1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/CodeGen/ConstantInitBuilder.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 33 34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 35 GlobalDecl GD) { 36 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 37 /*DontDefer=*/true, /*IsThunk=*/true); 38 } 39 40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 41 llvm::Function *ThunkFn, bool ForVTable, 42 GlobalDecl GD) { 43 CGM.setFunctionLinkage(GD, ThunkFn); 44 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 45 !Thunk.Return.isEmpty()); 46 47 // Set the right visibility. 48 CGM.setGVProperties(ThunkFn, GD); 49 50 if (!CGM.getCXXABI().exportThunk()) { 51 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 52 ThunkFn->setDSOLocal(true); 53 } 54 55 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 56 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 92 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 93 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 94 Address(ReturnValue, ClassAlign), 95 Thunk.Return); 96 97 if (NullCheckValue) { 98 CGF.Builder.CreateBr(AdjustEnd); 99 CGF.EmitBlock(AdjustNull); 100 CGF.Builder.CreateBr(AdjustEnd); 101 CGF.EmitBlock(AdjustEnd); 102 103 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 104 PHI->addIncoming(ReturnValue, AdjustNotNull); 105 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 106 AdjustNull); 107 ReturnValue = PHI; 108 } 109 110 return RValue::get(ReturnValue); 111 } 112 113 /// This function clones a function's DISubprogram node and enters it into 114 /// a value map with the intent that the map can be utilized by the cloner 115 /// to short-circuit Metadata node mapping. 116 /// Furthermore, the function resolves any DILocalVariable nodes referenced 117 /// by dbg.value intrinsics so they can be properly mapped during cloning. 118 static void resolveTopLevelMetadata(llvm::Function *Fn, 119 llvm::ValueToValueMapTy &VMap) { 120 // Clone the DISubprogram node and put it into the Value map. 121 auto *DIS = Fn->getSubprogram(); 122 if (!DIS) 123 return; 124 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 125 VMap.MD()[DIS].reset(NewDIS); 126 127 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 128 // they are referencing. 129 for (auto &BB : Fn->getBasicBlockList()) { 130 for (auto &I : BB) { 131 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 132 auto *DILocal = DII->getVariable(); 133 if (!DILocal->isResolved()) 134 DILocal->resolve(); 135 } 136 } 137 } 138 } 139 140 // This function does roughly the same thing as GenerateThunk, but in a 141 // very different way, so that va_start and va_end work correctly. 142 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 143 // a function, and that there is an alloca built in the entry block 144 // for all accesses to "this". 145 // FIXME: This function assumes there is only one "ret" statement per function. 146 // FIXME: Cloning isn't correct in the presence of indirect goto! 147 // FIXME: This implementation of thunks bloats codesize by duplicating the 148 // function definition. There are alternatives: 149 // 1. Add some sort of stub support to LLVM for cases where we can 150 // do a this adjustment, then a sibcall. 151 // 2. We could transform the definition to take a va_list instead of an 152 // actual variable argument list, then have the thunks (including a 153 // no-op thunk for the regular definition) call va_start/va_end. 154 // There's a bit of per-call overhead for this solution, but it's 155 // better for codesize if the definition is long. 156 llvm::Function * 157 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 158 const CGFunctionInfo &FnInfo, 159 GlobalDecl GD, const ThunkInfo &Thunk) { 160 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 161 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 162 QualType ResultType = FPT->getReturnType(); 163 164 // Get the original function 165 assert(FnInfo.isVariadic()); 166 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 167 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 168 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 169 170 // Clone to thunk. 171 llvm::ValueToValueMapTy VMap; 172 173 // We are cloning a function while some Metadata nodes are still unresolved. 174 // Ensure that the value mapper does not encounter any of them. 175 resolveTopLevelMetadata(BaseFn, VMap); 176 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 177 Fn->replaceAllUsesWith(NewFn); 178 NewFn->takeName(Fn); 179 Fn->eraseFromParent(); 180 Fn = NewFn; 181 182 // "Initialize" CGF (minimally). 183 CurFn = Fn; 184 185 // Get the "this" value 186 llvm::Function::arg_iterator AI = Fn->arg_begin(); 187 if (CGM.ReturnTypeUsesSRet(FnInfo)) 188 ++AI; 189 190 // Find the first store of "this", which will be to the alloca associated 191 // with "this". 192 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 193 llvm::BasicBlock *EntryBB = &Fn->front(); 194 llvm::BasicBlock::iterator ThisStore = 195 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 196 return isa<llvm::StoreInst>(I) && 197 I.getOperand(0) == ThisPtr.getPointer(); 198 }); 199 assert(ThisStore != EntryBB->end() && 200 "Store of this should be in entry block?"); 201 // Adjust "this", if necessary. 202 Builder.SetInsertPoint(&*ThisStore); 203 llvm::Value *AdjustedThisPtr = 204 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 205 ThisStore->setOperand(0, AdjustedThisPtr); 206 207 if (!Thunk.Return.isEmpty()) { 208 // Fix up the returned value, if necessary. 209 for (llvm::BasicBlock &BB : *Fn) { 210 llvm::Instruction *T = BB.getTerminator(); 211 if (isa<llvm::ReturnInst>(T)) { 212 RValue RV = RValue::get(T->getOperand(0)); 213 T->eraseFromParent(); 214 Builder.SetInsertPoint(&BB); 215 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 216 Builder.CreateRet(RV.getScalarVal()); 217 break; 218 } 219 } 220 } 221 222 return Fn; 223 } 224 225 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 226 const CGFunctionInfo &FnInfo, 227 bool IsUnprototyped) { 228 assert(!CurGD.getDecl() && "CurGD was already set!"); 229 CurGD = GD; 230 CurFuncIsThunk = true; 231 232 // Build FunctionArgs. 233 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 234 QualType ThisType = MD->getThisType(getContext()); 235 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 236 QualType ResultType; 237 if (IsUnprototyped) 238 ResultType = CGM.getContext().VoidTy; 239 else if (CGM.getCXXABI().HasThisReturn(GD)) 240 ResultType = ThisType; 241 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 242 ResultType = CGM.getContext().VoidPtrTy; 243 else 244 ResultType = FPT->getReturnType(); 245 FunctionArgList FunctionArgs; 246 247 // Create the implicit 'this' parameter declaration. 248 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 249 250 // Add the rest of the parameters, if we have a prototype to work with. 251 if (!IsUnprototyped) { 252 FunctionArgs.append(MD->param_begin(), MD->param_end()); 253 254 if (isa<CXXDestructorDecl>(MD)) 255 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 256 FunctionArgs); 257 } 258 259 // Start defining the function. 260 auto NL = ApplyDebugLocation::CreateEmpty(*this); 261 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 262 MD->getLocation()); 263 // Create a scope with an artificial location for the body of this function. 264 auto AL = ApplyDebugLocation::CreateArtificial(*this); 265 266 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 267 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 268 CXXThisValue = CXXABIThisValue; 269 CurCodeDecl = MD; 270 CurFuncDecl = MD; 271 } 272 273 void CodeGenFunction::FinishThunk() { 274 // Clear these to restore the invariants expected by 275 // StartFunction/FinishFunction. 276 CurCodeDecl = nullptr; 277 CurFuncDecl = nullptr; 278 279 FinishFunction(); 280 } 281 282 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Constant *CalleePtr, 283 const ThunkInfo *Thunk, 284 bool IsUnprototyped) { 285 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 286 "Please use a new CGF for this thunk"); 287 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 288 289 // Adjust the 'this' pointer if necessary 290 llvm::Value *AdjustedThisPtr = 291 Thunk ? CGM.getCXXABI().performThisAdjustment( 292 *this, LoadCXXThisAddress(), Thunk->This) 293 : LoadCXXThis(); 294 295 if (CurFnInfo->usesInAlloca() || IsUnprototyped) { 296 // We don't handle return adjusting thunks, because they require us to call 297 // the copy constructor. For now, fall through and pretend the return 298 // adjustment was empty so we don't crash. 299 if (Thunk && !Thunk->Return.isEmpty()) { 300 if (IsUnprototyped) 301 CGM.ErrorUnsupported( 302 MD, "return-adjusting thunk with incomplete parameter type"); 303 else 304 CGM.ErrorUnsupported( 305 MD, "non-trivial argument copy for return-adjusting thunk"); 306 } 307 EmitMustTailThunk(MD, AdjustedThisPtr, CalleePtr); 308 return; 309 } 310 311 // Start building CallArgs. 312 CallArgList CallArgs; 313 QualType ThisType = MD->getThisType(getContext()); 314 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 315 316 if (isa<CXXDestructorDecl>(MD)) 317 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 318 319 #ifndef NDEBUG 320 unsigned PrefixArgs = CallArgs.size() - 1; 321 #endif 322 // Add the rest of the arguments. 323 for (const ParmVarDecl *PD : MD->parameters()) 324 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 325 326 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 327 328 #ifndef NDEBUG 329 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 330 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1, MD), PrefixArgs); 331 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 332 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 333 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 334 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 335 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 336 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 337 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 338 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 339 assert(similar(CallFnInfo.arg_begin()[i].info, 340 CallFnInfo.arg_begin()[i].type, 341 CurFnInfo->arg_begin()[i].info, 342 CurFnInfo->arg_begin()[i].type)); 343 #endif 344 345 // Determine whether we have a return value slot to use. 346 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 347 ? ThisType 348 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 349 ? CGM.getContext().VoidPtrTy 350 : FPT->getReturnType(); 351 ReturnValueSlot Slot; 352 if (!ResultType->isVoidType() && 353 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 354 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) 355 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 356 357 // Now emit our call. 358 llvm::Instruction *CallOrInvoke; 359 CGCallee Callee = CGCallee::forDirect(CalleePtr, MD); 360 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, &CallOrInvoke); 361 362 // Consider return adjustment if we have ThunkInfo. 363 if (Thunk && !Thunk->Return.isEmpty()) 364 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 365 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 366 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 367 368 // Emit return. 369 if (!ResultType->isVoidType() && Slot.isNull()) 370 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 371 372 // Disable the final ARC autorelease. 373 AutoreleaseResult = false; 374 375 FinishThunk(); 376 } 377 378 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD, 379 llvm::Value *AdjustedThisPtr, 380 llvm::Value *CalleePtr) { 381 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 382 // to translate AST arguments into LLVM IR arguments. For thunks, we know 383 // that the caller prototype more or less matches the callee prototype with 384 // the exception of 'this'. 385 SmallVector<llvm::Value *, 8> Args; 386 for (llvm::Argument &A : CurFn->args()) 387 Args.push_back(&A); 388 389 // Set the adjusted 'this' pointer. 390 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 391 if (ThisAI.isDirect()) { 392 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 393 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 394 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 395 if (ThisType != AdjustedThisPtr->getType()) 396 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 397 Args[ThisArgNo] = AdjustedThisPtr; 398 } else { 399 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 400 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 401 llvm::Type *ThisType = ThisAddr.getElementType(); 402 if (ThisType != AdjustedThisPtr->getType()) 403 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 404 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 405 } 406 407 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 408 // don't actually want to run them. 409 llvm::CallInst *Call = Builder.CreateCall(CalleePtr, Args); 410 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 411 412 // Apply the standard set of call attributes. 413 unsigned CallingConv; 414 llvm::AttributeList Attrs; 415 CGM.ConstructAttributeList(CalleePtr->getName(), *CurFnInfo, MD, Attrs, 416 CallingConv, /*AttrOnCallSite=*/true); 417 Call->setAttributes(Attrs); 418 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 419 420 if (Call->getType()->isVoidTy()) 421 Builder.CreateRetVoid(); 422 else 423 Builder.CreateRet(Call); 424 425 // Finish the function to maintain CodeGenFunction invariants. 426 // FIXME: Don't emit unreachable code. 427 EmitBlock(createBasicBlock()); 428 FinishFunction(); 429 } 430 431 void CodeGenFunction::generateThunk(llvm::Function *Fn, 432 const CGFunctionInfo &FnInfo, GlobalDecl GD, 433 const ThunkInfo &Thunk, 434 bool IsUnprototyped) { 435 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 436 // Create a scope with an artificial location for the body of this function. 437 auto AL = ApplyDebugLocation::CreateArtificial(*this); 438 439 // Get our callee. Use a placeholder type if this method is unprototyped so 440 // that CodeGenModule doesn't try to set attributes. 441 llvm::Type *Ty; 442 if (IsUnprototyped) 443 Ty = llvm::StructType::get(getLLVMContext()); 444 else 445 Ty = CGM.getTypes().GetFunctionType(FnInfo); 446 447 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 448 449 // Fix up the function type for an unprototyped musttail call. 450 if (IsUnprototyped) 451 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 452 453 // Make the call and return the result. 454 EmitCallAndReturnForThunk(Callee, &Thunk, IsUnprototyped); 455 } 456 457 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 458 bool IsUnprototyped, bool ForVTable) { 459 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 460 // provide thunks for us. 461 if (CGM.getTarget().getCXXABI().isMicrosoft()) 462 return true; 463 464 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 465 // definitions of the main method. Therefore, emitting thunks with the vtable 466 // is purely an optimization. Emit the thunk if optimizations are enabled and 467 // all of the parameter types are complete. 468 if (ForVTable) 469 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 470 471 // Always emit thunks along with the method definition. 472 return true; 473 } 474 475 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 476 const ThunkInfo &TI, 477 bool ForVTable) { 478 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 479 480 // First, get a declaration. Compute the mangled name. Don't worry about 481 // getting the function prototype right, since we may only need this 482 // declaration to fill in a vtable slot. 483 SmallString<256> Name; 484 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 485 llvm::raw_svector_ostream Out(Name); 486 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 487 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 488 else 489 MCtx.mangleThunk(MD, TI, Out); 490 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 491 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 492 493 // If we don't need to emit a definition, return this declaration as is. 494 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 495 MD->getType()->castAs<FunctionType>()); 496 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 497 return Thunk; 498 499 // Arrange a function prototype appropriate for a function definition. In some 500 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 501 const CGFunctionInfo &FnInfo = 502 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 503 : CGM.getTypes().arrangeGlobalDeclaration(GD); 504 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 505 506 // If the type of the underlying GlobalValue is wrong, we'll have to replace 507 // it. It should be a declaration. 508 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 509 if (ThunkFn->getFunctionType() != ThunkFnTy) { 510 llvm::GlobalValue *OldThunkFn = ThunkFn; 511 512 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 513 514 // Remove the name from the old thunk function and get a new thunk. 515 OldThunkFn->setName(StringRef()); 516 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 517 Name.str(), &CGM.getModule()); 518 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 519 520 // If needed, replace the old thunk with a bitcast. 521 if (!OldThunkFn->use_empty()) { 522 llvm::Constant *NewPtrForOldDecl = 523 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 524 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 525 } 526 527 // Remove the old thunk. 528 OldThunkFn->eraseFromParent(); 529 } 530 531 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 532 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 533 534 if (!ThunkFn->isDeclaration()) { 535 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 536 // There is already a thunk emitted for this function, do nothing. 537 return ThunkFn; 538 } 539 540 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 541 return ThunkFn; 542 } 543 544 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 545 // that the return type is meaningless. These thunks can be used to call 546 // functions with differing return types, and the caller is required to cast 547 // the prototype appropriately to extract the correct value. 548 if (IsUnprototyped) 549 ThunkFn->addFnAttr("thunk"); 550 551 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 552 553 if (!IsUnprototyped && ThunkFn->isVarArg()) { 554 // Varargs thunks are special; we can't just generate a call because 555 // we can't copy the varargs. Our implementation is rather 556 // expensive/sucky at the moment, so don't generate the thunk unless 557 // we have to. 558 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 559 if (UseAvailableExternallyLinkage) 560 return ThunkFn; 561 ThunkFn = CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, 562 TI); 563 } else { 564 // Normal thunk body generation. 565 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 566 } 567 568 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 569 return ThunkFn; 570 } 571 572 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 573 const CXXMethodDecl *MD = 574 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 575 576 // We don't need to generate thunks for the base destructor. 577 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 578 return; 579 580 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 581 VTContext->getThunkInfo(GD); 582 583 if (!ThunkInfoVector) 584 return; 585 586 for (const ThunkInfo& Thunk : *ThunkInfoVector) 587 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 588 } 589 590 void CodeGenVTables::addVTableComponent( 591 ConstantArrayBuilder &builder, const VTableLayout &layout, 592 unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) { 593 auto &component = layout.vtable_components()[idx]; 594 595 auto addOffsetConstant = [&](CharUnits offset) { 596 builder.add(llvm::ConstantExpr::getIntToPtr( 597 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 598 CGM.Int8PtrTy)); 599 }; 600 601 switch (component.getKind()) { 602 case VTableComponent::CK_VCallOffset: 603 return addOffsetConstant(component.getVCallOffset()); 604 605 case VTableComponent::CK_VBaseOffset: 606 return addOffsetConstant(component.getVBaseOffset()); 607 608 case VTableComponent::CK_OffsetToTop: 609 return addOffsetConstant(component.getOffsetToTop()); 610 611 case VTableComponent::CK_RTTI: 612 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 613 614 case VTableComponent::CK_FunctionPointer: 615 case VTableComponent::CK_CompleteDtorPointer: 616 case VTableComponent::CK_DeletingDtorPointer: { 617 GlobalDecl GD; 618 619 // Get the right global decl. 620 switch (component.getKind()) { 621 default: 622 llvm_unreachable("Unexpected vtable component kind"); 623 case VTableComponent::CK_FunctionPointer: 624 GD = component.getFunctionDecl(); 625 break; 626 case VTableComponent::CK_CompleteDtorPointer: 627 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete); 628 break; 629 case VTableComponent::CK_DeletingDtorPointer: 630 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting); 631 break; 632 } 633 634 if (CGM.getLangOpts().CUDA) { 635 // Emit NULL for methods we can't codegen on this 636 // side. Otherwise we'd end up with vtable with unresolved 637 // references. 638 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 639 // OK on device side: functions w/ __device__ attribute 640 // OK on host side: anything except __device__-only functions. 641 bool CanEmitMethod = 642 CGM.getLangOpts().CUDAIsDevice 643 ? MD->hasAttr<CUDADeviceAttr>() 644 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 645 if (!CanEmitMethod) 646 return builder.addNullPointer(CGM.Int8PtrTy); 647 // Method is acceptable, continue processing as usual. 648 } 649 650 auto getSpecialVirtualFn = [&](StringRef name) { 651 llvm::FunctionType *fnTy = 652 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 653 llvm::Constant *fn = CGM.CreateRuntimeFunction(fnTy, name); 654 if (auto f = dyn_cast<llvm::Function>(fn)) 655 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 656 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 657 }; 658 659 llvm::Constant *fnPtr; 660 661 // Pure virtual member functions. 662 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 663 if (!PureVirtualFn) 664 PureVirtualFn = 665 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 666 fnPtr = PureVirtualFn; 667 668 // Deleted virtual member functions. 669 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 670 if (!DeletedVirtualFn) 671 DeletedVirtualFn = 672 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 673 fnPtr = DeletedVirtualFn; 674 675 // Thunks. 676 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 677 layout.vtable_thunks()[nextVTableThunkIndex].first == idx) { 678 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 679 680 nextVTableThunkIndex++; 681 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 682 683 // Otherwise we can use the method definition directly. 684 } else { 685 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 686 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 687 } 688 689 fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy); 690 builder.add(fnPtr); 691 return; 692 } 693 694 case VTableComponent::CK_UnusedFunctionPointer: 695 return builder.addNullPointer(CGM.Int8PtrTy); 696 } 697 698 llvm_unreachable("Unexpected vtable component kind"); 699 } 700 701 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 702 SmallVector<llvm::Type *, 4> tys; 703 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 704 tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i))); 705 } 706 707 return llvm::StructType::get(CGM.getLLVMContext(), tys); 708 } 709 710 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 711 const VTableLayout &layout, 712 llvm::Constant *rtti) { 713 unsigned nextVTableThunkIndex = 0; 714 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 715 auto vtableElem = builder.beginArray(CGM.Int8PtrTy); 716 size_t thisIndex = layout.getVTableOffset(i); 717 size_t nextIndex = thisIndex + layout.getVTableSize(i); 718 for (unsigned i = thisIndex; i != nextIndex; ++i) { 719 addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex); 720 } 721 vtableElem.finishAndAddTo(builder); 722 } 723 } 724 725 llvm::GlobalVariable * 726 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 727 const BaseSubobject &Base, 728 bool BaseIsVirtual, 729 llvm::GlobalVariable::LinkageTypes Linkage, 730 VTableAddressPointsMapTy& AddressPoints) { 731 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 732 DI->completeClassData(Base.getBase()); 733 734 std::unique_ptr<VTableLayout> VTLayout( 735 getItaniumVTableContext().createConstructionVTableLayout( 736 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 737 738 // Add the address points. 739 AddressPoints = VTLayout->getAddressPoints(); 740 741 // Get the mangled construction vtable name. 742 SmallString<256> OutName; 743 llvm::raw_svector_ostream Out(OutName); 744 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 745 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 746 Base.getBase(), Out); 747 StringRef Name = OutName.str(); 748 749 llvm::Type *VTType = getVTableType(*VTLayout); 750 751 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 752 // guarantee that they actually will be available externally. Instead, when 753 // emitting an available_externally VTT, we provide references to an internal 754 // linkage construction vtable. The ABI only requires complete-object vtables 755 // to be the same for all instances of a type, not construction vtables. 756 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 757 Linkage = llvm::GlobalVariable::InternalLinkage; 758 759 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); 760 761 // Create the variable that will hold the construction vtable. 762 llvm::GlobalVariable *VTable = 763 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 764 CGM.setGVProperties(VTable, RD); 765 766 // V-tables are always unnamed_addr. 767 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 768 769 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 770 CGM.getContext().getTagDeclType(Base.getBase())); 771 772 // Create and set the initializer. 773 ConstantInitBuilder builder(CGM); 774 auto components = builder.beginStruct(); 775 createVTableInitializer(components, *VTLayout, RTTI); 776 components.finishAndSetAsInitializer(VTable); 777 778 CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get()); 779 780 return VTable; 781 } 782 783 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 784 const CXXRecordDecl *RD) { 785 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 786 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 787 } 788 789 /// Compute the required linkage of the vtable for the given class. 790 /// 791 /// Note that we only call this at the end of the translation unit. 792 llvm::GlobalVariable::LinkageTypes 793 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 794 if (!RD->isExternallyVisible()) 795 return llvm::GlobalVariable::InternalLinkage; 796 797 // We're at the end of the translation unit, so the current key 798 // function is fully correct. 799 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 800 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 801 // If this class has a key function, use that to determine the 802 // linkage of the vtable. 803 const FunctionDecl *def = nullptr; 804 if (keyFunction->hasBody(def)) 805 keyFunction = cast<CXXMethodDecl>(def); 806 807 switch (keyFunction->getTemplateSpecializationKind()) { 808 case TSK_Undeclared: 809 case TSK_ExplicitSpecialization: 810 assert((def || CodeGenOpts.OptimizationLevel > 0 || 811 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 812 "Shouldn't query vtable linkage without key function, " 813 "optimizations, or debug info"); 814 if (!def && CodeGenOpts.OptimizationLevel > 0) 815 return llvm::GlobalVariable::AvailableExternallyLinkage; 816 817 if (keyFunction->isInlined()) 818 return !Context.getLangOpts().AppleKext ? 819 llvm::GlobalVariable::LinkOnceODRLinkage : 820 llvm::Function::InternalLinkage; 821 822 return llvm::GlobalVariable::ExternalLinkage; 823 824 case TSK_ImplicitInstantiation: 825 return !Context.getLangOpts().AppleKext ? 826 llvm::GlobalVariable::LinkOnceODRLinkage : 827 llvm::Function::InternalLinkage; 828 829 case TSK_ExplicitInstantiationDefinition: 830 return !Context.getLangOpts().AppleKext ? 831 llvm::GlobalVariable::WeakODRLinkage : 832 llvm::Function::InternalLinkage; 833 834 case TSK_ExplicitInstantiationDeclaration: 835 llvm_unreachable("Should not have been asked to emit this"); 836 } 837 } 838 839 // -fapple-kext mode does not support weak linkage, so we must use 840 // internal linkage. 841 if (Context.getLangOpts().AppleKext) 842 return llvm::Function::InternalLinkage; 843 844 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 845 llvm::GlobalValue::LinkOnceODRLinkage; 846 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 847 llvm::GlobalValue::WeakODRLinkage; 848 if (RD->hasAttr<DLLExportAttr>()) { 849 // Cannot discard exported vtables. 850 DiscardableODRLinkage = NonDiscardableODRLinkage; 851 } else if (RD->hasAttr<DLLImportAttr>()) { 852 // Imported vtables are available externally. 853 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 854 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 855 } 856 857 switch (RD->getTemplateSpecializationKind()) { 858 case TSK_Undeclared: 859 case TSK_ExplicitSpecialization: 860 case TSK_ImplicitInstantiation: 861 return DiscardableODRLinkage; 862 863 case TSK_ExplicitInstantiationDeclaration: 864 // Explicit instantiations in MSVC do not provide vtables, so we must emit 865 // our own. 866 if (getTarget().getCXXABI().isMicrosoft()) 867 return DiscardableODRLinkage; 868 return shouldEmitAvailableExternallyVTable(*this, RD) 869 ? llvm::GlobalVariable::AvailableExternallyLinkage 870 : llvm::GlobalVariable::ExternalLinkage; 871 872 case TSK_ExplicitInstantiationDefinition: 873 return NonDiscardableODRLinkage; 874 } 875 876 llvm_unreachable("Invalid TemplateSpecializationKind!"); 877 } 878 879 /// This is a callback from Sema to tell us that a particular vtable is 880 /// required to be emitted in this translation unit. 881 /// 882 /// This is only called for vtables that _must_ be emitted (mainly due to key 883 /// functions). For weak vtables, CodeGen tracks when they are needed and 884 /// emits them as-needed. 885 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 886 VTables.GenerateClassData(theClass); 887 } 888 889 void 890 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 891 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 892 DI->completeClassData(RD); 893 894 if (RD->getNumVBases()) 895 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 896 897 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 898 } 899 900 /// At this point in the translation unit, does it appear that can we 901 /// rely on the vtable being defined elsewhere in the program? 902 /// 903 /// The response is really only definitive when called at the end of 904 /// the translation unit. 905 /// 906 /// The only semantic restriction here is that the object file should 907 /// not contain a vtable definition when that vtable is defined 908 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 909 /// vtables when unnecessary. 910 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 911 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 912 913 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 914 // emit them even if there is an explicit template instantiation. 915 if (CGM.getTarget().getCXXABI().isMicrosoft()) 916 return false; 917 918 // If we have an explicit instantiation declaration (and not a 919 // definition), the vtable is defined elsewhere. 920 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 921 if (TSK == TSK_ExplicitInstantiationDeclaration) 922 return true; 923 924 // Otherwise, if the class is an instantiated template, the 925 // vtable must be defined here. 926 if (TSK == TSK_ImplicitInstantiation || 927 TSK == TSK_ExplicitInstantiationDefinition) 928 return false; 929 930 // Otherwise, if the class doesn't have a key function (possibly 931 // anymore), the vtable must be defined here. 932 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 933 if (!keyFunction) 934 return false; 935 936 // Otherwise, if we don't have a definition of the key function, the 937 // vtable must be defined somewhere else. 938 return !keyFunction->hasBody(); 939 } 940 941 /// Given that we're currently at the end of the translation unit, and 942 /// we've emitted a reference to the vtable for this class, should 943 /// we define that vtable? 944 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 945 const CXXRecordDecl *RD) { 946 // If vtable is internal then it has to be done. 947 if (!CGM.getVTables().isVTableExternal(RD)) 948 return true; 949 950 // If it's external then maybe we will need it as available_externally. 951 return shouldEmitAvailableExternallyVTable(CGM, RD); 952 } 953 954 /// Given that at some point we emitted a reference to one or more 955 /// vtables, and that we are now at the end of the translation unit, 956 /// decide whether we should emit them. 957 void CodeGenModule::EmitDeferredVTables() { 958 #ifndef NDEBUG 959 // Remember the size of DeferredVTables, because we're going to assume 960 // that this entire operation doesn't modify it. 961 size_t savedSize = DeferredVTables.size(); 962 #endif 963 964 for (const CXXRecordDecl *RD : DeferredVTables) 965 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 966 VTables.GenerateClassData(RD); 967 else if (shouldOpportunisticallyEmitVTables()) 968 OpportunisticVTables.push_back(RD); 969 970 assert(savedSize == DeferredVTables.size() && 971 "deferred extra vtables during vtable emission?"); 972 DeferredVTables.clear(); 973 } 974 975 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 976 LinkageInfo LV = RD->getLinkageAndVisibility(); 977 if (!isExternallyVisible(LV.getLinkage())) 978 return true; 979 980 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 981 return false; 982 983 if (getTriple().isOSBinFormatCOFF()) { 984 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 985 return false; 986 } else { 987 if (LV.getVisibility() != HiddenVisibility) 988 return false; 989 } 990 991 if (getCodeGenOpts().LTOVisibilityPublicStd) { 992 const DeclContext *DC = RD; 993 while (1) { 994 auto *D = cast<Decl>(DC); 995 DC = DC->getParent(); 996 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 997 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 998 if (const IdentifierInfo *II = ND->getIdentifier()) 999 if (II->isStr("std") || II->isStr("stdext")) 1000 return false; 1001 break; 1002 } 1003 } 1004 } 1005 1006 return true; 1007 } 1008 1009 void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable, 1010 const VTableLayout &VTLayout) { 1011 if (!getCodeGenOpts().LTOUnit) 1012 return; 1013 1014 CharUnits PointerWidth = 1015 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1016 1017 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; 1018 std::vector<AddressPoint> AddressPoints; 1019 for (auto &&AP : VTLayout.getAddressPoints()) 1020 AddressPoints.push_back(std::make_pair( 1021 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + 1022 AP.second.AddressPointIndex)); 1023 1024 // Sort the address points for determinism. 1025 llvm::sort(AddressPoints.begin(), AddressPoints.end(), 1026 [this](const AddressPoint &AP1, const AddressPoint &AP2) { 1027 if (&AP1 == &AP2) 1028 return false; 1029 1030 std::string S1; 1031 llvm::raw_string_ostream O1(S1); 1032 getCXXABI().getMangleContext().mangleTypeName( 1033 QualType(AP1.first->getTypeForDecl(), 0), O1); 1034 O1.flush(); 1035 1036 std::string S2; 1037 llvm::raw_string_ostream O2(S2); 1038 getCXXABI().getMangleContext().mangleTypeName( 1039 QualType(AP2.first->getTypeForDecl(), 0), O2); 1040 O2.flush(); 1041 1042 if (S1 < S2) 1043 return true; 1044 if (S1 != S2) 1045 return false; 1046 1047 return AP1.second < AP2.second; 1048 }); 1049 1050 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1051 for (auto AP : AddressPoints) { 1052 // Create type metadata for the address point. 1053 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); 1054 1055 // The class associated with each address point could also potentially be 1056 // used for indirect calls via a member function pointer, so we need to 1057 // annotate the address of each function pointer with the appropriate member 1058 // function pointer type. 1059 for (unsigned I = 0; I != Comps.size(); ++I) { 1060 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1061 continue; 1062 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1063 Context.getMemberPointerType( 1064 Comps[I].getFunctionDecl()->getType(), 1065 Context.getRecordType(AP.first).getTypePtr())); 1066 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); 1067 } 1068 } 1069 } 1070