1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGException.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
32                                    llvm::SwitchInst *Switch,
33                                    llvm::BasicBlock *CleanupEntry);
34 
35 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
36   : BlockFunction(cgm, *this, Builder), CGM(cgm),
37     Target(CGM.getContext().Target),
38     Builder(cgm.getModule().getContext()),
39     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
40     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
41     SwitchInsn(0), CaseRangeBlock(0),
42     DidCallStackSave(false), UnreachableBlock(0),
43     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
44     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
45     TrapBB(0) {
46 
47   // Get some frequently used types.
48   LLVMPointerWidth = Target.getPointerWidth(0);
49   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
50   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
51   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
52   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
53 
54   Exceptions = getContext().getLangOptions().Exceptions;
55   CatchUndefined = getContext().getLangOptions().CatchUndefined;
56   CGM.getCXXABI().getMangleContext().startNewFunction();
57 }
58 
59 ASTContext &CodeGenFunction::getContext() const {
60   return CGM.getContext();
61 }
62 
63 
64 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
65   return CGM.getTypes().ConvertTypeForMem(T);
66 }
67 
68 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
69   return CGM.getTypes().ConvertType(T);
70 }
71 
72 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
73   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
74     T->isObjCObjectType();
75 }
76 
77 void CodeGenFunction::EmitReturnBlock() {
78   // For cleanliness, we try to avoid emitting the return block for
79   // simple cases.
80   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
81 
82   if (CurBB) {
83     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
84 
85     // We have a valid insert point, reuse it if it is empty or there are no
86     // explicit jumps to the return block.
87     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
88       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
89       delete ReturnBlock.getBlock();
90     } else
91       EmitBlock(ReturnBlock.getBlock());
92     return;
93   }
94 
95   // Otherwise, if the return block is the target of a single direct
96   // branch then we can just put the code in that block instead. This
97   // cleans up functions which started with a unified return block.
98   if (ReturnBlock.getBlock()->hasOneUse()) {
99     llvm::BranchInst *BI =
100       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
101     if (BI && BI->isUnconditional() &&
102         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
103       // Reset insertion point and delete the branch.
104       Builder.SetInsertPoint(BI->getParent());
105       BI->eraseFromParent();
106       delete ReturnBlock.getBlock();
107       return;
108     }
109   }
110 
111   // FIXME: We are at an unreachable point, there is no reason to emit the block
112   // unless it has uses. However, we still need a place to put the debug
113   // region.end for now.
114 
115   EmitBlock(ReturnBlock.getBlock());
116 }
117 
118 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
119   if (!BB) return;
120   if (!BB->use_empty())
121     return CGF.CurFn->getBasicBlockList().push_back(BB);
122   delete BB;
123 }
124 
125 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
126   assert(BreakContinueStack.empty() &&
127          "mismatched push/pop in break/continue stack!");
128 
129   // Emit function epilog (to return).
130   EmitReturnBlock();
131 
132   EmitFunctionInstrumentation("__cyg_profile_func_exit");
133 
134   // Emit debug descriptor for function end.
135   if (CGDebugInfo *DI = getDebugInfo()) {
136     DI->setLocation(EndLoc);
137     DI->EmitFunctionEnd(Builder);
138   }
139 
140   EmitFunctionEpilog(*CurFnInfo);
141   EmitEndEHSpec(CurCodeDecl);
142 
143   assert(EHStack.empty() &&
144          "did not remove all scopes from cleanup stack!");
145 
146   // If someone did an indirect goto, emit the indirect goto block at the end of
147   // the function.
148   if (IndirectBranch) {
149     EmitBlock(IndirectBranch->getParent());
150     Builder.ClearInsertionPoint();
151   }
152 
153   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
154   llvm::Instruction *Ptr = AllocaInsertPt;
155   AllocaInsertPt = 0;
156   Ptr->eraseFromParent();
157 
158   // If someone took the address of a label but never did an indirect goto, we
159   // made a zero entry PHI node, which is illegal, zap it now.
160   if (IndirectBranch) {
161     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
162     if (PN->getNumIncomingValues() == 0) {
163       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
164       PN->eraseFromParent();
165     }
166   }
167 
168   EmitIfUsed(*this, RethrowBlock.getBlock());
169   EmitIfUsed(*this, TerminateLandingPad);
170   EmitIfUsed(*this, TerminateHandler);
171   EmitIfUsed(*this, UnreachableBlock);
172 
173   if (CGM.getCodeGenOpts().EmitDeclMetadata)
174     EmitDeclMetadata();
175 }
176 
177 /// ShouldInstrumentFunction - Return true if the current function should be
178 /// instrumented with __cyg_profile_func_* calls
179 bool CodeGenFunction::ShouldInstrumentFunction() {
180   if (!CGM.getCodeGenOpts().InstrumentFunctions)
181     return false;
182   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
183     return false;
184   return true;
185 }
186 
187 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
188 /// instrumentation function with the current function and the call site, if
189 /// function instrumentation is enabled.
190 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
191   if (!ShouldInstrumentFunction())
192     return;
193 
194   const llvm::PointerType *PointerTy;
195   const llvm::FunctionType *FunctionTy;
196   std::vector<const llvm::Type*> ProfileFuncArgs;
197 
198   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
199   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
200   ProfileFuncArgs.push_back(PointerTy);
201   ProfileFuncArgs.push_back(PointerTy);
202   FunctionTy = llvm::FunctionType::get(
203     llvm::Type::getVoidTy(VMContext),
204     ProfileFuncArgs, false);
205 
206   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
207   llvm::CallInst *CallSite = Builder.CreateCall(
208     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
209     llvm::ConstantInt::get(Int32Ty, 0),
210     "callsite");
211 
212   Builder.CreateCall2(F,
213                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
214                       CallSite);
215 }
216 
217 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
218                                     llvm::Function *Fn,
219                                     const FunctionArgList &Args,
220                                     SourceLocation StartLoc) {
221   const Decl *D = GD.getDecl();
222 
223   DidCallStackSave = false;
224   CurCodeDecl = CurFuncDecl = D;
225   FnRetTy = RetTy;
226   CurFn = Fn;
227   assert(CurFn->isDeclaration() && "Function already has body?");
228 
229   // Pass inline keyword to optimizer if it appears explicitly on any
230   // declaration.
231   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
232     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
233            RE = FD->redecls_end(); RI != RE; ++RI)
234       if (RI->isInlineSpecified()) {
235         Fn->addFnAttr(llvm::Attribute::InlineHint);
236         break;
237       }
238 
239   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
240 
241   // Create a marker to make it easy to insert allocas into the entryblock
242   // later.  Don't create this with the builder, because we don't want it
243   // folded.
244   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
245   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
246   if (Builder.isNamePreserving())
247     AllocaInsertPt->setName("allocapt");
248 
249   ReturnBlock = getJumpDestInCurrentScope("return");
250 
251   Builder.SetInsertPoint(EntryBB);
252 
253   QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0,
254                                                  false, false, 0, 0,
255                                                  /*FIXME?*/
256                                                  FunctionType::ExtInfo());
257 
258   // Emit subprogram debug descriptor.
259   if (CGDebugInfo *DI = getDebugInfo()) {
260     DI->setLocation(StartLoc);
261     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
262   }
263 
264   EmitFunctionInstrumentation("__cyg_profile_func_enter");
265 
266   // FIXME: Leaked.
267   // CC info is ignored, hopefully?
268   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
269                                               FunctionType::ExtInfo());
270 
271   if (RetTy->isVoidType()) {
272     // Void type; nothing to return.
273     ReturnValue = 0;
274   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
275              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
276     // Indirect aggregate return; emit returned value directly into sret slot.
277     // This reduces code size, and affects correctness in C++.
278     ReturnValue = CurFn->arg_begin();
279   } else {
280     ReturnValue = CreateIRTemp(RetTy, "retval");
281   }
282 
283   EmitStartEHSpec(CurCodeDecl);
284   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
285 
286   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
287     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
288 
289   // If any of the arguments have a variably modified type, make sure to
290   // emit the type size.
291   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
292        i != e; ++i) {
293     QualType Ty = i->second;
294 
295     if (Ty->isVariablyModifiedType())
296       EmitVLASize(Ty);
297   }
298 }
299 
300 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
301   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
302   assert(FD->getBody());
303   EmitStmt(FD->getBody());
304 }
305 
306 /// Tries to mark the given function nounwind based on the
307 /// non-existence of any throwing calls within it.  We believe this is
308 /// lightweight enough to do at -O0.
309 static void TryMarkNoThrow(llvm::Function *F) {
310   // LLVM treats 'nounwind' on a function as part of the type, so we
311   // can't do this on functions that can be overwritten.
312   if (F->mayBeOverridden()) return;
313 
314   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
315     for (llvm::BasicBlock::iterator
316            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
317       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
318         if (!Call->doesNotThrow())
319           return;
320   F->setDoesNotThrow(true);
321 }
322 
323 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
324   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
325 
326   // Check if we should generate debug info for this function.
327   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
328     DebugInfo = CGM.getDebugInfo();
329 
330   FunctionArgList Args;
331   QualType ResTy = FD->getResultType();
332 
333   CurGD = GD;
334   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
335     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
336 
337   if (FD->getNumParams()) {
338     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
339     assert(FProto && "Function def must have prototype!");
340 
341     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
342       Args.push_back(std::make_pair(FD->getParamDecl(i),
343                                     FProto->getArgType(i)));
344   }
345 
346   SourceRange BodyRange;
347   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
348 
349   // Emit the standard function prologue.
350   StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
351 
352   // Generate the body of the function.
353   if (isa<CXXDestructorDecl>(FD))
354     EmitDestructorBody(Args);
355   else if (isa<CXXConstructorDecl>(FD))
356     EmitConstructorBody(Args);
357   else
358     EmitFunctionBody(Args);
359 
360   // Emit the standard function epilogue.
361   FinishFunction(BodyRange.getEnd());
362 
363   // If we haven't marked the function nothrow through other means, do
364   // a quick pass now to see if we can.
365   if (!CurFn->doesNotThrow())
366     TryMarkNoThrow(CurFn);
367 }
368 
369 /// ContainsLabel - Return true if the statement contains a label in it.  If
370 /// this statement is not executed normally, it not containing a label means
371 /// that we can just remove the code.
372 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
373   // Null statement, not a label!
374   if (S == 0) return false;
375 
376   // If this is a label, we have to emit the code, consider something like:
377   // if (0) {  ...  foo:  bar(); }  goto foo;
378   if (isa<LabelStmt>(S))
379     return true;
380 
381   // If this is a case/default statement, and we haven't seen a switch, we have
382   // to emit the code.
383   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
384     return true;
385 
386   // If this is a switch statement, we want to ignore cases below it.
387   if (isa<SwitchStmt>(S))
388     IgnoreCaseStmts = true;
389 
390   // Scan subexpressions for verboten labels.
391   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
392        I != E; ++I)
393     if (ContainsLabel(*I, IgnoreCaseStmts))
394       return true;
395 
396   return false;
397 }
398 
399 
400 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
401 /// a constant, or if it does but contains a label, return 0.  If it constant
402 /// folds to 'true' and does not contain a label, return 1, if it constant folds
403 /// to 'false' and does not contain a label, return -1.
404 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
405   // FIXME: Rename and handle conversion of other evaluatable things
406   // to bool.
407   Expr::EvalResult Result;
408   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
409       Result.HasSideEffects)
410     return 0;  // Not foldable, not integer or not fully evaluatable.
411 
412   if (CodeGenFunction::ContainsLabel(Cond))
413     return 0;  // Contains a label.
414 
415   return Result.Val.getInt().getBoolValue() ? 1 : -1;
416 }
417 
418 
419 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
420 /// statement) to the specified blocks.  Based on the condition, this might try
421 /// to simplify the codegen of the conditional based on the branch.
422 ///
423 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
424                                            llvm::BasicBlock *TrueBlock,
425                                            llvm::BasicBlock *FalseBlock) {
426   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
427     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
428 
429   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
430     // Handle X && Y in a condition.
431     if (CondBOp->getOpcode() == BO_LAnd) {
432       // If we have "1 && X", simplify the code.  "0 && X" would have constant
433       // folded if the case was simple enough.
434       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
435         // br(1 && X) -> br(X).
436         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
437       }
438 
439       // If we have "X && 1", simplify the code to use an uncond branch.
440       // "X && 0" would have been constant folded to 0.
441       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
442         // br(X && 1) -> br(X).
443         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
444       }
445 
446       // Emit the LHS as a conditional.  If the LHS conditional is false, we
447       // want to jump to the FalseBlock.
448       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
449       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
450       EmitBlock(LHSTrue);
451 
452       // Any temporaries created here are conditional.
453       BeginConditionalBranch();
454       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
455       EndConditionalBranch();
456 
457       return;
458     } else if (CondBOp->getOpcode() == BO_LOr) {
459       // If we have "0 || X", simplify the code.  "1 || X" would have constant
460       // folded if the case was simple enough.
461       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
462         // br(0 || X) -> br(X).
463         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
464       }
465 
466       // If we have "X || 0", simplify the code to use an uncond branch.
467       // "X || 1" would have been constant folded to 1.
468       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
469         // br(X || 0) -> br(X).
470         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
471       }
472 
473       // Emit the LHS as a conditional.  If the LHS conditional is true, we
474       // want to jump to the TrueBlock.
475       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
476       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
477       EmitBlock(LHSFalse);
478 
479       // Any temporaries created here are conditional.
480       BeginConditionalBranch();
481       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
482       EndConditionalBranch();
483 
484       return;
485     }
486   }
487 
488   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
489     // br(!x, t, f) -> br(x, f, t)
490     if (CondUOp->getOpcode() == UO_LNot)
491       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
492   }
493 
494   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
495     // Handle ?: operator.
496 
497     // Just ignore GNU ?: extension.
498     if (CondOp->getLHS()) {
499       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
500       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
501       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
502       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
503       EmitBlock(LHSBlock);
504       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
505       EmitBlock(RHSBlock);
506       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
507       return;
508     }
509   }
510 
511   // Emit the code with the fully general case.
512   llvm::Value *CondV = EvaluateExprAsBool(Cond);
513   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
514 }
515 
516 /// ErrorUnsupported - Print out an error that codegen doesn't support the
517 /// specified stmt yet.
518 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
519                                        bool OmitOnError) {
520   CGM.ErrorUnsupported(S, Type, OmitOnError);
521 }
522 
523 void
524 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
525   // Ignore empty classes in C++.
526   if (getContext().getLangOptions().CPlusPlus) {
527     if (const RecordType *RT = Ty->getAs<RecordType>()) {
528       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
529         return;
530     }
531   }
532 
533   // Cast the dest ptr to the appropriate i8 pointer type.
534   unsigned DestAS =
535     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
536   const llvm::Type *BP =
537     llvm::Type::getInt8PtrTy(VMContext, DestAS);
538   if (DestPtr->getType() != BP)
539     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
540 
541   // Get size and alignment info for this aggregate.
542   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
543   uint64_t Size = TypeInfo.first;
544   unsigned Align = TypeInfo.second;
545 
546   // Don't bother emitting a zero-byte memset.
547   if (Size == 0)
548     return;
549 
550   llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size / 8);
551   llvm::ConstantInt *AlignVal = Builder.getInt32(Align / 8);
552 
553   // If the type contains a pointer to data member we can't memset it to zero.
554   // Instead, create a null constant and copy it to the destination.
555   if (!CGM.getTypes().isZeroInitializable(Ty)) {
556     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
557 
558     llvm::GlobalVariable *NullVariable =
559       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
560                                /*isConstant=*/true,
561                                llvm::GlobalVariable::PrivateLinkage,
562                                NullConstant, llvm::Twine());
563     llvm::Value *SrcPtr =
564       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
565 
566     // FIXME: variable-size types?
567 
568     // Get and call the appropriate llvm.memcpy overload.
569     llvm::Constant *Memcpy =
570       CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtrTy);
571     Builder.CreateCall5(Memcpy, DestPtr, SrcPtr, SizeVal, AlignVal,
572                         /*volatile*/ Builder.getFalse());
573     return;
574   }
575 
576   // Otherwise, just memset the whole thing to zero.  This is legal
577   // because in LLVM, all default initializers (other than the ones we just
578   // handled above) are guaranteed to have a bit pattern of all zeros.
579 
580   // FIXME: Handle variable sized types.
581   Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
582                       Builder.getInt8(0),
583                       SizeVal, AlignVal, /*volatile*/ Builder.getFalse());
584 }
585 
586 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
587   // Make sure that there is a block for the indirect goto.
588   if (IndirectBranch == 0)
589     GetIndirectGotoBlock();
590 
591   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
592 
593   // Make sure the indirect branch includes all of the address-taken blocks.
594   IndirectBranch->addDestination(BB);
595   return llvm::BlockAddress::get(CurFn, BB);
596 }
597 
598 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
599   // If we already made the indirect branch for indirect goto, return its block.
600   if (IndirectBranch) return IndirectBranch->getParent();
601 
602   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
603 
604   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
605 
606   // Create the PHI node that indirect gotos will add entries to.
607   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
608 
609   // Create the indirect branch instruction.
610   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
611   return IndirectBranch->getParent();
612 }
613 
614 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
615   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
616 
617   assert(SizeEntry && "Did not emit size for type");
618   return SizeEntry;
619 }
620 
621 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
622   assert(Ty->isVariablyModifiedType() &&
623          "Must pass variably modified type to EmitVLASizes!");
624 
625   EnsureInsertPoint();
626 
627   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
628     // unknown size indication requires no size computation.
629     if (!VAT->getSizeExpr())
630       return 0;
631     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
632 
633     if (!SizeEntry) {
634       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
635 
636       // Get the element size;
637       QualType ElemTy = VAT->getElementType();
638       llvm::Value *ElemSize;
639       if (ElemTy->isVariableArrayType())
640         ElemSize = EmitVLASize(ElemTy);
641       else
642         ElemSize = llvm::ConstantInt::get(SizeTy,
643             getContext().getTypeSizeInChars(ElemTy).getQuantity());
644 
645       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
646       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
647 
648       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
649     }
650 
651     return SizeEntry;
652   }
653 
654   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
655     EmitVLASize(AT->getElementType());
656     return 0;
657   }
658 
659   const PointerType *PT = Ty->getAs<PointerType>();
660   assert(PT && "unknown VM type!");
661   EmitVLASize(PT->getPointeeType());
662   return 0;
663 }
664 
665 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
666   if (CGM.getContext().getBuiltinVaListType()->isArrayType())
667     return EmitScalarExpr(E);
668   return EmitLValue(E).getAddress();
669 }
670 
671 /// Pops cleanup blocks until the given savepoint is reached.
672 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
673   assert(Old.isValid());
674 
675   while (EHStack.stable_begin() != Old) {
676     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
677 
678     // As long as Old strictly encloses the scope's enclosing normal
679     // cleanup, we're going to emit another normal cleanup which
680     // fallthrough can propagate through.
681     bool FallThroughIsBranchThrough =
682       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
683 
684     PopCleanupBlock(FallThroughIsBranchThrough);
685   }
686 }
687 
688 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
689                                            EHCleanupScope &Scope) {
690   assert(Scope.isNormalCleanup());
691   llvm::BasicBlock *Entry = Scope.getNormalBlock();
692   if (!Entry) {
693     Entry = CGF.createBasicBlock("cleanup");
694     Scope.setNormalBlock(Entry);
695   }
696   return Entry;
697 }
698 
699 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
700                                        EHCleanupScope &Scope) {
701   assert(Scope.isEHCleanup());
702   llvm::BasicBlock *Entry = Scope.getEHBlock();
703   if (!Entry) {
704     Entry = CGF.createBasicBlock("eh.cleanup");
705     Scope.setEHBlock(Entry);
706   }
707   return Entry;
708 }
709 
710 /// Transitions the terminator of the given exit-block of a cleanup to
711 /// be a cleanup switch.
712 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
713                                                    llvm::BasicBlock *Block) {
714   // If it's a branch, turn it into a switch whose default
715   // destination is its original target.
716   llvm::TerminatorInst *Term = Block->getTerminator();
717   assert(Term && "can't transition block without terminator");
718 
719   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
720     assert(Br->isUnconditional());
721     llvm::LoadInst *Load =
722       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
723     llvm::SwitchInst *Switch =
724       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
725     Br->eraseFromParent();
726     return Switch;
727   } else {
728     return cast<llvm::SwitchInst>(Term);
729   }
730 }
731 
732 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
733 /// is basically llvm::MergeBlockIntoPredecessor, except
734 /// simplified/optimized for the tighter constraints on cleanup blocks.
735 ///
736 /// Returns the new block, whatever it is.
737 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
738                                               llvm::BasicBlock *Entry) {
739   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
740   if (!Pred) return Entry;
741 
742   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
743   if (!Br || Br->isConditional()) return Entry;
744   assert(Br->getSuccessor(0) == Entry);
745 
746   // If we were previously inserting at the end of the cleanup entry
747   // block, we'll need to continue inserting at the end of the
748   // predecessor.
749   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
750   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
751 
752   // Kill the branch.
753   Br->eraseFromParent();
754 
755   // Merge the blocks.
756   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
757 
758   // Kill the entry block.
759   Entry->eraseFromParent();
760 
761   if (WasInsertBlock)
762     CGF.Builder.SetInsertPoint(Pred);
763 
764   return Pred;
765 }
766 
767 static void EmitCleanup(CodeGenFunction &CGF,
768                         EHScopeStack::Cleanup *Fn,
769                         bool ForEH,
770                         llvm::Value *ActiveFlag) {
771   // EH cleanups always occur within a terminate scope.
772   if (ForEH) CGF.EHStack.pushTerminate();
773 
774   // If there's an active flag, load it and skip the cleanup if it's
775   // false.
776   llvm::BasicBlock *ContBB = 0;
777   if (ActiveFlag) {
778     ContBB = CGF.createBasicBlock("cleanup.done");
779     llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
780     llvm::Value *IsActive
781       = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
782     CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
783     CGF.EmitBlock(CleanupBB);
784   }
785 
786   // Ask the cleanup to emit itself.
787   Fn->Emit(CGF, ForEH);
788   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
789 
790   // Emit the continuation block if there was an active flag.
791   if (ActiveFlag)
792     CGF.EmitBlock(ContBB);
793 
794   // Leave the terminate scope.
795   if (ForEH) CGF.EHStack.popTerminate();
796 }
797 
798 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
799                                           llvm::BasicBlock *From,
800                                           llvm::BasicBlock *To) {
801   // Exit is the exit block of a cleanup, so it always terminates in
802   // an unconditional branch or a switch.
803   llvm::TerminatorInst *Term = Exit->getTerminator();
804 
805   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
806     assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
807     Br->setSuccessor(0, To);
808   } else {
809     llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
810     for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
811       if (Switch->getSuccessor(I) == From)
812         Switch->setSuccessor(I, To);
813   }
814 }
815 
816 /// Pops a cleanup block.  If the block includes a normal cleanup, the
817 /// current insertion point is threaded through the cleanup, as are
818 /// any branch fixups on the cleanup.
819 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
820   assert(!EHStack.empty() && "cleanup stack is empty!");
821   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
822   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
823   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
824 
825   // Remember activation information.
826   bool IsActive = Scope.isActive();
827   llvm::Value *NormalActiveFlag =
828     Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0;
829   llvm::Value *EHActiveFlag =
830     Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0;
831 
832   // Check whether we need an EH cleanup.  This is only true if we've
833   // generated a lazy EH cleanup block.
834   bool RequiresEHCleanup = Scope.hasEHBranches();
835 
836   // Check the three conditions which might require a normal cleanup:
837 
838   // - whether there are branch fix-ups through this cleanup
839   unsigned FixupDepth = Scope.getFixupDepth();
840   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
841 
842   // - whether there are branch-throughs or branch-afters
843   bool HasExistingBranches = Scope.hasBranches();
844 
845   // - whether there's a fallthrough
846   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
847   bool HasFallthrough = (FallthroughSource != 0 && IsActive);
848 
849   // As a kindof crazy internal case, branch-through fall-throughs
850   // leave the insertion point set to the end of the last cleanup.
851   bool HasPrebranchedFallthrough =
852     (FallthroughSource && FallthroughSource->getTerminator());
853 
854   bool RequiresNormalCleanup = false;
855   if (Scope.isNormalCleanup() &&
856       (HasFixups || HasExistingBranches || HasFallthrough)) {
857     RequiresNormalCleanup = true;
858   }
859 
860   assert(!HasPrebranchedFallthrough || RequiresNormalCleanup || !IsActive);
861   assert(!HasPrebranchedFallthrough ||
862          (Scope.isNormalCleanup() && Scope.getNormalBlock() &&
863           FallthroughSource->getTerminator()->getSuccessor(0)
864             == Scope.getNormalBlock()));
865 
866   // Even if we don't need the normal cleanup, we might still have
867   // prebranched fallthrough to worry about.
868   if (!RequiresNormalCleanup && HasPrebranchedFallthrough) {
869     assert(!IsActive);
870 
871     llvm::BasicBlock *NormalEntry = Scope.getNormalBlock();
872 
873     // If we're branching through this cleanup, just forward the
874     // prebranched fallthrough to the next cleanup, leaving the insert
875     // point in the old block.
876     if (FallthroughIsBranchThrough) {
877       EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
878       llvm::BasicBlock *EnclosingEntry =
879         CreateNormalEntry(*this, cast<EHCleanupScope>(S));
880 
881       ForwardPrebranchedFallthrough(FallthroughSource,
882                                     NormalEntry, EnclosingEntry);
883       assert(NormalEntry->use_empty() &&
884              "uses of entry remain after forwarding?");
885       delete NormalEntry;
886 
887     // Otherwise, we're branching out;  just emit the next block.
888     } else {
889       EmitBlock(NormalEntry);
890       SimplifyCleanupEntry(*this, NormalEntry);
891     }
892   }
893 
894   // If we don't need the cleanup at all, we're done.
895   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
896     EHStack.popCleanup(); // safe because there are no fixups
897     assert(EHStack.getNumBranchFixups() == 0 ||
898            EHStack.hasNormalCleanups());
899     return;
900   }
901 
902   // Copy the cleanup emission data out.  Note that SmallVector
903   // guarantees maximal alignment for its buffer regardless of its
904   // type parameter.
905   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
906   CleanupBuffer.reserve(Scope.getCleanupSize());
907   memcpy(CleanupBuffer.data(),
908          Scope.getCleanupBuffer(), Scope.getCleanupSize());
909   CleanupBuffer.set_size(Scope.getCleanupSize());
910   EHScopeStack::Cleanup *Fn =
911     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
912 
913   // We want to emit the EH cleanup after the normal cleanup, but go
914   // ahead and do the setup for the EH cleanup while the scope is still
915   // alive.
916   llvm::BasicBlock *EHEntry = 0;
917   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
918   if (RequiresEHCleanup) {
919     EHEntry = CreateEHEntry(*this, Scope);
920 
921     // Figure out the branch-through dest if necessary.
922     llvm::BasicBlock *EHBranchThroughDest = 0;
923     if (Scope.hasEHBranchThroughs()) {
924       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
925       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
926       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
927     }
928 
929     // If we have exactly one branch-after and no branch-throughs, we
930     // can dispatch it without a switch.
931     if (!Scope.hasEHBranchThroughs() &&
932         Scope.getNumEHBranchAfters() == 1) {
933       assert(!EHBranchThroughDest);
934 
935       // TODO: remove the spurious eh.cleanup.dest stores if this edge
936       // never went through any switches.
937       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
938       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
939 
940     // Otherwise, if we have any branch-afters, we need a switch.
941     } else if (Scope.getNumEHBranchAfters()) {
942       // The default of the switch belongs to the branch-throughs if
943       // they exist.
944       llvm::BasicBlock *Default =
945         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
946 
947       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
948 
949       llvm::LoadInst *Load =
950         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
951       llvm::SwitchInst *Switch =
952         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
953 
954       EHInstsToAppend.push_back(Load);
955       EHInstsToAppend.push_back(Switch);
956 
957       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
958         Switch->addCase(Scope.getEHBranchAfterIndex(I),
959                         Scope.getEHBranchAfterBlock(I));
960 
961     // Otherwise, we have only branch-throughs; jump to the next EH
962     // cleanup.
963     } else {
964       assert(EHBranchThroughDest);
965       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
966     }
967   }
968 
969   if (!RequiresNormalCleanup) {
970     EHStack.popCleanup();
971   } else {
972     // If we have a fallthrough and no other need for the cleanup,
973     // emit it directly.
974     if (HasFallthrough && !HasPrebranchedFallthrough &&
975         !HasFixups && !HasExistingBranches) {
976 
977       // Fixups can cause us to optimistically create a normal block,
978       // only to later have no real uses for it.  Just delete it in
979       // this case.
980       // TODO: we can potentially simplify all the uses after this.
981       if (Scope.getNormalBlock()) {
982         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
983         delete Scope.getNormalBlock();
984       }
985 
986       EHStack.popCleanup();
987 
988       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
989 
990     // Otherwise, the best approach is to thread everything through
991     // the cleanup block and then try to clean up after ourselves.
992     } else {
993       // Force the entry block to exist.
994       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
995 
996       // I.  Set up the fallthrough edge in.
997 
998       // If there's a fallthrough, we need to store the cleanup
999       // destination index.  For fall-throughs this is always zero.
1000       if (HasFallthrough) {
1001         if (!HasPrebranchedFallthrough)
1002           Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
1003 
1004       // Otherwise, clear the IP if we don't have fallthrough because
1005       // the cleanup is inactive.  We don't need to save it because
1006       // it's still just FallthroughSource.
1007       } else if (FallthroughSource) {
1008         assert(!IsActive && "source without fallthrough for active cleanup");
1009         Builder.ClearInsertionPoint();
1010       }
1011 
1012       // II.  Emit the entry block.  This implicitly branches to it if
1013       // we have fallthrough.  All the fixups and existing branches
1014       // should already be branched to it.
1015       EmitBlock(NormalEntry);
1016 
1017       // III.  Figure out where we're going and build the cleanup
1018       // epilogue.
1019 
1020       bool HasEnclosingCleanups =
1021         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
1022 
1023       // Compute the branch-through dest if we need it:
1024       //   - if there are branch-throughs threaded through the scope
1025       //   - if fall-through is a branch-through
1026       //   - if there are fixups that will be optimistically forwarded
1027       //     to the enclosing cleanup
1028       llvm::BasicBlock *BranchThroughDest = 0;
1029       if (Scope.hasBranchThroughs() ||
1030           (FallthroughSource && FallthroughIsBranchThrough) ||
1031           (HasFixups && HasEnclosingCleanups)) {
1032         assert(HasEnclosingCleanups);
1033         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
1034         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
1035       }
1036 
1037       llvm::BasicBlock *FallthroughDest = 0;
1038       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
1039 
1040       // If there's exactly one branch-after and no other threads,
1041       // we can route it without a switch.
1042       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
1043           Scope.getNumBranchAfters() == 1) {
1044         assert(!BranchThroughDest || !IsActive);
1045 
1046         // TODO: clean up the possibly dead stores to the cleanup dest slot.
1047         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
1048         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
1049 
1050       // Build a switch-out if we need it:
1051       //   - if there are branch-afters threaded through the scope
1052       //   - if fall-through is a branch-after
1053       //   - if there are fixups that have nowhere left to go and
1054       //     so must be immediately resolved
1055       } else if (Scope.getNumBranchAfters() ||
1056                  (HasFallthrough && !FallthroughIsBranchThrough) ||
1057                  (HasFixups && !HasEnclosingCleanups)) {
1058 
1059         llvm::BasicBlock *Default =
1060           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
1061 
1062         // TODO: base this on the number of branch-afters and fixups
1063         const unsigned SwitchCapacity = 10;
1064 
1065         llvm::LoadInst *Load =
1066           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1067         llvm::SwitchInst *Switch =
1068           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1069 
1070         InstsToAppend.push_back(Load);
1071         InstsToAppend.push_back(Switch);
1072 
1073         // Branch-after fallthrough.
1074         if (FallthroughSource && !FallthroughIsBranchThrough) {
1075           FallthroughDest = createBasicBlock("cleanup.cont");
1076           if (HasFallthrough)
1077             Switch->addCase(Builder.getInt32(0), FallthroughDest);
1078         }
1079 
1080         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1081           Switch->addCase(Scope.getBranchAfterIndex(I),
1082                           Scope.getBranchAfterBlock(I));
1083         }
1084 
1085         // If there aren't any enclosing cleanups, we can resolve all
1086         // the fixups now.
1087         if (HasFixups && !HasEnclosingCleanups)
1088           ResolveAllBranchFixups(*this, Switch, NormalEntry);
1089       } else {
1090         // We should always have a branch-through destination in this case.
1091         assert(BranchThroughDest);
1092         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1093       }
1094 
1095       // IV.  Pop the cleanup and emit it.
1096       EHStack.popCleanup();
1097       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1098 
1099       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1100 
1101       // Append the prepared cleanup prologue from above.
1102       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1103       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1104         NormalExit->getInstList().push_back(InstsToAppend[I]);
1105 
1106       // Optimistically hope that any fixups will continue falling through.
1107       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1108            I < E; ++I) {
1109         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1110         if (!Fixup.Destination) continue;
1111         if (!Fixup.OptimisticBranchBlock) {
1112           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1113                               getNormalCleanupDestSlot(),
1114                               Fixup.InitialBranch);
1115           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1116         }
1117         Fixup.OptimisticBranchBlock = NormalExit;
1118       }
1119 
1120       // V.  Set up the fallthrough edge out.
1121 
1122       // Case 1: a fallthrough source exists but shouldn't branch to
1123       // the cleanup because the cleanup is inactive.
1124       if (!HasFallthrough && FallthroughSource) {
1125         assert(!IsActive);
1126 
1127         // If we have a prebranched fallthrough, that needs to be
1128         // forwarded to the right block.
1129         if (HasPrebranchedFallthrough) {
1130           llvm::BasicBlock *Next;
1131           if (FallthroughIsBranchThrough) {
1132             Next = BranchThroughDest;
1133             assert(!FallthroughDest);
1134           } else {
1135             Next = FallthroughDest;
1136           }
1137 
1138           ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next);
1139         }
1140         Builder.SetInsertPoint(FallthroughSource);
1141 
1142       // Case 2: a fallthrough source exists and should branch to the
1143       // cleanup, but we're not supposed to branch through to the next
1144       // cleanup.
1145       } else if (HasFallthrough && FallthroughDest) {
1146         assert(!FallthroughIsBranchThrough);
1147         EmitBlock(FallthroughDest);
1148 
1149       // Case 3: a fallthrough source exists and should branch to the
1150       // cleanup and then through to the next.
1151       } else if (HasFallthrough) {
1152         // Everything is already set up for this.
1153 
1154       // Case 4: no fallthrough source exists.
1155       } else {
1156         Builder.ClearInsertionPoint();
1157       }
1158 
1159       // VI.  Assorted cleaning.
1160 
1161       // Check whether we can merge NormalEntry into a single predecessor.
1162       // This might invalidate (non-IR) pointers to NormalEntry.
1163       llvm::BasicBlock *NewNormalEntry =
1164         SimplifyCleanupEntry(*this, NormalEntry);
1165 
1166       // If it did invalidate those pointers, and NormalEntry was the same
1167       // as NormalExit, go back and patch up the fixups.
1168       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1169         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1170                I < E; ++I)
1171           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1172     }
1173   }
1174 
1175   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1176 
1177   // Emit the EH cleanup if required.
1178   if (RequiresEHCleanup) {
1179     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1180 
1181     EmitBlock(EHEntry);
1182     EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag);
1183 
1184     // Append the prepared cleanup prologue from above.
1185     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1186     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1187       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1188 
1189     Builder.restoreIP(SavedIP);
1190 
1191     SimplifyCleanupEntry(*this, EHEntry);
1192   }
1193 }
1194 
1195 /// Terminate the current block by emitting a branch which might leave
1196 /// the current cleanup-protected scope.  The target scope may not yet
1197 /// be known, in which case this will require a fixup.
1198 ///
1199 /// As a side-effect, this method clears the insertion point.
1200 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1201   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1202          && "stale jump destination");
1203 
1204   if (!HaveInsertPoint())
1205     return;
1206 
1207   // Create the branch.
1208   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1209 
1210   // Calculate the innermost active normal cleanup.
1211   EHScopeStack::stable_iterator
1212     TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1213 
1214   // If we're not in an active normal cleanup scope, or if the
1215   // destination scope is within the innermost active normal cleanup
1216   // scope, we don't need to worry about fixups.
1217   if (TopCleanup == EHStack.stable_end() ||
1218       TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1219     Builder.ClearInsertionPoint();
1220     return;
1221   }
1222 
1223   // If we can't resolve the destination cleanup scope, just add this
1224   // to the current cleanup scope as a branch fixup.
1225   if (!Dest.getScopeDepth().isValid()) {
1226     BranchFixup &Fixup = EHStack.addBranchFixup();
1227     Fixup.Destination = Dest.getBlock();
1228     Fixup.DestinationIndex = Dest.getDestIndex();
1229     Fixup.InitialBranch = BI;
1230     Fixup.OptimisticBranchBlock = 0;
1231 
1232     Builder.ClearInsertionPoint();
1233     return;
1234   }
1235 
1236   // Otherwise, thread through all the normal cleanups in scope.
1237 
1238   // Store the index at the start.
1239   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1240   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1241 
1242   // Adjust BI to point to the first cleanup block.
1243   {
1244     EHCleanupScope &Scope =
1245       cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1246     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1247   }
1248 
1249   // Add this destination to all the scopes involved.
1250   EHScopeStack::stable_iterator I = TopCleanup;
1251   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1252   if (E.strictlyEncloses(I)) {
1253     while (true) {
1254       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1255       assert(Scope.isNormalCleanup());
1256       I = Scope.getEnclosingNormalCleanup();
1257 
1258       // If this is the last cleanup we're propagating through, tell it
1259       // that there's a resolved jump moving through it.
1260       if (!E.strictlyEncloses(I)) {
1261         Scope.addBranchAfter(Index, Dest.getBlock());
1262         break;
1263       }
1264 
1265       // Otherwise, tell the scope that there's a jump propoagating
1266       // through it.  If this isn't new information, all the rest of
1267       // the work has been done before.
1268       if (!Scope.addBranchThrough(Dest.getBlock()))
1269         break;
1270     }
1271   }
1272 
1273   Builder.ClearInsertionPoint();
1274 }
1275 
1276 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1277   // We should never get invalid scope depths for an UnwindDest; that
1278   // implies that the destination wasn't set up correctly.
1279   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1280 
1281   if (!HaveInsertPoint())
1282     return;
1283 
1284   // Create the branch.
1285   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1286 
1287   // Calculate the innermost active cleanup.
1288   EHScopeStack::stable_iterator
1289     InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1290 
1291   // If the destination is in the same EH cleanup scope as us, we
1292   // don't need to thread through anything.
1293   if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1294     Builder.ClearInsertionPoint();
1295     return;
1296   }
1297   assert(InnermostCleanup != EHStack.stable_end());
1298 
1299   // Store the index at the start.
1300   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1301   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1302 
1303   // Adjust BI to point to the first cleanup block.
1304   {
1305     EHCleanupScope &Scope =
1306       cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1307     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1308   }
1309 
1310   // Add this destination to all the scopes involved.
1311   for (EHScopeStack::stable_iterator
1312          I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1313     assert(E.strictlyEncloses(I));
1314     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1315     assert(Scope.isEHCleanup());
1316     I = Scope.getEnclosingEHCleanup();
1317 
1318     // If this is the last cleanup we're propagating through, add this
1319     // as a branch-after.
1320     if (I == E) {
1321       Scope.addEHBranchAfter(Index, Dest.getBlock());
1322       break;
1323     }
1324 
1325     // Otherwise, add it as a branch-through.  If this isn't new
1326     // information, all the rest of the work has been done before.
1327     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1328       break;
1329   }
1330 
1331   Builder.ClearInsertionPoint();
1332 }
1333 
1334 /// All the branch fixups on the EH stack have propagated out past the
1335 /// outermost normal cleanup; resolve them all by adding cases to the
1336 /// given switch instruction.
1337 static void ResolveAllBranchFixups(CodeGenFunction &CGF,
1338                                    llvm::SwitchInst *Switch,
1339                                    llvm::BasicBlock *CleanupEntry) {
1340   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1341 
1342   for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
1343     // Skip this fixup if its destination isn't set.
1344     BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1345     if (Fixup.Destination == 0) continue;
1346 
1347     // If there isn't an OptimisticBranchBlock, then InitialBranch is
1348     // still pointing directly to its destination; forward it to the
1349     // appropriate cleanup entry.  This is required in the specific
1350     // case of
1351     //   { std::string s; goto lbl; }
1352     //   lbl:
1353     // i.e. where there's an unresolved fixup inside a single cleanup
1354     // entry which we're currently popping.
1355     if (Fixup.OptimisticBranchBlock == 0) {
1356       new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex),
1357                           CGF.getNormalCleanupDestSlot(),
1358                           Fixup.InitialBranch);
1359       Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
1360     }
1361 
1362     // Don't add this case to the switch statement twice.
1363     if (!CasesAdded.insert(Fixup.Destination)) continue;
1364 
1365     Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
1366                     Fixup.Destination);
1367   }
1368 
1369   CGF.EHStack.clearFixups();
1370 }
1371 
1372 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1373   assert(Block && "resolving a null target block");
1374   if (!EHStack.getNumBranchFixups()) return;
1375 
1376   assert(EHStack.hasNormalCleanups() &&
1377          "branch fixups exist with no normal cleanups on stack");
1378 
1379   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1380   bool ResolvedAny = false;
1381 
1382   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1383     // Skip this fixup if its destination doesn't match.
1384     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1385     if (Fixup.Destination != Block) continue;
1386 
1387     Fixup.Destination = 0;
1388     ResolvedAny = true;
1389 
1390     // If it doesn't have an optimistic branch block, LatestBranch is
1391     // already pointing to the right place.
1392     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1393     if (!BranchBB)
1394       continue;
1395 
1396     // Don't process the same optimistic branch block twice.
1397     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1398       continue;
1399 
1400     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1401 
1402     // Add a case to the switch.
1403     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1404   }
1405 
1406   if (ResolvedAny)
1407     EHStack.popNullFixups();
1408 }
1409 
1410 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
1411                                   EHScopeStack::stable_iterator C) {
1412   // If we needed a normal block for any reason, that counts.
1413   if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
1414     return true;
1415 
1416   // Check whether any enclosed cleanups were needed.
1417   for (EHScopeStack::stable_iterator
1418          I = EHStack.getInnermostNormalCleanup();
1419          I != C; ) {
1420     assert(C.strictlyEncloses(I));
1421     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1422     if (S.getNormalBlock()) return true;
1423     I = S.getEnclosingNormalCleanup();
1424   }
1425 
1426   return false;
1427 }
1428 
1429 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1430                               EHScopeStack::stable_iterator C) {
1431   // If we needed an EH block for any reason, that counts.
1432   if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock())
1433     return true;
1434 
1435   // Check whether any enclosed cleanups were needed.
1436   for (EHScopeStack::stable_iterator
1437          I = EHStack.getInnermostEHCleanup(); I != C; ) {
1438     assert(C.strictlyEncloses(I));
1439     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1440     if (S.getEHBlock()) return true;
1441     I = S.getEnclosingEHCleanup();
1442   }
1443 
1444   return false;
1445 }
1446 
1447 enum ForActivation_t {
1448   ForActivation,
1449   ForDeactivation
1450 };
1451 
1452 /// The given cleanup block is changing activation state.  Configure a
1453 /// cleanup variable if necessary.
1454 ///
1455 /// It would be good if we had some way of determining if there were
1456 /// extra uses *after* the change-over point.
1457 static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
1458                                         EHScopeStack::stable_iterator C,
1459                                         ForActivation_t Kind) {
1460   EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1461 
1462   // We always need the flag if we're activating the cleanup, because
1463   // we have to assume that the current location doesn't necessarily
1464   // dominate all future uses of the cleanup.
1465   bool NeedFlag = (Kind == ForActivation);
1466 
1467   // Calculate whether the cleanup was used:
1468 
1469   //   - as a normal cleanup
1470   if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) {
1471     Scope.setTestFlagInNormalCleanup();
1472     NeedFlag = true;
1473   }
1474 
1475   //  - as an EH cleanup
1476   if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) {
1477     Scope.setTestFlagInEHCleanup();
1478     NeedFlag = true;
1479   }
1480 
1481   // If it hasn't yet been used as either, we're done.
1482   if (!NeedFlag) return;
1483 
1484   llvm::AllocaInst *Var = Scope.getActiveFlag();
1485   if (!Var) {
1486     Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive");
1487     Scope.setActiveFlag(Var);
1488 
1489     // Initialize to true or false depending on whether it was
1490     // active up to this point.
1491     CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation));
1492   }
1493 
1494   CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var);
1495 }
1496 
1497 /// Activate a cleanup that was created in an inactivated state.
1498 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) {
1499   assert(C != EHStack.stable_end() && "activating bottom of stack?");
1500   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1501   assert(!Scope.isActive() && "double activation");
1502 
1503   SetupCleanupBlockActivation(*this, C, ForActivation);
1504 
1505   Scope.setActive(true);
1506 }
1507 
1508 /// Deactive a cleanup that was created in an active state.
1509 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) {
1510   assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1511   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1512   assert(Scope.isActive() && "double deactivation");
1513 
1514   // If it's the top of the stack, just pop it.
1515   if (C == EHStack.stable_begin()) {
1516     // If it's a normal cleanup, we need to pretend that the
1517     // fallthrough is unreachable.
1518     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1519     PopCleanupBlock();
1520     Builder.restoreIP(SavedIP);
1521     return;
1522   }
1523 
1524   // Otherwise, follow the general case.
1525   SetupCleanupBlockActivation(*this, C, ForDeactivation);
1526 
1527   Scope.setActive(false);
1528 }
1529 
1530 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1531   if (!NormalCleanupDest)
1532     NormalCleanupDest =
1533       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1534   return NormalCleanupDest;
1535 }
1536 
1537 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1538   if (!EHCleanupDest)
1539     EHCleanupDest =
1540       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1541   return EHCleanupDest;
1542 }
1543 
1544 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1545                                               llvm::ConstantInt *Init) {
1546   assert (Init && "Invalid DeclRefExpr initializer!");
1547   if (CGDebugInfo *Dbg = getDebugInfo())
1548     Dbg->EmitGlobalVariable(E->getDecl(), Init, Builder);
1549 }
1550