocals.empty()) {
373     // Invert the map from local to index into a simple vector. There should be
374     // no holes.
375     SmallVector<llvm::Value *, 4> EscapeArgs;
376     EscapeArgs.resize(EscapedLocals.size());
377     for (auto &Pair : EscapedLocals)
378       EscapeArgs[Pair.second] = Pair.first;
379     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
380         &CGM.getModule(), llvm::Intrinsic::localescape);
381     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
382   }
383 
384   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
385   llvm::Instruction *Ptr = AllocaInsertPt;
386   AllocaInsertPt = nullptr;
387   Ptr->eraseFromParent();
388 
389   // If someone took the address of a label but never did an indirect goto, we
390   // made a zero entry PHI node, which is illegal, zap it now.
391   if (IndirectBranch) {
392     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
393     if (PN->getNumIncomingValues() == 0) {
394       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
395       PN->eraseFromParent();
396     }
397   }
398 
399   EmitIfUsed(*this, EHResumeBlock);
400   EmitIfUsed(*this, TerminateLandingPad);
401   EmitIfUsed(*this, TerminateHandler);
402   EmitIfUsed(*this, UnreachableBlock);
403 
404   if (CGM.getCodeGenOpts().EmitDeclMetadata)
405     EmitDeclMetadata();
406 
407   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
408            I = DeferredReplacements.begin(),
409            E = DeferredReplacements.end();
410        I != E; ++I) {
411     I->first->replaceAllUsesWith(I->second);
412     I->first->eraseFromParent();
413   }
414 }
415 
416 /// ShouldInstrumentFunction - Return true if the current function should be
417 /// instrumented with __cyg_profile_func_* calls
418 bool CodeGenFunction::ShouldInstrumentFunction() {
419   if (!CGM.getCodeGenOpts().InstrumentFunctions)
420     return false;
421   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
422     return false;
423   return true;
424 }
425 
426 /// ShouldXRayInstrument - Return true if the current function should be
427 /// instrumented with XRay nop sleds.
428 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
429   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
430 }
431 
432 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
433 /// instrumentation function with the current function and the call site, if
434 /// function instrumentation is enabled.
435 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
436   auto NL = ApplyDebugLocation::CreateArtificial(*this);
437   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
438   llvm::PointerType *PointerTy = Int8PtrTy;
439   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
440   llvm::FunctionType *FunctionTy =
441     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
442 
443   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
444   llvm::CallInst *CallSite = Builder.CreateCall(
445     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
446     llvm::ConstantInt::get(Int32Ty, 0),
447     "callsite");
448 
449   llvm::Value *args[] = {
450     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
451     CallSite
452   };
453 
454   EmitNounwindRuntimeCall(F, args);
455 }
456 
457 static void removeImageAccessQualifier(std::string& TyName) {
458   std::string ReadOnlyQual("__read_only");
459   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
460   if (ReadOnlyPos != std::string::npos)
461     // "+ 1" for the space after access qualifier.
462     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
463   else {
464     std::string WriteOnlyQual("__write_only");
465     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
466     if (WriteOnlyPos != std::string::npos)
467       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
468     else {
469       std::string ReadWriteQual("__read_write");
470       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
471       if (ReadWritePos != std::string::npos)
472         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
473     }
474   }
475 }
476 
477 // Returns the address space id that should be produced to the
478 // kernel_arg_addr_space metadata. This is always fixed to the ids
479 // as specified in the SPIR 2.0 specification in order to differentiate
480 // for example in clGetKernelArgInfo() implementation between the address
481 // spaces with targets without unique mapping to the OpenCL address spaces
482 // (basically all single AS CPUs).
483 static unsigned ArgInfoAddressSpace(unsigned LangAS) {
484   switch (LangAS) {
485   case LangAS::opencl_global:   return 1;
486   case LangAS::opencl_constant: return 2;
487   case LangAS::opencl_local:    return 3;
488   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
489   default:
490     return 0; // Assume private.
491   }
492 }
493 
494 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
495 // information in the program executable. The argument information stored
496 // includes the argument name, its type, the address and access qualifiers used.
497 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
498                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
499                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
500   // Create MDNodes that represent the kernel arg metadata.
501   // Each MDNode is a list in the form of "key", N number of values which is
502   // the same number of values as their are kernel arguments.
503 
504   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
505 
506   // MDNode for the kernel argument address space qualifiers.
507   SmallVector<llvm::Metadata *, 8> addressQuals;
508 
509   // MDNode for the kernel argument access qualifiers (images only).
510   SmallVector<llvm::Metadata *, 8> accessQuals;
511 
512   // MDNode for the kernel argument type names.
513   SmallVector<llvm::Metadata *, 8> argTypeNames;
514 
515   // MDNode for the kernel argument base type names.
516   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
517 
518   // MDNode for the kernel argument type qualifiers.
519   SmallVector<llvm::Metadata *, 8> argTypeQuals;
520 
521   // MDNode for the kernel argument names.
522   SmallVector<llvm::Metadata *, 8> argNames;
523 
524   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
525     const ParmVarDecl *parm = FD->getParamDecl(i);
526     QualType ty = parm->getType();
527     std::string typeQuals;
528 
529     if (ty->isPointerType()) {
530       QualType pointeeTy = ty->getPointeeType();
531 
532       // Get address qualifier.
533       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
534         ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
535 
536       // Get argument type name.
537       std::string typeName =
538           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
539 
540       // Turn "unsigned type" to "utype"
541       std::string::size_type pos = typeName.find("unsigned");
542       if (pointeeTy.isCanonical() && pos != std::string::npos)
543         typeName.erase(pos+1, 8);
544 
545       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
546 
547       std::string baseTypeName =
548           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
549               Policy) +
550           "*";
551 
552       // Turn "unsigned type" to "utype"
553       pos = baseTypeName.find("unsigned");
554       if (pos != std::string::npos)
555         baseTypeName.erase(pos+1, 8);
556 
557       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
558 
559       // Get argument type qualifiers:
560       if (ty.isRestrictQualified())
561         typeQuals = "restrict";
562       if (pointeeTy.isConstQualified() ||
563           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
564         typeQuals += typeQuals.empty() ? "const" : " const";
565       if (pointeeTy.isVolatileQualified())
566         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
567     } else {
568       uint32_t AddrSpc = 0;
569       bool isPipe = ty->isPipeType();
570       if (ty->isImageType() || isPipe)
571         AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
572 
573       addressQuals.push_back(
574           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
575 
576       // Get argument type name.
577       std::string typeName;
578       if (isPipe)
579         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
580                      .getAsString(Policy);
581       else
582         typeName = ty.getUnqualifiedType().getAsString(Policy);
583 
584       // Turn "unsigned type" to "utype"
585       std::string::size_type pos = typeName.find("unsigned");
586       if (ty.isCanonical() && pos != std::string::npos)
587         typeName.erase(pos+1, 8);
588 
589       std::string baseTypeName;
590       if (isPipe)
591         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
592                           ->getElementType().getCanonicalType()
593                           .getAsString(Policy);
594       else
595         baseTypeName =
596           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
597 
598       // Remove access qualifiers on images
599       // (as they are inseparable from type in clang implementation,
600       // but OpenCL spec provides a special query to get access qualifier
601       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
602       if (ty->isImageType()) {
603         removeImageAccessQualifier(typeName);
604         removeImageAccessQualifier(baseTypeName);
605       }
606 
607       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
608 
609       // Turn "unsigned type" to "utype"
610       pos = baseTypeName.find("unsigned");
611       if (pos != std::string::npos)
612         baseTypeName.erase(pos+1, 8);
613 
614       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
615 
616       if (isPipe)
617         typeQuals = "pipe";
618     }
619 
620     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
621 
622     // Get image and pipe access qualifier:
623     if (ty->isImageType()|| ty->isPipeType()) {
624       const Decl *PDecl = parm;
625       if (auto *TD = dyn_cast<TypedefType>(ty))
626         PDecl = TD->getDecl();
627       const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
628       if (A && A->isWriteOnly())
629         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
630       else if (A && A->isReadWrite())
631         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
632       else
633         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
634     } else
635       accessQuals.push_back(llvm::MDString::get(Context, "none"));
636 
637     // Get argument name.
638     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
639   }
640 
641   Fn->setMetadata("kernel_arg_addr_space",
642                   llvm::MDNode::get(Context, addressQuals));
643   Fn->setMetadata("kernel_arg_access_qual",
644                   llvm::MDNode::get(Context, accessQuals));
645   Fn->setMetadata("kernel_arg_type",
646                   llvm::MDNode::get(Context, argTypeNames));
647   Fn->setMetadata("kernel_arg_base_type",
648                   llvm::MDNode::get(Context, argBaseTypeNames));
649   Fn->setMetadata("kernel_arg_type_qual",
650                   llvm::MDNode::get(Context, argTypeQuals));
651   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
652     Fn->setMetadata("kernel_arg_name",
653                     llvm::MDNode::get(Context, argNames));
654 }
655 
656 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
657                                                llvm::Function *Fn)
658 {
659   if (!FD->hasAttr<OpenCLKernelAttr>())
660     return;
661 
662   llvm::LLVMContext &Context = getLLVMContext();
663 
664   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
665 
666   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
667     QualType HintQTy = A->getTypeHint();
668     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
669     bool IsSignedInteger =
670         HintQTy->isSignedIntegerType() ||
671         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
672     llvm::Metadata *AttrMDArgs[] = {
673         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
674             CGM.getTypes().ConvertType(A->getTypeHint()))),
675         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
676             llvm::IntegerType::get(Context, 32),
677             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
678     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
679   }
680 
681   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
682     llvm::Metadata *AttrMDArgs[] = {
683         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
684         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
685         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
686     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
687   }
688 
689   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
690     llvm::Metadata *AttrMDArgs[] = {
691         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
692         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
693         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
694     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
695   }
696 
697   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
698           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
699     llvm::Metadata *AttrMDArgs[] = {
700         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
701     Fn->setMetadata("intel_reqd_sub_group_size",
702                     llvm::MDNode::get(Context, AttrMDArgs));
703   }
704 }
705 
706 /// Determine whether the function F ends with a return stmt.
707 static bool endsWithReturn(const Decl* F) {
708   const Stmt *Body = nullptr;
709   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
710     Body = FD->getBody();
711   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
712     Body = OMD->getBody();
713 
714   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
715     auto LastStmt = CS->body_rbegin();
716     if (LastStmt != CS->body_rend())
717       return isa<ReturnStmt>(*LastStmt);
718   }
719   return false;
720 }
721 
722 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
723   Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
724   Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
725 }
726 
727 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
728   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
729   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
730       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
731       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
732     return false;
733 
734   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
735     return false;
736 
737   if (MD->getNumParams() == 2) {
738     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
739     if (!PT || !PT->isVoidPointerType() ||
740         !PT->getPointeeType().isConstQualified())
741       return false;
742   }
743 
744   return true;
745 }
746 
747 void CodeGenFunction::StartFunction(GlobalDecl GD,
748                                     QualType RetTy,
749                                     llvm::Function *Fn,
750                                     const CGFunctionInfo &FnInfo,
751                                     const FunctionArgList &Args,
752                                     SourceLocation Loc,
753                                     SourceLocation StartLoc) {
754   assert(!CurFn &&
755          "Do not use a CodeGenFunction object for more than one function");
756 
757   const Decl *D = GD.getDecl();
758 
759   DidCallStackSave = false;
760   CurCodeDecl = D;
761   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
762     if (FD->usesSEHTry())
763       CurSEHParent = FD;
764   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
765   FnRetTy = RetTy;
766   CurFn = Fn;
767   CurFnInfo = &FnInfo;
768   assert(CurFn->isDeclaration() && "Function already has body?");
769 
770   if (CGM.isInSanitizerBlacklist(Fn, Loc))
771     SanOpts.clear();
772 
773   if (D) {
774     // Apply the no_sanitize* attributes to SanOpts.
775     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
776       SanOpts.Mask &= ~Attr->getMask();
777   }
778 
779   // Apply sanitizer attributes to the function.
780   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
781     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
782   if (SanOpts.has(SanitizerKind::Thread))
783     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
784   if (SanOpts.has(SanitizerKind::Memory))
785     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
786   if (SanOpts.has(SanitizerKind::SafeStack))
787     Fn->addFnAttr(llvm::Attribute::SafeStack);
788 
789   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
790   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
791   if (SanOpts.has(SanitizerKind::Thread)) {
792     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
793       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
794       if (OMD->getMethodFamily() == OMF_dealloc ||
795           OMD->getMethodFamily() == OMF_initialize ||
796           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
797         markAsIgnoreThreadCheckingAtRuntime(Fn);
798       }
799     } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
800       IdentifierInfo *II = FD->getIdentifier();
801       if (II && II->isStr("__destroy_helper_block_"))
802         markAsIgnoreThreadCheckingAtRuntime(Fn);
803     }
804   }
805 
806   // Ignore unrelated casts in STL allocate() since the allocator must cast
807   // from void* to T* before object initialization completes. Don't match on the
808   // namespace because not all allocators are in std::
809   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
810     if (matchesStlAllocatorFn(D, getContext()))
811       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
812   }
813 
814   // Apply xray attributes to the function (as a string, for now)
815   if (D && ShouldXRayInstrumentFunction()) {
816     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
817       if (XRayAttr->alwaysXRayInstrument())
818         Fn->addFnAttr("function-instrument", "xray-always");
819       if (XRayAttr->neverXRayInstrument())
820         Fn->addFnAttr("function-instrument", "xray-never");
821       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) {
822         Fn->addFnAttr("xray-log-args",
823                       llvm::utostr(LogArgs->getArgumentCount()));
824       }
825     } else {
826       if (!CGM.imbueXRayAttrs(Fn, Loc))
827         Fn->addFnAttr(
828             "xray-instruction-threshold",
829             llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
830     }
831   }
832 
833   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
834     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
835       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
836 
837   // Add no-jump-tables value.
838   Fn->addFnAttr("no-jump-tables",
839                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
840 
841   // Add profile-sample-accurate value.
842   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
843     Fn->addFnAttr("profile-sample-accurate");
844 
845   if (getLangOpts().OpenCL) {
846     // Add metadata for a kernel function.
847     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
848       EmitOpenCLKernelMetadata(FD, Fn);
849   }
850 
851   // If we are checking function types, emit a function type signature as
852   // prologue data.
853   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
854     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
855       if (llvm::Constant *PrologueSig =
856               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
857         llvm::Constant *FTRTTIConst =
858             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
859         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
860         llvm::Constant *PrologueStructConst =
861             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
862         Fn->setPrologueData(PrologueStructConst);
863       }
864     }
865   }
866 
867   // If we're checking nullability, we need to know whether we can check the
868   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
869   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
870     auto Nullability = FnRetTy->getNullability(getContext());
871     if (Nullability && *Nullability == NullabilityKind::NonNull) {
872       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
873             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
874         RetValNullabilityPrecondition =
875             llvm::ConstantInt::getTrue(getLLVMContext());
876     }
877   }
878 
879   // If we're in C++ mode and the function name is "main", it is guaranteed
880   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
881   // used within a program").
882   if (getLangOpts().CPlusPlus)
883     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
884       if (FD->isMain())
885         Fn->addFnAttr(llvm::Attribute::NoRecurse);
886 
887   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
888 
889   // Create a marker to make it easy to insert allocas into the entryblock
890   // later.  Don't create this with the builder, because we don't want it
891   // folded.
892   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
893   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
894 
895   ReturnBlock = getJumpDestInCurrentScope("return");
896 
897   Builder.SetInsertPoint(EntryBB);
898 
899   // If we're checking the return value, allocate space for a pointer to a
900   // precise source location of the checked return statement.
901   if (requiresReturnValueCheck()) {
902     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
903     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
904   }
905 
906   // Emit subprogram debug descriptor.
907   if (CGDebugInfo *DI = getDebugInfo()) {
908     // Reconstruct the type from the argument list so that implicit parameters,
909     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
910     // convention.
911     CallingConv CC = CallingConv::CC_C;
912     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
913       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
914         CC = SrcFnTy->getCallConv();
915     SmallVector<QualType, 16> ArgTypes;
916     for (const VarDecl *VD : Args)
917       ArgTypes.push_back(VD->getType());
918     QualType FnType = getContext().getFunctionType(
919         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
920     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
921   }
922 
923   if (ShouldInstrumentFunction())
924     EmitFunctionInstrumentation("__cyg_profile_func_enter");
925 
926   // Since emitting the mcount call here impacts optimizations such as function
927   // inlining, we just add an attribute to insert a mcount call in backend.
928   // The attribute "counting-function" is set to mcount function name which is
929   // architecture dependent.
930   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
931     if (CGM.getCodeGenOpts().CallFEntry)
932       Fn->addFnAttr("fentry-call", "true");
933     else {
934       if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
935         Fn->addFnAttr("counting-function", getTarget().getMCountName());
936     }
937   }
938 
939   if (RetTy->isVoidType()) {
940     // Void type; nothing to return.
941     ReturnValue = Address::invalid();
942 
943     // Count the implicit return.
944     if (!endsWithReturn(D))
945       ++NumReturnExprs;
946   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
947              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
948     // Indirect aggregate return; emit returned value directly into sret slot.
949     // This reduces code size, and affects correctness in C++.
950     auto AI = CurFn->arg_begin();
951     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
952       ++AI;
953     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
954   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
955              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
956     // Load the sret pointer from the argument struct and return into that.
957     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
958     llvm::Function::arg_iterator EI = CurFn->arg_end();
959     --EI;
960     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
961     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
962     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
963   } else {
964     ReturnValue = CreateIRTemp(RetTy, "retval");
965 
966     // Tell the epilog emitter to autorelease the result.  We do this
967     // now so that various specialized functions can suppress it
968     // during their IR-generation.
969     if (getLangOpts().ObjCAutoRefCount &&
970         !CurFnInfo->isReturnsRetained() &&
971         RetTy->isObjCRetainableType())
972       AutoreleaseResult = true;
973   }
974 
975   EmitStartEHSpec(CurCodeDecl);
976 
977   PrologueCleanupDepth = EHStack.stable_begin();
978   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
979 
980   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
981     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
982     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
983     if (MD->getParent()->isLambda() &&
984         MD->getOverloadedOperator() == OO_Call) {
985       // We're in a lambda; figure out the captures.
986       MD->getParent()->getCaptureFields(LambdaCaptureFields,
987                                         LambdaThisCaptureField);
988       if (LambdaThisCaptureField) {
989         // If the lambda captures the object referred to by '*this' - either by
990         // value or by reference, make sure CXXThisValue points to the correct
991         // object.
992 
993         // Get the lvalue for the field (which is a copy of the enclosing object
994         // or contains the address of the enclosing object).
995         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
996         if (!LambdaThisCaptureField->getType()->isPointerType()) {
997           // If the enclosing object was captured by value, just use its address.
998           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
999         } else {
1000           // Load the lvalue pointed to by the field, since '*this' was captured
1001           // by reference.
1002           CXXThisValue =
1003               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1004         }
1005       }
1006       for (auto *FD : MD->getParent()->fields()) {
1007         if (FD->hasCapturedVLAType()) {
1008           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1009                                            SourceLocation()).getScalarVal();
1010           auto VAT = FD->getCapturedVLAType();
1011           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1012         }
1013       }
1014     } else {
1015       // Not in a lambda; just use 'this' from the method.
1016       // FIXME: Should we generate a new load for each use of 'this'?  The
1017       // fast register allocator would be happier...
1018       CXXThisValue = CXXABIThisValue;
1019     }
1020 
1021     // Check the 'this' pointer once per function, if it's available.
1022     if (CXXABIThisValue) {
1023       SanitizerSet SkippedChecks;
1024       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1025       QualType ThisTy = MD->getThisType(getContext());
1026 
1027       // If this is the call operator of a lambda with no capture-default, it
1028       // may have a static invoker function, which may call this operator with
1029       // a null 'this' pointer.
1030       if (isLambdaCallOperator(MD) &&
1031           cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() ==
1032               LCD_None)
1033         SkippedChecks.set(SanitizerKind::Null, true);
1034 
1035       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1036                                                 : TCK_MemberCall,
1037                     Loc, CXXABIThisValue, ThisTy,
1038                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1039                     SkippedChecks);
1040     }
1041   }
1042 
1043   // If any of the arguments have a variably modified type, make sure to
1044   // emit the type size.
1045   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1046        i != e; ++i) {
1047     const VarDecl *VD = *i;
1048 
1049     // Dig out the type as written from ParmVarDecls; it's unclear whether
1050     // the standard (C99 6.9.1p10) requires this, but we're following the
1051     // precedent set by gcc.
1052     QualType Ty;
1053     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1054       Ty = PVD->getOriginalType();
1055     else
1056       Ty = VD->getType();
1057 
1058     if (Ty->isVariablyModifiedType())
1059       EmitVariablyModifiedType(Ty);
1060   }
1061   // Emit a location at the end of the prologue.
1062   if (CGDebugInfo *DI = getDebugInfo())
1063     DI->EmitLocation(Builder, StartLoc);
1064 }
1065 
1066 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
1067                                        const Stmt *Body) {
1068   incrementProfileCounter(Body);
1069   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1070     EmitCompoundStmtWithoutScope(*S);
1071   else
1072     EmitStmt(Body);
1073 }
1074 
1075 /// When instrumenting to collect profile data, the counts for some blocks
1076 /// such as switch cases need to not include the fall-through counts, so
1077 /// emit a branch around the instrumentation code. When not instrumenting,
1078 /// this just calls EmitBlock().
1079 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1080                                                const Stmt *S) {
1081   llvm::BasicBlock *SkipCountBB = nullptr;
1082   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1083     // When instrumenting for profiling, the fallthrough to certain
1084     // statements needs to skip over the instrumentation code so that we
1085     // get an accurate count.
1086     SkipCountBB = createBasicBlock("skipcount");
1087     EmitBranch(SkipCountBB);
1088   }
1089   EmitBlock(BB);
1090   uint64_t CurrentCount = getCurrentProfileCount();
1091   incrementProfileCounter(S);
1092   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1093   if (SkipCountBB)
1094     EmitBlock(SkipCountBB);
1095 }
1096 
1097 /// Tries to mark the given function nounwind based on the
1098 /// non-existence of any throwing calls within it.  We believe this is
1099 /// lightweight enough to do at -O0.
1100 static void TryMarkNoThrow(llvm::Function *F) {
1101   // LLVM treats 'nounwind' on a function as part of the type, so we
1102   // can't do this on functions that can be overwritten.
1103   if (F->isInterposable()) return;
1104 
1105   for (llvm::BasicBlock &BB : *F)
1106     for (llvm::Instruction &I : BB)
1107       if (I.mayThrow())
1108         return;
1109 
1110   F->setDoesNotThrow();
1111 }
1112 
1113 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1114                                                FunctionArgList &Args) {
1115   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1116   QualType ResTy = FD->getReturnType();
1117 
1118   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1119   if (MD && MD->isInstance()) {
1120     if (CGM.getCXXABI().HasThisReturn(GD))
1121       ResTy = MD->getThisType(getContext());
1122     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1123       ResTy = CGM.getContext().VoidPtrTy;
1124     CGM.getCXXABI().buildThisParam(*this, Args);
1125   }
1126 
1127   // The base version of an inheriting constructor whose constructed base is a
1128   // virtual base is not passed any arguments (because it doesn't actually call
1129   // the inherited constructor).
1130   bool PassedParams = true;
1131   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1132     if (auto Inherited = CD->getInheritedConstructor())
1133       PassedParams =
1134           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1135 
1136   if (PassedParams) {
1137     for (auto *Param : FD->parameters()) {
1138       Args.push_back(Param);
1139       if (!Param->hasAttr<PassObjectSizeAttr>())
1140         continue;
1141 
1142       auto *Implicit = ImplicitParamDecl::Create(
1143           getContext(), Param->getDeclContext(), Param->getLocation(),
1144           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1145       SizeArguments[Param] = Implicit;
1146       Args.push_back(Implicit);
1147     }
1148   }
1149 
1150   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1151     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1152 
1153   return ResTy;
1154 }
1155 
1156 static bool
1157 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1158                                              const ASTContext &Context) {
1159   QualType T = FD->getReturnType();
1160   // Avoid the optimization for functions that return a record type with a
1161   // trivial destructor or another trivially copyable type.
1162   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1163     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1164       return !ClassDecl->hasTrivialDestructor();
1165   }
1166   return !T.isTriviallyCopyableType(Context);
1167 }
1168 
1169 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1170                                    const CGFunctionInfo &FnInfo) {
1171   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1172   CurGD = GD;
1173 
1174   FunctionArgList Args;
1175   QualType ResTy = BuildFunctionArgList(GD, Args);
1176 
1177   // Check if we should generate debug info for this function.
1178   if (FD->hasAttr<NoDebugAttr>())
1179     DebugInfo = nullptr; // disable debug info indefinitely for this function
1180 
1181   // The function might not have a body if we're generating thunks for a
1182   // function declaration.
1183   SourceRange BodyRange;
1184   if (Stmt *Body = FD->getBody())
1185     BodyRange = Body->getSourceRange();
1186   else
1187     BodyRange = FD->getLocation();
1188   CurEHLocation = BodyRange.getEnd();
1189 
1190   // Use the location of the start of the function to determine where
1191   // the function definition is located. By default use the location
1192   // of the declaration as the location for the subprogram. A function
1193   // may lack a declaration in the source code if it is created by code
1194   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1195   SourceLocation Loc = FD->getLocation();
1196 
1197   // If this is a function specialization then use the pattern body
1198   // as the location for the function.
1199   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1200     if (SpecDecl->hasBody(SpecDecl))
1201       Loc = SpecDecl->getLocation();
1202 
1203   Stmt *Body = FD->getBody();
1204 
1205   // Initialize helper which will detect jumps which can cause invalid lifetime
1206   // markers.
1207   if (Body && ShouldEmitLifetimeMarkers)
1208     Bypasses.Init(Body);
1209 
1210   // Emit the standard function prologue.
1211   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1212 
1213   // Generate the body of the function.
1214   PGO.assignRegionCounters(GD, CurFn);
1215   if (isa<CXXDestructorDecl>(FD))
1216     EmitDestructorBody(Args);
1217   else if (isa<CXXConstructorDecl>(FD))
1218     EmitConstructorBody(Args);
1219   else if (getLangOpts().CUDA &&
1220            !getLangOpts().CUDAIsDevice &&
1221            FD->hasAttr<CUDAGlobalAttr>())
1222     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1223   else if (isa<CXXMethodDecl>(FD) &&
1224            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1225     // The lambda static invoker function is special, because it forwards or
1226     // clones the body of the function call operator (but is actually static).
1227     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1228   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1229              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1230               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1231     // Implicit copy-assignment gets the same special treatment as implicit
1232     // copy-constructors.
1233     emitImplicitAssignmentOperatorBody(Args);
1234   } else if (Body) {
1235     EmitFunctionBody(Args, Body);
1236   } else
1237     llvm_unreachable("no definition for emitted function");
1238 
1239   // C++11 [stmt.return]p2:
1240   //   Flowing off the end of a function [...] results in undefined behavior in
1241   //   a value-returning function.
1242   // C11 6.9.1p12:
1243   //   If the '}' that terminates a function is reached, and the value of the
1244   //   function call is used by the caller, the behavior is undefined.
1245   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1246       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1247     bool ShouldEmitUnreachable =
1248         CGM.getCodeGenOpts().StrictReturn ||
1249         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1250     if (SanOpts.has(SanitizerKind::Return)) {
1251       SanitizerScope SanScope(this);
1252       llvm::Value *IsFalse = Builder.getFalse();
1253       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1254                 SanitizerHandler::MissingReturn,
1255                 EmitCheckSourceLocation(FD->getLocation()), None);
1256     } else if (ShouldEmitUnreachable) {
1257       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1258         EmitTrapCall(llvm::Intrinsic::trap);
1259     }
1260     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1261       Builder.CreateUnreachable();
1262       Builder.ClearInsertionPoint();
1263     }
1264   }
1265 
1266   // Emit the standard function epilogue.
1267   FinishFunction(BodyRange.getEnd());
1268 
1269   // If we haven't marked the function nothrow through other means, do
1270   // a quick pass now to see if we can.
1271   if (!CurFn->doesNotThrow())
1272     TryMarkNoThrow(CurFn);
1273 }
1274 
1275 /// ContainsLabel - Return true if the statement contains a label in it.  If
1276 /// this statement is not executed normally, it not containing a label means
1277 /// that we can just remove the code.
1278 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1279   // Null statement, not a label!
1280   if (!S) return false;
1281 
1282   // If this is a label, we have to emit the code, consider something like:
1283   // if (0) {  ...  foo:  bar(); }  goto foo;
1284   //
1285   // TODO: If anyone cared, we could track __label__'s, since we know that you
1286   // can't jump to one from outside their declared region.
1287   if (isa<LabelStmt>(S))
1288     return true;
1289 
1290   // If this is a case/default statement, and we haven't seen a switch, we have
1291   // to emit the code.
1292   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1293     return true;
1294 
1295   // If this is a switch statement, we want to ignore cases below it.
1296   if (isa<SwitchStmt>(S))
1297     IgnoreCaseStmts = true;
1298 
1299   // Scan subexpressions for verboten labels.
1300   for (const Stmt *SubStmt : S->children())
1301     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1302       return true;
1303 
1304   return false;
1305 }
1306 
1307 /// containsBreak - Return true if the statement contains a break out of it.
1308 /// If the statement (recursively) contains a switch or loop with a break
1309 /// inside of it, this is fine.
1310 bool CodeGenFunction::containsBreak(const Stmt *S) {
1311   // Null statement, not a label!
1312   if (!S) return false;
1313 
1314   // If this is a switch or loop that defines its own break scope, then we can
1315   // include it and anything inside of it.
1316   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1317       isa<ForStmt>(S))
1318     return false;
1319 
1320   if (isa<BreakStmt>(S))
1321     return true;
1322 
1323   // Scan subexpressions for verboten breaks.
1324   for (const Stmt *SubStmt : S->children())
1325     if (containsBreak(SubStmt))
1326       return true;
1327 
1328   return false;
1329 }
1330 
1331 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1332   if (!S) return false;
1333 
1334   // Some statement kinds add a scope and thus never add a decl to the current
1335   // scope. Note, this list is longer than the list of statements that might
1336   // have an unscoped decl nested within them, but this way is conservatively
1337   // correct even if more statement kinds are added.
1338   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1339       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1340       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1341       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1342     return false;
1343 
1344   if (isa<DeclStmt>(S))
1345     return true;
1346 
1347   for (const Stmt *SubStmt : S->children())
1348     if (mightAddDeclToScope(SubStmt))
1349       return true;
1350 
1351   return false;
1352 }
1353 
1354 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1355 /// to a constant, or if it does but contains a label, return false.  If it
1356 /// constant folds return true and set the boolean result in Result.
1357 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1358                                                    bool &ResultBool,
1359                                                    bool AllowLabels) {
1360   llvm::APSInt ResultInt;
1361   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1362     return false;
1363 
1364   ResultBool = ResultInt.getBoolValue();
1365   return true;
1366 }
1367 
1368 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1369 /// to a constant, or if it does but contains a label, return false.  If it
1370 /// constant folds return true and set the folded value.
1371 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1372                                                    llvm::APSInt &ResultInt,
1373                                                    bool AllowLabels) {
1374   // FIXME: Rename and handle conversion of other evaluatable things
1375   // to bool.
1376   llvm::APSInt Int;
1377   if (!Cond->EvaluateAsInt(Int, getContext()))
1378     return false;  // Not foldable, not integer or not fully evaluatable.
1379 
1380   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1381     return false;  // Contains a label.
1382 
1383   ResultInt = Int;
1384   return true;
1385 }
1386 
1387 
1388 
1389 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1390 /// statement) to the specified blocks.  Based on the condition, this might try
1391 /// to simplify the codegen of the conditional based on the branch.
1392 ///
1393 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1394                                            llvm::BasicBlock *TrueBlock,
1395                                            llvm::BasicBlock *FalseBlock,
1396                                            uint64_t TrueCount) {
1397   Cond = Cond->IgnoreParens();
1398 
1399   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1400 
1401     // Handle X && Y in a condition.
1402     if (CondBOp->getOpcode() == BO_LAnd) {
1403       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1404       // folded if the case was simple enough.
1405       bool ConstantBool = false;
1406       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1407           ConstantBool) {
1408         // br(1 && X) -> br(X).
1409         incrementProfileCounter(CondBOp);
1410         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1411                                     TrueCount);
1412       }
1413 
1414       // If we have "X && 1", simplify the code to use an uncond branch.
1415       // "X && 0" would have been constant folded to 0.
1416       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1417           ConstantBool) {
1418         // br(X && 1) -> br(X).
1419         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1420                                     TrueCount);
1421       }
1422 
1423       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1424       // want to jump to the FalseBlock.
1425       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1426       // The counter tells us how often we evaluate RHS, and all of TrueCount
1427       // can be propagated to that branch.
1428       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1429 
1430       ConditionalEvaluation eval(*this);
1431       {
1432         ApplyDebugLocation DL(*this, Cond);
1433         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1434         EmitBlock(LHSTrue);
1435       }
1436 
1437       incrementProfileCounter(CondBOp);
1438       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1439 
1440       // Any temporaries created here are conditional.
1441       eval.begin(*this);
1442       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1443       eval.end(*this);
1444 
1445       return;
1446     }
1447 
1448     if (CondBOp->getOpcode() == BO_LOr) {
1449       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1450       // folded if the case was simple enough.
1451       bool ConstantBool = false;
1452       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1453           !ConstantBool) {
1454         // br(0 || X) -> br(X).
1455         incrementProfileCounter(CondBOp);
1456         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1457                                     TrueCount);
1458       }
1459 
1460       // If we have "X || 0", simplify the code to use an uncond branch.
1461       // "X || 1" would have been constant folded to 1.
1462       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1463           !ConstantBool) {
1464         // br(X || 0) -> br(X).
1465         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1466                                     TrueCount);
1467       }
1468 
1469       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1470       // want to jump to the TrueBlock.
1471       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1472       // We have the count for entry to the RHS and for the whole expression
1473       // being true, so we can divy up True count between the short circuit and
1474       // the RHS.
1475       uint64_t LHSCount =
1476           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1477       uint64_t RHSCount = TrueCount - LHSCount;
1478 
1479       ConditionalEvaluation eval(*this);
1480       {
1481         ApplyDebugLocation DL(*this, Cond);
1482         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1483         EmitBlock(LHSFalse);
1484       }
1485 
1486       incrementProfileCounter(CondBOp);
1487       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1488 
1489       // Any temporaries created here are conditional.
1490       eval.begin(*this);
1491       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1492 
1493       eval.end(*this);
1494 
1495       return;
1496     }
1497   }
1498 
1499   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1500     // br(!x, t, f) -> br(x, f, t)
1501     if (CondUOp->getOpcode() == UO_LNot) {
1502       // Negate the count.
1503       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1504       // Negate the condition and swap the destination blocks.
1505       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1506                                   FalseCount);
1507     }
1508   }
1509 
1510   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1511     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1512     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1513     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1514 
1515     ConditionalEvaluation cond(*this);
1516     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1517                          getProfileCount(CondOp));
1518 
1519     // When computing PGO branch weights, we only know the overall count for
1520     // the true block. This code is essentially doing tail duplication of the
1521     // naive code-gen, introducing new edges for which counts are not
1522     // available. Divide the counts proportionally between the LHS and RHS of
1523     // the conditional operator.
1524     uint64_t LHSScaledTrueCount = 0;
1525     if (TrueCount) {
1526       double LHSRatio =
1527           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1528       LHSScaledTrueCount = TrueCount * LHSRatio;
1529     }
1530 
1531     cond.begin(*this);
1532     EmitBlock(LHSBlock);
1533     incrementProfileCounter(CondOp);
1534     {
1535       ApplyDebugLocation DL(*this, Cond);
1536       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1537                            LHSScaledTrueCount);
1538     }
1539     cond.end(*this);
1540 
1541     cond.begin(*this);
1542     EmitBlock(RHSBlock);
1543     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1544                          TrueCount - LHSScaledTrueCount);
1545     cond.end(*this);
1546 
1547     return;
1548   }
1549 
1550   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1551     // Conditional operator handling can give us a throw expression as a
1552     // condition for a case like:
1553     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1554     // Fold this to:
1555     //   br(c, throw x, br(y, t, f))
1556     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1557     return;
1558   }
1559 
1560   // If the branch has a condition wrapped by __builtin_unpredictable,
1561   // create metadata that specifies that the branch is unpredictable.
1562   // Don't bother if not optimizing because that metadata would not be used.
1563   llvm::MDNode *Unpredictable = nullptr;
1564   auto *Call = dyn_cast<CallExpr>(Cond);
1565   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1566     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1567     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1568       llvm::MDBuilder MDHelper(getLLVMContext());
1569       Unpredictable = MDHelper.createUnpredictable();
1570     }
1571   }
1572 
1573   // Create branch weights based on the number of times we get here and the
1574   // number of times the condition should be true.
1575   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1576   llvm::MDNode *Weights =
1577       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1578 
1579   // Emit the code with the fully general case.
1580   llvm::Value *CondV;
1581   {
1582     ApplyDebugLocation DL(*this, Cond);
1583     CondV = EvaluateExprAsBool(Cond);
1584   }
1585   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1586 }
1587 
1588 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1589 /// specified stmt yet.
1590 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1591   CGM.ErrorUnsupported(S, Type);
1592 }
1593 
1594 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1595 /// variable-length array whose elements have a non-zero bit-pattern.
1596 ///
1597 /// \param baseType the inner-most element type of the array
1598 /// \param src - a char* pointing to the bit-pattern for a single
1599 /// base element of the array
1600 /// \param sizeInChars - the total size of the VLA, in chars
1601 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1602                                Address dest, Address src,
1603                                llvm::Value *sizeInChars) {
1604   CGBuilderTy &Builder = CGF.Builder;
1605 
1606   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1607   llvm::Value *baseSizeInChars
1608     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1609 
1610   Address begin =
1611     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1612   llvm::Value *end =
1613     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1614 
1615   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1616   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1617   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1618 
1619   // Make a loop over the VLA.  C99 guarantees that the VLA element
1620   // count must be nonzero.
1621   CGF.EmitBlock(loopBB);
1622 
1623   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1624   cur->addIncoming(begin.getPointer(), originBB);
1625 
1626   CharUnits curAlign =
1627     dest.getAlignment().alignmentOfArrayElement(baseSize);
1628 
1629   // memcpy the individual element bit-pattern.
1630   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1631                        /*volatile*/ false);
1632 
1633   // Go to the next element.
1634   llvm::Value *next =
1635     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1636 
1637   // Leave if that's the end of the VLA.
1638   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1639   Builder.CreateCondBr(done, contBB, loopBB);
1640   cur->addIncoming(next, loopBB);
1641 
1642   CGF.EmitBlock(contBB);
1643 }
1644 
1645 void
1646 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1647   // Ignore empty classes in C++.
1648   if (getLangOpts().CPlusPlus) {
1649     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1650       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1651         return;
1652     }
1653   }
1654 
1655   // Cast the dest ptr to the appropriate i8 pointer type.
1656   if (DestPtr.getElementType() != Int8Ty)
1657     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1658 
1659   // Get size and alignment info for this aggregate.
1660   CharUnits size = getContext().getTypeSizeInChars(Ty);
1661 
1662   llvm::Value *SizeVal;
1663   const VariableArrayType *vla;
1664 
1665   // Don't bother emitting a zero-byte memset.
1666   if (size.isZero()) {
1667     // But note that getTypeInfo returns 0 for a VLA.
1668     if (const VariableArrayType *vlaType =
1669           dyn_cast_or_null<VariableArrayType>(
1670                                           getContext().getAsArrayType(Ty))) {
1671       QualType eltType;
1672       llvm::Value *numElts;
1673       std::tie(numElts, eltType) = getVLASize(vlaType);
1674 
1675       SizeVal = numElts;
1676       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1677       if (!eltSize.isOne())
1678         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1679       vla = vlaType;
1680     } else {
1681       return;
1682     }
1683   } else {
1684     SizeVal = CGM.getSize(size);
1685     vla = nullptr;
1686   }
1687 
1688   // If the type contains a pointer to data member we can't memset it to zero.
1689   // Instead, create a null constant and copy it to the destination.
1690   // TODO: there are other patterns besides zero that we can usefully memset,
1691   // like -1, which happens to be the pattern used by member-pointers.
1692   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1693     // For a VLA, emit a single element, then splat that over the VLA.
1694     if (vla) Ty = getContext().getBaseElementType(vla);
1695 
1696     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1697 
1698     llvm::GlobalVariable *NullVariable =
1699       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1700                                /*isConstant=*/true,
1701                                llvm::GlobalVariable::PrivateLinkage,
1702                                NullConstant, Twine());
1703     CharUnits NullAlign = DestPtr.getAlignment();
1704     NullVariable->setAlignment(NullAlign.getQuantity());
1705     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1706                    NullAlign);
1707 
1708     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1709 
1710     // Get and call the appropriate llvm.memcpy overload.
1711     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1712     return;
1713   }
1714 
1715   // Otherwise, just memset the whole thing to zero.  This is legal
1716   // because in LLVM, all default initializers (other than the ones we just
1717   // handled above) are guaranteed to have a bit pattern of all zeros.
1718   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1719 }
1720 
1721 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1722   // Make sure that there is a block for the indirect goto.
1723   if (!IndirectBranch)
1724     GetIndirectGotoBlock();
1725 
1726   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1727 
1728   // Make sure the indirect branch includes all of the address-taken blocks.
1729   IndirectBranch->addDestination(BB);
1730   return llvm::BlockAddress::get(CurFn, BB);
1731 }
1732 
1733 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1734   // If we already made the indirect branch for indirect goto, return its block.
1735   if (IndirectBranch) return IndirectBranch->getParent();
1736 
1737   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1738 
1739   // Create the PHI node that indirect gotos will add entries to.
1740   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1741                                               "indirect.goto.dest");
1742 
1743   // Create the indirect branch instruction.
1744   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1745   return IndirectBranch->getParent();
1746 }
1747 
1748 /// Computes the length of an array in elements, as well as the base
1749 /// element type and a properly-typed first element pointer.
1750 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1751                                               QualType &baseType,
1752                                               Address &addr) {
1753   const ArrayType *arrayType = origArrayType;
1754 
1755   // If it's a VLA, we have to load the stored size.  Note that
1756   // this is the size of the VLA in bytes, not its size in elements.
1757   llvm::Value *numVLAElements = nullptr;
1758   if (isa<VariableArrayType>(arrayType)) {
1759     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1760 
1761     // Walk into all VLAs.  This doesn't require changes to addr,
1762     // which has type T* where T is the first non-VLA element type.
1763     do {
1764       QualType elementType = arrayType->getElementType();
1765       arrayType = getContext().getAsArrayType(elementType);
1766 
1767       // If we only have VLA components, 'addr' requires no adjustment.
1768       if (!arrayType) {
1769         baseType = elementType;
1770         return numVLAElements;
1771       }
1772     } while (isa<VariableArrayType>(arrayType));
1773 
1774     // We get out here only if we find a constant array type
1775     // inside the VLA.
1776   }
1777 
1778   // We have some number of constant-length arrays, so addr should
1779   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1780   // down to the first element of addr.
1781   SmallVector<llvm::Value*, 8> gepIndices;
1782 
1783   // GEP down to the array type.
1784   llvm::ConstantInt *zero = Builder.getInt32(0);
1785   gepIndices.push_back(zero);
1786 
1787   uint64_t countFromCLAs = 1;
1788   QualType eltType;
1789 
1790   llvm::ArrayType *llvmArrayType =
1791     dyn_cast<llvm::ArrayType>(addr.getElementType());
1792   while (llvmArrayType) {
1793     assert(isa<ConstantArrayType>(arrayType));
1794     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1795              == llvmArrayType->getNumElements());
1796 
1797     gepIndices.push_back(zero);
1798     countFromCLAs *= llvmArrayType->getNumElements();
1799     eltType = arrayType->getElementType();
1800 
1801     llvmArrayType =
1802       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1803     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1804     assert((!llvmArrayType || arrayType) &&
1805            "LLVM and Clang types are out-of-synch");
1806   }
1807 
1808   if (arrayType) {
1809     // From this point onwards, the Clang array type has been emitted
1810     // as some other type (probably a packed struct). Compute the array
1811     // size, and just emit the 'begin' expression as a bitcast.
1812     while (arrayType) {
1813       countFromCLAs *=
1814           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1815       eltType = arrayType->getElementType();
1816       arrayType = getContext().getAsArrayType(eltType);
1817     }
1818 
1819     llvm::Type *baseType = ConvertType(eltType);
1820     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1821   } else {
1822     // Create the actual GEP.
1823     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1824                                              gepIndices, "array.begin"),
1825                    addr.getAlignment());
1826   }
1827 
1828   baseType = eltType;
1829 
1830   llvm::Value *numElements
1831     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1832 
1833   // If we had any VLA dimensions, factor them in.
1834   if (numVLAElements)
1835     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1836 
1837   return numElements;
1838 }
1839 
1840 std::pair<llvm::Value*, QualType>
1841 CodeGenFunction::getVLASize(QualType type) {
1842   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1843   assert(vla && "type was not a variable array type!");
1844   return getVLASize(vla);
1845 }
1846 
1847 std::pair<llvm::Value*, QualType>
1848 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1849   // The number of elements so far; always size_t.
1850   llvm::Value *numElements = nullptr;
1851 
1852   QualType elementType;
1853   do {
1854     elementType = type->getElementType();
1855     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1856     assert(vlaSize && "no size for VLA!");
1857     assert(vlaSize->getType() == SizeTy);
1858 
1859     if (!numElements) {
1860       numElements = vlaSize;
1861     } else {
1862       // It's undefined behavior if this wraps around, so mark it that way.
1863       // FIXME: Teach -fsanitize=undefined to trap this.
1864       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1865     }
1866   } while ((type = getContext().getAsVariableArrayType(elementType)));
1867 
1868   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1869 }
1870 
1871 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1872   assert(type->isVariablyModifiedType() &&
1873          "Must pass variably modified type to EmitVLASizes!");
1874 
1875   EnsureInsertPoint();
1876 
1877   // We're going to walk down into the type and look for VLA
1878   // expressions.
1879   do {
1880     assert(type->isVariablyModifiedType());
1881 
1882     const Type *ty = type.getTypePtr();
1883     switch (ty->getTypeClass()) {
1884 
1885 #define TYPE(Class, Base)
1886 #define ABSTRACT_TYPE(Class, Base)
1887 #define NON_CANONICAL_TYPE(Class, Base)
1888 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1889 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1890 #include "clang/AST/TypeNodes.def"
1891       llvm_unreachable("unexpected dependent type!");
1892 
1893     // These types are never variably-modified.
1894     case Type::Builtin:
1895     case Type::Complex:
1896     case Type::Vector:
1897     case Type::ExtVector:
1898     case Type::Record:
1899     case Type::Enum:
1900     case Type::Elaborated:
1901     case Type::TemplateSpecialization:
1902     case Type::ObjCTypeParam:
1903     case Type::ObjCObject:
1904     case Type::ObjCInterface:
1905     case Type::ObjCObjectPointer:
1906       llvm_unreachable("type class is never variably-modified!");
1907 
1908     case Type::Adjusted:
1909       type = cast<AdjustedType>(ty)->getAdjustedType();
1910       break;
1911 
1912     case Type::Decayed:
1913       type = cast<DecayedType>(ty)->getPointeeType();
1914       break;
1915 
1916     case Type::Pointer:
1917       type = cast<PointerType>(ty)->getPointeeType();
1918       break;
1919 
1920     case Type::BlockPointer:
1921       type = cast<BlockPointerType>(ty)->getPointeeType();
1922       break;
1923 
1924     case Type::LValueReference:
1925     case Type::RValueReference:
1926       type = cast<ReferenceType>(ty)->getPointeeType();
1927       break;
1928 
1929     case Type::MemberPointer:
1930       type = cast<MemberPointerType>(ty)->getPointeeType();
1931       break;
1932 
1933     case Type::ConstantArray:
1934     case Type::IncompleteArray:
1935       // Losing element qualification here is fine.
1936       type = cast<ArrayType>(ty)->getElementType();
1937       break;
1938 
1939     case Type::VariableArray: {
1940       // Losing element qualification here is fine.
1941       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1942 
1943       // Unknown size indication requires no size computation.
1944       // Otherwise, evaluate and record it.
1945       if (const Expr *size = vat->getSizeExpr()) {
1946         // It's possible that we might have emitted this already,
1947         // e.g. with a typedef and a pointer to it.
1948         llvm::Value *&entry = VLASizeMap[size];
1949         if (!entry) {
1950           llvm::Value *Size = EmitScalarExpr(size);
1951 
1952           // C11 6.7.6.2p5:
1953           //   If the size is an expression that is not an integer constant
1954           //   expression [...] each time it is evaluated it shall have a value
1955           //   greater than zero.
1956           if (SanOpts.has(SanitizerKind::VLABound) &&
1957               size->getType()->isSignedIntegerType()) {
1958             SanitizerScope SanScope(this);
1959             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1960             llvm::Constant *StaticArgs[] = {
1961               EmitCheckSourceLocation(size->getLocStart()),
1962               EmitCheckTypeDescriptor(size->getType())
1963             };
1964             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1965                                      SanitizerKind::VLABound),
1966                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
1967           }
1968 
1969           // Always zexting here would be wrong if it weren't
1970           // undefined behavior to have a negative bound.
1971           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1972         }
1973       }
1974       type = vat->getElementType();
1975       break;
1976     }
1977 
1978     case Type::FunctionProto:
1979     case Type::FunctionNoProto:
1980       type = cast<FunctionType>(ty)->getReturnType();
1981       break;
1982 
1983     case Type::Paren:
1984     case Type::TypeOf:
1985     case Type::UnaryTransform:
1986     case Type::Attributed:
1987     case Type::SubstTemplateTypeParm:
1988     case Type::PackExpansion:
1989       // Keep walking after single level desugaring.
1990       type = type.getSingleStepDesugaredType(getContext());
1991       break;
1992 
1993     case Type::Typedef:
1994     case Type::Decltype:
1995     case Type::Auto:
1996     case Type::DeducedTemplateSpecialization:
1997       // Stop walking: nothing to do.
1998       return;
1999 
2000     case Type::TypeOfExpr:
2001       // Stop walking: emit typeof expression.
2002       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2003       return;
2004 
2005     case Type::Atomic:
2006       type = cast<AtomicType>(ty)->getValueType();
2007       break;
2008 
2009     case Type::Pipe:
2010       type = cast<PipeType>(ty)->getElementType();
2011       break;
2012     }
2013   } while (type->isVariablyModifiedType());
2014 }
2015 
2016 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2017   if (getContext().getBuiltinVaListType()->isArrayType())
2018     return EmitPointerWithAlignment(E);
2019   return EmitLValue(E).getAddress();
2020 }
2021 
2022 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2023   return EmitLValue(E).getAddress();
2024 }
2025 
2026 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2027                                               const APValue &Init) {
2028   assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!");
2029   if (CGDebugInfo *Dbg = getDebugInfo())
2030     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2031       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2032 }
2033 
2034 CodeGenFunction::PeepholeProtection
2035 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2036   // At the moment, the only aggressive peephole we do in IR gen
2037   // is trunc(zext) folding, but if we add more, we can easily
2038   // extend this protection.
2039 
2040   if (!rvalue.isScalar()) return PeepholeProtection();
2041   llvm::Value *value = rvalue.getScalarVal();
2042   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2043 
2044   // Just make an extra bitcast.
2045   assert(HaveInsertPoint());
2046   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2047                                                   Builder.GetInsertBlock());
2048 
2049   PeepholeProtection protection;
2050   protection.Inst = inst;
2051   return protection;
2052 }
2053 
2054 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2055   if (!protection.Inst) return;
2056 
2057   // In theory, we could try to duplicate the peepholes now, but whatever.
2058   protection.Inst->eraseFromParent();
2059 }
2060 
2061 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
2062                                                  llvm::Value *AnnotatedVal,
2063                                                  StringRef AnnotationStr,
2064                                                  SourceLocation Location) {
2065   llvm::Value *Args[4] = {
2066     AnnotatedVal,
2067     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2068     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2069     CGM.EmitAnnotationLineNo(Location)
2070   };
2071   return Builder.CreateCall(AnnotationFn, Args);
2072 }
2073 
2074 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2075   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2076   // FIXME We create a new bitcast for every annotation because that's what
2077   // llvm-gcc was doing.
2078   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2079     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2080                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2081                        I->getAnnotation(), D->getLocation());
2082 }
2083 
2084 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2085                                               Address Addr) {
2086   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2087   llvm::Value *V = Addr.getPointer();
2088   llvm::Type *VTy = V->getType();
2089   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2090                                     CGM.Int8PtrTy);
2091 
2092   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2093     // FIXME Always emit the cast inst so we can differentiate between
2094     // annotation on the first field of a struct and annotation on the struct
2095     // itself.
2096     if (VTy != CGM.Int8PtrTy)
2097       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
2098     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2099     V = Builder.CreateBitCast(V, VTy);
2100   }
2101 
2102   return Address(V, Addr.getAlignment());
2103 }
2104 
2105 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2106 
2107 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2108     : CGF(CGF) {
2109   assert(!CGF->IsSanitizerScope);
2110   CGF->IsSanitizerScope = true;
2111 }
2112 
2113 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2114   CGF->IsSanitizerScope = false;
2115 }
2116 
2117 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2118                                    const llvm::Twine &Name,
2119                                    llvm::BasicBlock *BB,
2120                                    llvm::BasicBlock::iterator InsertPt) const {
2121   LoopStack.InsertHelper(I);
2122   if (IsSanitizerScope)
2123     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2124 }
2125 
2126 void CGBuilderInserter::InsertHelper(
2127     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2128     llvm::BasicBlock::iterator InsertPt) const {
2129   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2130   if (CGF)
2131     CGF->InsertHelper(I, Name, BB, InsertPt);
2132 }
2133 
2134 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2135                                 CodeGenModule &CGM, const FunctionDecl *FD,
2136                                 std::string &FirstMissing) {
2137   // If there aren't any required features listed then go ahead and return.
2138   if (ReqFeatures.empty())
2139     return false;
2140 
2141   // Now build up the set of caller features and verify that all the required
2142   // features are there.
2143   llvm::StringMap<bool> CallerFeatureMap;
2144   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
2145 
2146   // If we have at least one of the features in the feature list return
2147   // true, otherwise return false.
2148   return std::all_of(
2149       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2150         SmallVector<StringRef, 1> OrFeatures;
2151         Feature.split(OrFeatures, "|");
2152         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
2153                            [&](StringRef Feature) {
2154                              if (!CallerFeatureMap.lookup(Feature)) {
2155                                FirstMissing = Feature.str();
2156                                return false;
2157                              }
2158                              return true;
2159                            });
2160       });
2161 }
2162 
2163 // Emits an error if we don't have a valid set of target features for the
2164 // called function.
2165 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2166                                           const FunctionDecl *TargetDecl) {
2167   // Early exit if this is an indirect call.
2168   if (!TargetDecl)
2169     return;
2170 
2171   // Get the current enclosing function if it exists. If it doesn't
2172   // we can't check the target features anyhow.
2173   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
2174   if (!FD)
2175     return;
2176 
2177   // Grab the required features for the call. For a builtin this is listed in
2178   // the td file with the default cpu, for an always_inline function this is any
2179   // listed cpu and any listed features.
2180   unsigned BuiltinID = TargetDecl->getBuiltinID();
2181   std::string MissingFeature;
2182   if (BuiltinID) {
2183     SmallVector<StringRef, 1> ReqFeatures;
2184     const char *FeatureList =
2185         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2186     // Return if the builtin doesn't have any required features.
2187     if (!FeatureList || StringRef(FeatureList) == "")
2188       return;
2189     StringRef(FeatureList).split(ReqFeatures, ",");
2190     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2191       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2192           << TargetDecl->getDeclName()
2193           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2194 
2195   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2196     // Get the required features for the callee.
2197     SmallVector<StringRef, 1> ReqFeatures;
2198     llvm::StringMap<bool> CalleeFeatureMap;
2199     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2200     for (const auto &F : CalleeFeatureMap) {
2201       // Only positive features are "required".
2202       if (F.getValue())
2203         ReqFeatures.push_back(F.getKey());
2204     }
2205     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2206       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2207           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2208   }
2209 }
2210 
2211 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2212   if (!CGM.getCodeGenOpts().SanitizeStats)
2213     return;
2214 
2215   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2216   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2217   CGM.getSanStats().create(IRB, SSK);
2218 }
2219 
2220 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2221   if (CGDebugInfo *DI = getDebugInfo())
2222     return DI->SourceLocToDebugLoc(Location);
2223 
2224   return llvm::DebugLoc();
2225 }
2226