1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Transforms/Utils/Cloning.h" 23 #include <algorithm> 24 #include <cstdio> 25 26 using namespace clang; 27 using namespace CodeGen; 28 29 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 30 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 31 32 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD, 33 const ThunkInfo &Thunk) { 34 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 35 36 // Compute the mangled name. 37 SmallString<256> Name; 38 llvm::raw_svector_ostream Out(Name); 39 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD)) 40 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(), 41 Thunk.This, Out); 42 else 43 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out); 44 45 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD); 46 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true, 47 /*DontDefer=*/true, /*IsThunk=*/true); 48 } 49 50 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD, 51 const ThunkInfo &Thunk, llvm::Function *Fn) { 52 CGM.setGlobalVisibility(Fn, MD); 53 } 54 55 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 56 llvm::Function *ThunkFn, bool ForVTable, 57 GlobalDecl GD) { 58 CGM.setFunctionLinkage(GD, ThunkFn); 59 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 60 !Thunk.Return.isEmpty()); 61 62 // Set the right visibility. 63 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 64 setThunkVisibility(CGM, MD, Thunk, ThunkFn); 65 66 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 67 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 68 } 69 70 #ifndef NDEBUG 71 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 72 const ABIArgInfo &infoR, CanQualType typeR) { 73 return (infoL.getKind() == infoR.getKind() && 74 (typeL == typeR || 75 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 76 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 77 } 78 #endif 79 80 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 81 QualType ResultType, RValue RV, 82 const ThunkInfo &Thunk) { 83 // Emit the return adjustment. 84 bool NullCheckValue = !ResultType->isReferenceType(); 85 86 llvm::BasicBlock *AdjustNull = nullptr; 87 llvm::BasicBlock *AdjustNotNull = nullptr; 88 llvm::BasicBlock *AdjustEnd = nullptr; 89 90 llvm::Value *ReturnValue = RV.getScalarVal(); 91 92 if (NullCheckValue) { 93 AdjustNull = CGF.createBasicBlock("adjust.null"); 94 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 95 AdjustEnd = CGF.createBasicBlock("adjust.end"); 96 97 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 98 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 99 CGF.EmitBlock(AdjustNotNull); 100 } 101 102 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 103 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 104 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 105 Address(ReturnValue, ClassAlign), 106 Thunk.Return); 107 108 if (NullCheckValue) { 109 CGF.Builder.CreateBr(AdjustEnd); 110 CGF.EmitBlock(AdjustNull); 111 CGF.Builder.CreateBr(AdjustEnd); 112 CGF.EmitBlock(AdjustEnd); 113 114 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 115 PHI->addIncoming(ReturnValue, AdjustNotNull); 116 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 117 AdjustNull); 118 ReturnValue = PHI; 119 } 120 121 return RValue::get(ReturnValue); 122 } 123 124 // This function does roughly the same thing as GenerateThunk, but in a 125 // very different way, so that va_start and va_end work correctly. 126 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 127 // a function, and that there is an alloca built in the entry block 128 // for all accesses to "this". 129 // FIXME: This function assumes there is only one "ret" statement per function. 130 // FIXME: Cloning isn't correct in the presence of indirect goto! 131 // FIXME: This implementation of thunks bloats codesize by duplicating the 132 // function definition. There are alternatives: 133 // 1. Add some sort of stub support to LLVM for cases where we can 134 // do a this adjustment, then a sibcall. 135 // 2. We could transform the definition to take a va_list instead of an 136 // actual variable argument list, then have the thunks (including a 137 // no-op thunk for the regular definition) call va_start/va_end. 138 // There's a bit of per-call overhead for this solution, but it's 139 // better for codesize if the definition is long. 140 llvm::Function * 141 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 142 const CGFunctionInfo &FnInfo, 143 GlobalDecl GD, const ThunkInfo &Thunk) { 144 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 145 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 146 QualType ResultType = FPT->getReturnType(); 147 148 // Get the original function 149 assert(FnInfo.isVariadic()); 150 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 151 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 152 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 153 154 // Clone to thunk. 155 llvm::ValueToValueMapTy VMap; 156 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 157 Fn->replaceAllUsesWith(NewFn); 158 NewFn->takeName(Fn); 159 Fn->eraseFromParent(); 160 Fn = NewFn; 161 162 // "Initialize" CGF (minimally). 163 CurFn = Fn; 164 165 // Get the "this" value 166 llvm::Function::arg_iterator AI = Fn->arg_begin(); 167 if (CGM.ReturnTypeUsesSRet(FnInfo)) 168 ++AI; 169 170 // Find the first store of "this", which will be to the alloca associated 171 // with "this". 172 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 173 llvm::BasicBlock *EntryBB = &Fn->front(); 174 llvm::BasicBlock::iterator ThisStore = 175 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 176 return isa<llvm::StoreInst>(I) && 177 I.getOperand(0) == ThisPtr.getPointer(); 178 }); 179 assert(ThisStore != EntryBB->end() && 180 "Store of this should be in entry block?"); 181 // Adjust "this", if necessary. 182 Builder.SetInsertPoint(&*ThisStore); 183 llvm::Value *AdjustedThisPtr = 184 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 185 ThisStore->setOperand(0, AdjustedThisPtr); 186 187 if (!Thunk.Return.isEmpty()) { 188 // Fix up the returned value, if necessary. 189 for (llvm::BasicBlock &BB : *Fn) { 190 llvm::Instruction *T = BB.getTerminator(); 191 if (isa<llvm::ReturnInst>(T)) { 192 RValue RV = RValue::get(T->getOperand(0)); 193 T->eraseFromParent(); 194 Builder.SetInsertPoint(&BB); 195 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 196 Builder.CreateRet(RV.getScalarVal()); 197 break; 198 } 199 } 200 } 201 202 return Fn; 203 } 204 205 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 206 const CGFunctionInfo &FnInfo) { 207 assert(!CurGD.getDecl() && "CurGD was already set!"); 208 CurGD = GD; 209 CurFuncIsThunk = true; 210 211 // Build FunctionArgs. 212 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 213 QualType ThisType = MD->getThisType(getContext()); 214 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 215 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD) 216 ? ThisType 217 : CGM.getCXXABI().hasMostDerivedReturn(GD) 218 ? CGM.getContext().VoidPtrTy 219 : FPT->getReturnType(); 220 FunctionArgList FunctionArgs; 221 222 // Create the implicit 'this' parameter declaration. 223 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 224 225 // Add the rest of the parameters. 226 FunctionArgs.append(MD->param_begin(), MD->param_end()); 227 228 if (isa<CXXDestructorDecl>(MD)) 229 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs); 230 231 // Start defining the function. 232 auto NL = ApplyDebugLocation::CreateEmpty(*this); 233 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 234 MD->getLocation()); 235 // Create a scope with an artificial location for the body of this function. 236 auto AL = ApplyDebugLocation::CreateArtificial(*this); 237 238 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 239 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 240 CXXThisValue = CXXABIThisValue; 241 CurCodeDecl = MD; 242 CurFuncDecl = MD; 243 } 244 245 void CodeGenFunction::FinishThunk() { 246 // Clear these to restore the invariants expected by 247 // StartFunction/FinishFunction. 248 CurCodeDecl = nullptr; 249 CurFuncDecl = nullptr; 250 251 FinishFunction(); 252 } 253 254 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Constant *CalleePtr, 255 const ThunkInfo *Thunk) { 256 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 257 "Please use a new CGF for this thunk"); 258 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 259 260 // Adjust the 'this' pointer if necessary 261 llvm::Value *AdjustedThisPtr = 262 Thunk ? CGM.getCXXABI().performThisAdjustment( 263 *this, LoadCXXThisAddress(), Thunk->This) 264 : LoadCXXThis(); 265 266 if (CurFnInfo->usesInAlloca()) { 267 // We don't handle return adjusting thunks, because they require us to call 268 // the copy constructor. For now, fall through and pretend the return 269 // adjustment was empty so we don't crash. 270 if (Thunk && !Thunk->Return.isEmpty()) { 271 CGM.ErrorUnsupported( 272 MD, "non-trivial argument copy for return-adjusting thunk"); 273 } 274 EmitMustTailThunk(MD, AdjustedThisPtr, CalleePtr); 275 return; 276 } 277 278 // Start building CallArgs. 279 CallArgList CallArgs; 280 QualType ThisType = MD->getThisType(getContext()); 281 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 282 283 if (isa<CXXDestructorDecl>(MD)) 284 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 285 286 // Add the rest of the arguments. 287 for (const ParmVarDecl *PD : MD->parameters()) 288 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 289 290 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 291 292 #ifndef NDEBUG 293 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 294 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1, MD)); 295 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 296 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 297 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 298 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 299 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 300 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 301 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 302 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 303 assert(similar(CallFnInfo.arg_begin()[i].info, 304 CallFnInfo.arg_begin()[i].type, 305 CurFnInfo->arg_begin()[i].info, 306 CurFnInfo->arg_begin()[i].type)); 307 #endif 308 309 // Determine whether we have a return value slot to use. 310 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 311 ? ThisType 312 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 313 ? CGM.getContext().VoidPtrTy 314 : FPT->getReturnType(); 315 ReturnValueSlot Slot; 316 if (!ResultType->isVoidType() && 317 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 318 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 319 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 320 321 // Now emit our call. 322 llvm::Instruction *CallOrInvoke; 323 CGCallee Callee = CGCallee::forDirect(CalleePtr, MD); 324 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, &CallOrInvoke); 325 326 // Consider return adjustment if we have ThunkInfo. 327 if (Thunk && !Thunk->Return.isEmpty()) 328 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 329 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 330 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 331 332 // Emit return. 333 if (!ResultType->isVoidType() && Slot.isNull()) 334 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 335 336 // Disable the final ARC autorelease. 337 AutoreleaseResult = false; 338 339 FinishThunk(); 340 } 341 342 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 343 llvm::Value *AdjustedThisPtr, 344 llvm::Value *CalleePtr) { 345 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 346 // to translate AST arguments into LLVM IR arguments. For thunks, we know 347 // that the caller prototype more or less matches the callee prototype with 348 // the exception of 'this'. 349 SmallVector<llvm::Value *, 8> Args; 350 for (llvm::Argument &A : CurFn->args()) 351 Args.push_back(&A); 352 353 // Set the adjusted 'this' pointer. 354 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 355 if (ThisAI.isDirect()) { 356 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 357 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 358 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 359 if (ThisType != AdjustedThisPtr->getType()) 360 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 361 Args[ThisArgNo] = AdjustedThisPtr; 362 } else { 363 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 364 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 365 llvm::Type *ThisType = ThisAddr.getElementType(); 366 if (ThisType != AdjustedThisPtr->getType()) 367 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 368 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 369 } 370 371 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 372 // don't actually want to run them. 373 llvm::CallInst *Call = Builder.CreateCall(CalleePtr, Args); 374 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 375 376 // Apply the standard set of call attributes. 377 unsigned CallingConv; 378 CodeGen::AttributeListType AttributeList; 379 CGM.ConstructAttributeList(CalleePtr->getName(), 380 *CurFnInfo, MD, AttributeList, 381 CallingConv, /*AttrOnCallSite=*/true); 382 llvm::AttributeSet Attrs = 383 llvm::AttributeSet::get(getLLVMContext(), AttributeList); 384 Call->setAttributes(Attrs); 385 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 386 387 if (Call->getType()->isVoidTy()) 388 Builder.CreateRetVoid(); 389 else 390 Builder.CreateRet(Call); 391 392 // Finish the function to maintain CodeGenFunction invariants. 393 // FIXME: Don't emit unreachable code. 394 EmitBlock(createBasicBlock()); 395 FinishFunction(); 396 } 397 398 void CodeGenFunction::generateThunk(llvm::Function *Fn, 399 const CGFunctionInfo &FnInfo, 400 GlobalDecl GD, const ThunkInfo &Thunk) { 401 StartThunk(Fn, GD, FnInfo); 402 // Create a scope with an artificial location for the body of this function. 403 auto AL = ApplyDebugLocation::CreateArtificial(*this); 404 405 // Get our callee. 406 llvm::Type *Ty = 407 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD)); 408 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 409 410 // Make the call and return the result. 411 EmitCallAndReturnForThunk(Callee, &Thunk); 412 } 413 414 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk, 415 bool ForVTable) { 416 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD); 417 418 // FIXME: re-use FnInfo in this computation. 419 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk); 420 llvm::GlobalValue *Entry; 421 422 // Strip off a bitcast if we got one back. 423 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 424 assert(CE->getOpcode() == llvm::Instruction::BitCast); 425 Entry = cast<llvm::GlobalValue>(CE->getOperand(0)); 426 } else { 427 Entry = cast<llvm::GlobalValue>(C); 428 } 429 430 // There's already a declaration with the same name, check if it has the same 431 // type or if we need to replace it. 432 if (Entry->getType()->getElementType() != 433 CGM.getTypes().GetFunctionTypeForVTable(GD)) { 434 llvm::GlobalValue *OldThunkFn = Entry; 435 436 // If the types mismatch then we have to rewrite the definition. 437 assert(OldThunkFn->isDeclaration() && 438 "Shouldn't replace non-declaration"); 439 440 // Remove the name from the old thunk function and get a new thunk. 441 OldThunkFn->setName(StringRef()); 442 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk)); 443 444 // If needed, replace the old thunk with a bitcast. 445 if (!OldThunkFn->use_empty()) { 446 llvm::Constant *NewPtrForOldDecl = 447 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType()); 448 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 449 } 450 451 // Remove the old thunk. 452 OldThunkFn->eraseFromParent(); 453 } 454 455 llvm::Function *ThunkFn = cast<llvm::Function>(Entry); 456 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 457 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 458 459 if (!ThunkFn->isDeclaration()) { 460 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 461 // There is already a thunk emitted for this function, do nothing. 462 return; 463 } 464 465 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 466 return; 467 } 468 469 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 470 471 if (ThunkFn->isVarArg()) { 472 // Varargs thunks are special; we can't just generate a call because 473 // we can't copy the varargs. Our implementation is rather 474 // expensive/sucky at the moment, so don't generate the thunk unless 475 // we have to. 476 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 477 if (UseAvailableExternallyLinkage) 478 return; 479 ThunkFn = 480 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk); 481 } else { 482 // Normal thunk body generation. 483 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk); 484 } 485 486 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD); 487 } 488 489 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD, 490 const ThunkInfo &Thunk) { 491 // If the ABI has key functions, only the TU with the key function should emit 492 // the thunk. However, we can allow inlining of thunks if we emit them with 493 // available_externally linkage together with vtables when optimizations are 494 // enabled. 495 if (CGM.getTarget().getCXXABI().hasKeyFunctions() && 496 !CGM.getCodeGenOpts().OptimizationLevel) 497 return; 498 499 // We can't emit thunks for member functions with incomplete types. 500 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 501 if (!CGM.getTypes().isFuncTypeConvertible( 502 MD->getType()->castAs<FunctionType>())) 503 return; 504 505 emitThunk(GD, Thunk, /*ForVTable=*/true); 506 } 507 508 void CodeGenVTables::EmitThunks(GlobalDecl GD) 509 { 510 const CXXMethodDecl *MD = 511 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 512 513 // We don't need to generate thunks for the base destructor. 514 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 515 return; 516 517 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 518 VTContext->getThunkInfo(GD); 519 520 if (!ThunkInfoVector) 521 return; 522 523 for (const ThunkInfo& Thunk : *ThunkInfoVector) 524 emitThunk(GD, Thunk, /*ForVTable=*/false); 525 } 526 527 llvm::Constant *CodeGenVTables::CreateVTableComponent( 528 unsigned Idx, const VTableLayout &VTLayout, llvm::Constant *RTTI, 529 unsigned &NextVTableThunkIndex) { 530 VTableComponent Component = VTLayout.vtable_components()[Idx]; 531 532 auto OffsetConstant = [&](CharUnits Offset) { 533 return llvm::ConstantExpr::getIntToPtr( 534 llvm::ConstantInt::get(CGM.PtrDiffTy, Offset.getQuantity()), 535 CGM.Int8PtrTy); 536 }; 537 538 switch (Component.getKind()) { 539 case VTableComponent::CK_VCallOffset: 540 return OffsetConstant(Component.getVCallOffset()); 541 542 case VTableComponent::CK_VBaseOffset: 543 return OffsetConstant(Component.getVBaseOffset()); 544 545 case VTableComponent::CK_OffsetToTop: 546 return OffsetConstant(Component.getOffsetToTop()); 547 548 case VTableComponent::CK_RTTI: 549 return RTTI; 550 551 case VTableComponent::CK_FunctionPointer: 552 case VTableComponent::CK_CompleteDtorPointer: 553 case VTableComponent::CK_DeletingDtorPointer: { 554 GlobalDecl GD; 555 556 // Get the right global decl. 557 switch (Component.getKind()) { 558 default: 559 llvm_unreachable("Unexpected vtable component kind"); 560 case VTableComponent::CK_FunctionPointer: 561 GD = Component.getFunctionDecl(); 562 break; 563 case VTableComponent::CK_CompleteDtorPointer: 564 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete); 565 break; 566 case VTableComponent::CK_DeletingDtorPointer: 567 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting); 568 break; 569 } 570 571 if (CGM.getLangOpts().CUDA) { 572 // Emit NULL for methods we can't codegen on this 573 // side. Otherwise we'd end up with vtable with unresolved 574 // references. 575 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 576 // OK on device side: functions w/ __device__ attribute 577 // OK on host side: anything except __device__-only functions. 578 bool CanEmitMethod = 579 CGM.getLangOpts().CUDAIsDevice 580 ? MD->hasAttr<CUDADeviceAttr>() 581 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 582 if (!CanEmitMethod) 583 return llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy); 584 // Method is acceptable, continue processing as usual. 585 } 586 587 auto SpecialVirtualFn = [&](llvm::Constant *&Cache, StringRef Name) { 588 if (!Cache) { 589 llvm::FunctionType *Ty = 590 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 591 Cache = CGM.CreateRuntimeFunction(Ty, Name); 592 if (auto *F = dyn_cast<llvm::Function>(Cache)) 593 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 594 Cache = llvm::ConstantExpr::getBitCast(Cache, CGM.Int8PtrTy); 595 } 596 return Cache; 597 }; 598 599 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) 600 // We have a pure virtual member function. 601 return SpecialVirtualFn(PureVirtualFn, 602 CGM.getCXXABI().GetPureVirtualCallName()); 603 604 if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) 605 return SpecialVirtualFn(DeletedVirtualFn, 606 CGM.getCXXABI().GetDeletedVirtualCallName()); 607 608 // Check if we should use a thunk. 609 if (NextVTableThunkIndex < VTLayout.vtable_thunks().size() && 610 VTLayout.vtable_thunks()[NextVTableThunkIndex].first == Idx) { 611 const ThunkInfo &Thunk = 612 VTLayout.vtable_thunks()[NextVTableThunkIndex].second; 613 614 maybeEmitThunkForVTable(GD, Thunk); 615 NextVTableThunkIndex++; 616 return CGM.GetAddrOfThunk(GD, Thunk); 617 } 618 619 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD); 620 return CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 621 } 622 623 case VTableComponent::CK_UnusedFunctionPointer: 624 return llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy); 625 } 626 627 llvm_unreachable("Unexpected vtable component kind"); 628 } 629 630 llvm::Constant * 631 CodeGenVTables::CreateVTableInitializer(const VTableLayout &VTLayout, 632 llvm::Constant *RTTI) { 633 SmallVector<llvm::Constant *, 64> Inits; 634 unsigned NextVTableThunkIndex = 0; 635 636 for (unsigned I = 0, E = VTLayout.vtable_components().size(); I != E; ++I) { 637 llvm::Constant *Init = 638 CreateVTableComponent(I, VTLayout, RTTI, NextVTableThunkIndex); 639 Inits.push_back(llvm::ConstantExpr::getBitCast(Init, CGM.Int8PtrTy)); 640 } 641 642 llvm::ArrayType *ArrayType = 643 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout.vtable_components().size()); 644 return llvm::ConstantArray::get(ArrayType, Inits); 645 } 646 647 llvm::GlobalVariable * 648 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 649 const BaseSubobject &Base, 650 bool BaseIsVirtual, 651 llvm::GlobalVariable::LinkageTypes Linkage, 652 VTableAddressPointsMapTy& AddressPoints) { 653 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 654 DI->completeClassData(Base.getBase()); 655 656 std::unique_ptr<VTableLayout> VTLayout( 657 getItaniumVTableContext().createConstructionVTableLayout( 658 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 659 660 // Add the address points. 661 AddressPoints = VTLayout->getAddressPoints(); 662 663 // Get the mangled construction vtable name. 664 SmallString<256> OutName; 665 llvm::raw_svector_ostream Out(OutName); 666 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 667 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 668 Base.getBase(), Out); 669 StringRef Name = OutName.str(); 670 671 llvm::ArrayType *ArrayType = 672 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->vtable_components().size()); 673 674 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 675 // guarantee that they actually will be available externally. Instead, when 676 // emitting an available_externally VTT, we provide references to an internal 677 // linkage construction vtable. The ABI only requires complete-object vtables 678 // to be the same for all instances of a type, not construction vtables. 679 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 680 Linkage = llvm::GlobalVariable::InternalLinkage; 681 682 // Create the variable that will hold the construction vtable. 683 llvm::GlobalVariable *VTable = 684 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage); 685 CGM.setGlobalVisibility(VTable, RD); 686 687 // V-tables are always unnamed_addr. 688 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 689 690 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 691 CGM.getContext().getTagDeclType(Base.getBase())); 692 693 // Create and set the initializer. 694 llvm::Constant *Init = CreateVTableInitializer(*VTLayout, RTTI); 695 VTable->setInitializer(Init); 696 697 CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get()); 698 699 return VTable; 700 } 701 702 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 703 const CXXRecordDecl *RD) { 704 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 705 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 706 } 707 708 /// Compute the required linkage of the vtable for the given class. 709 /// 710 /// Note that we only call this at the end of the translation unit. 711 llvm::GlobalVariable::LinkageTypes 712 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 713 if (!RD->isExternallyVisible()) 714 return llvm::GlobalVariable::InternalLinkage; 715 716 // We're at the end of the translation unit, so the current key 717 // function is fully correct. 718 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 719 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 720 // If this class has a key function, use that to determine the 721 // linkage of the vtable. 722 const FunctionDecl *def = nullptr; 723 if (keyFunction->hasBody(def)) 724 keyFunction = cast<CXXMethodDecl>(def); 725 726 switch (keyFunction->getTemplateSpecializationKind()) { 727 case TSK_Undeclared: 728 case TSK_ExplicitSpecialization: 729 assert((def || CodeGenOpts.OptimizationLevel > 0) && 730 "Shouldn't query vtable linkage without key function or " 731 "optimizations"); 732 if (!def && CodeGenOpts.OptimizationLevel > 0) 733 return llvm::GlobalVariable::AvailableExternallyLinkage; 734 735 if (keyFunction->isInlined()) 736 return !Context.getLangOpts().AppleKext ? 737 llvm::GlobalVariable::LinkOnceODRLinkage : 738 llvm::Function::InternalLinkage; 739 740 return llvm::GlobalVariable::ExternalLinkage; 741 742 case TSK_ImplicitInstantiation: 743 return !Context.getLangOpts().AppleKext ? 744 llvm::GlobalVariable::LinkOnceODRLinkage : 745 llvm::Function::InternalLinkage; 746 747 case TSK_ExplicitInstantiationDefinition: 748 return !Context.getLangOpts().AppleKext ? 749 llvm::GlobalVariable::WeakODRLinkage : 750 llvm::Function::InternalLinkage; 751 752 case TSK_ExplicitInstantiationDeclaration: 753 llvm_unreachable("Should not have been asked to emit this"); 754 } 755 } 756 757 // -fapple-kext mode does not support weak linkage, so we must use 758 // internal linkage. 759 if (Context.getLangOpts().AppleKext) 760 return llvm::Function::InternalLinkage; 761 762 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 763 llvm::GlobalValue::LinkOnceODRLinkage; 764 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 765 llvm::GlobalValue::WeakODRLinkage; 766 if (RD->hasAttr<DLLExportAttr>()) { 767 // Cannot discard exported vtables. 768 DiscardableODRLinkage = NonDiscardableODRLinkage; 769 } else if (RD->hasAttr<DLLImportAttr>()) { 770 // Imported vtables are available externally. 771 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 772 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 773 } 774 775 switch (RD->getTemplateSpecializationKind()) { 776 case TSK_Undeclared: 777 case TSK_ExplicitSpecialization: 778 case TSK_ImplicitInstantiation: 779 return DiscardableODRLinkage; 780 781 case TSK_ExplicitInstantiationDeclaration: 782 // Explicit instantiations in MSVC do not provide vtables, so we must emit 783 // our own. 784 if (getTarget().getCXXABI().isMicrosoft()) 785 return DiscardableODRLinkage; 786 return shouldEmitAvailableExternallyVTable(*this, RD) 787 ? llvm::GlobalVariable::AvailableExternallyLinkage 788 : llvm::GlobalVariable::ExternalLinkage; 789 790 case TSK_ExplicitInstantiationDefinition: 791 return NonDiscardableODRLinkage; 792 } 793 794 llvm_unreachable("Invalid TemplateSpecializationKind!"); 795 } 796 797 /// This is a callback from Sema to tell us that that a particular vtable is 798 /// required to be emitted in this translation unit. 799 /// 800 /// This is only called for vtables that _must_ be emitted (mainly due to key 801 /// functions). For weak vtables, CodeGen tracks when they are needed and 802 /// emits them as-needed. 803 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 804 VTables.GenerateClassData(theClass); 805 } 806 807 void 808 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 809 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 810 DI->completeClassData(RD); 811 812 if (RD->getNumVBases()) 813 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 814 815 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 816 } 817 818 /// At this point in the translation unit, does it appear that can we 819 /// rely on the vtable being defined elsewhere in the program? 820 /// 821 /// The response is really only definitive when called at the end of 822 /// the translation unit. 823 /// 824 /// The only semantic restriction here is that the object file should 825 /// not contain a vtable definition when that vtable is defined 826 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 827 /// vtables when unnecessary. 828 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 829 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 830 831 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 832 // emit them even if there is an explicit template instantiation. 833 if (CGM.getTarget().getCXXABI().isMicrosoft()) 834 return false; 835 836 // If we have an explicit instantiation declaration (and not a 837 // definition), the vtable is defined elsewhere. 838 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 839 if (TSK == TSK_ExplicitInstantiationDeclaration) 840 return true; 841 842 // Otherwise, if the class is an instantiated template, the 843 // vtable must be defined here. 844 if (TSK == TSK_ImplicitInstantiation || 845 TSK == TSK_ExplicitInstantiationDefinition) 846 return false; 847 848 // Otherwise, if the class doesn't have a key function (possibly 849 // anymore), the vtable must be defined here. 850 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 851 if (!keyFunction) 852 return false; 853 854 // Otherwise, if we don't have a definition of the key function, the 855 // vtable must be defined somewhere else. 856 return !keyFunction->hasBody(); 857 } 858 859 /// Given that we're currently at the end of the translation unit, and 860 /// we've emitted a reference to the vtable for this class, should 861 /// we define that vtable? 862 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 863 const CXXRecordDecl *RD) { 864 // If vtable is internal then it has to be done. 865 if (!CGM.getVTables().isVTableExternal(RD)) 866 return true; 867 868 // If it's external then maybe we will need it as available_externally. 869 return shouldEmitAvailableExternallyVTable(CGM, RD); 870 } 871 872 /// Given that at some point we emitted a reference to one or more 873 /// vtables, and that we are now at the end of the translation unit, 874 /// decide whether we should emit them. 875 void CodeGenModule::EmitDeferredVTables() { 876 #ifndef NDEBUG 877 // Remember the size of DeferredVTables, because we're going to assume 878 // that this entire operation doesn't modify it. 879 size_t savedSize = DeferredVTables.size(); 880 #endif 881 882 for (const CXXRecordDecl *RD : DeferredVTables) 883 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 884 VTables.GenerateClassData(RD); 885 886 assert(savedSize == DeferredVTables.size() && 887 "deferred extra vtables during vtable emission?"); 888 DeferredVTables.clear(); 889 } 890 891 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 892 LinkageInfo LV = RD->getLinkageAndVisibility(); 893 if (!isExternallyVisible(LV.getLinkage())) 894 return true; 895 896 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 897 return false; 898 899 if (getTriple().isOSBinFormatCOFF()) { 900 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 901 return false; 902 } else { 903 if (LV.getVisibility() != HiddenVisibility) 904 return false; 905 } 906 907 if (getCodeGenOpts().LTOVisibilityPublicStd) { 908 const DeclContext *DC = RD; 909 while (1) { 910 auto *D = cast<Decl>(DC); 911 DC = DC->getParent(); 912 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 913 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 914 if (const IdentifierInfo *II = ND->getIdentifier()) 915 if (II->isStr("std") || II->isStr("stdext")) 916 return false; 917 break; 918 } 919 } 920 } 921 922 return true; 923 } 924 925 void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable, 926 const VTableLayout &VTLayout) { 927 if (!getCodeGenOpts().PrepareForLTO) 928 return; 929 930 CharUnits PointerWidth = 931 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 932 933 typedef std::pair<const CXXRecordDecl *, unsigned> BSEntry; 934 std::vector<BSEntry> BitsetEntries; 935 // Create a bit set entry for each address point. 936 for (auto &&AP : VTLayout.getAddressPoints()) 937 BitsetEntries.push_back(std::make_pair(AP.first.getBase(), AP.second)); 938 939 // Sort the bit set entries for determinism. 940 std::sort(BitsetEntries.begin(), BitsetEntries.end(), 941 [this](const BSEntry &E1, const BSEntry &E2) { 942 if (&E1 == &E2) 943 return false; 944 945 std::string S1; 946 llvm::raw_string_ostream O1(S1); 947 getCXXABI().getMangleContext().mangleTypeName( 948 QualType(E1.first->getTypeForDecl(), 0), O1); 949 O1.flush(); 950 951 std::string S2; 952 llvm::raw_string_ostream O2(S2); 953 getCXXABI().getMangleContext().mangleTypeName( 954 QualType(E2.first->getTypeForDecl(), 0), O2); 955 O2.flush(); 956 957 if (S1 < S2) 958 return true; 959 if (S1 != S2) 960 return false; 961 962 return E1.second < E2.second; 963 }); 964 965 for (auto BitsetEntry : BitsetEntries) 966 AddVTableTypeMetadata(VTable, PointerWidth * BitsetEntry.second, 967 BitsetEntry.first); 968 } 969